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a b s t r a c t

In this work we deal with elliptic equations driven by the variable exponent double
phase operator with a Kirchhoff term and a right-hand side that is just locally
defined in terms of very mild assumptions. Based on an abstract critical point
result of Kajikiya (2005) and recent a priori bounds for generalized double phase
problems by the authors (Ho and Winkert, 2022), we prove the existence of a
sequence of nontrivial solutions whose L∞-norms converge to zero.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study multiplicity results for the following Kirchhoff-type problem

− M

(∫
Ω

A(x, ∇u) dx

)
div A(x, ∇u) = f(x, u) in Ω , u = 0 on ∂Ω , (1.1)

here Ω is a bounded domain in RN with a Lipschitz boundary ∂Ω , A :Ω ×RN → R and A :Ω ×RN → RN

are given by

A(x, ξ) := 1
p(x) |ξ|p(x) + µ(x)

q(x) |ξ|q(x)
, A(x, ξ) := ∇ξA(x, ξ) = |ξ|p(x)−2

ξ + µ(x)|ξ|q(x)−2
ξ.

n the following, for h ∈ C(Ω) we denote h− := infx∈Ω h(x) and h+ := supx∈Ω h(x).
We suppose the subsequent hypotheses:

H1) p, q ∈ C0,1(Ω) such that 1 < p(x) < q(x) < N for all x ∈ Ω ,
(

q
p

)+
< 1 + 1

N and 0 ≤ µ(·) ∈ C0,1(Ω).
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H2) M : [0, ∞) → R is a function and f :Ω × R → R is a Carathéodory function such that the following
conditions are satisfied:

(i) there exist positive constants t0, m0 such that M ∈ C[0, t0] and m0 ≤ M(t) ≤ M(t0) for all
t ∈ [0, t0];

(ii) there exists ε0 > 0 such that f :Ω × [−ε0, ε0] → R is odd with respect to the second variable and
sup|t|≤ε0 |f(·, t)| ∈ L∞(Ω);

(iii) there exists a nonempty open ball B ⊂ Ω such that

lim
t→0

F (x, t)

|t|p
−
B

= ∞ uniformly for a. a. x ∈ B,

where F (x, t) :=
∫ t

0 f(x, τ) dτ and p−
B := infx∈B p(x).

We shall look for solutions to problem (1.1) in the Musielak-Orlicz Sobolev space
(

W 1,H
0 (Ω), ∥ · ∥

)
, where

(x, t) := tp(x) + µ(x)tq(x) for all (x, t) ∈ Ω × [0, ∞) (see Section 2 for the definitions). We call a function
∈ W 1,H

0 (Ω) a solution of problem (1.1) if f(·, u) ∈ L1
loc(Ω) and if

M

(∫
Ω

A(x, ∇u) dx

) ∫
Ω

A(x, ∇u) · ∇v dx =
∫
Ω

f(x, u)v dx

is satisfied for all v ∈ C∞
c (Ω).

Our main result reads as follows.

Theorem 1.1. Let hypotheses (H1) and (H2) be satisfied. Then, problem (1.1) admits a sequence of solutions
un}n∈N with ∥un∥ + ∥un∥∞ → 0 as n → ∞, where ∥ · ∥∞ is the norm in L∞(Ω).

The proof of Theorem 1.1 is based on an abstract critical point result of Kajikiya [1] (see also Theorem 2.2)
nd recent a priori bounds for generalized double phase problems by the authors [2] in which new embedding
esults of the form W 1,H(Ω) ↪→ LΨ (Ω), with

Ψ(x, t) := tr(x) + µ(x)
s(x)
q(x) ts(x) for (x, t) ∈ Ω × [0, ∞),

where r, s ∈ C(Ω) satisfy 1 < r(x) ≤ Np(x)
N−p(x) =: p∗(x) and 1 < s(x) ≤ Nq(x)

N−q(x) =: q∗(x) for all x ∈ Ω are
resented.

The novelty of our work is the fact that we combine the variable exponent double phase operator with a
irchhoff term and a reaction term that are both locally defined. As far as we know, there is no other work
ealing with a Kirchhoff term along with the variable exponent double phase operator. In case the exponents
, q are constants, we refer to the work of Fiscella–Pinamonti [3] who considered the problem

− m

[∫
Ω

(
|∇u|p

p
+ a(x) |∇u|q

q

)
dx

]
La

p,q(u) = f(x, u) in Ω , u = 0 on ∂Ω , (1.2)

here f : Ω × R → R is a Carathéodory function that satisfies subcritical growth and the Ambrosetti–
Rabinowitz condition and

La
p,q(u) := div

(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
, u ∈ W 1,H

0 (Ω). (1.3)

y applying the mountain-pass theorem, the existence of a nontrivial weak solution of (1.2) is shown.
ecently, Arora–Fiscella–Mukherjee–Winkert [4] studied singular Kirchhoff double phase problems given
y

−m

[∫ (
|∇u|p + a(x) |∇u|q

)
dx

]
La

p,q(u) = λu−γ + ur−1 in Ω , u = 0 on ∂Ω ,

Ω p q

2
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with La
p,q as in (1.3), where a suitable Nehari manifold decomposition provides the existence of two different

solutions. Another interesting work in the context of Kirchhoff constant exponent double phase problems
has been published in [5] with nonlinear boundary condition based on variational tools. All these works use
different methods than in our paper.

It should be noted that the occurrence of a nonlocal Kirchhoff term was first introduced by Kirchhoff [6].
Such problems have a strong background in several applications in physics. Existence results on degenerate
and nondegenerate Kirchhoff problems for different type of problems can be found, for example, in the
works [7–12] and the references therein.

If m(t) ≡ 1 for all t ≥ 0, problem (1.1) reduces to a double phase problem with variable exponents. In this
case, only few and very recent results exist. We refer to the papers [13–18], see also the references therein.
If p and q are constants, we point out that the double phase operator in (1.1) is associated to the functional

u ↦→
∫
Ω

(
1
p

|∇u|p + µ(x)
q

|∇u|q
)

dx, (1.4)

which occurred for the first time in the work of Zhikov [19]. Such functionals are used to describe models
for strongly anisotropic materials in the context of homogenization and elasticity. In the past decade,
functionals of the form (1.4) have been studied by several authors concerning regularity properties of local
minimizers, we refer to the papers [20–23], see also [24] for variable exponents and the recent paper [25]
about nonautonomous integrals.

2. Preliminaries and notations

In this section we recall the main properties about Musielak-Orlicz Sobolev spaces and the double phase
operator with variable exponents along with an abstract critical point result.

To this end, let Ω be a bounded domain in RN with Lipschitz boundary ∂Ω and let M(Ω) be the space of
all measurable functions u :Ω → R. We denote by Lr(Ω) the usual Lebesgue space endowed with the norm
∥ · ∥r for any 1 ≤ r ≤ ∞. Suppose (H1) and let H :Ω × [0, ∞) → [0, ∞) be the nonlinear function defined by

H(x, t) := tp(x) + µ(x)tq(x) for all (x, t) ∈ Ω × [0, ∞).

The corresponding modular to H is given by

ρH(u) =
∫
Ω

H(x, |u|) dx =
∫
Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx

and the associated Musielak-Orlicz space LH(Ω) is then defined by

LH(Ω) = {u ∈ M(Ω) : ρH(u) < +∞}

ndowed with the Luxemburg norm ∥u∥H = inf
{

τ > 0 : ρH
(

u
τ

)
≤ 1

}
. When µ(·) ≡ 0, we write Lp(·)(Ω) in

lace of LH(Ω). Similarly, the Musielak-Orlicz Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{

u ∈ LH(Ω) : |∇u| ∈ LH(Ω)
}

quipped with the norm ∥u∥1,H = ∥u∥H + ∥∇u∥H, where ∥∇u∥H = ∥ |∇u| ∥H. Moreover, W 1,H
0 (Ω) is the

ompletion of C∞
0 (Ω) in W 1,H(Ω). We know that LH(Ω), W 1,H(Ω) and W 1,H

0 (Ω) are reflexive Banach
paces and we can equip W 1,H

0 (Ω) with the equivalent norm ∥ · ∥ := ∥∇ · ∥H, see [14].
Moreover, we have

∥u∥p−
− 1 ≤ ρ (|∇u|) ≤ ∥u∥q+

+ 1 for all u ∈ W 1,H(Ω), (2.1)
H 0

3
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∥u∥q+
≤ ρH(|∇u|) ≤ ∥u∥p−

for all u ∈ W 1,H
0 (Ω) with ∥u∥ < 1, (2.2)

nd
W 1,H

0 (Ω) ↪→ Lr(·)(Ω) (2.3)

s compact for r ∈ C(Ω) with 1 ≤ r(x) < p∗(x) for all x ∈ Ω , see [14, Propositions 2.13 and 2.16].
Let B : W 1,H

0 (Ω) → W 1,H
0 (Ω)∗ be the nonlinear map defined by

⟨B(u), v⟩ :=
∫
Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx (2.4)

for all u, v ∈ W 1,H
0 (Ω), where ⟨ · , · ⟩ is the duality pairing between W 1,H

0 (Ω) and its dual space W 1,H
0 (Ω)∗.

he operator B : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ has the following properties, see [14, Theorem 3.3].

roposition 2.1. Let hypotheses (H1) be satisfied. Then, the operator B defined in (2.4) is bounded,
ontinuous, strictly monotone and of type (S+), that is, un ⇀ u in W 1,H

0 (Ω) and lim supn→∞ ⟨Bun, un −u⟩ ≤
, imply un → u in W 1,H

0 (Ω).

Let X be a Banach space, let X∗ be its dual space and let φ ∈ C1(X,R). We say that {un}n∈N ⊆ X

s a Palais–Smale sequence ((PS)-sequence for short) for φ if {φ(un)}n∈N ⊆ R is bounded and φ′(un) →
in X∗ as n → ∞. We say that φ satisfies the Palais–Smale condition ((PS)-condition for short) if any

PS)-sequence {un}n∈N of φ admits a convergent subsequence in X. The proof of Theorem 1.1 is based on
he following abstract critical point result due to Kajikiya [1, Theorem 1].

heorem 2.2. Let (X, ∥ · ∥) be an infinite dimensional Banach space and J ∈ C1(X,R) such that the
following two assumptions hold:

(J1) J is even, bounded from below, J(0) = 0 and it satisfies the (PS)-condition.
(J2) For any k ∈ N, there exist a k-dimensional subspace Xk of X and a number rk > 0 such that

supXk∩Srk
J(u) < 0, where Srk

= {u ∈ X : ∥u∥ = rk}.

hen, the functional J admits a sequence of critical points {vk}k∈N satisfying ∥vk∥ → 0 as k → ∞.

. Proof of the main result

In this section we give the proof of Theorem 1.1.

roof of Theorem 1.1. Since the conditions on the Kirchhoff and reaction terms are given locally, the
orresponding energy functional associated with problem (1.1) may not be well defined. In order to deal
ith this difficulty and get the symmetry of the associated energy functional, we first modify the functions

and f as follows: We define M0, M̂0 : [0, ∞) → R given by

M0(t) :=
{

M(t) if 0 ≤ t ≤ t0,

M(t0) if t > t0,
and M̂0(t) :=

∫ t

0
M0(s) ds.

t is clear that M0 ∈ C([0, ∞),R) and

m0 ≤ M0(t) ≤ M(t0) for all t ∈ [0, ∞), (3.1)
m0t ≤ M̂0(t) ≤ M(t0)t for all t ∈ [0, ∞). (3.2)
4



K. Ho and P. Winkert Applied Mathematics Letters 145 (2023) 108783

w

O

F

N

W
n

d

F

f
c

T
(

a

T
i

Next, let η ∈ C∞
c (R) be a function such that 0 ≤ η(t) = η(−t) ≤ 1 for t ∈ R and

η(t) = 1 for |t| ≤ ε0

2 , η(t) = 0 for |t| ≥ ε0,

here ε0 is given in (H2)(ii). For x ∈ Ω we define

h(x, t) :=
{

η(t)f(x, t) if |t| ≤ ε0,

0 if |t| ≥ ε0,
and H(x, t) :=

∫ t

0
h(x, s) ds.

bviously, we have
sup
t∈R

|h(x, t)| ≤ sup
|t|≤ε0

|f(x, t)| =: f0(x) for a. a. x ∈ Ω . (3.3)

urthermore, H is even with respect to the second variable and

sup
t∈R

|H(x, t)| ≤ ε0f0(x) for a. a. x ∈ Ω . (3.4)

ote that f0 ∈ L∞(Ω) by hypothesis (H2)(ii).
Now, we consider the following modified problem

− M0

(∫
Ω

A(x, ∇u) dx

)
div A(x, ∇u) = h(x, u) in Ω , u = 0 on ∂Ω . (3.5)

e point out that if {vk}k∈N is a sequence of solutions to problem (3.5) satisfying ∥vk∥ + ∥vk∥∞ → 0 as
→ ∞, then {vk}k≥k0 is a sequence of solutions to problem (1.1) for some k0 ∈ N. In order to derive the

esired conclusion, we will apply Theorem 2.2 for (X, ∥ · ∥) := (W 1,H
0 (Ω), ∥∇ · ∥H) and

J(u) := M̂0

(∫
Ω

A(x, ∇u) dx

)
−

∫
Ω

H(x, u) dx, u ∈ X.

irst, we see that J : X → R is of class C1 and its Fréchet derivative J ′ : X → X∗ is given by

⟨J ′(u), v⟩ = M0

(∫
Ω

A(x, ∇u) dx

) ∫
Ω

A(x, ∇u) · ∇v dx −
∫
Ω

h(x, u)v dx

or all u, v ∈ X. Clearly, any critical point of J is a solution of problem (3.5). We will verify that J satisfies
onditions (J1) and (J2) of Theorem 2.2.

Step 1: J fulfills (J1)
Clearly, J is even and J(0) = 0. By (3.2), (2.1) and (3.4), we have

J(u) ≥ m0

∫
Ω

A(x, ∇u) dx − ε0

∫
Ω

f0(x) dx ≥ 1
q+

(
∥u∥p−

− 1
)

− ε0∥f0∥1 for all u ∈ X.

his implies that J is coercive and bounded from below on X since p− > 1. For verification of the
PS)-condition for J , let {un}n∈N be a (PS)-sequence for J , that is

J ′(un) → 0 in X∗ (3.6)

nd
sup
n∈N

|J(un)| < ∞. (3.7)

hen, the coercivity of J and (3.7) guarantee the boundedness of {un}n∈N in X. Thus, up to a subsequence
f necessary, we have

1
un ⇀ u in X and un → u in L (Ω), (3.8)
5
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by (2.3). On the other hand, we have

M0

(∫
Ω

A(x, ∇un) dx

) ∫
Ω

A(x, ∇un) · (∇un − ∇u) dx =
⟨
J ′(un), un − u

⟩
+

∫
Ω

h(x, un)(un − u) dx.

Combining this with (3.1) and (3.3) yields

m0

⏐⏐⏐⏐∫
Ω

A(x, ∇un) · (∇un − ∇u) dx

⏐⏐⏐⏐ ≤ ∥J ′(un)∥X∗∥un − u∥ + ε0∥f0∥∞∥un − u∥1.

nvoking (3.6), (3.8) and the boundedness of {un}n∈N in X, from the last inequality it follows that∫
Ω

A(x, ∇un) · (∇un − ∇u)dx → 0 as n → ∞.

ence, un → u in X in view of Proposition 2.1. Thus, J satisfies the (PS)-condition and so (J1) is fulfilled.
Step 2: J fulfills (J2)
Let k ∈ N be given and set Xk := span{φ1, φ2, . . . , φk}, where φn is an eigenfunction corresponding to

he nth eigenvalue of the eigenvalue problem −∆u = λu in B, u = 0 on ∂B, and it is extended on Ω by
utting φn(x) = 0 for x ∈ Ω \ B. Since Xk is finitely dimensional, all norms on Xk are equivalent. Thus, we
nd positive constants αk, βk such that

βk∥u∥∞ ≤ ∥u∥ ≤ αk∥u∥
p−

B
for all u ∈ Xk. (3.9)

y condition (H2)(iii) we can choose

Mk >
M(t0)αp−

B
k

p− and δk ∈ (0, ε0/2) (3.10)

uch that
H(x, t) = F (x, t) ≥ Mk|t|p

−
B , (3.11)

for a. a. x ∈ B and for all |t| < δk.
Let rk ∈

(
0, min{1, β−1

k δk}
)
. Then, from (3.9) we have

∥u∥ < 1 and ∥u∥∞ ≤ β−1
k rk < δk <

ε0

2 for all u ∈ X ∩ Srk
, (3.12)

where Srk
= {u ∈ X : ∥u∥ = rk}. Utilizing (3.2), (3.11) and then (3.12) with noticing supp(u) ⊂ B we

btain

J(u) = M̂0

(∫
Ω

A(x, ∇u) dx

)
−

∫
Ω

H(x, u) dx ≤ M(t0)
∫
Ω

A(x, ∇u) dx −
∫
Ω

F (x, u) dx

≤ M(t0)
p−

∫
B

[
|∇u|p(x) + µ(x)|∇u|q(x)

]
dx − Mk

∫
B

|u|p
−
B dx

for all u ∈ Xk ∩ Srk
. Invoking (2.2) and (3.9) we infer from the last inequality that

J(u) ≤ M(t0)
p− ∥u∥p−

B − Mk∥u∥p−
B

p−
B

≤ M(t0)
p− ∥u∥p−

B − Mk(α−1
k ∥u∥)p−

B =
(

M(t0)
p− − Mkα

−p−
B

k

)
r

p−
B

k .

hus, we obtain supXk∩Srk
J(u) < 0 due to (3.10). Hence, J satisfies (J2).

Applying Theorem 2.2 we find a sequence of critical points {vk}k∈N of J satisfying J(vk) < 0 for all k ∈ N
nd ∥vk∥ → 0 as k → ∞. Therefore, vk are nontrivial solutions of problem (3.5), which can be rewritten as

− div A(x, ∇u) = g(x, u) in Ω , u = 0 on ∂Ω ,
6
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R

where
g(x, u) := h(x, u)

M0

(∫
Ω

A(x, ∇u)dx

) with |g(x, t)| ≤ ∥f0∥∞

m0

or a. a. x ∈ Ω and for all t ∈ R. According to Theorem 4.2 and Proposition 3.7 of the authors [2], we also
ave that ∥vk∥∞ → 0 as k → ∞. Hence {vk}k≥k0 for some k0 ∈ N are solutions to our original problem
1.1) and satisfy ∥vk∥ + ∥vk∥∞ → 0 as k → ∞. This finishes the proof. □
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[18] S. Zeng, V.D. Rădulescu, P. Winkert, Double phase obstacle problems with variable exponent, Adv. Differential

Equations 27 (9–10) (2022) 611–645.
[19] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser.

Mat. 50 (4) (1986) 675–710.
[20] P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015)

206–222.
7

http://refhub.elsevier.com/S0893-9659(23)00215-X/sb1
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb1
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb1
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
https://arxiv.org/abs/2208.00504
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb3
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb3
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb3
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb4
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb4
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb4
http://dx.doi.org/10.1007/s13163-022-00453-y
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb6
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb7
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb7
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb7
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb8
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb8
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb8
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb9
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb9
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb9
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb10
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb10
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb10
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb11
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb11
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb11
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb12
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb12
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb12
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb13
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb13
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb13
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb14
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb14
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb14
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb15
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb15
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb15
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb16
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb16
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb16
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb17
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb17
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb17
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb18
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb18
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb18
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb19
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb19
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb19
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb20
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb20
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb20


K. Ho and P. Winkert Applied Mathematics Letters 145 (2023) 108783
[21] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential
Equations 57 (2) (2018) 48, Art. 62.

[22] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218
(1) (2015) 219–273.

[23] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2) (2015)
443–496.

[24] M.A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv.
Nonlinear Anal. 9 (1) (2020) 710–728.

[25] C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Ration. Mech. Anal. 242 (2021)
973–1057.
8

http://refhub.elsevier.com/S0893-9659(23)00215-X/sb21
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb21
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb21
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb22
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb22
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb22
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb23
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb23
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb23
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb24
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb24
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb24
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb25
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb25
http://refhub.elsevier.com/S0893-9659(23)00215-X/sb25

	Infinitely many solutions to Kirchhoff double phase problems with variable exponents
	Introduction
	Preliminaries and Notations
	Proof of the main result
	Data availability
	Acknowledgments
	References


