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Abstract We consider Robin problems driven by a nonhomogeneous differential operator
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1 Introduction

Let £2 € RY be a bounded domain with a C2-boundary 2. In this paper, we deal with the
following nonlinear Robin problem
—diva(Vu) = f(x,u) in 2,
ou
ong

1.1
—B)|ulP?u on a2, (1.1

where a : RY — RV is assumed to be continuous, strictly monotone and satisfies certain
regularity and growth conditions which are listed in hypotheses H(a) below. These hypotheses
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are general enough to incorporate various differential operators of interest such as the p-
Laplacian (1 < p < 00). However, we stress that the differential operator here is not
(p — 1)-homogeneous, and this is a source of difficulties in the analysis of problem (1.1), in
particular in the search for nodal (sign changing) solutions. By :7““ , we denote the generalized
normal derivative defined by

u
e (a(Vu), n)pn
with n(x) being the outward unit normal at x € 9§2. We further assume that the reaction
f : 2 xR — Ris a Carathéodory function; that is, x — f(x, s) is measurable for all s € R
and s — f(x,s) is continuous for a.a. x € £2. The interesting feature of our work is the fact
that we do not impose any global growth condition on f(x, -). Instead, we assume that f(x, -)
admits x-dependent zeros of constant sign. In the context of Dirichlet equations driven by
the p-Laplacian, reactions with zeros but having subcritical global growth were considered
by Bartsch et al. [4] and Iturriaga et al. [11]. In both papers, the zeros are supposed to be x
independent, that is, constant functions. For Neumann equations involving the p-Laplacian,
subcritical nonlinearities with constant zeros have been studied by Aizicovici et al. [2]. Other
works dealing with Robin equations driven by the p-Laplacian are those of Zhang et al. [28]
and Zhang and Xue [29], but with stronger hypotheses on the reaction. Finally, we mention
the papers of Duchateau [7], L& [13] and Papageorgiou and Radulescu [20] dealing with
different types of eigenvalue problems for the Robin p-Laplacian.

The aim of this work is to prove multiplicity theorems for problem (1.1) providing com-
plete sign information of the solutions obtained. We use variational methods based on critical
point theory combined with suitable truncation and perturbation techniques along with Morse
theory to show that problem (1.1) has at least three nontrivial solutions whereby two of them
have constant sign (one positive, the other negative) and the third one is nodal. To the best
of our knowledge, for Robin problems, only Papageorgiou and Réadulescu [20] and Winkert
[26] obtained nodal solutions for a different class of parametric Robin equations driven by
the p-Laplacian being a (p — 1)-homogeneous differential operator.

In the next section, for the reader’s convenience, we review the main mathematical tools
that we will use in the sequel.

2 Mathematical background

Let X be a Banach space with norm || - || x and denote by X* its dual space equipped with the
dual norm || - || x*, that is

I€1lx+ = sup {(&, v)(x=,x) s v € X, |vllx <1},
where (-, -)(x* x) stands for the duality paring of (X*, X).

Definition 2.1 The functional ¢ € C 1(X) fulfills the Palais—Smale condition (the PS-
condition for short) if the following holds: Every sequence (u,),>1 € X suchthat (¢(u,))n>1
isbounded in R and ¢’ (1) — 0in X* asn — oo admits a strongly convergent subsequence.

This is a compactness-type condition on the functional ¢ which compensates the fact that
the ambient space X need not to be locally compact (X is in general infinite dimensional). The
PS-condition leads to a deformation theorem which in turn generates the minimax theory for
the critical values of ¢. One of the main results in this theory is the so-called mountain pass
theorem due to Ambrosetti and Rabinowitz [3].
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Theorem 2.2 Let ¢ € C'(X) be a functional satisfying the PS-condition and let uy, us €
X, lluz —uillx > p >0,

max{p(u1), ¢(uz)} < inf {p) : |u —uillx = p} =:m,

and ¢ = inf, e maxo<,<1 @(y () with I' = {y € C ([0, 1], X) : y(0) = u1, y(1) = uz}.
Then, c > m,, with ¢ being a critical value of ¢.

By L7 (£2) (or L? (.Q; ]RN)) and W12 (£2), we denote the usual Lebesgue and Sobolev
spaces with their norms || - ||, and || - ||1, ,, which is given by

1
lulli,p = (1Vully + llullh)?  forallu e whr ().

The norm of R¥ is denoted by | - |, and (-, g~ stands for the inner product in RN -In
addition to the Sobolev space WLP(£2), we will also use the ordered Banach space C L)
with norm || - ||C1(§) and its positive cone

C'@)y={ueC'(R2):ux)=0 forallx € 2},
which has a nonempty interior given by
int (C3(2)4) = {u € C' ()4 1u(x) > 0 forallx € 22}.

On 052, we use the (N — 1)-dimensional Hausdorft (surface) measure denoted by o (-).
Then, we can define the Lebesgue spaces L*(952) with 1 < s < co and norm || - || 5. Itis
known that there exists a unique linear continuous map yg : WLP(£2) — LP(3£2), known
as the trace map, such that yp(u) = u |39 forallu € WhP(£2) N C(£2). In fact, the mapping
Yo is compact and

1
imyy = W7"@0R), keryy = W' ()

with % + % = 1. From now on, for the sake of notational simplicity, we drop the use of the

trace map yp. It is understood that all restrictions of the Sobolev functions u € WP (£2) on
the boundary 952 are defined in the sense of traces.

Next, we introduce our hypotheses on the map a(-). To this end, let w € C (0, 400) and
assume that it satisfies

ta' (1)
w(t)

for all # > 0 and with some constants ci, ¢ > 0. The hypotheses on a : RN — RN read as
follows.

0<é< <co and 1t <w@) < (1 +1P7h 2.1)

H(a): a(&) = ap (|&]) & for all € € RN with ag(r) > O forall ¢ > 0 and

() ag € C(0,00),t > tag(t) is strictly increasing on (0, 00), lim,_, o+ tao(t) = 0,
ta)\(t)
0

=c>—1;

wl(%‘ﬁ') for all £ € R"\{0} and some c3 > 0;

(i) (Va(&)y, y)py > Mlylz for all £ € RV\{0} and all y € RV.

&1

(i) [Va(§)| < c3
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(iv) if Go(r) = [, ao(s)sds, then
pGo(1) — ap(t)t> > 0 foralls >0

and there exist 1 <0 < ¢ < pand ¢, ¢* > 0 such that
1
t — Gy (t?) is convex on Ry = [0, +00)

and

sGo(r) o

lim c*, ap®)tr —0Go(t) > ¢tP forallt > 0.

t—0+ 1S
Remark 2.3 These conditions on a(-) are motivated by the nonlinear regularity theory of
Lieberman [14] and the nonlinear maximum principles of Pucci and Serrin [23]. The above
hypotheses imply that Go(-) is strictly convex and strictly increasing. Let G(§) = Go(|€])
forall £ € RY . Then, we have

VG () = G()(Iél)éf| = ap(IE)E = a(§) forall § € RV\{0}.

Hence, G (-) is the primitive of a(-) and of course & > G (§) is convex with G(0) = 0. It
follows that

G(E) < (a(§), &gy forall§ e RV, (2.2)

The next lemma is a straightforward consequence of the above hypotheses and summarizes
the main properties of the map a(-).

Lemma 2.4 [f hypotheses H(a)(i), (ii), (iii) hold, then
(i) the map & — a(&) is continuous, maximal monotone and strictly monotone;
(ii) la@) <cs (1+|E[P7") forall & € RN and some cs > 0;

(ili) (@(€). &)an = -1 €I forall§ € RV,

This lemma together with (2.1) and (2.2) leads to the following growth estimates for the
primitive G (-).

Corollary 2.5 If hypotheses H(a) (i), (ii), (iii) hold, then
1
p(p—1

Example 2.6 The following maps a : RN — R satisfy hypotheses H(a).

€17 < GE) <cs(L+[E]P) forall§ € RY and some cs > 0.

(i) Letl < p < o0, and let a(§) = |E|P~2&. Then, a(-) represents the well-known p-
Laplace differential operator defined by

Apu = div (|Vu|P"*Vu) forallu € W' ().

(i) Let 1 < ¢ < p < oo and let a(§) = |£|P~2& + |£|972&. Then, a(-) becomes the
(p, q)-differential operator defined by

Apu + Agu = div (|V“|p72VM) + div (|Vu|q72Vu)

for all u € WP (£2). Such differential operators arise in various physical applications
(see Papageorgiou and Smyrlis [21], Papageorgiou and Winkert [22] and the references
therein).
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p=2
(iii) Let 1 < p < oo and leta(§) = (1+1£]*) 7 &. In this case, a(-) corresponds to the
generalized p-mean curvature differential operator which is defined by

p—2

div [(1 +[Vul?)? w] forallu e WP (£2).
(iv) Forl < p < coleta(€) = |E|P2& [1 + ﬁ] In this case, the primitive Go(-) is

1 1
Go(t) = —t" + —In(1+¢7) forallz >0
P P

and the corresponding differential operator is

[Vul|P—2Vu

A di
pu + 1v( L [V

) forallu e WP (),

which arises in plasticity theory (see Fuchs and Gongbao [8]).

Our hypotheses on the boundary weight function B(-) are the following.
H(B): B e C*@R)with0 <a < 1and B(x) > 0forall x € 3S2.

Let fo : £2 x R — R be a Carathéodory function satisfying a subcritical growth with
respect to s € R, thatis

[ fo(x, )| < a(x) (1 + |s|r_1) fora.a.x € 2 and all s € R,
witha € L®°(£2)4,and 1 < r < p*, where p* is the critical exponent of p given by
ot = NN—f’p if p <N,
400 if p>N.
Let Fo(x,s) = fos fo(x, t)dt, and let ¢ : WLr(§£2) — R be the C!-functional defined
by
1
o (u) :/ G(Vu)dx + 7/ B(x)|ulPdo —/ Fo(x, u)dx.
Q P Jas2 Q
The next result can be proved exactly as in Papageorgiou and Radulescu [20] and Winkert
[24] based on the regularity results of Lieberman [14].

Theorem 2.7 Ifug € WLP(2) is a local C'(2)-minimizer of @o, i.e., there exists py > 0
such that

9o(uo) < gouo +h) forall h € C'(2) with ||kl ¢1 gy < po,

then, ugy € C17(2) for some y € (0, 1) and uy is also a local WP (§2)-minimizer of wo;
i.e., there exists p; > 0 such that
9o(u0) < goluo +h) forall h € WP (82) with |hlly1pq) < p1-

As already mentioned, our approach involves the usage of critical groups (Morse theory).
So, let us recall the definition of critical groups. Given ¢ € C'(X) and ¢ € R, we consider
the following sets

o ={ueX:pu) <c} (the sublevel set of ¢ at ¢),
Ky={ueX:¢'u) =0} (the critical set of @),
K; ={uekKy:pu)=cj (the critical set of ¢ at the level ¢).
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For every topological pair (Y;, Y>) with Y, € Y| € X and every integer k > 0, we denote

by Hr (Y1, Y2) the k i—relative singular homology group with integer coefficients. If u € K (j;
is isolated, then the critical groups of ¢ at u are defined by

Ci(p,u) = Hi (¢° NU, ¢ NU\{u}) forall integers k > 0,

where U is a neighborhood of u such that K, N ¢“ N U = {u}. The excision property of
singular homology theory implies that the definition of critical groups above is independent
of the particular choice of the neighborhood U.

If ¢ € C!(X) satisfies the PS-condition and inf ¢ (K ¢) > —o0, then the critical groups of
¢ at infinity are defined by

Ci(p, 00) = Hp(X, ¢¢) forall k > 0,

where ¢ < inf ¢ (K,). The second deformation theorem (see, e.g., Gasinski and Papageorgiou
[9, p. 628]) implies that this definition is independent of the level c.
Assuming that K, is finite, we define

M(t,u) =) rank Cx(p, u)t* forallz € Randallu € K,
k=0

P(t,00) = »_rank Cy(p, co)t* forallt € R.
k>0

Then, the Morse relation says

> M(t,u) = P(t,00) + (1+1H)Q(t) forallt€R, (2.3)

ueky,

where Q(t) = Zkzo Btk is a formal series in r € R with nonnegative integer coefficients
B

In what follows, we denote by A : W?(2) — (W!7(£2))" the nonlinear map defined
by

(A(u), v) = / (a(Vu), Vu)ry dx forallu,v e Wl’p(SZ).
Q

By means of Lemma 2.4, we can easily see that A is semicontinuous and maximal
monotone.

Since our hypotheses on the reaction f : £ x R — R involve the spectrum of the
Robin p-Laplacian, let us recall some basic features of this spectrum. We refer to L& [13]
and Papageorgiou and Réadulescu [20] (see also Motreanu and Winkert [18] for the Robin-
Fucik-spectrum of the p-Laplacian) for more details. We consider the following nonlinear
eigenvalue problem

—Apu = Au*u in £2,
ou

— = —B@u*2u ondg,
ony,

2.4)

where g fulfills H(B), u € (1, p), and 3% = |Vu|“_2% for all u € WHH(£2). We say

that A € R is an eigenvalue of the negative Robin p-Laplacian, henceforth denoted by
—A ;If’ if problem (2.4) admits a nontrivial solution & € WL (£2) known as an eigenfunction

corresponding to . We know that there exists a smallest eigenvalue denoted by A, B)
which has the following properties:
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Nonlinear Robin problems with a reaction of arbitrary growth 1213

o hi(u, B) = 0and Ai(u, B) > 0if B # 0;
e Ai(u, B) is isolated in the spectrum & (i, B) of —AR;

° 5\1(/1,, B) is simple, that is, if i, 0 are eigenfunctions corresponding to )ALI(;L, B), then
i = &0 for some & # 0,

a . Vult*d “d
. AI(M,IB):1nfuewl.u(m{f9‘ d ﬁ;{algdi(“"‘“' Zu o). 2.5)

The infimum in (2.5) is realized on the corresponding one-dimensional eigenspace. Owing
to (2.5), it is clear that the elements of this eigenspace do not change sign. In what follows,
we denote by it (i, B) the positive L*-normalized (that is, || (i, B) |, = 1) eigenfunction
corresponding to the eigenvalue A (i, B). The nonlinear regularity theory (see Lieberman
[14]) implies i (u, B) € c! (£2)::\{0}. Moreover, by virtue of the nonlinear maximum
principle (see Pucci and Serrin [23]), we obtain i1 (., B) € int (C}(2)).

Itis easy to check that the spectrum 6 (i, B) of —A ﬁ isclosed, and so the second eigenvalue
is well defined by

fau By =inf [A € 6Gu ) : 4> hau, B)).

Now, let 3B = {u € L*($2) : |lull, = 1}, S, = WhH(2) N dBL", and &(u) =
||Vu||ﬁ + farz B(x)|u|*do for all u € WH#(£2). Then, due to Papageorgiou and Ridulescu
[20], we have the following variational characterization of ):2(;1,, B).

Proposition 2.8 There holds

A, p)= inf  max &),
pel(u,p) ~1st=1

where ['(i, B) = {7 € C (I=1,11, 8,) : P(=1) = =iy (s, B), (1) = ity (1, B))-

Moreover, owing to the Ljusternik—Schnirelman theory, there exists a whole sequence
(ik(pc, ﬁ))k | of eigenvalues such that ik(u, B) — 400 as k — +4o00. However, we do
>

not know whether this sequence exhausts 6 (i, 8). This is true if p = 2 (linear eigenvalue
problem) or if N = 1 (ordinary differential equation).

Finally, let us fix our notation. Given s € R, we set st = max{=ts, 0}. Then, for u €
WP (£2), we define u®(-) = u(-)*. Recall that

ut e whr(Q), ul=ut+u", u=u"—u".

By | - |y, we denote the Lebesgue measure on RY . Furthermore, for u, v € W7 (£2) and
v < u, we define by [v, u] the ordered interval given by

[v,u]l = {y e WhP(2) 1 v(x) < y(x) < u(x) ae.in .Q}

3 Solutions of constant sign

In this section, we are going to prove the existence of constant sign solutions for problem
(1.1). To this end, we suppose the following assumptions on the function f : 2 x R — R.

Hi: f: £ xR — Ris a Carathéodory function such that f(x,0) = 0 for a.a. x € £2 and
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1214 N. S. Papageorgiou, P. Winkert

(i) forevery p > 0, there exists a, € L°°(£2)4 such that
|f(x,s)| <ap(x) foraa.x e 2 andall|s| < p;
(i1) there exist functions w1 € wlr (£2) N C(£2) and constants c+ € R such that

w_(x) <c_- <0<cy <wi(x) forallx e 2;
fx,wi(x)) <0< f(x,w—_(x)) foraa.x € £2;
Aw-) <0< A(wy) in (WhP()";

(iii) if ¢ € (1, p] and ¢* > O are as in hypothesis H(a) (iv), then there exists n € L*°(§2)
such that

. . . a1
nx) = c* A, B) ae.in 2, n #c*r(n, p), B = Cjﬂ;

. fxys)
lim inf
s—0 |s|s—2s

> n(x) uniformly for a.a. x € £2;

(iv) if M, = max {||w+||C>O , lw—= IIOO}, then there exists &, > 0 such that

f(x,s)s +&s|? >0 foraa. x € 2 and all |s| < M,.

Remark 3.1 In the above hypotheses, we do not employ any global growth condition on
f(x,-). In fact, the particular structure of f(x,-) beyond w4 (x) is irrelevant. Note that
hypothesis Hj (ii) is automatically satisfied if we can find c_. < 0 < ¢ such that

fx,cy) <0< f(x,c-) foraa. x € £2.

Hypotheses Hj (ii),(iii) imply that f(x, -) exhibits an oscillatory behavior near zero and
the last inequality in Hj(ii) means that

(Aw_),h) <0< (A(wy),h) forallh e W'P(2) with h > 0.

By means of Hj(iii), we see that f(x, -) is either (¢ — 1)-superlinear or (¢ — 1)-linear
near zero. Finally, hypothesis H;(iv) is a perturbed sign condition.

The following function fulfills these hypotheses

£ (Is197%s — Is177%s) i |s| < 1,

el —e if |s] > 1,

f(s) =

with &€ > ¢*A1(¢c, B)and 1 < g < p.

Proposition 3.2 Let hypotheses H(a), H(B) and H; be satisfied. Then, problem (1.1) admits
at least two nontrivial constant sign solutions

up € int (Cy(2)+) and vy € —int (CH(2)4) .
Proof We begin with the positive constant sign solution. To this end, let f+ 2 XxR—->R
be a truncation perturbation defined by

0 if s <0,
frx,s) =1 f(x,s) +sP! if0<s < wp(x), (3.1
FO,we(x) +we)Pifs > wy(x),
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Nonlinear Robin problems with a reaction of arbitrary growth 1215

which is a Carathéodory function. We set 1:"+ (x,s5) = f(; f+ (x, t)dt and consider the C!-
functional ¢, : WP (2) — R defined by

¢+(u):/ G(Vu)dx+l||u||§+l/ B(x) (u+)pdcr—/ Fy(x, u)dx.
Q )4 P Jo 2

Note that ¢ is coercive due to Corollary 2.5, hypothesis H(8) and the truncation defined
in (3.1). Moreover, by the Sobolev embedding theorem and the compactness of the trace oper-
ator, we see that ¢ is sequentially weakly lower semicontinuous. Therefore, the Weierstrass
theorem implies the existence of ug € WP (£2) such that

G (uo) = inf [¢4(u) : u € WHP(2)]. (3.2)

Given ¢ > 0, by virtue of hypotheses H(a)(iv) and H;(iii), there exists § = §(¢) €
(0, min{1, c4}) such that

c*+e¢

G©) = &1° forall |§] <& (3.3)

and
fx,8) > (nlx) — z;)sgf1 fora.a. x € 2 and all s € [0, §]. 3.4

If F(x,s) = [y f(x,1)dz, then (3.4) gives
1
F(x,5) > —(n(x) —¢e)sS foraa.x € 2 andalls € [0, §]. 3.5)
S

Lett € (0, 1) be small such that 712 (¢, ,3)(x) € (0, 8] forall x € £2. Recall thatB = Ci*ﬂ
and that 7 (¢, /§) € int (Cé (§)+). Then, due to (3.1), (3.3), (3.5) and ¢ < p, we obtain

o1 (rin s, B) =/QG(V (rin s, ﬁ)))dx+%/mﬂ(x) (. )" do

- /Q F (x, e 3)) dx

R [ NS n Avc
< Vi B += [ pwinGs. prdo
S S Jage

9
s . "
——/ (n(x) — &) i1 (¢, B)Sdx

S Je

S

t N A . N A N
== [/ (c"i(e. B =) (s, Arax + (Ri(s. py + 1) e] .
S /e
(3.6)
Note that by hypothesis H; (iii) and since @1 (s, B) € int (C}(52)+), we have

i= [ (100 = ats. ) incs. i = 0.
2

Therefore, if we choose ¢ € (0, #) it follows
(s, B)+1

o+ (s, B) <0,
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1216 N. S. Papageorgiou, P. Winkert

that means, ¢4 (ug) < 0 = @4 (0), and thus, ug # 0. By means of (3.2), there holds
@ (up) = 0 which results in

(A(uo),h)+/ Iuol”_zuohdx—i-/ B(x) (ug)”‘lhda=/ firCx,up)hdx — (3.7)
2 982 2

forall h € WhP(£2). Taking h = —u, € WLP(£2) in (3.7) and applying Lemma 2.4(iii)
combined with the truncation in (3.1) gives

C1
p—1

[Vug |, + lug [, < 0.

Hence, uo > 0 and ug # 0. Now we choose h = (19 — w4) " € WLP(§2) in (3.7). Then,
because of hypotheses H (ii) and H(8) along with (3.1), one has

(Auo), (wo — wi)™) "‘/ “g_l (o — wy)* dx +/ ﬂ(x)ug_l (uo —wy) do
2 82

= / (f(x, wi) + wi‘l) (uo —wy) T dx

2
< {Awq). (o —w) )+ / wi ™ (wo —wi)t dx + / Bl o — wy)* do

2 082

Therefore,

(Awo) = A(wy), (w0 — wi) ) + / (™" = w2") (o = w)* dx <0,

2

which implies [{zg > w4}|y = 0 meaning 9 < w,y. In summary, we have proved that
ug € [0, wi], ug # 0. Then, by virtue of (3.1), Eq. (3.7) becomes

(A(ug), h) +/ ﬂ(x)ug_lhdcr :/ f(x,up)hdx forallh € WhP(2). (3.8)
a0 I?;

Applying the nonlinear Green’s identity (see, e.g., Gasifiski and Papageorgiou [9, p. 210])
yields

(A(ug), h) = (—diva (Vuy) , h) +<8—uh> , 3.9
ong 082

_1 1
where (-, -)5 denotes the duality brackets for the pair (W 7P R), Wr ”’(a.(z)). From

/ *k
the representation theorem for the elements of w-Lr(32) = (W(} P (.Q)) (see, e.g.,
Gasinski and Papageorgiou [9, p. 211]) and Lemma 2.4, we get

diva(Vug) € W=7 (2) = (W(}”’(Q))*.
From (3.8) and (3.9) as well as the fact that & |a_(2 =0forall h € Wol’p(.Q), it follows
(=diva (Vug) , h) = /S2 f(x,up)hdx forallh € W(;’p(.Q),
which implies

—diva(Vug) = f(x,up) a.e.in £2.
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Nonlinear Robin problems with a reaction of arbitrary growth 1217

Hence, (3.8) and (3.9) imply

du p—1 1.p
+B(X)uy . h =0 forallh € W"P(£2). (3.10)
3na PYe)

n
Recall that yo (WP (2)) = W7 " (3£2) (see, e.g., Gasifiski and Papageorgiou [9,
p- 209]). So, from (3.10), we may infer that

9 )
Y Bl =0 onag.

ong

From Winkert [25], we get ug € L°°(£2) and the regularity results of Lieberman [14,
p. 320] ensure that ug € C'(2)\{0}.
Now, let &, > 0 be as in hypothesis Hy (iv). Then,

—diva(Vug) + &l ™" = f(x,up) + Ewl ' >0 foraa x e 2,
which gives
diva(Vup(x)) < *;‘*ug*1 fora.a. x € £2. (3.11)

Let 9 (t) = ao(t)t for all t > 0. Then, (2.2) and hypothesis H(a)(iii) lead to the following
one-dimensional estimate

0 (01 = al()1* + ap(1)t > c1P~ forallz > 0,

which, by integration of parts and hypothesis H(a)(iv), implies

t t
/ ¥ (s)sds = (1)t —/ 9 (s)ds
0 0
= ag()1* — Go(1)
> ¢tP forallt > 0. (3.12)

Because of (3.11) and (3.12), we may apply the strong maximum principle of Pucci and
Serrin [23, p. 111] which yields

u(x) >0 forallx € £2.

Taking into account the boundary point theorem of Pucci and Serrin [23, p. 120], we
conclude that ug € int (C}(£2)+).

In order to prove the existence of a negative solution, we introduce the Carathéodory
function

FOw_(0) 4+ lw- ()P 2w_(x) ifs < w_(x),
fo(eos) =1 fx,s)+Is1P2s ifw_(x) <s <0,
0 ifs > 0.

Then, we set F_(x, s) = I f—(x, t)dt and consider the C'-functional ¢_ : WP(2) —
R defined by

. 1 p | \p ~
o (u) =/ G(Vu)dx + —|lullp — —/ B(x) (u ) do —/ F_(x,u)dx.
2 p P Jag 2
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1218 N. S. Papageorgiou, P. Winkert

Working as above with f_ and ¢_, we produce a negative solution vg of (1.1) such that
vo € [w—, 01N (—int (C§(£2)4)) .
O

In fact, we can produce extremal constant sign solutions for problem (1.1), that is the
smallest positive solution and the greatest negative solution. For this purpose, we introduce
the following solution sets

S ={ueW'P(2):u#0, uel0,wy], uisasolutionof (1.1)},
={ueW"P(2):u#0, ue[w_,0], wuisasolutionof (1.1)}.
Proposition 3.2 implies directly that
0 # 7 C0,wilNint (CY(2)4) and @ # .- € [w_,0]1N (—int (CH(2)4)).

Given ¢ > 0 and r € (p, p*), by virtue of hypotheses Hj(i),(iii), there exists cc =
cg(e, r) > 0 such that

f(x,8)s > (n(x) —e)|s|® —cgls|” foraa.x € 2 andall |s]| <p, (3.13)

where p = max{[[w oo, [w-[loo}-
We consider the subsequent auxiliary Robin problem
—diva(Vu) = (p(x) — &) |ulu — celulu  in £2,
ou

ong

(3.14)

—BlulP"%u on 452.

Proposition 3.3 If hypotheses H(a) and H(B) are satisfied, then problem (3.14) has a unique
positive solution u € int (Cé (§)+), and since (3.14) is odd, v = —u € —int (Cé (§)+) is
the unique negative solution of (3.14).

Proof First, we establish the existence of a positive solution. To this end, let v
WP (£2) — R be the C'-functional defined by

1 ) 1
va = [ G(w)dx+—||u*||;,+—/ BLo) (ut)”
2 p PJ ae

1 r
——/ () = &) ()" dr -+ 2 Jut]
S Je

Since r > p and due to Corollary 2.5, we obtain
1

Ver +
T R 1 ey

p(p

—f/ () —e) (uh)*
SJe
> e [Jut 17, + N 17, ] = s (1uls, +1)

P IS
= collull, — eslullf , — s

N
17+

for some c7, cg > 0. Recall that ¢ < p we see that ¥ is coercive. Since ¥ is sequentially
weakly lower semicontinuous as well, we find u € WP (£2) such that

Yo (@) = inf [y () 1 u € WHP(2)]. (3.15)
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Nonlinear Robin problems with a reaction of arbitrary growth 1219

Reasoning as in the proof of Proposition 3.2 along with hypothesis H(a)(iv) and the
assumptions on 71 (-) (see Hj(iii)) we get, for ¢t € (0, 1) sufficiently small,

v (rin(s. B) < 0.

Therefore, ¥ () < 0 = 4 (0); thus, u # 0. Because u is a critical point of v, it holds
¥h (u) = 0 which gives

(A(ﬁ),h)—/ @) hdx+ [ B @) hdo
082

2
=/ (n(x) — ) (ﬁ+)§_1hdx—c6/ (@) " hdx forallh e W'P(2).  (3.16)
2 2

We choose h = —u~ € W7 (£2) in (3.16) and apply Lemma 2.4(iii) to get
(&
p—1
which gives u > 0, u # 0. Then, (3.16) becomes

[va=|ly + e, =o.

(AG@), h) + / B)E hdo
FYe)
:/ (n(x) — &) us 'hdx — 6‘6/ 7 hdx forallh e WhP(92).
2 Q

As in the proof of Proposition 3.2, using the nonlinear Green’s identity, we see from the
equation above that u is a positive solution of the auxiliary problem given in (3.14). Note
that u € L°°(82) (see, e.g., Winkert and Zacher [27]). Then, the nonlinear regularity theory
(see Lieberman [14]) and the nonlinear maxmium principle (see Pucci and Serrin [23]) imply
i €int (C)(2)4).

In order to finish the proof, we have to show the uniqueness of %. To this end, we consider
the integral functional 7" : L'(£2) - R U {oo} defined by

1 1 r 1
/ G(Wg)dx+—/ B)ulsdo ifu>0,us € Whr(Q),
2 P Joe

+00 otherwise.

T(u) =

Let uy, us be in the domain of 1 i.e., uy, up € dom(Y) = {u € L' (2) : Y (u) < +o0},

1
and let further u = ((1 — 1)u; + tuy)< withz € [0, 1]. Applying Lemma 1 of Diaz and Sad
[5], there holds

IVu(x)| < [(1—z)‘w1(x)é g]é ae.in 2.

S 1
+1t ’Vuz(x)g

Recall that G is increasing. Therefore, due to hypothesis H(a)(iv), it follows

g);)

) +1Gy (’v@(x)% ) ac.in 2.

Go (IVu(x)))

S 1
+1 ‘Vuz(x) :

< Go(((l =) |V o+

< (1 =0Go (| )7
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1220 N. S. Papageorgiou, P. Winkert

Since G (&) = Go(|€]) for all £ € RV, we obtain
G(Vu(x) < (1 —1)G (Vul(x)é) +1G (V@(x)%) ae.in 2,

which implies that 7" is convex. By means of Fatou’s lemma, we easily verify that 7" is lower
semicontinuous as well.

Now, let y be another positive solution of (3.14) andrecall thatu, y € int (C é (§)+) . Then,
for every h € C'(£2) and for |¢| small enough, we have &€ + th, 35 + th € int (C}(22)4).
Hence, 7 is Gateaux differentiable at uS and y* in the direction 4. Moreover, the chain rule
and the nonlinear Green’s identity give

T (@) (h) = l/ ALY 3.17)
sle ut

T (5) (h) = l/ w hdx, (3.18)
S/ y

for all h € WLP(£2) (recall that C1(£2) is dense in WP (£2)). Note that T’ is monotone
because of the convexity of 7. Then, owing to (3.17) and (3.18), we obtain

0 < (T/ (ﬁg) _ T/ (ys') 7ﬁ§ _yS')L](Q)
1 diva(Vu) diva(Vy)\ _. _
=*/ ( R )(ug_yg)dx
_ ((n(x)—e)»ﬁ ' — el 1_(n(X)—8)y§1—66y’1) (@ - 3) dx

us 1 yg—l

= ) 0 ) @ - ye) dx

since r > ¢. Thus,u = v € int (Ca (§)+) is the unique positive solution of (3.14).
The fact that problem (3.14) is odd implies that v = —u € —int (Cé (§)+) is the unique
negative solution of (3.14). ]

Proposition 3.4 Let hypotheses H(a), H(B) and H| be satisfied. Then, there holds
u<u forallue.”y and v <v forallve 7_.
Proof Letu € .7, and introduce the Carathédory function k : £2 x R — R defined by

0 ifs <0,
k(x,s) =1((x) —e)sS™1 —ces™ ! + 5P if0<s <u(x), (3.19)
) — &) ux)S™' —cqu(x)™ ™ +ux)? ifs > u(x).

Setting K (x, s) = fos k(x, t)dt, we consider the C!-functional 1& : Wl'p(.Q) — R given
by

X 1o, 1 oy
V) = | G(Vuwdx + —|lulp+ — B(x) (ut) do — [ K(x,u)dx.
Q p P Jog Q
By means of the truncation defined in (3.19) and Corollary 2.5, it follows that 1/} is coercive.

Since v is also sequentially weakly lower semicontinuous, we find an element iz, € WP (£2)
such that
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Nonlinear Robin problems with a reaction of arbitrary growth 1221

(@) = inf [1/}(14) ‘ue W”’(.Q)]. (3.20)

Recall that u € int (Cj(£2)4), so we can choose ¢ € (0, 1) small enough such that
tii1(¢, B) < u. Then, as in the proof of Proposition 3.2, we may show that v (1ii; (¢, B) < 0
meaning that v/ (ity) < 0 = 1/(0). Hence, 15 # 0.

Because of /' (i) = 0, we have

(A(ﬁ*),h)—i-/ i P 2ichdx + [ ) (@h)" " hdo
ko) 2

]

=/ k (x,us)hdx forall h € whr(£2). (3.21)
Q
Ifh=—-u, € WP (£2)in (3.21), then, by reason of Lemma 2.4(iii) and (3.19), it follows
C1 — _
S IV + I < 0.

therefore, i, > 0, u, # 0. On the other side, if we choose h = (1, — u)" € WLP(£2) in
(3.21), we obtain

{A@.), @ —uw)™) +/ 7l @ —uy*dx +/ B! (@, — u)* do
2 a2
= / [1G) — &) us™" — cou" +ul™"] (@, —w)* dx
2

< (AW, @ —w*)+ / w = @ —wytdx + [ pu’™! @, —uy* do,
2 082

where we used the definition of the truncation in (3.19) and the fact that u € .9 (see (3.13)).
Finally, we derive

(A@) — AW), @, — ) ) + /

(@ —wr™") @ —w*dx <0,
2

which gives [{z, > u}|y = 0, hence u, < u. We have proved that

Uy € [0, ul, uyx #0. (3.22)
Then, by virtue of (3.19), Eq. (3.21) becomes

(A@), h) + / Beoal ™ hdo = / (100 — ey me ™" — et | ndx
02 2

for all h € W7 (£2). Hence, i, is a nontrivial positive solution of problem (3.14). Taking
into account Proposition 3.3, we infer that u, = u € int (Cé (SZ)+). Because of (3.22), it
follows

u<u forallu € 4.

Following the same ideas, we can prove that v < v forall v € .¥_. O

Now we are in the position to prove the existence of extremal constant sign solutions of
problem (1.1).

Proposition 3.5 If hypotheses H(a), H(B) and H\ hold, then problem (1.1) has a smallest
positive solution u, € int (Cé (.Q)+) and a greatest negative solution v, € — int (Cé (Q)+).

@ Springer



1222 N. S. Papageorgiou, P. Winkert

Proof Owing to Dunford and Schwartz [6, p. 336], we find a sequence (u,),>1 € -7+ such
that

inf ., = inf u,.
n>1

Recall that u, € [0, wy] Nint (C}(£2)+) and

—diva(Vu,) = f(x, uy,) in £2,

ouy,

3.23
= —Bul"" onan. 23

dang

Since u, € L*°(§2), we may apply the regularity results of Lieberman; that is, there exist
y > 0 and c9 > 0 such that

un € CH7(2) and |luyllcry ) < co foralln > 1.

Exploiting the compact embedding of C'7 (£2) into C!(2) and passing to a suitable
subsequence if necessary, we have

Uy, —> Uy 1IN Cl(ﬁ) as n — oo. (3.24)
Combining (3.9) and (3.23) yields

(Aun), h) — <%

)
ong

h> :/ f(x,up)hdx forallh € WP (£2)
e Je

which implies, again due to (3.23),

(A(un),h)—l—/ B )ul ' hdo :/ F(x, u)hdx forallh € WP (£2).
982 2

Passing to the limit as n — oo and using (3.24), we obtain

(A(u*),h)—i—/ ,B(x)ui)_lhda =/ f(x,u)hdx forallh € Wl’p(.Q).
882 o}

Therefore, u, is a solution of (1.1), and by Proposition 3.4, we know that u < u,, for all
n > 1 which ensures that

U < Uy.

In summary, we have u, € ., and u, = inf ..
Similarly, we prove that v, € .¥_ such that v, = sup.”_. O

4 Nodal solutions

By applying the extremal constant sign solutions obtained in the previous section, we can
now generate nodal (sign changing) solutions of problem (1.1). To do this, we strengthen the
condition on f(x, -) near zero and consider two different cases. In the first one, we suppose
that f(x, -) is (¢ — 1)-superlinear near zero, and in the second case, we assume that f(x, -)
is (¢ — 1)-linear near zero. The proofs of the two cases differ.

In the first case, the hypotheses on f : £2 x R — R are the following.
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Nonlinear Robin problems with a reaction of arbitrary growth 1223

Hs: f: 2 x R — R is a Carathéodory function such that f(x,0) = O for a.a. x € £2,
hypotheses H»(i),(ii),(iv) are the same as the corresponding hypotheses Hj (i),(ii),(iv)
and

@iii) if F(x,s) = fos f(x, t)dt, then there exist 8o € (0, min {£c4, 1}) and g € (1, ) such
that

cols|? < f(x,8)s < qF(x,s),
fora.a. x € £2, for all |s| < §¢, and for some c19 > 0.

We first introduce the following truncation functionse : 2 xR — Randd : 02 xR — R.

O wo) + lw_ ()P 2w_(x) ifs < w_(x),
e(x,s) =1 f(x,s)+|s|P2s ifw_(x) <s <wgx), 4.1
fwi) 4+ wy ()Pt if s > wy(x),
and

B w_ ()P 2w_(x) ifs < w_(x),
d(x,s) = 1 B)|s|P~2s ifw_(x) <s < wg(x), 4.2)
B)w (x)P~! if s > wy(x).

Setting E (x, s) = [y e(x, )dt and D(x,s) = [ d(x, 1)dt, we define the C'-functional
@ : WhP(£2) — R given by

(p(u):/ G(Vu)dx+l||u||£+/ D(x,u)dcr—/ E(x,u)dx.
Q p 982 Q

In the first step, we have to compute the critical groups of ¢ at the origin. Note that a
similar computation under stronger hypotheses and for G(£) = L|£|? for all € € RV was
done by Moroz [16] (p = 2) and Jiu-Su [12] (1 < p < o0). In both works, the ambient

space is W(;'p(.Q).

Proposition 4.1 Let hypotheses H(a), H(B) and H; be satisfied, and suppose that K, is
finite. Then,

Ci(p,0)=0 forallk > 0.
Proof Regarding hypotheses H»(i),(iii) and (4.1), there exist c;; > 0 and r > p such that

X,s) > —Clo|s|q —cyyls|” foraa.x € 2 andall s € R. 4.3)
E(x,s)
q

Moreover, hypotheses H(a)(iv) and Corollary 2.5 imply
GE) < cip (1E° +1€/7) forall £ € RY and some c¢1p > 0. (4.4)
Letu € WhP(§2) and ¢ € (0, 1). Then, due to (4.2), (4.3) and (4.4), it follows

tP
o(tu) =/ G(V(tu))dx + —||u||§ +/ D(x, tu)do —/ E(x, tu)dx
Q 4 82 Q
S S 4 P 1P 4 1P P
< cip (1 Vullg + P IVully) + ;IIullp + ;Cnllullp,m

€10
+entully — 7tqllullz 4.5)
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1224 N. S. Papageorgiou, P. Winkert

for some c¢13 > 0. Since g < ¢ < p < r, with view to (4.5), we can find r* = t*(u) € (0, 1)
small enough such that

@(tu) <0 foralls € (0,1%). (4.6)

Let u € WhP(£2) with 0 < llull1,, < 1 and @(u) = 0. Then, owing to d(x, s)s >
¢D(x,s)on 02 x R, we obtain

= (¢’ (), u)
t=1

:/ (a(Vu), Vu)pn dx + ||u||§ —|—/ d(x,u)udo —/ e(x, u)udx
2 082 2

i(t)
dt‘pu

0
> / [(@(Vu), Vu)gy —0G(Vu)]dx + (1 - ;) fluelly
ko)

+ (6 — q)/ E(x,u)dx +/ [gE(x,u) —e(x,u)uldx. 4.7
Q Q

Hypotheses Ha(i),(iii) and (4.1) imply
gE(x,s) —e(x,s)s > —ci4ls|” foraax e 2 andalls € R, (4.8)

where c14 is a positive constant. Applying (4.3), (4.8) and hypotheses H(a)(iv) in (4.7), we
obtain, as ¢ > ¢,

< S
> ¢l Vull + (1 - ;) lullp — crslully

d (tu)
£ o(tu
dr 1=

for some c15 > 0. Therefore,

> cigllully , — cizllully , forsome ci6, c17 > 0. (4.9)
=1

d
—(t
dtfp( u)

From (4.9) and since r > p, we can find p € (0, 1) small enough such that

>0 forallu € WI’P(.Q) with O < |lull1,, < p, @) =0. (4.10)

t=1

d
590(“4)

Fixing u € WP (£2) with 0 < [lul1,, < p and ¢(u) = 0, we claim that
o(tu) <0 forallt € [0, 1]. “4.11)

We argue indirectly and suppose we can find 7o € (0, 1) such that ¢(fou) > 0. Since
¢(u) = 0 and ¢ is continuous, by Bolzano’s theorem, we have

t,, = min{t € [t9, 1] : ¢(tu) =0} > 1o > 0.
Then,
o(tu) > 0 forallr € [tg, t,). 4.12)

We set v = t,u. Then, 0 < |[vll1,, < llull;,p < p and p(v) = 0. So, from (4.10), it
follows

d
—o(tv) > 0. (4.13)
dr =1
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Note that, because of (4.12),
o) = @(tsu) =0 < p(tu) forallt € [1, ty),

which implies

AUDNY (4.14)

=t, lim
1=ty 1>t I — s

d
= l*&@(tu)

d (tv)
Loty

Comparing (4.13) and (4.14), we reach a cgntradiction. This proves (4.11).
Let p € (0,1) be small such that K, N B, = {0}. We consider the deformation A :
[0, 11 x (¢° N'B,) — ¢* N B, defined by

h(t,u) = (1 —t)u.

By reason of (4.10) and (4.11), we see that this deformation is well defined and that
o"NB p 1s contractible in itself.

Letu € B, with ¢(u) > 0. We are going to show that there exists an unique ¢ (u) € (0, 1)
such that

@ (uu) =0. (4.15)

Taking into account (4.6) along with Bolzano’s theorem, we verify thatsuchat («) € (0, 1)
exists. We only need to show its uniqueness. Arguing by contradiction, suppose that there
exist

0<ti=t() <th=t() <1 suchthat ¢(tju) = ¢(tru) = 0.
Relation (4.11) gives
o(ttou) <0 forallt € [0, 1],

which implies that

t
71 € (0, 1) is a maximizer of r — @(ttu) on [0, 1].
2

‘We conclude that

thod d

—— (1t = —o(tt =0,
Y 3 P tau) i ALY .

I

which contradicts (4.10). This proves the uniqueness of # (u) € (0, 1) satisfying (4.15). We
have

@(tu) <0 forallt € (0,7(u)) and ¢(tu) >0 forallz e (r(u), 1].

Consider the function E : Ep\{O} — (0, 1] defined by

Ei(u) = [1 ?fu € Eﬂ\{o}, o) <0,
t(u) ifu € B,\{0}, p(u) > 0,

it is easy to check that E is continuous. Let E : Ep\{O} — ((po N Ep) \{0} be defined by

u ifu € B,\{0}, p(u) <0,

Ex(u) = { . —
Ei(wu ifu € B, \{0}, p(u) > 0.
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1226 N. S. Papageorgiou, P. Winkert

Evidently, E» is continuous and

E, =id

(#°NB,)\{0}

(¢°NB,)\{0}

We conclude that (goo N Ep) \{0} is a retract of E,,\{O} and the latter is contractible. It
follows that ((po N Ep) \{0} is contractible in itself. Moreover, we have seen before that
N Ep is contractible in itself. Then, from Granas and Dugundji [10, p. 389], we have

Hy (9" B, (¢ N'B,)\{0}) =0 forallk >0,
which implies
Ci(p,0) =0 forallk > 0.

[m}

Using this proposition, we can prove the existence of a nodal solution of (1.1). In what
follows, we denote by u, € int (C(]) (Q)+) and v, € —int (C(l) (.Q)+) the two extremal
constant sign solutions of (1.1) obtained in Proposition 3.5.

Proposition 4.2 Let H(a), H(B), and Hy be satisfied. Then, problem (1.1) admits a nodal
solution yg € [Vy, ug] N cl().

Proof We introduce the Carathéodory functions 7 : 2 x R — R, y : 2 x R — R defined
by

F 0, v(0) + v ([P 20,(x) ifs < va (),
nex,s) =1 fx,s) +|s|?2s if v (x) <5 < uy(x), (4.16)
F i (x) + i (x)P~! ifs > u,(x),

and

B2 () [P 20,(x) if s < va(x),
y(x,s) = 1 B(x)|s|P2s if ,(x) <5 < uy(x), (4.17)
By (x)P! if s > u,(x).

Let H(x,s) = [y n(x,0)dt, I'(x,s) = [y y(x,)dt and let  : WP (22) — R be the
C!'-functional given by

W(u)=/ G(Vu)dx+l||u||g+/ F(x,u)da—/ H(x,u)dx.
Q p 02 Q

Additionally, we consider the positive and negative truncations of n(x, -) and y (x, -), that
is,

ne(x,s)=n (x, :I:si) and yi(x,s)=vy (x, :I:si) .

We set Hi(x,s) = [y n+(x,0)dt, I'e(x,s) = [j y+(x,1)dt and consider the C'-
functionals 4 : WP (£22) > R defined by

1
va = [ Gowax+ S+ [ ricendo - [ Haa
2 p 482 2
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Claim 1 Ky C [vs, us], Ky, = {0, us}, Ky_ = {v, 0}
Letu € Ky, thatis, ¥'(«) = 0 which results in

(A(u),h)+/ |u|p_2uhdx+/ y(x,u)hdo =/ n(x, u)hdx (4.18)
Q 92 Q

forall h € WhP(£2). Choosing h = (u —uy)" € WLP(£2) in (4.18) and applying (4.16),
(4.17) gives

(AQ), (u—us)™) +/ uP=" (e — uy)t dx +/ Bl (w — un)T do
2 a0
= / [f(X, uy) + uf_l] (u — u*)+ dx
fo)

— (A, (= ) + / W27 = ) dx + / B (4 = uy)* do,
2 082
which implies

(A) — A, (4 — ™) + /

A (up_l — uf_l) (u—uy)Tdx =0.

Therefore, |{u > u.}|y = 0, hence, u < u,. Similarly, if we choose & = (vy —u)" €
WP (£2), then we obtain v, < u. Thus, u € [vy, s] meaning Ky C [vy, uy]. In the same
way, we can show that

Ky, €[0,us] and Ky_ C [v4,0]
But the extremality of u, and v, implies
Ky, =1{0,us} and Ky_ = {vs,0}.

This proves Claim 1.
By virtue of Claim 1, we may assume that K is finite. Otherwise, due to (4.16) and
(4.17), we already have infinity nodal solutions and so we are done.

Claim 2 u, € int (Cé (§)+) and v, € —int (Cé (§)+) are local minimizers of .

It is clear that v is coercive due to the presence of the truncations. Since it is also
sequentially weakly lower semicontinuous, we find i, € W7 (£2) such that

Yy (i) = inf [y () :u € WHP(2)]. (4.19)

As before (see the proof of Proposition 3.2), for || € (0, 1) small enough such that at
least

1i1(5, B) € [ve usl, |tlii1 (s, B) <8 forallx € 2

(recall that u, € int (C(l) (§)+) and v, € —int (C(l) (§)+), hence such a || € (—1, 1) can be
found) and using hypothesis H»(iii), we obtain

v (rin(s. By) <o.

Therefore, ¥4 (x) < 0 = ¥4(0), and thus, u, 7# 0. Since u, is a global minimizer of
V4 (see (4.19)), there holds u, € Ky, \{0}, which implies, due to Claim 1, that i, = us €
int (CJ(£2)).
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As ¥|oi@, = V+leig),. it follows that u, € int (Cy(£2)4) is a local C'(£2)-
minimizer of . Invoking Theorem 2.7, we infer that u, is a local W L-P(£2)-minimizer

of .

The second assertion can be shown in the same way, using _ instead of . This proves
Claim 2.

Without any loss of generality, we may assume that ¥4 (v«) < ¥4 (uy) (the analysis
is similar if the opposite inequality holds). Since u, € int (C}(£2)) is a local W'7(£2)-
minimizer of ¢ (see Claim 2), there exists p € (0, 1) such that

Y (vs) < ¥ (uy) < inf [10(14) u = uylly,p = /0] =mp, |vx—uxll1,p>p (4.20)

(see Aizicovicietal. [ 1, Proof of Proposition 29]). Recall that the functional is coercive; hence,
it satisfies the PS-condition. This fact along with (4.20) permits the use of the mountain pass
theorem stated in Theorem 2.2. This yields yg € WLP(£2) such that

Yo € Ky and m, < ¥ (yo). 4.21)

Then, by means of Claim 1, we have yg € [vx, u«]. From this and (4.20), (4.21), it follows
that yo # ux, yo 7 vs and yg is a solution of (1.1) (see the definition of the truncations in
(4.16), (4.17)). Moreover, the nonlinear regularity theory implies that yg € [vy, u,]NC 1(2).
Since yy is a critical point of ¥/ of mountain pass type, we have

Ci(¥, y0) #0 (4.22)

(see, e.g., Motreanu et al. [17, p. 17§]).
We consider now the homotopy /4 (t, u) defined by

h(t,u) = (1 — )Y ) + te) forall (t,u) € [0, 1] x WhP(2).
Suppose we could find sequences (#,),>1 < [0, 1] and (i,)n>1 < WLP(£2) such that
t, > te€l0,1], wu, - 0 in Wl’p(.Q), and }Az;(tn, u,) =0 foralln > 1. (4.23)

This gives
(A(up), h) +/ |”n|p_2unhdx +1- tn)/ y(x, uy)hdo + tn/ d(x,u,)hdo
2 082 082

=(1- t,,)/ n(x, up)hdx + t,,/ e(x,uy)hdx forallh € Wl’p(.Q).
Q Q

As before, we can show that u, € [w_, w4] for all n > 1 and via the nonlinear Green’s
identity (see the proof of Proposition 3.2) we obtain
—diva(Vuy) + |un|”2un = (1 = t)0(x, up) + tae(x, uy)  in £2,
ou

dang

=—(1—-t)yx,uy) —tyd(x,u,) onas2.

The regularity results of Lieberman [14, p. 320] imply the existence of 1 € (0, 1) and
c1g > 0 such that

up, € CY*(2) and |luy, lcrrgy < cig foralln = 1. (4.24)
The compact embedding of C L2(2) into C1(2) along with (4.23) and (4.24) yields

u, — 0 inCY(Q) as n— oo.
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Hence, u, € [v, uy] for alln > ng > 1, and because of Claim 1, it follows (u,)n>n, <
K, which contradicts the fact that K, is finite. Therefore, (4.23) cannot happen, and then,
the homotopy invariance of critical groups (see Motreanu et al. [17]) implies that

Cr(¥, 0) = Ci(p,0) forallk > 0.
Using this together with Proposition 4.1, there holds
Cir(¥,0) =0 forallk > 0. (4.25)

Comparing (4.22) and (4.25), we see that yg # 0. Hence, yg € [vy, us]N C!(2) is nodal.
O
Now we can state the first multiplicity result for problem (1.1)

Theorem 4.3 Let hypotheses H(a), H(B) and Hy be satisfied. Then, problem (1.1) has at
least three nontrivial solutions

up € int (Cy(2)4), vo € —int (CY(2)+), and yo € [vo. uo] N C'(2) nodal.

Remark 4.4 An interesting question was posed by the referee, namely whether we can
describe the nodal regions of the solution yy. It seems to us that in this generality this cannot
be done. However, for more particular reaction terms and differential operators maybe more
information can be provided for the nodal solution. This is an interesting open problem worth
pursuing further.

In Theorem 4.3, hypothesis Hy(iii) dictates the presence of a concave nonlinearity near
zero (recall that 1 < ¢ < 6 < ¢ < p). Next, we examine what happens if f(x, -) is (¢ — 1)-
linear near zero. For example, suppose thata(§) = |E|P2& forall € € RN with 1 < p < o0
that is, the differential operator is the p-Laplacian. Then, c; = p — 1, and we can take ¢ = p
(see hypothesis H(a)(iv)). In this case, the reaction f(x, -) will be (p — 1)-linear near zero,
and so the geometry near the origin changes from the previous case.

Hiz: f : 2 xR — R is a Carathéodory function such that f(x,0) = 0 for a.a. x € £,
hypotheses Hz(i),(ii),(iv) are the same as the corresponding hypotheses Hj(i),(ii),(iv)
and

(iii) there exists constants cjg, ca9 > 0 such that
c*r2(s. B) < cr9
and

fx,s) <1 fx,s)
< lim sup
5525 50 |s|s72s

c19 < liminf <o
s—0

uniformly for a.a. x € £2.

Remark 4.5 Note that Proposition 4.1 is no longer true under hypothesis H3 because the
geometry near the origin is now different and so the approach changes. The idea in the
current case is to use Proposition 2.8 instead.

Theorem 4.6 If hypotheses H(a), H(B) and H3 hold, then problem (1.1) has at least three
nontrivial solutions

up € int (Cy(2)4), vo € —int (CY(2)+), and yo € [vo, uo] N C'(2) nodal.
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Proof Evidently, the results of Sect. 3 remain valid, and so we can find extremal constant
sign solutions u, € int (Cé (§)+) and v, € —int (Cé (§)+) of (1.1). Then, as in the proof
of Proposition 4.2, defining the C!-functionals ¥ and ¥+, the mountain pass theorem (see
Theorem 2.2) implies the existence of a solution yg € [vy, ux] N C 1(2) of problem (1.1).
We need to show that yg # 0. From the mountain pass theorem, it follows

my < ¥(yo) = y“elfr Jmax Yy (@), (4.26)

where I' = {y € C ([0, 1], W'P(£2))) : ¥(0) = vy, (1) = uy}. According to (4.26), in
order to establish the nontriviality of yp, it suffices to produce a path y, € I' such that
v ‘ e < 0. For this purpose, we introduce the following Banach C!-manifolds

Sc=WwhP(2)naBL® and Se=8:N c'(2).

Recall that BF* = {u € LS(£2) : ||lulc = 1} and note that S¢ is dense in S.. We consider
the subsequent sets of paths

Fe.py={pec(=1.118) : 7(=D) =iui(s. B, 7D =inn(s. B},

.y ={p e CI=11159) 1 9(=1) =it (s pr. 7D = in(s. B}

Claim fc(g, B) is dense in f’(g, B). B
Let 7 € I'(¢c, f) and ¢ € (0, 1). Consider the multifunction 7, : [—1, 1] — 2
defined by

fuect@:fu-yw|,, <e} it —1<r<1,
T (1) = R ’
{:I:ﬁl(g, 5)} ifr =1,

we easily verify that 7, has nonempty and convex values. Moreover, 7, (¢) is open for all
t € (—1,1), while T,(£1) are singletons. In addition, the continuity of y implies that
the multifunction 7 is lower semicontinuous (see Papageorgiou and Kyritsi [19, p. 458]).
Therefore, we can apply Theorem 3.1 of Michael [15] to obtain a continuous path yp, :
[—1, 1] — C'(£2) such that

Ve(t) € Te(r) forallr € [—1, 1].

Now, let g, = %, n > 1, and let ()7n = )?gn) ccC ([—1, 1], Cl(ﬁ)) be as above. We

have

n>1

1
[2:) =9, , < = forallt e (=1, 1),
’ n

Pu(£1) = £ (¢, f) foralln > 1. (4.27)
Since y(r) € BBng forall # € [—1, 1], we may assume, due to (4.27), that ||y, (t)“g #0
forallt € [—1,1]and all n» > 1. We set
Vn (
f,?(t) = Aﬁi forallr e [—1,1]and alln > 1. (4.28)
Vn(0) “g
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Clearly, )9,? e C([—1,1], S”) and y (:I:l) = +u;(c, /3) Moreover, due to (4.27) and
(4.28), we obtain

7@ =70, < 70 = @], + 170 -20],,
‘1_ A(I)HQ‘ . 1
<———|?®|, ,+~ forallz €[~1,1] andalln > 1.
Vn(f)”g Poon

Note that, because 7 (1) € S¢ forallt € [—1, 1], (4.27), and the embedding WI’P(.(Z) —
L*($2),

max |[70)], = [70)],]

—l<t<l

_max [P0 =70

max 1= [7,0)] |

—1<r<1

IA

Sen max [P0 =70,
Lol
n

for some ¢p1 > 0 and for all n > 1. Therefore, ﬁc(g, ,3) is dense in ﬁ(g, /§). This proves the
Claim.

The Claim combined with Proposition 2.8 imply, for given § > 0, the existence of yy €
fc(g, ,3) such that

max & (o(1) < ia(s, B) + 3. (4.29)
—1<r<1
Recall that £(u) = ||Vul} + [, B()|ulPdo for all u € W'P(2). Given ¢ €

(0, cl9 — c*il (g, ,3)), owing to hypotheses H(a)(iv) and H3(iii), we can find § = 3(8) IS
(0, 8) such that

19

F(x,s) > 7_8|s|§ fora.a.x € £2 andall |s| < 3, (4.30)

*

GE) < S 21Es forall |£] < 5. @31)

Since Py € I'.(s, B) and uy € int (C}
1,1

(2)4) ., ve € —int (C}(2)4), we find A € (0, 1)
small enough such that, for all # € [—1, 1]

s

APo(t) € [vs, <§ forallx € 2. (4.32)

Now, applying (4.16), (4.17), (4.29), (4.30), (4.31), (4.32) and using the fact that
[70() ||§ = land ¢ < p, we get

. . AP o .
¥ (APo() = / G (A7) dx + — / B |P0(0)|" do — / F (x, AP0(1)) dx
2 P Jae 2
AS N LS
< C s [Voo@ ) + —c*/ B |P0(0)|" do — = (c10 — &)
S S a0 S
AS
= [es o) +e (IV001) +1) e
LS ~ ~
< - [C*Xz(s‘, B)+c*§+ecm — 619] (4.33)
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for some ¢y > 0 and forallt € [—1, 1]. Since ¢19 > c*}:z(g, B), choosing ¢ > 0and § > 0
small enough, from (4.33), it follows

¥ (Ap0(1)) <0 forallr € [—1,1].

We easily see that 7 := A7 is a continuous path in W7 (£2) which connects —ii; (¢, B)
and Au (g, B) satisfying

v

P 0. (4.34)

Next, we have to construct a continuous path in whp($2) connecting Auj (g, 3) and u.
For this purpose, let

=Yy = inf [y ) s € WHP2)] < 0= 4(0) (4.35)
(see the proof of Proposition 4.2). The second deformation theorem (see, e.g., Gasiriski and
Papageorgiou [9, p. 628]) implies the existence of a deformation 4 : [0, 1] x (W_?_\K 3+) —
1//_?_ such that

h(0,u) =u forallu € y\K} (4.36)
h (1, wﬂvg%) cyk, (4.37)

and
Y (h(t, u)) < Yy (his, u)) (4.38)

foralls,z € [0, ]]withO <s <7 <1landallu € wg\Kg+.
Recall, owing to Claim 1 in the proof of Proposition 4.2, that Ky,, = {0, u,}. Therefore,
due to (4.34) and (4.35),

v = ) (4.39)

and
Vi (Rin(s. ) = v (M (6. ) = v () < 0.
Therefore, Ait| (¢, 3) € wg\KfL = wﬂ)r\{O}. This means we can define
~\ T
Do) = h (r, A (e, ﬂ)) forall 7 € [0, 1]. (4.40)

Then, by virtue of (4.34), (4.36), (4.37), (4.38), and (4.39), it follows

N R ~\ T N ~

740 = h (0.21(. ) =it (5. B)

R R A\t

o) =h (L2 (s B)) " = e,

¥ (740) =¥+ (7 0) = v (M6, B) = v (Min (s, B) <0,

Hence, 7 is a continuous path connecting A (g, B) and u, fulfilling

1//|);+ <0. (4.41)
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In a similar fashion, using the functional ¥_ instead of 1/, we may construct a continuous
path p_ in W!-7(£2) which connects —Afi1 (¢, B) and v, satisfying

v

The union of the curves y_, y, and 7 forms a continuous path y, € I" such that, because
of (4.34), (4.41), and (4.42),

5 < 0. (4.42)

vl <O.

This implies that yg € [vy, u,x] N C(2) is a nodal solution of (1.1). ]

In order to prove the existence of a second nodal solution of (1.1), we will consider the
special case when a (&) = £ is the Laplacian and the reaction f (x, -) is linear near zero and
differentiable. To be more precise, the problem under consideration is given by

—Au = f(x,u) in £,

4.43
M gou ond. (443
on

The reason that we consider the above special case of problem (1.1) is because we will use
tools from Morse theory, in particular critical groups. As it is well known, the strongest and
more definitive results on critical groups can be produced in the context of Hilbert spaces and
for C2-functionals. In fact, in problem (4.43) we could have used a general strongly elliptic
second-order differential operator but for simplicity in the exposition we have decided to
proceed with the Laplacian. For the general problem (1.1), additional nodal solutions can be
produced if we introduce symmetry structure in the problem something that we wanted to
avoid in this paper.

The new hypotheses on f : £2 x R — R read as follows.

Hs: f: 82 x R — R is a measurable function such that f(x, ) € C'(R), f(x,0) = 0 for
a.a.x € £2 and

Vs

(i) forevery p > 0, there exists a, € L°°(£2)4 such that
|fs’(x, s)| < ap(x) foraa. x € 2 andall [s| < p;

(i) there exist functions wi € H'(§2) N C(£2) and constants c4+ € R such that
w_(x) <c_ <0 <cy <wy(x) forallx e 2;
fx,wie(x)) <0< f(x,w_(x)) foraa.x e £2;

Aw-) <0< A(wy) in (H'(@))";

(iii) there exist constants ¢3, ¢4 > 0 and m > 2 such that

Am (2, B) < c23 < o < hmi1(2, B),
and

fx,s)

€23 < f{(x,0) = lim <cu
; s—0 S

uniformly for a.a. x € £2.

Remark 4.7 Note that in this case, using the mean value theorem, we see that if M, =
max {|wy [0, [w—lloo}. then there exists & > 0 such that s > f(x,s) 4 &s is nonde-
creasing on [—M,, M,] fora.a. x € £2.
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Theorem 4.8 Let hypotheses H(B) and Hy be satisfied. Then, problem (4.43) admits at least
four nontrivial solutions

ug € int (Cé(§)+) , vy € —int (Cé (§)+) , and yo,y € intcl(ﬁ)[vo, ug) nodal.
Proof Because of Theorem 4.6, we already have three nontrivial solutions
up € int (C(2)4), wvo € —int (C§(2)4), and yo € [vo, uo]l N C'($2) nodal.

In addition, by virtue of Proposition 3.5, we may assume that u#¢ and vy are extremal
constant sign solutions of (4.43).
Let &, > 0 be as postulated in Remark 4.7. Since yp < u(, we obtain

—Aug + §uo = f(x, u0) + &wuo = f(x, y0) +&xyo = —Ayo +&xyo ae.in £2.
This implies
A(ug — yo) < &(up — yo) a.e.in £2,

which, in view of Pucci and Serrin [23], results in ug — yp € int (CO1 (§)+). Similarly, we
can show that yo — vo € int (C}(£2)). Therefore,

Yo € intcl(ﬁ) [vo, uol. (4.44)

Using the notation from the proof of Proposition 4.2, we know that u¢ and vg are local
minimizers of the functional i, hence

Cr (Y, up) = Cp (¥, vo) = 8k.0Z forall k > 0. (4.45)

Additionally, the proof of Theorem 4.6 had shown that yq is a critical point of i of
mountain pass type. Thus, from Motreanu et al. [17, p. 177] and since (4.44), we have

Cr(Y, yo) = 8,12 forallk > 0. (4.46)

Note that u = 0 is a nondegenerate critical point of ¥ of Morse index
m
dn =dim @ E (L. p) =2
i=1

with E ():i (2, /3)) being the eigenspace corresponding to the eigenvalue 7i(2, B). Hence,

Cv(¥,0) = 8¢.q,Z forallk > 0. (4.47)
Finally, since i is coercive, it follows that
Cr(Yr, 00) =8 0Z forallk > 0. (4.48)

Supposing Ky, = {0, ug, vo, yo}, from (4.45), (4.46), (4.47), (4.48) and the Morse relation
with t = —1 (see (2.3)), we obtain

(D +2(=1"+ (D' = (=1’

which implies (—1)‘1"1 = 0, a contradiction. Thus, there exists y € Ky < [vo, up] with
vy ¢ {0, uo, vo, yo}. Hence, ¥ is a second nodal solution of (4.43). Similarly, as done for yy,
we can show that y € intci1 g [vo, uol. |
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