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Abstract. We prove existence and comparison results for multi-valued
variational inequalities in a bounded domain Ω of the form

u ∈ K : 0 ∈ Au+ ∂IK(u) + F(u) + FΓ(u) in W 1,H(Ω)∗,

where A : W 1,H(Ω) → W 1,H(Ω)∗ given by

Au := − div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
for u ∈ W 1,H(Ω), is the double phase operator with variable expo-
nents and W 1,H(Ω) is the associated Musielak-Orlicz Sobolev space.
First, an existence result is proved under some weak coercivity condi-
tion. Our main focus aims at the treatment of the problem under con-
sideration when coercivity fails. To this end we establish the method
of sub-supersolution for the multi-valued variational inequality in the
space W 1,H(Ω) based on appropriately defined sub- and supersolutions,
which yields the existence of solutions within an ordered interval of sub-
supersolution. Moreover, the existence of extremal solutions will be
shown provided the closed, convex subset K of W 1,H(Ω) satisfies a lat-
tice condition. As an application of the sub-supersolution method we are
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able to show that a class of generalized variational-hemivariational in-
equalities with a leading double phase operator are included as a special
case of the multi-valued variational inequality considered here. Based on
a fixed point argument, we also study the case when the corresponding
Nemytskij operators F ,FΓ need not be continuous. At the end, we give
an example of the construction of sub- and supersolutions related to the
problem above.

1. Introduction and Main Results

In this paper we prove comparison and extremality results for a wide
class of multi-valued variational inequalities driven by the double phase op-
erator with variable exponents. This operator, denoted by A : W 1,H(Ω) →
W 1,H(Ω)∗, is given in the form

Au := −div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
(1.1)

for u ∈ W 1,H(Ω), where p, q ∈ C(Ω) with 1 < p(x) < N , p(x) < q(x) for
all x ∈ Ω, 0 ≤ µ(·) ∈ L1(Ω) is the weight function and W 1,H(Ω) is the
corresponding Musielak-Orlicz Sobolev space (see Section 2 for its precise
definition). Note that (1.1) reduces to the p(x)-Laplacian when µ ≡ 0 and
to the (p(x), q(x))-Laplacian when inf µ > 0.

When p and q are constants, such setting is originally due to Zhikov [42]
who introduced and studied the integral functional

ω 7→
∫ (

|∇ω|p + µ(x)|∇ω|q
)
dx (1.2)

in order to describe models for strongly anisotropic materials. The functional
(1.2) also demonstrated its importance in the study of duality theory and in
the context of the Lavrentiev phenomenon, see Zhikov [43]. Note that (1.2)
is related to the differential operator

u 7→ −div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
, (1.3)

which is a special case of (1.1). From the physical point of view, (1.2)
describes the phenomenon that the energy density changes its ellipticity and
growth properties according to the point in the domain. In the elasticity
theory, for example, the modulating coefficient µ(·) dictates the geometry
of composites made of two different materials with distinct power hardening
exponents q and p, see Zhikov [44]. From the mathematical point of view,
the behavior of (1.2) depends on the sets on which the weight function µ(·)
vanishes or not. Therefore, we have two phases (µ(x) = 0 or ̸= 0) and so
we call it double phase. Even though no global regularity theory for double
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phase problems exists yet, there are some remarkable results about local
minimizers, see [2, 3, 4, 14, 15, 17, 28, 29, 30, 34]. We also refer to the recent
overview article in [31].

Let us next formulate the problem under consideration. To this end, let
Ω ⊂ RN (N ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω and
let Γ ⊂ ∂Ω be a relatively open subset and denote Γ0 = ∂Ω \ Γ such that
∂Ω = Γ ∪ Γ0. We consider the multi-valued elliptic variational inequality of
the form

u ∈ K : 0 ∈ Au+ ∂IK(u) + F(u) + FΓ(u) in W 1,H(Ω)∗, (1.4)

where W 1,H(Ω)∗ its dual space of W 1,H(Ω), K is a closed convex subset of
the closed subspace VΓ0 of W 1,H(Ω) defined by

VΓ0 =
{
u ∈W 1,H(Ω) : u |Γ0= 0

}
,

IK is the indicator function related toK, and ∂IK denotes its subdifferential.
The lower order multi-valued operators F and FΓ are generated by the multi-
valued functions f : Ω×R → 2R \{∅} and fΓ : Γ×R → 2R \{∅}, respectively.
Let

p∗(x) :=
Np(x)

N − p(x)
and p∗(x) :=

(N − 1)p(x)

N − p(x)
for all x ∈ Ω (1.5)

be the critical exponents to p for 1 < p(x) < N , and denote by p′(·) the

Hölder conjugate to p given by p′(·) = p(·)
p(·)−1 . We assume the following

hypotheses:

(H0) p, q ∈ C(Ω) such that 1 < p(x) < N , p(x) < q(x) < p∗(x) and
0 ≤ µ(·) ∈ L∞(Ω).

(F1) f : Ω×R → 2R \{∅} and fΓ : Γ×R → 2R \{∅} are graph measurable
on Ω × R and Γ × R, respectively, and for a. a.x ∈ Ω the function
f(x, ·) : R → 2R is upper semicontinuous and for a. a.x ∈ Γ, the
function fΓ(x, ·) : R → 2R is upper semicontinuous.

(F2) There exist r1 ∈ C(Ω), r2 ∈ C(Γ) with 1 < r1(x) < p∗(x) for all
x ∈ Ω, 1 < r2(x) < p∗(x) for all x ∈ Γ, β ≥ 0, βΓ ≥ 0 and functions

α ∈ Lr
′
1(·)(Ω), αΓ ∈ Lr

′
2(·)(Γ) such that

sup {|η| : η ∈ f(x, s)} ≤ α(x) + β|s|r1(x)−1

for a. a.x ∈ Ω, for all s ∈ R, and

sup {|ζ| : ζ ∈ fΓ(x, s)} ≤ αΓ(x) + βΓ|s|r2(x)−1

for a. a.x ∈ Γ, and for all s ∈ R.
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We point out that the classical obstacle problem fits in our setting, that
is,

K =
{
u ∈W 1,H(Ω) : u(x) ≥ ψ(x) a. e. in Ω

}
with a given obstacle ψ : Ω → R. Originally, the study of obstacle problems
is due the pioneering contribution by Stefan [36] in which the temperature
distribution in a homogeneous medium undergoing a phase change, typically
a body of ice at zero degrees centigrade submerged in water, was studied.
Furthermore, we mention the famous work of J.-L. Lions [26] who studied
the equilibrium position of an elastic membrane which lies above a given
obstacle and which turns out as the unique solution of the Dirichlet energy
functional minimized on the closed convex set K.

Before we state our main results, we first give the definition of a weak
solution to problem (1.4).

Definition 1.1. A function u ∈ K is said to be a (weak) solution of (1.4)
if there exist τ1 ∈ C(Ω), τ2 ∈ C(Γ), 1 < τ1(x) < p∗(x) for all x ∈ Ω,

1 < τ2(x) < p∗(x) for all x ∈ Γ and η ∈ Lτ
′
1(·)(Ω), ζ ∈ Lτ

′
2(·)(Γ) such that

η(x) ∈ f(x, u(x)) for a. a.x ∈ Ω, ζ(x) ∈ fΓ(x, u(x)) for a. a.x ∈ Γ and∫
Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx

+

∫
Ω
η(v − u) dx+

∫
Γ
ζ(v − u) dσ ≥ 0

(1.6)

for all v ∈ K.

Note, for simplicity of notation, the boundary integral
∫
Γ ζ(v−u) dσ stands

for ∫
Γ
ζ
(
iτ2(·)v|Γ − iτ2(·)u|Γ

)
dσ,

where iτ2(·) : W
1,H(Ω) → Lτ2(·)(∂Ω) denotes the trace operator, and iτ2(·)v|Γ

is the restriction of iτ2(·)v to Γ.
The multi-valued variational inequality (1.4) covers a wide range of elliptic

problems which can be deduced from (1.4) by specifying Γ, K, and the lower
order terms. To give an idea, let us consider a few examples.

Example 1.2. If Γ = ∂Ω, then Γ0 = ∅, and VΓ0 = W 1,H(Ω). If K =
W 1,H(Ω), then (1.4) reduces to the following multi-valued elliptic boundary
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value problem

−div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
+ f(x, u) ∋ 0 in Ω,

− ∂u

∂νA
∈ fΓ(x, u) on ∂Ω,

where
∂u

∂νA
=

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ν

with ν denoting the outward unit normal at Γ.

Example 1.3. If Γ0 = ∂Ω, then Γ = ∅, and VΓ0 = W 1,H
0 (Ω). If K =

W 1,H
0 (Ω), then (1.4) becomes the following multi-valued Dirichlet boundary

value problem

−div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
+ f(x, u) ∋ 0 in Ω,

u = 0 on ∂Ω.

Further special cases can be deduced from (1.4) such as a mixed boundary
value problems that arise when |Γ| > 0 and |Γ0| > 0, and K = VΓ0 . In
Section 6 we will see that (1.4) also includes an important class of generalized
variational-hemivariational inequalities.

Our first result is the following existence theorem for (1.4) under a coer-
civity condition.

Theorem 1.4. Let hypotheses (H0), (F1) and (F2) be satisfied and suppose
the following coercivity condition holds:

There exist u0 ∈ K and R ≥ ∥u0∥1,H such that K ∩BR(0) ̸= ∅ and

⟨Au+ η∗ + ζ∗, u− u0⟩ > 0, (1.7)

for all u ∈ K with ∥u∥1,H = R, for all η∗ ∈ F(u) and for all ζ∗ ∈
FΓ(u).

Then problem (1.4) has at least one solution in the sense of Definition 1.1.

The proof will be given in Section 3, see also Corollary 3.2, which is a direct
consequence of Theorem 1.4. If the coercivity condition (1.7) or appropriate
generalized versions of coercivity are not satisfied then problem (1.4) may
have no solutions. However, in the noncoercive case we still are able to prove
the existence of solutions provided appropriately defined sub-supersolutions
for (1.4) exist. In this paper we establish an sub-supersolution method based
on the following definition of sub- and supersolutions of problem (1.4). For
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functions u, v : Ω → R we use the notation u ∧ v = min(u, v), u ∨ v =
max(u, v),K ∧ K = {u ∧ v : u, v ∈ K},K ∨ K = {u ∨ v : u, v ∈ K}
and u ∧K = {u} ∧K,u ∨K = {u} ∨K.

Definition 1.5. A function u ∈W 1,H(Ω) is said to be a (weak) subsolution
of (1.4) if there exist τ1 ∈ C(Ω), τ2 ∈ C(Γ), 1 < τ1(x) < p∗(x) for all x ∈ Ω,

1 < τ2(x) < p∗(x) for all x ∈ Γ and η ∈ Lτ
′
1(·)(Ω), ζ ∈ Lτ

′
2(·)(Γ) such that

(i) u ∨K ⊂ K;
(ii) η(x) ∈ f(x, u(x)) for a. a.x ∈ Ω, ζ(x) ∈ fΓ(x, u(x)) for a. a.x ∈ Γ;
(iii) ∫

Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx

+

∫
Ω
η(v − u) dx+

∫
Γ
ζ(v − u) dσ ≥ 0

for all v ∈ u ∧K.

Definition 1.6. A function u ∈W 1,H(Ω) is said to be a (weak) supersolution
of (1.4) if there exist τ1 ∈ C(Ω), τ2 ∈ C(Γ), 1 < τ1(x) < p∗(x) for all x ∈ Ω,

1 < τ2(x) < p∗(x) for all x ∈ Γ and η ∈ Lτ
′
1(·)(Ω), ζ ∈ Lτ

′
2(·)(Γ) such that

(i) u ∧K ⊂ K;
(ii) η(x) ∈ f(x, u(x)) for a. a.x ∈ Ω, ζ(x) ∈ fΓ(x, u(x)) for a. a.x ∈ Γ;
(iii) ∫

Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx

+

∫
Ω
η(v − u) dx+

∫
Γ
ζ(v − u) dσ ≥ 0

for all v ∈ u ∨K.

Remark 1.7. We note that although variational inequalities are generally
nonsymmetric due to the presence of constraints, the notions for sub- and
supersolution defined by Definition 1.5 and Definition 1.6, respectively, do
have a symmetric structure in the following sense: one obtains the definition
for the supersolution u from the definition of the subsolution by replacing
u, η, ζ in the definition of subsolution by u, η, ζ, and interchanging ∨ by ∧.
Symmetric structure is a main feature of the sub-supersolution concepts for
smooth equations, which has been extended here to multi-valued variational
inequalities with variable exponent double-phase operator.
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Just for illustration, let us apply the above definitions to the special case
given by Example 1.2 and assume that f and fΓ are single-valued, that is

−div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
+ f(x, u) = 0 in Ω,

∂u

∂νA
+ fΓ(x, u) = 0 on ∂Ω.

(1.8)

Let u be a subsolution according to Definition 1.5. As K = W 1,H(Ω) and
W 1,H(Ω) has lattice structure, condition (i) is trivially satisfied. Condition
(ii) yields η(x) = f(x, u(x)) for a. a.x ∈ Ω and ζ(x) = fΓ(x, u(x)) for

a. a.x ∈ Γ. For any φ ∈ K = W 1,H(Ω) we test (iii) with v = u ∧ φ =
u− (u− φ)+ which results in∫

Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇(u− φ)+ dx

+

∫
Ω
f(x, u(x))(u− φ)+ dx+

∫
Γ
fΓ(x, u(x))(u− φ)+ dσ ≤ 0

for all φ ∈ W 1,H(Ω). Since the set {(u − φ)+ : φ ∈ W 1,H(Ω)} equals
{ψ ∈ W 1,H(Ω) : ψ ≥ 0}, the last inequality is nothing but the usual notion
of subsolution for the boundary value problem (1.8), that is,

−div
(
|∇u|p(x)−2∇u+ µ(x)u(x)|∇u|q(x)−2∇u

)
+ f(x, u) ≤ 0 in Ω,

∂u

∂νA
+ fΓ(x, u) ≤ 0 on ∂Ω.

Similarly, Definition 1.6 for the supersolution u of (1.8) reduces to

−div
(
|∇u|p(x)−2∇u+ µ(x)u(x)|∇u|q(x)−2∇u

)
+ f(x, u) ≥ 0 in Ω,

∂u

∂νA
+ fΓ(x, u) ≥ 0 on ∂Ω.

Next, we suppose the following local boundedness conditions on the multi-
valued nonlinearities with respect to the order interval [u, u].

(F3) Let u and u be sub- and supersolutions of (1.4) such that u ≤ u and
suppose the following growth conditions

sup {|η| : η ∈ f(x, s)} ≤ kΩ(x) for a. a.x ∈ Ω,

sup {|ζ| : ζ ∈ fΓ(x, s)} ≤ kΓ(x) for a. a.x ∈ Γ,

for all s ∈ [u(x), u(x)] and for some kΩ ∈ Lτ
′
1(·)(Ω), kΓ ∈ Lτ

′
2(·)(Γ).
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The sub-supersolution method for (1.4) is established by the following exis-
tence and comparison result.

Theorem 1.8. Let u and u be an ordered pair of sub- and supersolutions
of (1.4) fulfilling u ≤ u and let hypotheses (H0), (F1) and (F3) be satisfied.
Then problem (1.4) has a solution u ∈ K such that u ≤ u ≤ u a.e. in Ω.

We remark that Theorem 1.8 will be seen as straightforward consequence
of a general existence and comparison principle (see Theorem 4.1) which
will be proved in Section 4, and which at the same time allows us to order-
theoretically and topologically characterize the solution set S of all solutions
of (1.4) lying within the interval [u, u]. We have the following characteriza-
tion of S, see Section 5.

Theorem 1.9.

(i) Under the assumptions of Theorem 1.8, the solutions set S is a com-
pact subset of W 1,H(Ω).

(ii) If
S ∧K ⊂ K and S ∨K ⊂ K, (1.9)

then
(a) any u ∈ S is both a (weak) subsolution and supersolution of

(1.4), and
(b) S is directed both downward and upward, that is, for all u1, u2 ∈

S, there exists w1, w2 ∈ S such that

w1 ≤ min{u1, u2} and w2 ≥ max{u1, u2}.
(iii) If (1.9) hold then S has smallest and greatest elements, that is, there

are u∗, u
∗ ∈ S such that u∗ ≤ u ≤ u∗ for all u ∈ S.

In Section 6, as an application of Theorem 1.8 and Theorem 1.9, we are
going to show that a class of generalized variational-hemivariational inequal-
ities with the double phase operator as the leading operator of the form

u ∈ K : ⟨Au, v − u⟩+
∫
Ω
j◦(·, u, u; v − u) dx

+

∫
Γ
j◦Γ(·, u, u; v − u) dσ ≥ 0 for all v ∈ K,

(1.10)

turn out to be a special case of (1.4) only, see Theorem 6.2. In Section 7 we
also study the case when the functions f and fΓ need not be continuous (so
F and FΓ need not be pseudomonotone anymore). The idea in the proof is
the usage of an fixed point argument, see Theorems 2.13 and 7.3. Lastly,
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in Section 8, we construct nontrivial sub- and supersolutions of (1.4) which
can be applied to our results, see Theorem 8.2 and Corollary 8.3.

To the best of our knowledge, our results are new even in the case when
p and q are constants. For double phase problems with variable exponents
there are only few works, we mention the papers of [1] for the variable
exponent Baouendi-Grushin operator, of [16] for single-valued convection
problems and of [40] for obstacle problems involving multi-valued reaction
terms with gradient dependence. Papers dealing with the constant exponent
double phase (1.3) along with multi-valued right-hand sides can be found in
[38] and [39] who studied obstacle problems involving the special case of
Clarke’s generalized gradients. Note that all these works are dealing with
the coercive case.

Finally, we mention some recent results for single-valued double phase
problems without constraints, such as, [13] for eigenvalue problems for double
phase problems, [20] for sign-changing solutions based on the Nehari mani-
fold, [21] for general convection problems, [27] for superlinear double phase
problems, [33] for double phase problems via Morse theory, [35] for multiple
solutions for double phase variational problems and [41] for anisotropic dou-
ble phase problems. As for multi-valued variational inequalities with leading
p-Laplacian type operators we refer to [8] for bounded domains, and [9, 10]
for unbounded domains.

2. Preliminaries

In this section we recall some results about variable exponent Sobolev
space, Musielak-Orlicz Sobolev spaces and properties of the variable expo-
nent double phase operator. The results are mainly taken from the books of
[18] and [22] as well as the papers of [16], [19] and [23].

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω and denote
by M(Ω) the space of all measurable functions u : Ω → R. Let C+(Ω) be a
subset of C(Ω) defined by

C+(Ω) :=
{
h ∈ C(Ω) : 1 < h(x) for all x ∈ Ω

}
.

For any r ∈ C+(Ω), we define

r− := min
x∈Ω

r(x) and r+ := max
x∈Ω

r(x)

and r′ ∈ C+(Ω) stands for the conjugate variable exponent to r, namely,

1

r(x)
+

1

r′(x)
= 1 for all x ∈ Ω.
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For r ∈ C+(Ω) fixed, the variable exponent Lebesgue space Lr(·)(Ω) is
defined by

Lr(·)(Ω) =

{
u ∈M(Ω) :

∫
Ω
|u|r(x) dx < +∞

}
,

equipped with the Luxemburg norm

∥u∥r(·) := inf

{
λ > 0 :

∫
Ω

(
|u|
λ

)r(x)
dx ≤ 1

}
.

It is well-known that Lr(·)(Ω) is a separable and reflexive Banach space.

Furthermore, the dual space of Lr(·)(Ω) is Lr
′(·)(Ω) and the following Hölder

type inequality holds∫
Ω
|uv| dx ≤

[
1

r−
+

1

r′−

]
∥u∥r(·)∥v∥r′(·) ≤ 2∥u∥r(·)∥v∥r′(·)

for all u ∈ Lr(·)(Ω) and for all v ∈ Lr
′(·)(Ω). For r1, r2 ∈ C+(Ω) with

r1(x) ≤ r2(x) for all x ∈ Ω we have the continuous embedding

Lr2(·)(Ω) ↪→ Lr1(·)(Ω).

In the same way, for any Γ ⊂ ∂Ω, we define boundary variable exponent
Sobolev spaces Lr(·)(Γ) with r ∈ C(Γ), r(x) > 1 for all x ∈ Γ and norm
∥ · ∥r(·),Γ.

For any r ∈ C+(Ω), we consider the modular function ρr(·) : L
r(·)(Ω) → R

given by

ρr(·)(u) =

∫
Ω
|u|r(x) dx for all u ∈ Lr(·)(Ω). (2.1)

The following proposition states some important relations between the norm
of Lr(·)(Ω) and the modular function ρr(·) defined in (2.1).

Proposition 2.1. If r ∈ C+(Ω) and u, un ∈ Lr(·)(Ω), then we have the
following assertions:

(i) ∥u∥r(·) = λ ⇐⇒ ρr(·)
(
u
λ

)
= 1 with u ̸= 0;

(ii) ∥u∥r(·) < 1 (resp. = 1, > 1) ⇐⇒ ρr(·)(u) < 1 (resp. = 1, > 1);

(iii) ∥u∥r(·) < 1 =⇒ ∥u∥r+r(·) ≤ ρr(·)(u) ≤ ∥u∥r−r(·);
(iv) ∥u∥r(·) > 1 =⇒ ∥u∥r−r(·) ≤ ρr(·)(u) ≤ ∥u∥r+r(·);
(v) ∥un∥r(·) → 0 ⇐⇒ ρr(·)(un) → 0;
(vi) ∥un∥r(·) → +∞ ⇐⇒ ρr(·)(un) → +∞.
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For r ∈ C+(Ω), we denote by W 1,r(·)(Ω) the variable exponent Sobolev
space given by

W 1,r(·)(Ω) =
{
u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)

}
.

We know that W 1,r(·)(Ω) equipped with the norm

∥u∥1,r(·) = ∥u∥r(·) + ∥∇u∥r(·) for all u ∈W 1,r(·)(Ω)

is a separable and reflexive Banach space, where ∥∇u∥r(·) := ∥ |∇u| ∥r(·). We

also consider the subspace W
1,r(·)
0 (Ω) of W 1,r(·)(Ω) defined by

W
1,r(·)
0 (Ω) = C∞

0 (Ω)
∥·∥1,r(·)

.

From Poincaré’s inequality we know that we can endow the space W
1,r(·)
0 (Ω)

with the equivalent norm

∥u∥1,r(·),0 = ∥∇u∥r(·) for all u ∈W
1,r(·)
0 (Ω).

We suppose now condition (H0) and introduce the nonlinear function
H : Ω× [0,∞) → [0,∞) defined by

H(x, t) := tp(x) + µ(x)tq(x) for all (x, t) ∈ Ω× [0,∞).

Then, the corresponding Musielak-Orlicz space LH(Ω) is given by

LH(Ω) = {u ∈M(Ω) : ρH(u) < +∞} ,

endowed with the norm

∥u∥H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1

}
,

where the related modular to H is given by

ρH(u) =

∫
Ω
H(x, |u|) dx.

The corresponding Musielak-Orlicz Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

∥u∥1,H = ∥∇u∥H + ∥u∥H,
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where ∥∇u∥H = ∥ |∇u| ∥H. Moreover, we denote byW 1,H
0 (Ω) the completion

of C∞
0 (Ω) in W 1,H(Ω). We equip the space W 1,H

0 (Ω) with the equivalent
norm

∥u∥1,H,0 = ∥∇u∥H for all u ∈W 1,H
0 (Ω),

see [16, Proposition 2.18]. We know that the spaces LH(Ω), W 1,H
0 (Ω) and

W 1,H(Ω) are reflexive Banach spaces, see [16, Proposition 2.12].
The next proposition shows the relation between the norm ∥ · ∥H and the

modular ρH, see [16, Proposition 2.13].

Proposition 2.2. Let hypotheses (H0) be satisfied. Then the following
holds:

(i) If u ̸= 0, then ∥u∥H = λ if and only if ρH(
u
λ) = 1;

(ii) ∥u∥H < 1 (resp.> 1, = 1) if and only if ρH(u) < 1 (resp.> 1, = 1);
(iii) If ∥u∥H < 1, then ∥u∥q+H ⩽ ρH(u) ⩽ ∥u∥p−H ;
(iv) If ∥u∥H > 1, then ∥u∥p−H ⩽ ρH(u) ⩽ ∥u∥q+H ;
(v) ∥u∥H → 0 if and only if ρH(u) → 0;
(vi) ∥u∥H → +∞ if and only if ρH(u) → +∞.
(vii) ∥u∥H → 1 if and only if ρH(u) → 1.
(viii) If un → u in LH(Ω), then ρH(un) → ρH(u).

We now equip the space W 1,H(Ω) with the equivalent norm

∥u∥ρ̂H := inf

{
λ > 0 :

∫
Ω

[∣∣∣∣∇uλ
∣∣∣∣p(x) + µ(x)

∣∣∣∣∇uλ
∣∣∣∣q(x)

+
∣∣∣u
λ

∣∣∣p(x) + µ(x)
∣∣∣u
λ

∣∣∣q(x) ] dx ≤ 1

}
,

where the modular ρ̂H is given by

ρ̂H(u) =

∫
Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
dx+

∫
Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx

for u ∈W 1,H(Ω).
The next proposition can be found in [16, Proposition 2.14].

Proposition 2.3. Let hypotheses (H0) be satisfied. Then the following
holds:

(i) If y ̸= 0, then ∥y∥ρ̂H = λ if and only if ρ̂H(
y
λ) = 1;

(ii) ∥y∥ρ̂H < 1 (resp.> 1, = 1) if and only if ρ̂H(y) < 1 (resp.> 1, = 1);
(iii) If ∥y∥ρ̂H < 1, then ∥y∥q+ρ̂H ⩽ ρ̂H(y) ⩽ ∥y∥p−ρ̂H;
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(iv) If ∥y∥ρ̂H > 1, then ∥y∥p−ρ̂H ⩽ ρ̂H(y) ⩽ ∥y∥q+ρ̂H;
(v) ∥y∥ρ̂H → 0 if and only if ρ̂H(y) → 0;
(vi) ∥y∥ρ̂H → +∞ if and only if ρ̂H(y) → +∞.
(vii) ∥y∥ρ̂H → 1 if and only if ρ̂H(y) → 1.

(viii) If un → u in W 1,H(Ω), then ρ̂H(un) → ρ̂H(u).

It turns out that ∥·∥ρ̂H is a uniformly convex norm onW 1,H(Ω) and satis-
fies the Radon-Riesz (or Kadec-Klee) property with respect to the modular,
see [16, Propositions 2.15 and 2.19].

Proposition 2.4. Let hypotheses (H0) be satisfied.

(i) The norm ∥ · ∥ρ̂H on W 1,H(Ω) is uniformly convex.

(ii) For any sequence {un}n∈N ⊆W 1,H(Ω) such that

un ⇀ u in W 1,H(Ω) and ρ̂H(un) → ρ̂H(u)

it holds that un → u in W 1,H(Ω).

(iii) The norm ∥ · ∥1,H,0 on W 1,H
0 (Ω) is uniformly convex.

(iv) For any sequence {un}n∈N ⊆W 1,H
0 (Ω) such that

un ⇀ u in W 1,H
0 (Ω) and ρH(∇un) → ρH(∇u)

it holds that un → u in W 1,H
0 (Ω).

Now we introduce the seminormed space

Lq(·)µ (Ω) =

{
u ∈M(Ω) :

∫
Ω
µ(x)|u|q(x) dx < +∞

}
and endow it with the seminorm

∥u∥q(·),µ = inf

{
τ > 0 :

∫
Ω
µ(x)

(
|u|
τ

)q(x)
dx ≤ 1

}
.

The following embeddings are stated in [16, Proposition 2.16].

Proposition 2.5. Let hypotheses (H0) be satisfied and let p∗(·), p∗(·) given
in (1.5) be the critical exponents to p(·).

(i) LH(Ω) ↪→ Lr(·)(Ω), W 1,H(Ω) ↪→ W 1,r(·)(Ω), W 1,H
0 (Ω) ↪→ W

1,r(·)
0 (Ω)

are continuous for all r ∈ C(Ω) with 1 ≤ r(x) ≤ p(x) for all x ∈ Ω;

(ii) W 1,H(Ω) ↪→ Lr(·)(Ω) is compact for r ∈ C(Ω) with 1 ≤ r(x) < p∗(x)
for all x ∈ Ω;

(iii) The trace operator ir(·) : W 1,H(Ω) ↪→ Lr(·)(∂Ω) is compact for r ∈
C(Ω) with 1 ≤ r(x) < p∗(x) for all x ∈ Ω;
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(iv) LH(Ω) ↪→ L
q(·)
µ (Ω) is continuous;

(v) Lq(·)(Ω) ↪→ LH(Ω) is continuous;
(vi) W 1,H(Ω) ↪→ LH(Ω) is compact.

For any s ∈ R we denote s± = max{±s, 0}, that means s = s+ − s−

and |s| = s+ + s−. For any function v : Ω → R we denote v±(·) = [v(·)]±.
The spaces W 1,H(Ω) and W 1,H

0 (Ω) are closed under max and min, see [16,
Proposition 2.17].

Proposition 2.6. Let hypotheses (H0) be satisfied.

(i) if u ∈W 1,H(Ω), then ±u± ∈W 1,H(Ω) with ∇(±u±) = ∇u1{±u>0};

(ii) if un → u in W 1,H(Ω), then ±u±n → ±u± in W 1,H(Ω);

(iii) if u ∈W 1,H
0 (Ω), then ±u± ∈W 1,H

0 (Ω).

Let X =W 1,H(Ω) or X =W 1,H
0 (Ω) and let A : X → X∗ be the nonlinear

operator defined by

⟨A(u), v⟩ :=
∫
Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx (2.2)

for u, v ∈ X with ⟨·, ·⟩ being the duality pairing between X and its dual
space X∗. The following proposition summarizes the main properties of
A : X → X∗, see [16, Theorem 3.3 and Proposition 3.4].

Proposition 2.7. Let hypotheses (H0) be satisfied. Then, the operator A
defined by (2.2) is bounded, continuous, strictly monotone and of type (S+),
that is,

un ⇀ u in X and lim sup
n→∞

⟨Aun, un − u⟩ ≤ 0,

imply un → u in X.

In what follows, to shorten notation, we write ∥·∥ = ∥·∥ρ̂H for the norm in

W 1,H(Ω) and ∥ · ∥0 = ∥ · ∥1,H,0 for the norm in W 1,H
0 (Ω). The corresponding

dual spaces are denoted by W 1,H(Ω)∗ and W 1,H
0 (Ω)∗, respectively. Given a

Banach space X and its dual space X∗ we denote

K(X∗) = {P ⊂ X∗ : P ̸= ∅, P is closed and convex} .
Let X be a real Banach space with its dual space X∗. A function J : X →

R is said to be locally Lipschitz at u ∈ X if there exist a neighborhood N(u)
of u and a constant Lu > 0 such that

|J(w)− J(v)| ≤ Lu∥w − v∥X for all w, v ∈ N(u).
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Definition 2.8. Let J : X → R be a locally Lipschitz function and let u, v ∈
X. The generalized directional derivative J◦(u; v) of J at the point u in the
direction v is defined by

J◦(u; v) := lim sup
w→u, t↓0

J(w + tv)− J(w)

t
.

The generalized gradient ∂J : X → 2X
∗
of J : X → R is defined by

∂J(u) := { ξ ∈ X∗ : J◦(u; v) ≥ ⟨ξ, v⟩X∗×X for all v ∈ X} for all u ∈ X.

The next proposition collects some basic results, see [12] or [32].

Proposition 2.9. Let J : X → R be locally Lipschitz with Lipschitz constant
Lu > 0 at u ∈ X. Then we have the following:

(i) The function v 7→ J◦(u; v) is positively homogeneous, subadditive,
and satisfies

|J◦(u; v)| ≤ Lu∥v∥X for all v ∈ X.

(ii) The function (u, v) 7→ J◦(u; v) is upper semicontinuous.
(iii) For each u ∈ X, ∂J(u) is a nonempty, convex, and weak∗ compact

subset of X∗ with ∥ξ∥X∗ ≤ Lu for all ξ ∈ ∂J(u).
(iv) J◦(u; v) = max {⟨ξ, v⟩X∗×X | ξ ∈ ∂J(u)} for all v ∈ X.
(v) The multi-valued function X ∋ u 7→ ∂J(u) ⊂ X∗ is upper semicon-

tinuous from X into w∗-X∗.

Assume p1, p2 ∈ C(Ω) and (pj)− ≥ 1, (j = 1, 2). Let F be a function from
Ω × R into 2R. For each measurable u : Ω → R, we consider the function
F (u) : Ω → 2R, F (u)(x) = F (x, u(x)) and denote F̃ (u) = {v ∈ M(Ω) :
v(x) ∈ F (x, u(x)) for a. a. x ∈ Ω}. The following theorem can be found in
[11, Theorem 7.3].

Theorem 2.10. Assume F : Ω× R → 2R satisfies the following conditions:

(i) For a. a.x ∈ Ω and for all u ∈ R, F (x, u) is closed and nonempty;
(ii) F is graph measurable;
(iii) For a. a.x ∈ Ω, the function u 7→ F (x, u) is Hausdorff-upper semi-

continuous (h-u.s.c. for short);

(iv) There exist a ∈ Lp2(·)(Ω) and b > 0 such that

|v| ≤ a(x) + b|u|
p1(x)
p2(x)

for a. a.x ∈ Ω and for all v ∈ F (x, u).
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Thus, for each u ∈ Lp1(·)(Ω), F̃ (u) is a (nonempty) closed subset of Lp2(·)(Ω)

and the mapping F̃ : u 7→ F̃ (u) is h-u.s.c. from Lp1(·)(Ω) to 2L
p2(·)(Ω).

Remark 2.11. We have an analogous result to Theorem 2.10, where Ω is
replaced by Γ. In fact, a straightforward generalization of Theorem 2.10 holds
true with Ω being a measure space on which Lebesgue and Sobolev spaces with
variable exponents are defined.

The following theorem was proved in [25, Theorem 2.2]. We use the
notation BR(0) := {u ∈ X : ∥u∥X < R}.

Theorem 2.12. Let X be a real reflexive Banach space, let F : D(F ) ⊂
X → 2X

∗
be a maximal monotone operator, let G : D(G) = X → 2X

∗
be

a bounded multi-valued pseudomonotone operator and let L ∈ X∗. Assume
that there exist u0 ∈ X and R ≥ ∥u0∥X such that D(F ) ∩BR(0) ̸= ∅ and

⟨ξ + η − L, u− u0⟩X∗×X > 0

for all u ∈ D(F ) with ∥u∥X = R, for all ξ ∈ F (u) and for all η ∈ G(u).
Then the inclusion

F (u) +G(u) ∋ L

has a solution in D(F ).

An important tool in extending our results to discontinuous Nemytskij op-
erators is the next fixed point result, see [6, Proposition 2.39] or [7, Theorem
1.1.1].

Theorem 2.13. Let P be a subset of an ordered normed space X, and let
G : P → P be an increasing mapping, that is, x, y ∈ P with x ≤ y implies
Gx ≤ Gy. Then the following holds true:

(i) If the image G(P ) has a lower bound in P and increasing sequences
of G(P ) converge weakly in P , then G has the smallest fixed point
x∗ given by x∗ = min{x : Gx ≤ x}.

(ii) If the image G(P ) has an upper bound in P and decreasing sequences
of G(P ) converge weakly in P , then G has the greatest fixed point x∗

given by x∗ = max{x : x ≤ Gx}.

3. Coercive Case: Proof of Theorem 1.4

In this section, we are going to prove Theorem 1.4. First, recall that
the embedding ir1(·) : W

1,H(Ω) → Lr1(·)(Ω), u 7→ u, and the trace operator
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ir2(·) : W
1,H(Ω) → Lr2(·)(Γ), u 7→ u|Γ, are compact due to (F2) and Propo-

sition 2.5(ii), (iii). Let i∗r1(·) : L
r′1(·)(Ω) → W 1,H(Ω)∗, and i∗r2(·) : L

r′2(·)(Γ) →
W 1,H(Ω)∗ be their adjoints. As a consequence of (F1), for any u ∈ M(Ω),
the set of measurable selections of f(·, u),

f̃(u) = {η ∈M(Ω) : η(x) ∈ f(x, u(x)) for a. a.x ∈ Ω} ,
is nonempty. Similarly, for any u ∈ M(Γ), the set of measurable selections
of fΓ(·, u),

f̃Γ(u) = {η ∈M(Γ) : η(x) ∈ fΓ(x, u(x)) for a. a.x ∈ Γ} ,
is also nonempty.

Moreover, from (F2), f̃(u) ⊂ Lr
′
1(·)(Ω) if u ∈ Lr1(·)(Ω) and f̃Γ(u) ⊂

Lr
′
2(·)(Γ) if u ∈ Lr2(·)(Γ). Let us consider the mappings f̃ : Lr1(·)(Ω) →

Lr
′
1(·)(Ω), u 7→ f̃(u) and F = i∗r1(·)f̃ ir1(·) : W

1,H(Ω) → 2W
1,H(Ω)∗ , that is,

F(u) = {η̂ ∈W 1,H(Ω)∗ : η ∈ f̃(u)}, where η̂ ∈W 1,H(Ω)∗ is defined for each

η ∈ Lr
′
1(·)(Ω) by

⟨η̂, v⟩ =
∫
Ω
ηv dx for all v ∈W 1,H(Ω).

Similarly, we define

f̃Γ : L
r2(·)(Γ) → Lr

′
2(·)(Γ), u 7→ f̃Γ(u),

FΓ = i∗r2(·)f̃Γir2(·) : W
1,H(Ω) → 2W

1,H(Ω)∗

with FΓ(u) = {η̂ ∈ W 1,H(Ω)∗ : η ∈ f̃Γ(u)}, where η̂ ∈ W 1,H(Ω)∗ is defined

for each η ∈ Lr
′
2(·)(Γ) by

⟨η̂, v⟩ =
∫
Γ
ηv dσ for all v ∈W 1,H(Ω).

We have the following crucial property of F and FΓ.

Proposition 3.1. Let hypotheses (H0), (F1) and (F2) be satisfied. The

mappings F = i∗r1(·)f̃ ir1(·) and FΓ = i∗r2(·)f̃Γir2(·) are pseudomonotone and

bounded from W 1,H(Ω) into K(W 1,H(Ω)∗).

Proof. First, let us note that f̃(u) ∈ K(Lr
′
1(·)(Ω)) for all u ∈ Lr1(·)(Ω). In

fact, the convexity of f̃(u) and the boundedness of f̃ (as a multi-valued
mapping) follow directly from (F1) and (F2). The proof of the closedness

of f̃(u) is a direct consequence of the fact that f(x, t) is a closed bounded
interval in R for a. a.x ∈ Ω and for all t ∈ R.
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Next, we show that the graph of F is (sequentially) weakly closed in
W 1,H(Ω)×W 1,H(Ω)∗. Assume that {un}n∈N and {u∗n}n∈N are sequences in
W 1,H(Ω) and W 1,H(Ω)∗, respectively, such that

un ⇀ u in W 1,H(Ω), (3.1)

u∗n ⇀ u∗ in W 1,H(Ω)∗, (3.2)

u∗n ∈ F(un) for all n ∈ N. (3.3)

Let us prove that

u∗ ∈ F(u). (3.4)

Since u∗n ∈ i∗r1(·)f̃ ir1(·)(un), there exists ũn ∈ f̃(ir1(·)(un)) = f̃(un) such that

u∗n = i∗r1(·)(ũn) = ũn|W 1,H(Ω). It follows from (3.1) and the compactness of

the embedding ir1(·) that

un → u in Lr1(·)(Ω). (3.5)

Hence, from Theorem 2.10 and the growth condition in hypothesis (F2) it

follows that h∗(f̃(un), f̃(u)) → 0, and thus

inf
w∗∈f̃(u)

∥ũn − w∗∥r′1(·) → 0.

Consequently, there is a sequence {w∗
n}n∈N ⊂ f̃(u) such that ∥ũn−w∗

n∥r′1(·) →
0. Since f̃(u) is bounded in Lr

′
1(·)(Ω), by passing to a subsequence if nec-

essary, we can assume that w∗
n ⇀ w∗

0 in Lr
′
1(·)(Ω) for some w∗

0 ∈ Lr
′
1(·)(Ω).

Moreover, w∗
0 ∈ f̃(u) by the convexity and closedness of f̃(u). We have

ũn ⇀ w∗
0 in Lr

′
1(·)(Ω), (3.6)

and from the compactness of i∗r1(·),

u∗n = i∗r1(·)(ũn) → i∗r1(·)(w
∗
0) = w∗

0|W 1,H(Ω) in W 1,H(Ω)∗.

From (3.2), we obtain u∗ = i∗r1(·)(w
∗
0) ∈ i∗r1(·)f̃(u) = F(u). Hence, (3.4) is

proved.
As a direct consequence of this property, we see that F(u) is closed in X∗.

Furthermore, from the growth condition in (F2), we see that f̃ is bounded

from Lr1(·)(Ω) into 2L
r′1(·)(Ω) and thus F is a bounded mapping fromW 1,H(Ω)

into K(W 1,H(Ω)∗). Therefore, to prove its pseudomonotonicity, we only
need to check that F is generalized pseudomonotone. For this purpose, let
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{un}n∈N and {u∗n}n∈N be sequences satisfying (3.1)–(3.3) and let {ũn}n∈N as
well as w∗

0 be as above. We have, from (3.5) and (3.6),

⟨u∗n, un⟩ = ⟨i∗r1(·)(ũn), un⟩ = ⟨ũn, un⟩Lr′1(·)(Ω),Lr1(·)(Ω)

→ ⟨w∗
0, u⟩Lr′1(·)(Ω),Lr1(·)(Ω)

= ⟨i∗r1(·)(w
∗
0), u⟩ = ⟨u∗, u⟩.

This limit shows that F is generalized pseudomonotone and thus pseu-
domonotone. It also follows from the arguments above that F is bounded.
The proof of the pseudomonotonicity and boundedness of FΓ follows similar
arguments. □

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. We are going to apply Theorem 2.12. Since A is con-
tinuous, strictly monotone and bounded on W 1,H(Ω) with domain D(A) =
W 1,H(Ω), it is a (single-valued) bounded and pseudomonotone mapping from

W 1,H(Ω) to 2W
1,H(Ω)∗ . It follows from Proposition 3.1 that A+F +FΓ is a

pseudomonotone and bounded mapping from W 1,H(Ω) into 2W
1,H(Ω)∗ .

We note that ∂IK is a maximal monotone mapping from W 1,H(Ω) to

2W
1,H(Ω)∗ with domain D(∂IK) = K. According to Theorem 2.12, under

the coercivity condition (3.7), problem (1.4) has at least one solution. □

A straightforward consequence of Theorem 1.4 is the following result.

Corollary 3.2. Let hypotheses (H0), (F1) and (F2) be satisfied and suppose
that for fixed u0 ∈ K the following coercivity condition holds

lim
∥u∥1,H→∞

u∈K

 inf
η∗∈F(u)
ζ∗∈FΓ(u)

⟨Au+ η∗ + ζ∗, u− u0⟩

 = ∞. (3.7)

Then problem (1.4) has at least one solution.

4. Noncoercive Case: Proof of Theorem 1.8

In order to prove Theorems 1.8 and 1.9, let us first establish the following
general existence and enclosure theorem for solutions of (1.4) if a finite
number of sub- and supersolutions exist and f has a local growth between
those sub- and supersolutions.
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Theorem 4.1. Let hypotheses (H0) and (F1) be satisfied and let ui (i =
1, . . . , k) be subsolutions and uj (j = 1, . . . ,m) be supersolutions of (1.4)
such that

u = max {ui : i = 1, . . . , k} ≤ u = min {uj : j = 1, . . . ,m} a. e. in Ω,

and ui∨K ⊂ K for all i ∈ {1, . . . , k} and uj ∧K ⊂ K for all j ∈ {1, . . . ,m}.
Suppose there exist τ1 ∈ C(Ω), τ2 ∈ C(Γ), 1 < τ1(x) < p∗(x) for all x ∈ Ω,

1 < τ2(x) < p∗(x) for all x ∈ Γ such that

sup {|η| : η ∈ f(x, s)} ≤ kΩ(x) for a. a.x ∈ Ω,

sup {|ζ| : ζ ∈ fΓ(x, s)} ≤ kΓ(x) for a. a.x ∈ Γ,
(4.1)

for all s ∈ [u(x), u(x)] and for some kΩ ∈ Lτ
′
1(·)(Ω), kΓ ∈ Lτ

′
2(·)(Γ).

Then, there exists a solution u of (1.4) such that

u ≤ u ≤ u a. e. in Ω.

Proof. First, note that by increasing τ1 and τ2 in Definitions 1.5 and 1.6 for
each ui and uj and in the growth condition (4.1) appropriately, to simplify
the notation we can assume without loss of generality that the functions τ1
and τ2 in the definitions of ui (1 ≤ i ≤ k) and uj (1 ≤ j ≤ m) in Definitions
1.5 and 1.6 and in the growth condition 4.1, are the same.

For i ∈ {1, . . . , k} and j ∈ {1, . . . ,m}, let ξ
i
, η

i
, and ξj , ηj be the functions

associated with ui and uj as in Definitions 1.5 and 1.6. We define the
truncation function f0 of f as follows: Let

Ω1 = {x ∈ Ω : u(x) = u1(x)} , Ω1 = {x ∈ Ω : u(x) = u1(x)} ,
and define

Ωi =

{
x ∈ Ω \

i−1⋃
l=1

Ωl : u(x) = ui(x)

}
,

Ωj =

{
x ∈ Ω \

j−1⋃
l=1

Ωl : u(x) = uj(x)

}
for all i = 2, . . . , k and for all j = 2, . . . ,m. Next, we define

η =
k∑
i=1

η
i
χΩi and η =

m∑
j=1

ηjχΩj ,

where χA is the characteristic function of A ⊂ Ω. From their definitions,
we have η, η ∈ Lτ

′
1(·)(Ω) and furthermore, η(x) ∈ f(x, u(x)) and η(x) ∈

f(x, u(x)) for a. a.x ∈ Ω.
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Let f0 : Ω× R → 2R be defined by

f0(x, u) =


{η(x)} if u < u(x)

f(x, u) if u(x) ≤ u ≤ u(x)

{η(x)} if u > u(x).

(4.2)

Similarly, let

Γ1 = {x ∈ Γ : u(x) = u1(x)} , Γ1 = {x ∈ Γ : u(x) = u1(x)} ,
and

Γi =

{
x ∈ Γ \

i−1⋃
l=1

Γl : u(x) = ui(x)

}
,

Γj =

{
x ∈ Γ \

j−1⋃
l=1

Γl : u(x) = uj(x)

}
for all i = 2, . . . , k and for all j = 2, . . . ,m. We define

ζ =
k∑
i=1

ζ
i
χΓi and ζ =

m∑
j=1

ζjχΓj ,

where, as above, χA is the characteristic function of A ⊂ Γ. We also have
ζ, ζ ∈ Lτ

′
2(·)(Γ) and ζ(x) ∈ fΓ(x, u(x)) and ζ(x) ∈ fΓ(x, u(x)) for a. a.x ∈ Γ.

Let f0Γ : Γ× R → 2R be defined by

f0Γ(x, u) =


{ζ(x)} if u < u(x)

fΓ(x, u) if u(x) ≤ u ≤ u(x)

{ζ(x)} if u > u(x).

(4.3)

Then, f0 and f0Γ given in (4.2) and (4.3), respectively, satisfy (F1). More-
over, it follows from (4.1) and the definitions of f0 and f0Γ that

sup{|v| : v ∈ f0(x, u)} ≤ kΩ(x) + |η(x)|+ |η(x)| for a. a.x ∈ Ω,

sup{|v| : v ∈ f0Γ(x, u)} ≤ kΓ(x) + |ζ(x)|+ |ζ(x)| for a. a.x ∈ Γ,
(4.4)

for all u ∈ R, where kΩ + |η|+ |η| ∈ Lτ
′
1(·)(Ω) and kΓ + |ζ|+ |ζ| ∈ Lτ

′
2(·)(Γ).

In particular, f0 and f0Γ satisfy (F2) with β = βΓ = 0 and α = kΩ +
|η| + |η|, αΓ = kΓ + |ζ| + |ζ|. It follows from Proposition 3.1 that the

mappings i∗τ1(·)f̃0iτ1(·) and i∗τ2(·)f̃0Γiτ2(·) are bounded and pseudomonotone

from W 1,H(Ω) to K(W 1,H(Ω)∗).
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Next, let us define a truncation-regularization function b as follows. For
x ∈ Ω and u ∈ R, let

b(x, u) =


[u− u(x)]q(x)−1 if u > u(x)

0 if u(x) ≤ u ≤ u(x)

−[u(x)− u]q(x)−1 if u < u(x).

(4.5)

Here in what follows, we denote by C a generic positive constant that may
change from line to line. Since u, u ∈ W 1,H(Ω) and W 1,H(Ω) ↪→ Lq(·)(Ω),
we see that

|b(x, u)| ≤ a1(x) + C|u|q(x)−1, (4.6)

for a. a.x ∈ Ω and for all u ∈ R, where a1 ∈ Lq
′(·)(Ω).

This implies that the mapping B : Lq(·)(Ω) → Lq
′(·)(Ω) given by

⟨B(u), v⟩ =
∫
Ω
b(x, u)v dx for all u, v ∈ Lq(·)(Ω)

is continuous and bounded. Moreover, thanks to the compactness of the
embedding iq(·) : W

1,H(Ω) ↪→ Lq(·)(Ω), the mapping i∗q(·)Biq(·) : W
1,H(Ω) →

W 1,H(Ω)∗ is bounded and completely continuous. As a consequence, the
mapping i∗q(·)Biq(·) is a (single-valued) pseudomonotone and bounded map-

ping from W 1,H(Ω) into W 1,H(Ω)∗.
Furthermore, there is a2 > 0 such that〈

i∗q(·)Biq(·)(u), u
〉
= ⟨B(u), u⟩Lq′(·)(Ω),Lq(·)(Ω)

=

∫
Ω
b(x, u)udx

≥ a2

∫
Ω
|u|q(x) dx− C for all u ∈W 1,H(Ω).

(4.7)

For i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, x ∈ Ω and u ∈ R, we define

Ti(x, u) = |η
i
(x)− η(x)|σ̂

(
u− ui(x)

u(x)− ui(x)

)
,

T j(x, u) = |ηj(x)− η(x)|
[
1− σ̂

(
u− u(x)

uj(x)− u(x)

)]
,
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where

σ̂(s) =


1, if s ≤ 0,

1− s, if 0 ≤ s ≤ 1,

0, if s ≥ 1.

Similarly, for i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}, x ∈ Γ, and u ∈ R, we define

Ui(x, u) = |ζ
i
(x)− ζ(x)|σ̂

(
u− ui(x)

u(x)− ui(x)

)
,

U j(x, u) = |ζj(x)− ζ(x)|
[
1− σ̂

(
u− u(x)

uj(x)− u(x)

)]
.

Straightforward calculations show that Ti(·, u), T j(·, u) ∈ Lτ
′
1(·)(Ω) when-

ever u ∈ Lτ1(·)(Ω) and

0 ≤ Ti(x, u) ≤ |η
i
(x)− η(x)| and 0 ≤ T j(x, u) ≤ |ηj − η(x)|

for a. a.x ∈ Ω and for all u ∈ R. It follows that Ti : u 7→ Ti(·, u), T j : u 7→
T j(·, u) (1 ≤ i ≤ k, 1 ≤ j ≤ m) are bounded and continuous operators

from Lτ1(·)(Ω) to Lτ
′
1(·)(Ω). Hence, due to the compactness of the embedding

operator, i∗τ1(·)Tiiτ1(·) and i
∗
τ1(·)T

jiτ1(·) are completely continuous and are thus

(single-valued) pseudomonotone mappings from W 1,H(Ω) into W 1,H(Ω)∗.

Analogously, Ui(·, u), U j(·, u) ∈ Lτ
′
2(·)(Γ) whenever u ∈ Lτ2(·)(Γ) and

0 ≤ Ui(x, u) ≤ |ζ
i
(x)− ζ(x)| and 0 ≤ T j(x, u) ≤ |ζj − ζ(x)|

for a. a.x ∈ Γ and for all u ∈ R. Thus, Ui : u 7→ Ui(·, u), U j : u 7→ U j(·, u)
(1 ≤ i ≤ k, 1 ≤ j ≤ m) are bounded and continuous operators from Lτ2(·)(Γ)

to Lτ
′
2(·)(Γ). Therefore, by the compactness of the trace operator, i∗τ2(·)Uiiτ2(·)

and i∗τ2(·)U
jiτ2(·) are completely continuous and are (single-valued) pseu-

domonotone mappings from W 1,H(Ω) into W 1,H(Ω)∗ as well.
Let us consider the following auxiliary variational inequality: Find u ∈ K

and η ∈ Lτ
′
1(·)(Ω), ζ ∈ Lτ

′
2(·)(Γ), such that

η(x) ∈ f0(x, u(x)) for a. a.x ∈ Ω,

ζ(x) ∈ f0Γ(x, u(x)) for a. a.x ∈ Γ,
(4.8)
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and

⟨Au, v − u⟩+
∫
Ω
η(v − u) dx+

∫
Ω
ζ(v − u) dσ +

∫
Ω
b(x, u)(v − u) dx

−
k∑
i=1

∫
Ω
Ti(x, u)(v − u) dx+

m∑
j=1

∫
Ω
T j(x, u)(v − u) dx

−
k∑
i=1

∫
Γ
Ui(x, u)(v − u) dσ +

m∑
j=1

∫
Γ
U j(x, u)(v − u) dσ

≥ 0 for all v ∈ K.

(4.9)

The inequality above is equivalent to the following variational inequality:
Find u ∈ K, η̃ = i∗τ1(·)ηiτ1(·) ∈ [i∗τ1(·)f̃0iτ1(·)](u), and ζ̃ = i∗τ2(·)ζiτ2(·) ∈
[i∗τ2(·)f̃0Γiτ2(·)](u), such that〈

Au+ η̃ + ζ̃ + [i∗q(·)Biq(·)](u)−
k∑
i=1

[i∗τ1(·)Tiiτ1(·)](u) +
m∑
j=1

[i∗τ1(·)T
jiτ1(·)](u)

−
k∑
i=1

[i∗τ2(·)Uiiτ2(·)](u) +
m∑
j=1

[i∗τ2(·)U
jiτ2(·)](u), v − u

〉
≥ 0 for all v ∈ K.

This variational inequality is, in its turn, equivalent to finding u ∈ D(∂IK) =
K, l ∈ (∂IK)(u), and

η̃ = i∗τ1(·)ηiτ1(·) ∈ [i∗τ1(·)f̃0iτ1(·)](u), ζ̃ = i∗τ2(·)ζiτ2(·) ∈ [i∗τ2(·)f̃0Γiτ2(·)](u)

such that

A(u, l, η̃, ζ̃) := Au+ l + η̃ + ζ̃ + [i∗q(·)Biq(·)](u)

−
k∑
i=1

[i∗τ1(·)Tiiτ1(·)](u) +
m∑
j=1

[i∗τ1(·)T
jiτ1(·)](u)

−
k∑
i=1

[i∗τ2(·)Uiiτ2(·)](u) +
m∑
j=1

[i∗τ2(·)U
jiτ2(·)](u) = 0

(4.10)

in W 1,H(Ω)∗. We observe that ∂IK is a maximal monotone mapping and

A+ i∗τ1(·)f̃0iτ1(·) + i∗τ2(·)f̃0Γiτ2(·) + i∗q(·)Biq(·) −
k∑
i=1

i∗τ1(·)Tiiτ1(·)
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+

m∑
j=1

i∗τ1(·)T
jiτ1(·) −

k∑
i=1

i∗τ2(·)Uiiτ2(·) +
m∑
j=1

i∗τ2(·)U
jiτ2(·)

is a (multi-valued) pseudomonotone bounded mapping from W 1,H(Ω) to

2W
1,H(Ω)∗ .
Hence, to apply the abstract existence result in Corollary 2.3 of [25], we

only need to check the following coercivity condition: There exists u0 ∈ K
such that

lim
∥u∥→∞
u∈K

 inf
l∈∂IK(u)

η̃∈[i∗
τ1(·)

f̃0iτ1(·)](u)

ζ̃∈[i∗
τ2(·)

f̃0Γiτ2(·)](u)

〈
A(u, l, η̃, ζ̃), u− u0

〉
 = ∞, (4.11)

see (4.10).
In fact, let u0 be any (fixed) element of K. For any u ∈ K, any l ∈

(∂IK)(u), we have 0 = IK(u0) − IK(u) ≥ ⟨l, u0 − u⟩, i.e., ⟨l, u − u0⟩ ≥ 0.
Hence, to prove (4.11), one only needs to show that

inf
η̃∈[i∗

τ1(·)
f̃0iτ1(·)](u)

ζ̃∈[i∗
τ2(·)

f̃0Γiτ2(·)](u)

〈
Â(u, η̃, ζ̃), u− u0

〉
→ ∞ (4.12)

as ∥u∥1,H → ∞, u ∈ K, where

Â(u, η̃, ζ̃) := Au+ η̃ + ζ̃ + [i∗q(·)Biq(·)](u)−
k∑
i=1

[i∗τ1(·)Tiiτ1(·)](u)

+

m∑
j=1

[i∗τ1(·)T
jiτ1(·)](u)−

k∑
i=1

[i∗τ2(·)Uiiτ2(·)](u)

+

m∑
j=1

[i∗τ2(·)U
jiτ2(·)](u).
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Let η̃ = i∗τ1ηiτ1 ∈ [i∗τ1 f̃0iτ1 ](u) and ζ̃ = i∗τ2ζiτ2 ∈ [i∗τ2 f̃0Γiτ2 ](u), where

η ∈ f̃0(u) and ζ ∈ f̃0Γ(u). It follows from (4.4) that

|⟨η̃, u− u0⟩|

≤
(
∥kΩ∥τ ′1(·) + ∥η∥τ ′1(·) + ∥η∥τ ′1(·)

) (
∥u∥τ1(·) + ∥u0∥τ1(·)

)
≤ C

(
∥u∥τ1(·) + 1

)
≤ C (∥u∥+ 1)

(4.13)

and

|⟨ζ̃, u− u0⟩|

≤
(
∥kΓ∥τ ′2(·),Γ + ∥ζ∥τ ′2(·),Γ + ∥ζ∥τ ′2(·),Γ

) (
∥u∥τ2(·),Γ + ∥u0∥τ2(·),Γ

)
≤ C

(
∥u∥τ2(·),Γ + 1

)
≤ C (∥u∥+ 1) .

(4.14)

From (4.6) and (4.7), by applying Hölder’s and Young’s inequalities with ε
for variable exponents (see e.g. [24]), we get〈

[i∗q(·)Biq(·)](u), u− u0

〉
≥ a2

∫
Ω
|u|q(x) dx−

∫
Ω

(
a1 + C|u|q(x)−1

)
|u0|dx− C

≥ a2
2

∫
Ω
|u|q(x) dx− C.

(4.15)

On the other hand, we have for any i ∈ {1, . . . , k},∣∣∣〈[i∗τ1(·)Tiiτ1(·)](u), u− u0

〉∣∣∣
=

∣∣∣∣∫
Ω
Ti(x, u)(u− u0) dx

∣∣∣∣
≤

∥∥∥η
i
− η

∥∥∥
τ ′1(·)

(
∥u∥τ1(·) + ∥u0∥τ1(·)

)
.

Hence,

k∑
i=1

∣∣∣〈[i∗τ1(·)Tiiτ1(·)](u), u− u0

〉∣∣∣ ≤ C
(
∥u∥τ1(·) + 1

)
≤ C(∥u∥+ 1). (4.16)
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Similarly,

m∑
j=1

∣∣∣〈[i∗τ1(·)T jiτ1(·)](u), u− u0

〉∣∣∣ ≤ C
(
∥u∥τ1(·) + 1

)
≤ C(∥u∥+ 1), (4.17)

and

k∑
i=1

∣∣∣〈[i∗τ2(·)Uiiτ2(·)](u), u− u0

〉∣∣∣ , m∑
j=1

∣∣∣〈[i∗τ2(·)U jiτ2(·)](u), u− u0

〉∣∣∣
≤ C

(
∥u∥τ2(·),Γ + 1

)
≤ C(∥u∥+ 1).

(4.18)

Lastly, since A has as a potential functional the following convex functional

I(u) =

∫
Ω

[
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

]
dx,

we see that

⟨Au, u− u0⟩ ≥ I(u)− I(u0) = I(u)− C. (4.19)

On the other hand, it follows from (H0) that

∫
Ω
|u|q(x) dx ≥

∫
Ω
|u|p(x) dx− |Ω|,

where |Ω| is the Lebesgue measure of Ω. Hence, it follows from (4.15) that
there is a3 > 0 such that for all u ∈W 1,H(Ω)

〈
i∗q(·)Biq(·)(u), u− u0

〉
≥ a3

∫
Ω

[
|u|p(x) + µ(x)|u|q(x)

]
dx− C

≥ a3

∫
Ω

[
|u|p(x)

p(x)
+ µ(x)

|u|q(x)

q(x)

]
dx− C.

(4.20)
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Combining the estimates from (4.13) to (4.20), we see that for any u ∈ K,

η̃ ∈ [i∗τ1(·)f̃0iτ1(·)](u) and ζ̃ ∈ [i∗τ2(·)f̃0Γiτ2(·)](u)

〈
Au+ η̃ + ζ̃ + [i∗q(·)Biq(·)](u)−

k∑
i=1

[i∗τ1(·)Tiiτ1(·)](u)

+
m∑
j=1

[i∗τ1(·)T
jiτ1(·)](u)−

k∑
i=1

[i∗τ2(·)Uiiτ2(·)](u)

+

m∑
j=1

[i∗τ2(·)U
jiτ2(·)](u), u− u0

〉

≥ min{1, a3}
∫
Ω

[
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

+
|u|p(x)

p(x)
+ µ(x)

|u|q(x)

q(x)

]
dx− C(∥u∥+ 1).

(4.21)

Since

lim
∥u∥1,H→∞

1

∥u∥1,H

∫
Ω

[
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

+
|u|p(x)

p(x)
+ µ(x)

|u|q(x)

q(x)

]
dx = ∞,

see Proposition 3.5 in [16], the estimate in (4.21) implies (4.12). It follows
from Corollary 2.3 in [25] that there exist u, η, and ζ that satisfy (4.8) and
(4.9).

In the next step, we show that

us ≤ u ≤ ur a. e. in Ω, (4.22)
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for all s ∈ {1, . . . , k} and for all r ∈ {1, . . . ,m}. In fact, let s ∈ {1, . . . , k}.
By putting v = us ∨ u = u+ (us − u)+ ∈ K into (4.9), we obtain〈

Au, (us − u)+
〉
+

∫
Ω
η(us − u)+ dx+

∫
Γ
ζ(us − u)+ dσ

+

∫
Ω
b(x, u)(us − u)+ dx−

k∑
i=1

∫
Ω
Ti(x, u)(us − u)+ dx

+
m∑
j=1

∫
Ω
T j(x, u)(us − u)+ dx−

k∑
i=1

∫
Γ
Ui(x, u)(us − u)+ dσ

+
m∑
j=1

∫
Γ
U j(x, u)(us − u)+ dσ ≥ 0.

(4.23)

Since us is a subsolution of (1.4), we have from its definition that there are

η
s
∈ Lτ

′
1(·)(Ω) and ζ

s
∈ Lτ

′
2(·)(Γ) satisfying conditions (i)-(iii) in Definition

1.5 with u, η, ζ replaced by us, ηs, ζs.

Letting v = us − (us − u)+ = us ∧ u ∈ us ∧K in Definition 1.5 (iii) (with
us, ηs, and ζs) yields

−
〈
Aus, (us − u)+

〉
−
∫
Ω
η
s
(us − u)+ dx−

∫
Γ
ζ
s
(us − u)+ dσ ≥ 0. (4.24)

Adding (4.23) and (4.24) gives us〈
Au−Aus, (us − u)+

〉
+

∫
Ω
(η − η

s
)(us − u)+ dx

+

∫
Γ
(ζ − ζ

s
)(us − u)+ dσ +

∫
Ω
b(x, u)(us − u)+ dx

−
k∑
i=1

∫
Ω
Ti(x, u)(us − u)+ dx+

m∑
j=1

∫
Ω
T j(x, u)(us − u)+ dx

−
k∑
i=1

∫
Γ
Ui(x, u)(us − u)+ dσ +

m∑
j=1

∫
Γ
U j(x, u)(us − u)+ dσ ≥ 0.

First, note that〈
Au−Aus, (us − u)+

〉
=

∫
{x∈Ω :us(x)≥u(x)}

[(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)



30 Siegfried Carl, Vy Khoi Le, and Patrick Winkert

−
(
|∇us|p(x)−2∇us + µ(x)|∇us|q(x)−2∇us

)]
· ∇(us − u) dx ≤ 0.

At x ∈ Ω such that us > u(x), since us(x) ≤ u(x) ≤ u(x), we have∫
Ω
T j(x, u)(us − u)+ dx =

∫
{x∈Ω :us(x)>u(x)}

T j(x, u)(us − u) dx = 0,

for all j ∈ {1, . . . ,m}. Furthermore, η(x) ∈ {η(x)}, i.e., η(x) = η(x). Also,
for such x, we have Ts(x, u(x)) = |η

s
(x)− η(x)| and∫

Ω
Ti(x, u)(us − u)+ dx ≥ 0 for all i ∈ {1, . . . , k}.

Therefore,∫
Ω
(η − η

s
)(us − u)+ dx−

k∑
i=1

∫
Ω
Ti(x, u)(us − u)+ dx

≤
∫
Ω
(η − η

s
)(us − u)+ dx−

∫
Ω
Ts(x, u)(us − u)+ dx

=

∫
{x∈Ω :us(x)>u(x)}

(
(η(x)− η

s
(x))− |η(x)− η

s
(x)|

)
[us(x)− u(x)] dx

≤ 0.

Similarly, we have∫
Γ
U j(x, u)(us − u)+ dσ = 0 for all j ∈ {1, . . . ,m},∫

Γ
Ui(x, u)(us − u)+ dσ ≥ 0 for all i ∈ {1, . . . , k},

and∫
Γ
(ζ − ζ

s
)(us − u)+ dσ −

k∑
i=1

∫
Γ
Ui(x, u)(us − u)+ dσ

≤
∫
Γ
(ζ − ζ

s
)(us − u)+ dσ −

∫
Γ
Us(x, u)(us − u)+ dσ

=

∫
{x∈Γ :us(x)>u(x)}

(
(ζ(x)− ζ

s
(x))− |ζ(x)− ζ

s
(x)|

)
[us(x)− u(x)] dσ

≤ 0.
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Combining the above inequalities, we obtain

0 ≤
∫
Ω
b(x, u)(us − u)+ dx =

∫
{x∈Ω :us(x)>u(x)}

b(x, u)(us − u) dx.

From (4.5), if us(x) > u(x) then u > u(x) and b(x, u(x)) = −[u(x) −
u(x)]q(x)−1. Hence,

0 ≤ −
∫
{x∈Ω :us(x)>u(x)}

(u(x)− u(x))q(x)−1[us(x)− u(x)] dx.

Since u(x) − u(x) > 0 and us(x) − u(x) > 0 on the set {x ∈ Ω : us(x) >
u(x)}, this inequality implies that this set has measure 0, which means that
u(x) ≥ us(x) for a. a.x ∈ Ω. The second inequality in (4.22) is demonstrated
in the same way.

As a consequence of (4.22), we see that u ≤ u ≤ u a. e. in Ω and thus
their traces on Γ also satisfy u ≤ u ≤ u a. e. on Γ. This implies that b(·, u) =
Ti(·, u) = T j(·, u) = 0 a. e. in Ω, Ui(·, u) = U j(·, u) = 0 a. e. on Γ for all
i ∈ {1, . . . , k}, for all j ∈ {1, . . . ,m} and also f0(x, u(x)) = f(x, u(x)) for
a. a.x ∈ Ω and f0Γ(x, u(x)) = fΓ(x, u(x)) for a. a.x ∈ Γ. This shows that u
is a solution of (1.4) which completes the proof of Theorem 4.1. □

The proof of Theorem 1.8 is now an immediate consequence of Theorem
4.1.

Proof of Theorem 1.8. In the particular case where m = n = 1, condition
(4.1) becomes condition (F3) and Theorem 4.1 reduces to Theorem 1.8. □

5. Extremal Solutions: Proof of Theorem 1.9

In this section we give the proof of Theorem 1.9.

Proof of Theorem 1.9. (i) Since u, u ∈ W 1,H(Ω), it follows that the set
{∥u∥H : u ∈ S} is bounded. Let {un}n∈N be a sequence in S and {ηn}n∈N ⊂
Lτ

′
1(·)(Ω), {ζn}n∈N ⊂ Lτ

′
2(·)(Γ) be corresponding sequences that satisfy (1.6)

(for each u = un and η = ηn, ζ = ζn).

From (F3), {ηn}n∈N is a bounded sequence in Lτ
′
1(·)(Ω) and {ζn}n∈N is

a bounded sequence in Lτ
′
2(·)(Γ). Using (1.6) with un, ηn, ζn, and v = v0,

a fixed element of K, we see that {ρH(|∇un|)}n∈N is a bounded sequence
and thus the set {∥∇un∥H : n ∈ N} is also bounded. Hence, {un}n∈N is
a bounded sequence in W 1,H(Ω) and there exists a subsequence {unl

}l∈N ⊂
{un}n∈N such that unl

⇀ u0 in W 1,H(Ω) for some u0 ∈ K (note that K is



32 Siegfried Carl, Vy Khoi Le, and Patrick Winkert

weakly closed in W 1,H(Ω)). Thus, unl
→ u0 in LH(Ω) and in Lτ1(·)(Ω), and

unl
|Γ → u0|Γ in Lτ2(·)(Γ).
By passing to a subsequence if necessary, we can also assume that unl

→ u0
a. e. in Ω and unl

|Γ → u0|Γ a. e. on Γ. Because of the boundedness of {ηn}n∈N
in Lτ

′
1(·)(Ω) and of {ζn}n∈N in Lτ

′
2(·)(Γ), ηnl

⇀ η0 in Lτ
′
1(·)(Ω) for some

η0 ∈ Lτ
′
1(·)(Ω) and ζnl

⇀ ζ0 in Lτ
′
2(·)(Γ) for some ζ0 ∈ Lτ

′
2(·)(Γ). Due to

the compactness of iτ1(·) and iτ2(·), and thus of i∗τ1(·) and i∗τ2(·), we have

i∗τ1(·)ηnl
→ i∗τ1(·)η0 and i∗τ2(·)ζnl

→ i∗τ2(·)ζ0 in W 1,H(Ω)∗. Therefore∫
Ω
ηnl

(unl
− u0) dx→ 0 and

∫
Γ
ζnl

(unl
− u0) dσ → 0 as l → ∞. (5.1)

From (1.6) with u = unl
and v = u0, we see that

lim inf
l→∞

∫
Ω

(
|∇unl

|p(x)−2∇unl
+ µ(x)|∇unl

|q(x)−2∇unl

)
· ∇(unl

− u0) dx ≤ 0.

We obtain unl
→ u0 in W 1,H(Ω) due to the (S+)-property of the operator

A : W 1,H(Ω) →W 1,H(Ω)∗, see Proposition 2.7.
Next, let us prove that u0 ∈ S. It is evident that

u ≤ u0 ≤ u a. e. in Ω. (5.2)

Let f0 and f0Γ be defined by (4.2) and (4.3) in the proof of Theorem 4.1.
Since u ≤ un ≤ u a. e. in Ω, we see that un and ηn, ζn satisfy (1.6) with f0
and f0Γ instead of f and fΓ. From (5.1) and the fact that i∗τ1(·)f̃0iτ1(·) and

i∗τ2(·)f̃0Γiτ2(·) are generalized pseudomonotone from W 1,H(Ω) to W 1,H(Ω)∗

(cf. Proposition 3.1), we have

η0 ∈ [i∗τ1(·)f̃0iτ1(·)](u0) and ζ0 ∈ [i∗τ2(·)f̃0Γiτ2(·)](u0),

that is,

η0(x) ∈ f0(x, u0(x)) = f(x, u0(x)) for a. a.x ∈ Ω,

ζ0(x) ∈ f0Γ(x, u0(x)) = fΓ(x, u0(x)) for a. a.x ∈ Γ,

and ∫
Ω
ηnl
unl

dx→
∫
Ω
η0u0 dx,

∫
Γ
ζnl
unl

dσ →
∫
Γ
ζ0u0 dσ.

Therefore, for all v ∈ K,∫
Ω

(
|∇unl

|p(x)−2∇unl
+ µ(x)|∇unl

|q(x)−2∇unl

)
· ∇(v − unl

) dx
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+

∫
Ω
ηnl

(v − unl
) dx+

∫
Γ
ζnl

(v − unl
) dσ

→
∫
Ω

(
|∇u0|p(x)−2∇u0 + µ(x)|∇u0|q(x)−2∇u0

)
· ∇(v − u0) dx

+

∫
Ω
η0(v − u0) dx+

∫
Γ
ζ0(v − u0) dσ.

Since unl
∈ S, this limit shows that u0 and η0, ζ0 satisfy (1.6) which in

view of (5.2) implies that u0 ∈ S. We thus obtain the compactness of S in
W 1,H(Ω).

(ii) The proofs for (ii) and (iii) follow the same lines as those for the case
of regular Sobolev spaces, thus their outlines are presented here for the sake
of completeness. Assuming (1.9), we see that if u0 ∈ S then u0 ∧ K ⊂
K and thus u0 is a subsolution of (1.4) in the sense of Definition 1.5. If
u1, u2 ∈ S then they are subsolutions of (1.4) and Theorem 4.1 thus implies
the existence of a solution u of (1.4) such that max{u1, u2} ≤ u ≤ min{uj :
1 ≤ j ≤ m} = u. It is clear that u ∈ S. In fact, since u1, u2 ∈ S, this follows
directly from the definition of S and the inequalities u ≤ u1 ≤ max{u1, u2} ≤
u ≤ u.

(iii) Since W 1,H(Ω) is separable (with the norm topology), so is S. Let
{wn}n∈N be a dense sequence in S. Using the directedness of S, we can
construct inductively a sequence {un}n∈N in S such that wn ≤ un ≤ un+1

for all n ∈ N. Let
u∗(x) = sup{un(x) : n ∈ N} = lim

n→∞
un(x) for x ∈ Ω.

As a consequence of the compactness of S, un → u∗ in W 1,H(Ω) and u∗ ∈ S.
Since u∗ ≥ wn a. e. in Ω for all n ∈ N, from the density of {wn}n∈N in S, we
see that u∗ ≥ u a. e. in Ω for all u ∈ S. The existence of the smallest element
u∗ of S is proved analogously. □

6. Application: Generalized Variational-Hemivariational
Inequalities

In this section we are dealing with the generalized variational-hemivariat-
ional inequality (1.10) which is of the form

u ∈ K : ⟨Au, v − u⟩+
∫
Ω
j◦(·, u, u; v − u) dx

+

∫
Γ
j◦Γ(·, u, u; v − u) dσ ≥ 0 for all v ∈ K,

(6.1)



34 Siegfried Carl, Vy Khoi Le, and Patrick Winkert

where A is the variable exponent double-phase operator given by (1.1). The
functions j, jΓ given by

j : Ω× R× R → R with (x, r, s) 7→ j(x, r, s),

jΓ : Γ× R× R → R with (x, r, s) 7→ jΓ(x, r, s),

are supposed to be locally Lipschitz with respect to s, and j◦(x, r, s; ϱ) and
j◦Γ(x, r, s; ϱ) denote Clarke’s generalized directional derivatives at s in the
direction ϱ for fixed (x, r). In case j and jΓ are independent of r, (6.1)
represents a variational-hemivariational inequality. However, in the general
case of problem (6.1) the functions s 7→ j(x, s, s) and s 7→ jΓ(x, s, s) may
be not locally Lipschitz but only partially locally Lipschitz. This enlarges
the class of variational-hemivariational inequalities considerably, and there-
fore we are calling them generalized variational-hemivariational inequalities.
Under hypotheses specified next we are going to show that problem (6.1)
is equivalent to some subclass of multi-valued variational inequalities of the
form (1.4), which in a sense fills a gap in the literature where both problems
are considered independently and separately.

We suppose the following hypotheses on j and jΓ:

(J1) The functions x 7→ j(x, r, s) and x 7→ jΓ(x, r, s) are measurable in Ω
and on Γ, respectively, for all r, s ∈ R. The functions r 7→ j(x, r, s)
and r 7→ jΓ(x, r, s) are continuous for a. a.x ∈ Ω and x ∈ Γ, re-
spectively, and for all s ∈ R. The functions s 7→ j(x, r, s) and
s 7→ jΓ(x, r, s) are locally Lipschitz for a. a.x ∈ Ω and x ∈ Γ, re-
spectively, and for all r ∈ R.

(J2) Let s 7→ ∂j(x, r, s) and s 7→ ∂jΓ(x, r, s) denote Clarke’s general-
ized gradient of the functions j and jΓ with respect to the vari-
able s, respectively. Assume the following growth conditions for
s→ ∂j(x, s, s) and s→ ∂jΓ(x, s, s):

There exist r1 ∈ C(Ω), r2 ∈ C(Γ) with 1 < r1(x) < p∗(x) for
all x ∈ Ω, 1 < r2(x) < p∗(x) for all x ∈ Γ, β ≥ 0, βΓ ≥ 0 and

functions α ∈ Lr
′
1(·)(Ω), αΓ ∈ Lr

′
2(·)(Γ) such that

sup {|η| : η ∈ ∂j(x, s, s)} ≤ α(x) + β|s|r1(x)−1

for a. a.x ∈ Ω, for all s ∈ R, and

sup {|ζ| : ζ ∈ ∂jΓ(x, s, s)} ≤ αΓ(x) + βΓ|s|r2(x)−1

for a. a.x ∈ Γ, and for all s ∈ R.
(J3) Let s 7→ j◦(x, r, s; ϱ) and s 7→ j◦Γ(x, r, s; ϱ) denote Clarke’s gen-

eralized directional derivative of the functions s 7→ j(x, r, s) and



Multi-valued variational inequalities 35

s 7→ jΓ(x, r, s) at s, respectively, in the direction ϱ for fixed (x, r).
Suppose that s 7→ j◦(x, s, s; ϱ) and s 7→ j◦Γ(x, s, s; ϱ) are upper semi-
continuous for a. a.x ∈ Ω, and x ∈ Γ, respectively, and for all ϱ ∈ R.

Let us define the multi-valued functions f : Ω×R → 2R and fΓ : Γ×R → 2R

as follows:

f(x, s) = ∂j(x, s, s), fΓ(x, s) = ∂jΓ(x, s, s). (6.2)

For the so defined multi-valued functions the following lemma holds true.

Proposition 6.1. Under the assumptions (J1)–(J3), the multi-valued func-
tions f : Ω×R → 2R and fΓ : Γ×R → 2R defined by (6.2) satisfy hypotheses
(F1)–(F2).

Proof. Hypothesis (F2) follows immediately from (J2). The proof of property
(F1) is just a slight adaption of the proof of [11, Lemma 3.2], and therefore
can be omitted. □

With the multi-valued functions f and fΓ given by (6.2), respectively, we
consider the following associated multi-valued variational inequality: Find
u ∈ K ⊂ VΓ0 ⊂ W 1,H(Ω), such that there exist τ1 ∈ C(Ω), τ2 ∈ C(Γ),
1 < τ1(x) < p∗(x) for all x ∈ Ω, 1 < τ2(x) < p∗(x) for all x ∈ Γ and

η ∈ Lτ
′
1(·)(Ω), ζ ∈ Lτ

′
2(·)(Γ) satisfying η(x) ∈ f(x, u(x)) for a. a.x ∈ Ω,

ζ(x) ∈ fΓ(x, u(x)) for a. a.x ∈ Γ and∫
Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx

+

∫
Ω
η(v − u) dx+

∫
Γ
ζ(v − u) dσ ≥ 0

(6.3)

for all v ∈ K.
We are going to show that the generalized variational-hemivariational in-

equality (6.1) and the related multi-valued variational inequality (6.3) are
indeed equivalent provided K satisfies the following lattice property

K ∧K ⊂ K and K ∨K ⊂ K. (6.4)

The following equivalence result holds:

Theorem 6.2. Assume hypotheses (H0) and (J1)–(J3), and let the lattice
condition (6.4) for K be satisfied. Then u is a solution of the generalized
variational-hemivariational inequality (6.1) if and only if u is a solution of
the multi-valued variational inequality (6.3) with multi-functions f and fΓ
given by (6.2).
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Proof. Let u be a solution of (6.3), which due to (6.2) means there exist

η ∈ Lτ
′
1(·)(Ω) and ζ ∈ Lτ

′
2(·)(Γ) satisfying

η(x) ∈ f(x, u(x)) = ∂j(x, u(x), u(x)) for a. a.x ∈ Ω,

ζ(x) ∈ fΓ(x, u(x)) = ∂jΓ(x, u(x), u(x)) for a. a.x ∈ Γ

and (6.3). By the definition of ∂j and ∂jΓ we get for any v ∈ K

j◦(x, u, u; v − u) ≥ η(x) (v − u) a. e. in Ω,

j◦Γ(x, u, u; v − u) ≥ ζ(x) (v − u) a. e. on Γ.
(6.5)

By (J1) and (J2) we can ensure that the left-hand sides of (6.5) belong to
L1(Ω) and L1(Γ), respectively, which in view of (6.3) implies (6.1).

To prove the reverse, let u be a solution of (6.1). In order to show that
u is a solution of the multi-valued variational inequality (6.3), we are going
to show that u is both a subsolution and a supersolution of the multi-valued
variational inequality (6.3), which then by Proposition 6.1 and applying
Theorem 1.8 yields the existence of a solution ũ of (6.3) satisfying ũ ∈ [u, u]
and thus u = ũ completing the proof.

Let us show first that the solution u of (6.1) is a subsolution of the multi-
valued variational inequality (6.3). Since K has the lattice property (6.4),
we can use in (6.1), in particular, v ∈ u ∧K, i.e., v = u ∧ φ = u− (u− φ)+

with φ ∈ K, which yields

〈
Au,−(u− φ)+

〉
+

∫
Ω
j◦

(
x, u, u;−(u− φ)+

)
dx

+

∫
Γ
j◦Γ

(
x, u, u;−(u− φ)+

)
dσ ≥ 0 for all φ ∈ K.

From Clarke’s calculus we have that ϱ 7→ j◦(·, r, s; ϱ) (resp. ϱ 7→ j◦Γ(·, r, s; ϱ))
is positively homogeneous (see Proposition 2.9 (i)), so the last inequality is
equivalent to

〈
Au,−(u− φ)+

〉
+

∫
Ω
j◦(x, u, u;−1)(u− φ)+ dx

+

∫
Γ
j◦Γ(x, u, u;−1)(u− φ)+ dσ ≥ 0 for all φ ∈ K.
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Using again for any v ∈ u∧K its representation in the form v = u−(u−φ)+
with φ ∈ K, the last inequality yields

⟨Au, v − u⟩+
∫
Ω
−j◦(x, u, u;−1)(v − u) dx

+

∫
Γ
−j◦Γ(x, u, u;−1)(v − u) dσ ≥ 0 for all v ∈ u ∧K.

(6.6)

From Clarke’s calculus (see Proposition 2.9 (iv)) we get

j◦(x, u(x), u(x);−1)

= max{−θ(x) : θ(x) ∈ ∂j(x, u(x), u(x))}
= −min{θ(x) : θ(x) ∈ ∂j(x, u(x), u(x))} =: −η(x),

(6.7)

where
η(x) ∈ ∂j(x, u(x), u(x)) for all x ∈ Ω. (6.8)

Similarly, we get for j◦Γ

j◦Γ(x, u(x), u(x);−1)

= max{−ζ(x) : ζ(x) ∈ ∂jΓ(x, u(x), u(x))}
= −min{ζ(x) : ζ(x) ∈ ∂jΓ(x, u(x), u(x))} =: −ζ(x),

(6.9)

with
ζ(x) ∈ ∂jΓ(x, u(x), u(x)) for all x ∈ Γ. (6.10)

Since x 7→ j◦(x, u(x), u(x);−1) as well as x 7→ j◦Γ(x, u(x), u(x);−1) are
measurable functions, it follows that x 7→ η(x) and x 7→ ζ(x) are measurable
in Ω and Γ, respectively, and in view of the growth conditions (J2) on the

Clarke’s gradients, we infer η ∈ Lr
′
1(·)(Ω), and ζ ∈ Lr

′
2(·)(Γ). Taking (6.7)–

(6.10) into account, from (6.6) we get

⟨Au, v − u⟩+
∫
Ω
η(v − u) dx+

∫
Γ
ζ(v − u) dσ ≥ 0 for all v ∈ u ∧K,

which together with (6.8) and (6.10) proves that u is a subsolution of (6.3).
By similar arguments, one shows that u is also a supersolution of (6.3), which
completes the proof. □

7. Discontinuous Multi-Valued Problems

In this section we study discontinuous multi-valued problems. For this
purpose, let j : Ω × R × R → R and jΓ : Γ × R × R → R be given func-
tions such that both are locally Lipschitz continuous with respect to the
third argument. We denote by s 7→ ∂j(x, r, s) and s 7→ ∂jΓ(x, r, s) Clarke’s
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generalized gradient of j and jΓ with respect to their third variable. Note
that we do not suppose any continuity assumptions on r 7→ j(x, r, s) and
r 7→ jΓ(x, r, s). This leads to multi-valued functions f : Ω × R → 2R and
fΓ : Γ× R → 2R given by

f(x, s) = ∂(x, s, s) and fΓ(x, s) = ∂jΓ(x, s, s). (7.1)

Based on Proposition 2.9 we know that f : Ω×R → K(R) ⊂ 2R \ {∅} and
fΓ : Γ× R → K(R) ⊂ 2R \ {∅}.

The precise problem is stated as follows: Find u ∈ K ⊂ W 1,H(Ω) and
τ1 ∈ C(Ω), τ2 ∈ C(Γ), 1 < τ1(x) < p∗(x) for all x ∈ Ω, 1 < τ2(x) < p∗(x) for

all x ∈ Γ with η ∈ Lτ
′
1(·)(Ω), ζ ∈ Lτ

′
2(·)(Γ) such that

η ∈ F(u), ζ ∈ FΓ(u),

⟨A(u), v − u⟩+
∫
Ω
η(v − u) dx+

∫
Γ
ζ(v − u) dσ ≥ 0

(7.2)

for all v ∈ K, where F and FΓ are the multi-valued Nemytskij operators
generated by the multi-valued functions given in (7.1), that is,

F(u) = {η : Ω → R : η is measurable in Ω and

η(x) ∈ ∂j(x, u(x), u(x)) for a. a.x ∈ Ω} ,
FΓ(u) = {ζ : Γ → R : ζ is measurable on Γ and

ζ(x) ∈ ∂jΓ(x, u(x), u(x)) for a. a.x ∈ Γ} .

Remark 7.1. Note that (7.2) can be equivalently written in the form: η ∈
F(u), ζ ∈ FΓ(u) and〈

A(u) + i∗τ1(·)η + i∗τ2(·)ζ, v − u
〉
≥ 0 for all v ∈ K.

Definition 7.2. Let Ω ⊂ RN , N ≥ 1, be a nonempty measurable set. A
function f : Ω× Rm → R, m ≥ 1, is called superpositionally measurable (or
sup-measurable) if the function x 7→ f(x, u1(x), · · · , um(x)) is measurable in
Ω whenever the component functions ui : Ω → R of u = (u1, . . . , um) are
measurable.

We suppose the following assumptions on the data.

(H1) Let j and jΓ be superpositionally measurable, that is, if x 7→ v(x)
and x 7→ u(x) are measurable in Ω, then x 7→ j(x, v(x), u(x)) is
measurable in Ω and if x 7→ v(x) and x 7→ u(x) are measurable in Γ,
then x 7→ jΓ(x, v(x), u(x)) is measurable in Γ.
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(H2) Let u and u be sub- and supersolutions of (7.2) such that u ≤ u.

There exist kΩ ∈ Lτ
′
1(·)(Ω) and kΓ ∈ Lτ

′
2(·)(Γ) with τ1 ∈ C(Ω), τ2 ∈

C(Γ), 1 < τ1(x) < p∗(x) for all x ∈ Ω, 1 < τ2(x) < p∗(x) for all
x ∈ Γ such that

|η| ≤ kΩ for a. a.x ∈ Ω,

|ζ| ≤ kΓ for a. a.x ∈ Γ,

for all η ∈ ∂j(x, r, s), for all ζ ∈ ∂jΓ(x, r, s), for all r, s ∈ [u(x), u(x)].
(H3) The functions s 7→ j(x, r, s) and s 7→ jΓ(x, r, s) are locally Lipschitz

continuous for all r ∈ R, for a. a.x ∈ Ω and for a. a.x ∈ Γ, respec-
tively. The functions r 7→ j◦(r, s; 1) and r 7→ j◦Γ(r, s, 1) are decreasing
for all s ∈ R for a. a.x ∈ Ω and for a. a.x ∈ Γ, respectively and the
functions r 7→ j◦(r, s;−1) and r 7→ j◦Γ(r, s,−1) are increasing for all
s ∈ R for a. a.x ∈ Ω and for a. a.x ∈ Γ, respectively.

We have the following existence and enclosure result of extremal solutions
for (7.2).

Theorem 7.3. Let hypotheses (H0), (H1)–(H3) and the lattice condition

K ∧K ⊂ K and K ∨K ⊂ K

be satisfied. Then there exist the greatest solution u∗ and the smallest solu-
tion u∗ of problem (7.2) within the ordered interval [u, u].

Proof. First, we point out that the multi-valued functions f and fΓ defined in
(7.1) are no longer upper semicontinuous and so the corresponding Nemytskij
operators F and FΓ are not pseudomonotone in general. Hence, we cannot
apply Theorem 2.12. Instead we will make use of a fixed point argument
based on Theorem 2.13 combined with the existence and comparison results
provided by Theorems 1.8 and 1.9.

Step 1: An Auxiliary problem
First we choose a fixed v ∈ [u, u] being a supersolution and a fixed w ∈

[u, u] being a subsolution of (7.2). We define

jv(x, s) = j(x, v(x), s), jvΓ(x, s) = jΓ(x, v(x), s),

fv(x, s) = ∂j(x, v(x), s), fvΓ(x, s) = ∂jΓ(x, v(x), s)

and

jw(x, s) = j(x,w(x), s), jw,Γ(x, s) = jΓ(x,w(x), s),

fw(x, s) = ∂j(x,w(x), s), fw,Γ(x, s) = ∂jΓ(x,w(x), s).
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Here s 7→ fv(x, s), s 7→ fvΓ(x, s), s 7→ fw(x, s) and s 7→ fw,Γ(x, s) stand for
Clarke’s generalized gradients and from Proposition 2.9 (iii) we know that
these are upper semicontinuous. Furthermore, we denote by Fv,Fv

Γ,Fw and
Fw,Γ the multi-valued Nemytskij operators related to fv, fvΓ, fw and fw,Γ,
respectively. We introduce the following auxiliary problems:

η ∈ Fv(u), ζ ∈ Fv
Γ(u),

⟨A(u), v̂ − u⟩+
∫
Ω
η(v̂ − u) dx+

∫
Γ
ζ(v̂ − u) dσ ≥ 0 ∀v̂ ∈ K,

(7.3)


η ∈ Fw(u), ζ ∈ Fw,Γ(u),

⟨A(u), v̂ − u⟩+
∫
Ω
η(v̂ − u) dx+

∫
Γ
ζ(v̂ − u) dσ ≥ 0 ∀v̂ ∈ K.

(7.4)

Applying hypothesis (H3) we easily see that u, v are sub- and supersolutions
of (7.3) and w, u are sub- and supersolutions of (7.4). Moreover, due to (H1)
and (H2), the assumptions of Theorems 1.8 and 1.9 are satisfied. Therefore,
there exist the greatest solution v∗ and the smallest solution v∗ of (7.3)
within [u, v] and the greatest solution w∗ and the smallest solution w∗ of
(7.4) within [w, u]. Furthermore, again by using (H3), we can show that
v∗ ∈ [u, v] is a supersolution of (7.2) and w∗ ∈ [w, u] is a subsolution of
(7.2). This can be shown as it was done in [5, Lemma 4.1].

Step 2: Definition of fixed-point operators
We define the following sets:

V :=
{
v ∈W 1,H(Ω) : v ∈ [u, u] and v is a supersolution of problem (7.2)

}
,

W :=
{
w ∈W 1,H(Ω) : w ∈ [u, u] and w is a subsolution of problem (7.2)

}
.

Recall that v∗ ∈ [u, v] is the greatest solution of (7.3) and w∗ ∈ [w, u] is the
smallest solution of (7.4), we know that the operators

G : V → V, V ∋ v 7→ v∗ = Gv,

T : W → W, W ∋ w 7→ w∗ = Tv,

are well-defined due to Step 1. As done in [5, Lemma 4.2], using again (H3),
one can show that G : V → V is an increasing operator, that is, v1 ≤ v2
implies Gv1 ≤ Gv2. Similarly, T : W → W turns out to be increasing as
well.

Step 3: Fixed-point argument
Using again hypothesis (H3) we are able to show that the range G(V)

of G has an upper bound in V and decreasing sequences of G(V) converge
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weakly in V. The proof is similar to the one in [5, Lemma 4.5] by using
Propositions 2.5 and 2.7. Similarly, we show that the range T (W) of T has
a lower bound in W and increasing sequences of T (W) converge weakly in
W. Now we can apply Theorem 2.13 to T : W → W to get a smallest fixed
point and to G : V → V to get a greatest fixed point. By Definition of G,
u ∈ [u, u] is a fixed point of G if and only if u is a solution of (7.2). Similar
can be said about T : W → W. This finishes the proof. □

8. Construction of Sub-supersolution for a Multi-Valued
Obstacle Problem

As an application of the results of the preceding sections, in this section
we consider the following obstacle problem when FΓ = 0:

u ∈ K : 0 ∈ Au+ ∂IK(u) + F(u) in W 1,H
0 (Ω)∗, (8.1)

where A is the double-phase operator given by (1.1) and K is defined by

K =
{
u ∈W 1,H

0 (Ω) : u(x) ≥ ψ(x) a. e. in Ω
}
. (8.2)

Under hypotheses (F1) and (F2) the multi-valued function f : Ω × R →
2R \ {∅}, which generates the operator F , may be represented by means of
single-valued functions fi : Ω× R → R, i = 1, 2, through

f(x, s) = [f1(x, s), f2(x, s)] for all (x, s) ∈ Ω× R, (8.3)

where s 7→ f1(x, s) is a (single-valued) lower semicontinuous function, s 7→
f2(x, s) is an (single-valued) upper semicontinuous function, and
x 7→ fi(x, u(x)) is a measurable function for any measurable function x 7→
u(x). We assume the following hypotheses on the function ψ representing
the obstacle, and on fi:

(Hψ) ψ ∈ W 1,H(Ω) with trace ψ|∂Ω ≤ 0 on ∂Ω and there exists cψ > 0
such that

ψ(x) ≤ cψ for a. e.x ∈ Ω.

(Hf) There exist ki ∈ Lr
′
1(·)(Ω), i = 1, 2, such that

f1(x, s) ≤ k1(x) and f2(x, s) ≥ k2(x) for all (x, s) ∈ Ω× R.

Remark 8.1. Hypothesis (Hψ) implies that K ̸= ∅. We note that hypothesis
(Hf) not necessarily implies boundedness of the multi-valued function f given
by (8.3), since the fi are only one-sided bounded with respect to s.
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Let ui ∈W 1,H
0 (Ω)∩L∞(Ω), i = 1, 2, be the unique (weak) solution of the

Dirichlet problem

Aui = −ki in Ω, u = 0 on ∂Ω. (8.4)

Note that the boundedness of ui can be shown similar to [37], due to the

embedding W 1,H
0 (Ω) ↪→W

1,p(·)
0 (Ω), see Proposition 2.5(i).

Our existence and comparison result for the obstacle problem is as follows.

Theorem 8.2. Assume hypotheses (H0), (F1), (F2), (Hψ), and (Hf). Then
the obstacle problem (8.1), (8.2) has a solution u satisfying u1(x) ≤ u(x) ≤
u2(x) +M in Ω for M ≥ 0 sufficiently large.

Proof. We are going to make use of Theorem 1.8. To this end we are going
to show that u := u1 and u := u2 +M with M ≥ 0 sufficiently large, are
sub- and supersolutions of (8.1), (8.2), respectively.

Let us first show that u := u1 is in fact a subsolution of (8.1), (8.2)
according to Definition 1.5. Clearly, condition u1 ∨K ⊂ K is fulfilled. Let
η(x) = f1(x, u(x)), then η ∈ Lr

′
1(·)(Ω) (note: 1 < r1(x) < p∗(x)) and η(x) ∈

f(x, u1(x)), which is (ii). It remains to verify condition (iii) of Definition 1.5
(note: fΓ = 0), that is,

⟨Au1, v − u1⟩+
∫
Ω
η(v − u1) dx ≥ 0 for all v ∈ u1 ∧K, (8.5)

where

⟨Au1, v − u1⟩ =
∫
Ω

(
|∇u1|p(x)−2∇u1 + µ(x)|∇u1|q(x)−2∇u1

)
· ∇(v − u1) dx.

Since v ∈ u1 ∧K can be represented by v = u1 ∧φ = u1 − (u1 −φ)+ for any
φ ∈ K, inequality (8.5) is equivalent to〈

Au1, (u1 − φ)+
〉
+

∫
Ω
η(u1 − φ)+ dx ≤ 0 for all φ ∈ K. (8.6)

Since (u1 − φ)+ ∈ {v ∈ W 1,H
0 (Ω) : v ≥ 0}, inequality (8.6) is fulfilled if u1

satisfies (note: η = f1(·, u1))

⟨Au1, v⟩+
∫
Ω
f1(x, u1)v dx ≤ 0 for all v ∈W 1,H

0 (Ω) with v ≥ 0.

In view of (Hf) and (8.4) we get −k1(x) + f1(x, u1) ≤ 0, and

⟨Au1, v⟩+
∫
Ω
f1(x, u1)v dx =

∫
Ω
(−k1(x) + f1(x, u1)) v dx ≤ 0
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for all v ∈W 1,H
0 (Ω) with v ≥ 0, which proves (iii) of Definition 1.5, and thus

u = u1 is a subsolution.
Now let us show that u = u2+M is a supersolution according to Definition

1.6 for M ≥ 0 sufficiently large. From (8.4) we see that u = u2 + M ∈
W 1,H(Ω) is the unique solution of the Dirichlet problem

Au = −k2 in Ω, u =M on ∂Ω, (8.7)

and thus u ∧ K ⊂ W 1,H
0 (Ω). Moreover, since u2 ∈ L∞(Ω), we get from

(Hψ) that u = u2 +M ≥ cψ ≥ ψ, which yields u ∧K ⊂ K satisfying (i) of

Definition 1.6. Set η = f2(·, u), then η ∈ Lr
′
1(·)(Ω) and u(x) ∈ f(x, u(x)),

which is (ii). It remains to show (iii) of Definition 1.6, that is,

⟨Au, v − u⟩+
∫
Ω
η(v − u) dx ≥ 0 for all v ∈ u ∨K. (8.8)

For v ∈ u ∨K we have v = u ∨ φ = u+ (φ− u)+, φ ∈ K, and thus (8.8) is
equivalent to〈

Au, (φ− u)+
〉
+

∫
Ω
η(φ− u)+ dx ≥ 0 for all φ ∈ K. (8.9)

As u|∂Ω =M ≥ 0, it follows that (φ− u)+ ∈ {v ∈W 1,H
0 (Ω) : v ≥ 0}, hence

inequality (8.9) holds true if the following inequality can be verified:

⟨Au, v⟩+
∫
Ω
ηv dx ≥ 0 for all v ∈W 1,H

0 (Ω) with v ≥ 0.

Taking (Hf) and (8.7) into account, we get η − k2 = f2(·, u) − k2 ≥ 0 and
thus

⟨Au, v⟩+
∫
Ω
ηv dx =

∫
Ω
(−k2 + f2(·, u)) v dx ≥ 0

for all v ∈ W 1,H
0 (Ω) with v ≥ 0, which proves (iii), and thus u = u2 +M is

a supersolution. Since ui ∈ L∞(Ω), i = 1, 2, we obtain by choosing M ≥ 0
even larger if needed that u = u1 ≤ u2 +M = u. Applying Theorem 1.8
completes the proof. □

One readily verifies that K given by (8.2) satisfies the lattice condition

K ∧K ⊂ K and K ∨K ⊂ K.

Hence, as a conclusion of Theorem 1.9 we obtain the following characteriza-
tion of the set S of all solutions of (8.1),(8.2) lying within the order interval
[u, u].
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Corollary 8.3. Under the hypotheses of Theorem 8.2, the solution set S of

(8.1), (8.2) is a compact subset of W 1,H
0 (Ω) and possesses a smallest and a

greatest solution.
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[20] L. Gasiński, N.S. Papageorgiou, Constant sign and nodal solutions for superlinear
double phase problems, Adv. Calc. Var., 14 (2021), no. 4, 613–626.
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[40] S. Zeng, V.D. Rădulescu, P. Winkert, Double phase obstacle problems with variable
exponent, Adv. Differential Equations, 27 (2022), no. 9-10, 611–645.
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