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Abstract
In this paper we consider quasilinear elliptic equations driven by the variable exponent 
double phase operator with superlinear right-hand sides. Under very general assumptions 
on the nonlinearity, we prove a multiplicity result for such problems whereby we show 
the existence of a positive solution, a negative one and a solution with changing sign. The 
sign-changing solution is obtained via the Nehari manifold approach and, in addition, we 
can also give information on its nodal domains.

Keywords  Double phase operator with variable exponent · Existence of solutions · 
Multiple solutions · Mountain pass theorem · Nehari manifold

Mathematics Subject Classification  35A01 · 35J20 · 35J25 · 35J62 · 35J92

1  Introduction

Let Ω ⊆ ℝN , N ≥ 2 be a bounded domain with Lipschitz boundary �Ω . In this paper we 
study the following variable exponent double phase problem with homogeneous Dirichlet 
boundary condition

where we assume 

	(H1)	 p, q ∈ C(Ω) such that 1 < p(x) < N , p(x) < q(x) ≤ q+ < p∗
−
 , where q+ = max

x∈Ω
q(x) , 

p∗
−
= min

x∈Ω
p∗(x) and p∗(x) = Np(x)∕(N − p(x)) for all x ∈ Ω , 0 ≤ �(⋅) ∈ L∞(Ω) and 

(1.1)
−div

(|∇u|p(x)−2∇u + �(x)|∇u|q(x)−2∇u) = f (x, u) in Ω,

u = 0 on �Ω,

 *	 Patrick Winkert 
	 winkert@math.tu-berlin.de

	 Ángel Crespo‑Blanco 
	 crespo@math.tu-berlin.de

1	 Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, 
Germany

http://orcid.org/0000-0002-8117-4912
http://orcid.org/0000-0003-0320-7026
http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-023-01375-2&domain=pdf


606	 Á. Crespo‑Blanco, P. Winkert 

1 3

p(⋅) satisfies a monotonicity condition, that is, there exists a vector l ∈ ℝN⧵{0} such 
that for all x ∈ Ω the function 

 is monotone.
Furthermore, the nonlinearity f ∶ Ω ×ℝ → ℝ is (q+ − 1)-superlinear near infinity and 
(p(⋅) − 1)-superlinear near zero with respect to the second variable, see the precise con-
ditions in (Hf ).

The differential operator in (1.1) is the so-called double phase operator with variable 
exponents and is given by

on an appropriate Musielak-Orlicz Sobolev space W1,H(Ω) . Special cases of this operator 
occur when inf

Ω
𝜇 > 0 (the weighted (q(⋅), p(⋅))-Laplacian) or when � ≡ 0 (the p(⋅)-Laplace 

differential operator), which have been studied in the literature before. The energy func-
tional I ∶ W

1,H

0
(Ω) → ℝ related to the variable exponent double phase operator is given by

where the integrand H(x, �) =
1

p(x)
|�|p(x) + �(x)

q(x)
|�|q(x) for all (x, �) ∈ Ω ×ℝN , according to 

the nomenclature originally by Marcellini (see his papers [35, 36]), has unbalanced growth, 
that is,

for a. a. x ∈ Ω and for all � ∈ ℝN with b1, b2 > 0.
The most notorious property of the functional I is the nonuniform ellipticity depend-

ing on whether we are at the set where the weight function is zero, that is, on the set 
{x ∈ Ω ∶ �(x) = 0} . Indeed, the integrand of I exhibits ellipticity in the gradient of 
order q(x) on the points x where 𝜇(x) ≥ 𝜀 > 0 for any fixed 𝜀 > 0 and of order p(x) on the 
points x where �(x) vanishes. So the integrand H switches between two different phases 
of elliptic behaviours. This is the reason why it is called double phase.

Zhikov [51] was the first who studied functionals whose integrands change their 
ellipticity according to a point in order to provide models for strongly anisotropic mate-
rials. Functionals like I above, both with constant and variable exponents, have been 
studied by several authors with respect to regularity of local minimizers. We refer to the 
works of Baroni et al. [4–6], Colombo and Mingione [11, 12] and the recent results for 
nonuniformly elliptic variational problems and nonautonomous functionals of Beck and 
Mingione [7, 8], De Filippis and Mingione [14], Hästö and Ok [27].

Double phase differential operators and their corresponding energy functionals given 
above appear in physical models. For example, in the elasticity theory, the modulat-
ing coefficient �(⋅) dictates the geometry of composites made of two different materials 
with distinct power hardening exponents q(⋅) and p(⋅) , see Zhikov [53]. But also in other 
mathematical applications such kind of functional plays an important role, for example, 
in the study of duality theory and of the Lavrentiev gap phenomenon, see Papageorgiou 
et al. [40], Ragusa and Tachikawa [44] and Zhikov [52, 53].

gx(t) = p(x + tl) with t ∈ Ix = {t ∈ ℝ ∶ x + tl ∈ Ω}

−div
(|∇u|p(x)−2∇u + �(x)|∇u|q(x)−2∇u) for u ∈ W1,H(Ω),

I(u) = ∫
Ω

(|∇u|p(x)
p(x)

+ �(x)
|∇u|q(x)
q(x)

)
dx ,

b1|�|p(x) ≤ H(x, �) ≤ b2
(
1 + |�|q(x))
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Existence results for double phase problems with constant exponents have been shown 
by several authors within the last decade. The corresponding eigenvalue problem of the 
double phase operator with Dirichlet boundary condition has been studied by Colasuonno 
and Squassina [10] who proved the existence and properties of related variational eigen-
values. Perera and Squassina [42] showed the existence of a solution by applying Morse 
theory where they used a cohomological local splitting to get an estimate of the critical 
groups at zero. Multiplicity results including sign-changing solutions have been obtained 
by Gasiński et  al. [22], Liu and Dai [33] and Gasiński and Winkert [25] via the Nehari 
manifold treatment due to the lack of regularity results for such problems. We also mention 
the works of Biagi et al. [9], Farkas-Winkert [20], Fiscella [21], Gasiński and Winkert [23, 
24], Ge and Pucci [26], Stegliński [45] and Zeng et al. [49].

So far, there are only few results involving the variable exponent double phase operator 
given above. We refer to the recent results of Aberqi et al. [1] for existence results in com-
plete manifolds, Albalawi et al. [2] for convection problems with ( p(⋅), q(⋅))-Laplace type 
problems, Bahrouni et al. [3] for double phase problems of Baouendi-Grushin type opera-
tor, Crespo-Blanco et al. [13] for double phase convection problems, Ho and Winkert [30] 
for Kirchhoff problems, Kim et al. [31] for concave-convex-type double-phase problems, 
Leonardi and Papageorgiou [32] for concave-convex problems, Zeng et al. [50] for mul-
tivalued problems and Vetro and Winkert [47] for multiplicity results under very general 
growth conditions, see also the references therein. It is also worth mentioning the very 
recent contribution by Ho and Winkert [29] in which they provide an optimal embedding 
among a certain family of functions and a result about boundedness of the solutions.

The objective of this work is to prove multiplicity results for problem (1.1), where the 
right-hand side term (possibly nonlinear) is supposed to have a ( q+ − 1)-superlinear growth 
at ±∞ . The treatment is inspired by the paper by Gasiński and Winkert [25] on the constant 
exponents case, and it is interesting to see which are the requirements on the variable expo-
nents to be able to generalize the results. Due to the lack of regularity results for problem 
(1.1), several tools which are usually applied in the theory of multiplicity results based 
on the regularity results of Lieberman [34] and Pucci and Serrin [43], cannot be used in 
our treatment. Instead we will make use of the mountain pass theorem together with the 
so-called Nehari manifold, whose definition is motivated by the works of Nehari [37, 38]. 
Further explanations about this method can be found in Sect. 5.

We also point out that we do not need to suppose conditions like

as it was used in the Nehari manifold treatments of Gasiński and Papageorgiou [22], Liu 
and Dai [33], Gasiński and Winkert [25] in the constant exponent case. This is due to the 
fact that the existence of the equivalent norm ‖∇ ⋅ ‖H in W1,H

0
(Ω) can be proved without 

supposing (1.2), see the paper of Crespo-Blanco et al. [13, Proposition 2.19].
The structure of the paper is the following. In Sect. 2 we recall already known prop-

erties of the variable exponent spaces Lp(⋅)(Ω) and of the Musielak-Orlicz Sobolev space 
W1,H(Ω) compatible with the variable exponents double phase operator, among other tech-
nical tools that will be used later. In Sect. 3 we prove a priori bounds for weak solutions 
for a class of problems more general than (1.1) exploiting the very recent result by Ho and 
Winkert [29, Theorem 4.2]. In Sect. 4 we introduce the assumptions on the right-hand side 
f that will be used during the rest of the paper and we prove the existence of a positive and 
a negative weak solution via the mountain pass theorem applied to functionals truncated at 

(1.2)
q+

p−
< 1 +

1

N
or

(
q

p

)+

< 1 +
1

N
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zero. After this, in Sect. 5 we prove the existence of another solution, which turns out to 
be sign-changing, by solving a minimization problem on a modified version of the Nehari 
manifold and with the help of the quantitative deformation lemma. Finally, in Sect. 6, we 
provide further information on the nodal domains of the sign-changing solution.

2 � Preliminaries

In this section we will present the main properties of the Musielak-Orlicz spaces LH(Ω) , 
W1,H(Ω) and W1,H

0
(Ω) , together with other relevant results. We denote by Lr(Ω) and 

Lr(Ω;ℝN) the usual Lebesgue spaces endowed with the norm ‖ ⋅ ‖r for 1 ≤ r ≤ ∞ and by 
W1,r(Ω) and W1,r

0
(Ω) we identify the corresponding Sobolev spaces equipped with the 

norms ‖ ⋅ ‖1,r and ‖ ⋅ ‖1,r,0 , respectively, for 1 ≤ r < ∞.
First, we present the relevant properties for the variable exponent Lebesgue and Sobolev 

spaces. For any r ∈ C(Ω) we define

and we also introduce the space

Let r ∈ C+(Ω) and let M(Ω) be the set of all measurable functions u ∶ Ω → ℝ . We denote 
by Lr(⋅)(Ω) the Lebesgue space with variable exponent, that is

whose modular is given by

and which is endowed with its corresponding Luxemburg norm

The properties of these spaces have been extensively studied in the literature, see for exam-
ple the book by Diening et al. [16]. The space Lr(⋅)(Ω) endowed with ‖ ⋅ ‖r(⋅) is a separable 
and reflexive Banach space. The conjugate variable exponent to r is defined by r� ∈ C+(Ω) 
such that

r− = min
x∈Ω

r(x) and r+ = max
x∈Ω

r(x),

C+(Ω) = {r ∈ C(Ω) ∶ 1 < r−}.

Lr(⋅)(Ω) =

⎧⎪⎨⎪⎩
u ∈ M(Ω) ∶ ∫

Ω

�u�r(x) dx < ∞

⎫⎪⎬⎪⎭
,

�r(⋅)(u) = ∫
Ω

|u|r(x) dx

‖u‖r(⋅) = inf

⎧
⎪⎨⎪⎩
𝜆 > 0 ∶ �

Ω

��u�
𝜆

�r(x)

dx ≤ 1

⎫⎪⎬⎪⎭
.

1

r(x)
+

1

r�(x)
= 1 for all x ∈ Ω.
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It holds that Lr(⋅)(Ω)∗ = Lr
�(⋅)(Ω) and a weaker version of the Hölder’s inequality holds, 

given by

see Diening et al. [16, Lemma 3.2.20].
Furthermore, if r1, r2 ∈ C+(Ω) and r1(x) ≤ r2(x) for all x ∈ Ω , then we have the continu-

ous embedding

see Diening et al. [16, Theorem 3.3.1]
Similarly, one can define the variable exponents spaces with weights: given any 

� ∈ L1(Ω) , � ≥ 0 , we define the modular

accordingly, we define the space

endowed with the corresponding Luxemburg norm

The corresponding variable exponent Sobolev spaces can be defined analogously to the 
usual way using the variable exponent Lebesgue spaces. A nice introduction to them can be 
also found in the book by Diening et al. [16]. For r ∈ C+(Ω) the variable exponent Sobolev 
space W1,r(⋅)(Ω) is defined by

and it is equipped with the norm

where ‖∇u‖r(⋅) = ‖ �∇u� ‖r(⋅) . Moreover, we define

The spaces W1,r(⋅)(Ω) and W1,r(⋅)

0
(Ω) are both separable and reflexive Banach spaces, in fact 

they both possess an equivalent, uniformly convex norm.
A Poincaré inequality of the norms holds in the space W1,r(⋅)

0
(Ω) . One way to see this 

is the paper by Fan et al. [17, Theorem 1.3], together with the standard way to derive the 
Poincaré inequality from the compact embedding, see for example the paper by Crespo-
Blanco et al. [13, Proposition 2.18 (ii)].

�
Ω

�uv� dx ≤
�
1

r−
+

1

r�
−

�
‖u‖r(⋅)‖v‖r�(⋅) ≤ 2‖u‖r(⋅)‖v‖r�(⋅) for all u ∈ Lr(⋅)(Ω), v ∈ Lr

�(⋅)(Ω),

Lr2(⋅)(Ω) ↪ Lr1(⋅)(Ω),

�r(⋅),�(u) = ∫
Ω

�(x)|u|r(x) dx ;

Lr(⋅)
𝜔

(Ω) =

⎧⎪⎨⎪⎩
u ∈ M(Ω) ∶ ∫

Ω

𝜚r(⋅),𝜔(u) dx < ∞

⎫⎪⎬⎪⎭
,

‖u‖r(⋅),𝜔 = inf
�
𝜆 > 0 ∶ 𝜚r(⋅),𝜔

�
u

𝜆

� ≤ 1
�
.

W1,r(⋅)(Ω) =
{
u ∈ Lr(⋅)(Ω) ∶ |∇u| ∈ Lr(⋅)(Ω)

}

‖u‖1,r(⋅) = ‖u‖r(⋅) + ‖∇u‖r(⋅),

W
1,r(⋅)

0
(Ω) = C∞

0
(Ω)

‖⋅‖1,r(⋅)
.
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Proposition 2.1  Let p ∈ C+(Ω) , then there exists c0 > 0 such that

Thus, we can define the equivalent norm on W1,r(⋅)

0
(Ω)

Alternatively, assuming an additional monotonicity condition on p, we also have a Poincaré 
inequality for the modular, see the paper by Fan et al. [18, Theorem 3.3].

Proposition 2.2  Let p ∈ C+(Ω) be such that there exists a vector l ∈ ℝN⧵{0} with the prop-
erty that for all x ∈ Ω the function

is monotone (either increasing or decreasing). Then there exits a constant C > 0 such that

where �p(⋅)(∇u) = �p(⋅)(|∇u|).

Moreover, we denote by C0,
1

| log t| (Ω) the set of all functions h ∶ Ω → ℝ that are log-
Hölder continuous, that is, there exists C > 0 such that

For r ∈ C+(Ω) we introduce the critical Sobolev variable exponents r∗ and r∗ defined by

and

where �1,�2 ∈ C(Ω) are arbitrary functions that satisfy r(x) < �1(x) and r(x) < �2(x) for all 
x ∈ Ω.

We also have Sobolev-type embeddings for the variable exponent Sobolev spaces. 
The following can be found in Crespo-Blanco et al. [13, Propositions 2.1 and 2.2] or Ho 
et al. [28, Proposition 2.4 and 2.5].

Proposition 2.3  Let r ∈ C
0,

1

| log t| (Ω) ∩ C+(Ω) and let s ∈ C(Ω) be such that 1 ≤ s(x) ≤ r∗(x) 
for all x ∈ Ω . Then, we have the continuous embedding

If r ∈ C+(Ω) , s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for all x ∈ Ω , then this embedding is compact.

‖u‖r(⋅) ≤ c0‖∇u‖r(⋅) for all u ∈ W
1,r(⋅)

0
(Ω)

‖u‖1,r(⋅),0 = ‖∇u‖r(⋅).

gx(t) = p(x + tl) with t ∈ Ix = {t ∈ ℝ ∶ x + tl ∈ Ω}

�p(⋅)(u) ≤ C�p(⋅)(∇u) for all u ∈ W1,p(⋅)(Ω),

|h(x) − h(y)| ≤ C

| log |x − y|| for all x, y ∈ Ω with |x − y| < 1

2
.

r∗(x) =

{
Nr(x)

N−r(x)
if r(x) < N,

�1(x) if N ≤ r(x),
for all x ∈ Ω

r∗(x) =

{
(N−1)r(x)

N−r(x)
if r(x) < N,

�2(x) if N ≤ r(x),
for all x ∈ Ω,

W1,r(⋅)(Ω) ↪ Ls(⋅)(Ω).
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Proposition 2.4  Suppose that r ∈ C+(Ω) ∩W1,� (Ω) for some 𝛾 > N . Let s ∈ C(Ω) be such 
that 1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω . Then, we have the continuous embedding

If r ∈ C+(Ω) , s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for all x ∈ Ω , then the embedding is compact.

Finally, we recall the relation between the norm and the related modular function, the result 
is from the paper of Fan and Zhao [19, Theorems 1.2 and 1.3].

Proposition 2.5  Let r ∈ C+(Ω) and u ∈ Lr(⋅)(Ω) . 

	 (i)	 If u ≠ 0 , then ‖u‖r(⋅) = � if and only if �r(⋅)
(

u

�

)
= 1;

	 (ii)	 ‖u‖r(⋅) < 1 (resp. = 1 , > 1 ) if and only if 𝜚r(⋅)(u) < 1 (resp. = 1 , > 1);
	 (iii)	 if ‖u‖r(⋅) < 1 , then ‖u‖r+

r(⋅)
≤ �r(⋅)(u) ≤ ‖u‖r−

r(⋅)
;

	 (iv)	 if ‖u‖r(⋅) > 1 , then ‖u‖r−
r(⋅)

≤ �r(⋅)(u) ≤ ‖u‖r+
r(⋅)

;
	 (v)	 ‖u‖r(⋅) → 0 if and only if �r(⋅)(u) → 0;
	 (vi)	 ‖u‖r(⋅) → +∞ if and only if �r(⋅)(u) → +∞.

Now we introduce the definition and main properties of the Musielak-Orlicz functional 
space that we will use to study our equations. For the proofs and the rest of the details we refer 
to the paper of Crespo-Blanco et al. [13, Section 2]. To this end, let H ∶ Ω × [0,∞) → [0,∞) 
be defined as

where we take similar (but weaker) assumptions as in (H1), i.e., we suppose the following: 

	(H2)	 p, q ∈ C+(Ω) such that 1 < p(x) < N  and p(x) < q(x) < p∗(x) for all x ∈ Ω , and 
0 ≤ �(⋅) ∈ L∞(Ω).

It is known that H is a locally integrable, generalized N-function which satisfies the Δ2-condi-
tion, that is,

and also that

The corresponding modular of H is given by

its corresponding Musielak-Orlicz space LH(Ω) is

W1,r(⋅)(Ω) ↪ Ls(⋅)(�Ω).

H(x, t) ∶= tp(x) + �(x)tq(x) for all (x, t) ∈ Ω × [0,∞),

H(x, 2t) = (2t)p(x) + �(x)(2t)q(x) ≤ 2q+H(x, t),

inf
x∈Ω

H(x, 1) > 0.

�H(u) = ∫
Ω

H(x, |u|) dx ,

LH(Ω) =
{
u ∈ M(Ω) ∶ 𝜌H(u) < +∞

}
,
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and it is endowed with the norm

This norm is uniformly convex and the space LH(Ω) is separable and reflexive and sat-
isfies the Radon-Riesz property with respect to the modular �H . It has the following 
relations with the modular and embeddings, see the paper by Crespo-Blanco et  al. [13, 
Proposition 2.13].

Proposition 2.6  Under hypothesis (H2), the following statements hold. 

	 (i)	 If u ≠ 0 , then ‖u‖H = � if and only if �H(
u

�
) = 1;

	 (ii)	 ‖u‖H < 1 (resp. > 1 , = 1 ) if and only if 𝜌H(u) < 1 (resp. > 1 , = 1);
	 (iii)	 if ‖u‖H < 1 , then ‖u‖q+

H
⩽ �H(u) ⩽ ‖u‖p−

H
;

	 (iv)	 if ‖u‖H > 1 , then ‖u‖p−
H

⩽ �H(u) ⩽ ‖u‖q+
H

;
	 (v)	 ‖u‖H → 0 if and only if �H(u) → 0;
	 (vi)	 ‖u‖H → +∞ if and only if �H(u) → +∞;
	 (vii)	 Lq(⋅)(Ω) ↪ LH(Ω) ↪ Lp(⋅)(Ω) ∩ L

q(⋅)
� (Ω),

where Lq(⋅)� (Ω) is the seminormed space with exponent q(⋅) and weight �.
In the usual way we can also introduce the corresponding Sobolev spaces

equipped with the norm

where as above ‖∇u‖H = ‖ �∇u� ‖H . These spaces are also separable and reflexive, they 
have an equivalent, uniformly convex norm given by the Luxemburg norm ‖ ⋅ ‖𝜌̂H induced 
by the modular

and they also satisfy the Radon-Riesz property with respect to this modular. Furthermore, 
‖ ⋅ ‖𝜌̂H and 𝜌̂H satisfy the same relations (i)-(vi) as �H and ‖ ⋅ ‖H . Combining the embed-
dings of variable exponent Lebesgue spaces and LH(Ω) we have the following Sobolev-
type embeddings, see the paper by Crespo-Blanco et al. [13, Proposition 2.16].

Proposition 2.7  Under hypothesis (H2), the following embeddings hold. 

	 (i)	 LH(Ω) ↪ Lr(⋅)(Ω) , W1,H(Ω) ↪ W1,r(⋅)(Ω) and W1,H

0
(Ω) ↪ W

1,r(⋅)

0
(Ω) are continuous 

for all r ∈ C(Ω) with 1 ⩽ r(x) ⩽ p(x) for all x ∈ Ω;
	 (ii)	 If p ∈ C+(Ω) ∩ C

0,
1

| log t| (Ω) , then W1,H(Ω) ↪ Lr(⋅)(Ω) and W1,H

0
(Ω) ↪ Lr(⋅)(Ω) are 

continuous for r ∈ C(Ω) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ Ω;

‖u‖H = inf
�
𝜏 > 0 ∶ 𝜌H

�
u

𝜏

� ≤ 1
�
.

W1,H(Ω) ∶=
�
u ∈ LH(Ω) ∶ �∇u� ∈ LH(Ω)

�
and W

1,H

0
(Ω) ∶= C∞

0
(Ω)

‖⋅‖1,H

‖u‖1,H = ‖u‖H + ‖∇u‖H,

𝜌̂H(u) = ∫
Ω

(|∇u|p(x) + 𝜇(x)|∇u|q(x)) dx + ∫
Ω

(|u|p(x) + 𝜇(x)|u|q(x)) dx ,
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	 (iii)	 W1,H(Ω) ↪ Lr(⋅)(Ω) and W1,H

0
(Ω) ↪ Lr(⋅)(Ω) are compact for r ∈ C(Ω) with 

1 ≤ r(x) < p∗(x) for all x ∈ Ω;
	 (iv)	 if  p ∈ C+(Ω) ∩W1,� (Ω) for some 𝛾 > N  ,  then W1,H(Ω) ↪ Lr(⋅)(�Ω) and 

W
1,H

0
(Ω) ↪ Lr(⋅)(�Ω) are continuous for r ∈ C(Ω) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ Ω;

	 (v)	 W1,H(Ω) ↪ Lr(⋅)(�Ω) and W1,H

0
(Ω) ↪ Lr(⋅)(�Ω) are compact for r ∈ C(Ω) with 

1 ≤ r(x) < p∗(x) for all x ∈ Ω;
	 (vi)	 W1,H(Ω) ↪ LH(Ω) is compact.

For s ∈ ℝ let s+ = max{s, 0} and s− = max{−s, 0} , hence s = s+ − s− and |s| = s+ + s− . 
It holds that W1,H(Ω) and W1,H

0
(Ω) are closed under truncations, maxima and minima, see 

the paper by Crespo-Blanco et al. [13, Proposition 2.17].

Proposition 2.8  Under hypothesis (H2), the following statements hold. 

	 (i)	 If u ∈ W1,H(Ω) , then u± ∈ W1,H(Ω).
	 (ii)	 If u ∈ W

1,H

0
(Ω) , then u± ∈ W

1,H

0
(Ω).

On the other hand, in W1,H

0
(Ω) we have a Poincaré inequality, see the paper by Crespo-

Blanco et al. [13, Proposition 2.18].

Proposition 2.9  Let (H2) be satisfied. Then there exists a constant C > 0 such that

This allows us to define the equivalent norm

which is also uniformly convex and satisfies the Radon-Riesz property with respect to 
�H(∇⋅) , see the paper by Crespo-Blanco et al. [13, Proposition 2.19].

Lastly, we discuss the properties of the double phase operator defined in the aforemen-
tioned space. Let A ∶ W

1,H

0
(Ω) → W

1,H

0
(Ω)∗ be the nonlinear mapping defined by

with ⟨ ⋅, ⋅ ⟩ being the duality pairing between W1,H

0
(Ω) and its dual space W1,H

0
(Ω)∗ . The 

properties of the operator A ∶ W
1,H

0
(Ω) → W

1,H

0
(Ω)∗ are summarized in the next proposi-

tion, which can be found in the paper by Crespo-Blanco et al. [13, Proposition 2.18].

Proposition 2.10  Under hypothesis (H2), the operator A is bounded (that is, it maps 
bounded sets into bounded sets), continuous, strictly monotone (hence maximal monotone), 
of type (S +) , coercive and a homeomorphism.

The last two ingredients of the preliminaries of this paper are the mountain pass the-
orem and the quantitative deformation lemma. Let X be a Banach space, we say that a 

‖u‖H ≤ C‖∇u‖H for all u ∈ W
1,H

0
(Ω).

‖u‖1,H,0 = ‖∇u‖H for all u ∈ W
1,H

0
(Ω),

⟨A(u), v⟩ = ∫
Ω

��∇u�p(x)−2∇u + �(x)�∇u�q(x)−2∇u� ⋅ ∇v dx for all u, v ∈ W
1,H

0
(Ω),
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functional � ∶ X → ℝ satisfies the Cerami condition or C-condition if for every sequence 
{un}n∈ℕ ⊆ X such that {�(un)}n∈ℕ ⫅ ℝ is bounded and it also satisfies

then it contains a strongly convergent subsequence. Furthermore, we say that it satisfies 
the Cerami condition at the level c ∈ ℝ or the C c-condition if it holds for all the sequences 
such that �(un) → c as n → ∞ instead of for all the bounded sequences. The proof of the 
following mountain pass theorem can be found in the book by Papageorgiou et  al. [39, 
Theorem 5.4.6].

Theorem 2.11  (Mountain pass theorem). Let X be a Banach space, and let � ∈ C1(X) . We 
assume that � satisfies the following properties:

•	 There exist u0, u1 ∈ X with ‖u1 − u0‖ > 𝛿 > 0 , such that 

•	 � satisfies the C c-condition, where 

Then c ≥ m� and c is a critical value of � . Moreover, if c = m� , then there exists 
u ∈ �B�(u0) such that ��(u) = 0.

Finally, we present here the quantitative deformation lemma. The following version 
and its proof can be found in the book by Willem [48, Lemma 2.3].

Lemma 2.12  (Quantitative deformation lemma). Let X be a Banach space, � ∈ C1(X;ℝ) , 
∅ ≠ S ⊆ X , c ∈ ℝ , 𝜀, 𝛿 > 0 such that for all u ∈ �−1([c − 2�, c + 2�]) ∩ S2� it holds that 
‖��(u)‖∗ ≥ 8�∕� , where Sr = {u ∈ X ∶ d(u, S) = infu0∈S ‖u − u0‖ < r} for any r > 0 . Then 
there exists � ∈ C([0, 1] × X;X) such that 

	 (i)	 �(t, u) = u , if t = 0 or if u ∉ �−1([c − 2�, c + 2�]) ∩ S2�,
	 (ii)	 �(�(1, u)) ≤ c − � for all u ∈ �−1((−∞, c + �]) ∩ S,
	 (iii)	 �(t, ⋅) is an homeomorphism of X for all t ∈ [0, 1],
	 (iv)	 ‖�(t, u) − u‖ ≤ � for all u ∈ X and t ∈ [0, 1],
	 (v)	 �(�(⋅, u)) is decreasing for all u ∈ X,
	 (vi)	 𝜑(𝜂(t, u)) < c for all u ∈ �−1((−∞, c]) ∩ S� and t ∈ (0, 1].

3 � Boundedness of solutions

In this section we are going to prove that weak solutions of generalized double phase 
type problems are bounded. This class is much more general than in (1.1), for example, 
the operator is not restricted to be the variable exponent double phase operator and the 

(1 + ‖un‖)��(un) → 0 as n → ∞,

max{�(u0),�(u1)} ≤ inf{�(u) ∶ ‖u − u0‖ = �} = m�;

c = inf
�∈Γ

max
0≤t≤1�(�(t)) with Γ = {� ∈ C([0, 1],X) ∶ �(0) = u0, �(1) = u1}.
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right-hand side can depend on the gradient, what is usually called convection term. We 
assume the following. 

	(H3)	 Let A ∶ Ω ×ℝ ×ℝN
→ ℝN and B ∶ Ω ×ℝ ×ℝN

→ ℝ be Carathéodory functions, 
i.e. (t, �) ↦ A(x, t, �) is continuous for almost all x ∈ Ω and x ↦ A(x, t, �) is measur-
able for all (t, �) ∈ ℝ ×ℝN ; and analogous conditions for B . Assume that there exist 
constants 𝛼1, 𝛼2, 𝛼3, 𝛽 > 0 and r ∈ C+(Ω) with p(x) < r(x) < p∗(x) for all x ∈ Ω such 
that 

 for a. a. x ∈ Ω and for all (t, �) ∈ ℝ ×ℝN.
We consider the problem

and we say that u ∈ W
1,H

0
(Ω) is a weak solution of (3.1) if for all v ∈ W

1,H

0
(Ω) it holds that

Based on the very recent result of Ho and Winkert [29, Theorem 4.2] we can prove the fol-
lowing result about boundedness of weak solutions of (3.1).

Theorem  3.1  Let hypotheses (H2) and (H3) be satisfied and let u ∈ W
1,H

0
(Ω) be a weak 

solution of problem (3.1). Then, u ∈ L∞(Ω) and there exist C, 𝜏1, 𝜏2 > 0 independent of u 
such that

Proof  For the proof of this result we follow very closely the proof of [29, Theorem 4.2] 
with the following changes.

First, take

instead of the definitions given there. Then the Step 1 works exactly the same except for 
(4.9), which does not hold now.

Later, take

|A(x, t, �)| ≤ �1

[
|t| r(x)

p� (x) + |�|p(x)−1 + �(x)|�|q(x)−1 + 1
]
,

A(x, t, �) ⋅ � ≥ �2
[|�|p(x) + �(x)|�|q(x)] − �3

[|t|r(x) + 1
]
,

|B(x, t, �)| ≤ �
[
|�| p(x)

r� (x) + |t|r(x)−1 + 1
]
,

(3.1)
−divA(x, u,∇u) = B(x, u,∇u) in Ω,

u = 0 on �Ω,

∫
Ω

A(x, u,∇u) ⋅ ∇v dx = ∫
Ω

B(x, u,∇u)v dx .

‖u‖∞ ≤ Cmax
�
‖u‖�1

r(⋅)
, ‖u‖�2

r(⋅)

�
.

Ψ(x, t) = tr(x) for all (x, t) ∈ Ω × [0,∞),

Zn = ∫A�n

(u − �n)
r(x) dx ,
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skip the 𝜓⋆ parts and then use the embedding

instead of the ones in the original proof. As a result, one can choose

which is why we do not need (4.9) now unlike in the original proof. The rest of Step 2 is 
identical. Step 3 is exactly the same without any changes. 	�  ◻

Remark 3.2  Note that our boundedness result holds true with the weaker assumptions on 
the exponents given in (H2) instead of the much stronger assumptions needed in [29, Theo-
rem 4.2]. This is because in our simpler setting, we can use the embedding (3.2) instead of 
the stronger and sharper embeddings they use there (see (4.18) and (4.19)) and for which 
they need the mentioned stronger assumptions on the exponents.

4 � Constant sign solutions

In the present section we are going to prove the existence of constant sign solutions of (1.1) 
by applying the mountain pass theorem to appropriately truncated energy functionals. For 
this purpose, we assume some of the following hypotheses on the right-hand side function 
f. We include extra assumptions that will not be used in this section, but in future ones for 
ulterior purposes. 

(Hf)	� Let f ∶ Ω ×ℝ → ℝ and F(x, t) = ∫ t

0
f (x, s) ds . 

	� (f1)	� The function f is Carathéodory, i.e. t ↦ f (x, t) is continuous for 
almost all x ∈ Ω and x ↦ f (x, t) is measurable for all t ∈ ℝ.

(f2)	� There exists r ∈ C+(Ω) with r+ < p∗
−
 and C > 0 such that 

(f3)	�

Tn,i(𝛼) = ∫
Ωi

v𝛼
n
dx for all i ∈ {1,… ,m}, 𝛼 > 0,

(3.2)W
1,p(⋅)

0
(Ωi) ↪ W

1,(pi)−
0

(Ωi) ↪ Lr
⋆
i
+𝜀(Ωi),

Rn,i = ∫
Ωi

[||∇vn||p(x) + �(x)||∇vn||q(x)
]
dx for all i ∈ {1,… ,m},

Rn = ∫
Ω

[||∇vn||p(x) + �(x)||∇vn||q(x)
]
dx ,

|f (x, t)| ≤ C
(
1 + |t|r(x)−1) for a. a. x ∈ Ω and for all t ∈ ℝ.

lim
s→±∞

F(x, s)

|s|q+ = +∞ uniformly for a. a. x ∈ Ω.
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(f4)	�
(f5)	� There exists l, l̃ ∈ C+(Ω) such that min{l−, l̃−} ∈

(
(r+ − p−)

N

p−
, r+

)
 and 

K > 0 with 

(f6)	� The function t ↦ f (x, t)∕|t|q+−1 is increasing in (−∞, 0) and in (0,+∞) for 
a. a. x ∈ Ω,

(f7)	� f (x, t)t − q+F(x, t) ≥ 0 for all t ∈ ℝ and a. a. x ∈ Ω.

Remark 4.1  Note that (f3 ) and (f4 ) are weaker than the corresponding assumptions using f 
instead of F. Also note that in (f3 ) using as exponent q+ is stronger than using q(x) as expo-
nent, and this is stronger that using q− as exponent. The analogous statement holds for (f4).

Remark 4.2  The condition on l− of (f5 ) is always well defined since

Note that this is the precise condition that is needed for the interpolation argument in the 
Claim of Proposition 4.8. Other works using similar techniques usually only impose that 
the exponent l is upper bounded by p∗

−
 (or the corresponding growth exponent of the opera-

tor in that work), but a sharper bound with r+ is actually needed. On the other hand, the 
advantage of the variable exponent setting is that this sharper upper bound is only needed 
for l− and not for the whole exponent l. Furthermore, one can choose different exponents l 
and l̃  for going to ±∞.

Example 4.3  Consider the function

where r1, r2, a ∈ C(Ω) , q+ ≤ a(x) and q+ ≤ r1(x), r2(x) < p∗
−
 for all x ∈ Ω , and they satisfy

Then f satisfies all the assumptions above. For (f2 ) take r(x) = max{r1(x), r2(x)} + � for all 
x ∈ Ω , with 𝜀 > 0 small enough so that r+ < p∗

−
 and

lim
s→0

F(x, s)

|s|p(x) = 0 uniformly for a. a. x ∈ Ω.

0 < K ≤ lim inf
s→+∞

f (x, s)s − q+F(x, s)

|s|l(x) uniformly for a. a. x ∈ Ω,

0 < K ≤ lim inf
s→−∞

f (x, s)s − q+F(x, s)

|s|�l(x)
uniformly for a. a. x ∈ Ω.

(r+ − p−)
N

p−
= r+

N

p−
− p∗

−

N − p−

p−
< r+

N

p−
− r+

N − p−

p−
= r+.

f (x, t) =

⎧
⎪⎨⎪⎩

�t�r1(x)−2t[1 + log(−t)], if t ≤ −1,

�t�a(x)−2t, if − 1 < t < 1,

�t�r2(x)−2t[1 + log(t)], if 1 ≤ t,

max{(r1)+, (r2)+}

p−
−

(ri)−
N

< 1, for all i ∈ {1, 2}.
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For (f5 ), take l̃(x) = r1(x) , l(x) = r2(x) for all x ∈ Ω . This is the reason for the assumption 
on (r1)± and (r2)± . Observe that if we take r1 = r2 = r constant, the condition is equivalent 
to r < p∗

−
 , hence redundant in that case.

The following properties follow from these assumptions.

Lemma 4.4  Let f ∶ Ω ×ℝ → ℝ , the following implications hold. 

	 (i)	 If f fulfills (f1 ) and (f4 ), then f (x, 0) = 0 for a. a. x ∈ Ω.
	 (ii)	 If f fulfills (f2 ) and (f3 ), then q+ < r−.1
	 (iii)	 If f fulfills (f2 ) and (f3 ), then there exist some M > 0 such that 

	 (iv)	 If f fulfills (f2 ) and (f4 ), then for each 𝜀 > 0 there exists C𝜀 > 0 such that 

	 (v)	 If f fulfills (f2 ) and (f3 ), then for each 𝜀 > 0 there exists C𝜀 > 0 such that 

	 (vi)	 If f fulfills (f1 ) and (f2 ), then the functional If ∶ W
1,H

0
(Ω) → ℝ given by 

 and its derivative I�
f
∶ W

1,H

0
(Ω) → W

1,H

0
(Ω)∗ , given by 

 are strongly continuous, i.e. un ⇀ u in W1,H

0
(Ω) implies If (un) → If (u) in ℝ and 

I�
f
(un) → I�

f
(u) in W1,H

0
(Ω)∗.

We provide no proof since these statements are either elementary or widely known.
We say that u ∈ W

1,H

0
(Ω) is a weak solution of (1.1) if for all v ∈ W

1,H

0
(Ω) it holds that

r+

p−
−

(ri)−
N

< 1, for all i ∈ {1, 2}.

F(x, t) > −M for a. a. x ∈ Ω and for all t ∈ ℝ.

|F(x, t)| ≤ �

p(x)
|t|p(x) + C�|t|r(x) for a. a. x ∈ Ω and for all t ∈ ℝ.

F(x, t) ≥ �

q+
|t|q+ − C� for a. a. x ∈ Ω and for all t ∈ ℝ.

If (u) = ∫
Ω

F(x, u) dx

⟨
I�
f
(u), v

⟩
= ∫

Ω

f (x, u)v dx ,

∫
Ω

(|∇u|p(x)−2∇u + �(x)|∇u|q(x)−2∇u) ⋅ ∇v dx = ∫
Ω

f (x, u)v dx .

1  Remember that by assumption q+ < p∗
−
 for all x ∈ Ω , thus such r ∈ C+(Ω) satisfying q+ < r(x) < p∗

−
 for 

all x ∈ Ω can always exist.
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Another way to consider these weak solutions is to see them as critical points of the energy 
functional � ∶ W

1,H

0
(Ω) → ℝ associated to the problem (1.1), which is defined by

In order to look at constant sign solutions, we truncate the functional by zero from above 
and below respectively, producing the functionals

where F±(x, u) = ∫ u

0
f (x,±s±) ds . Note that by Lemma 4.4 (i), this is equivalent to

The plan for the rest of the section is to verify the assumptions of the mountain pass theo-
rem (Theorem 2.11). We start by checking the so-called “mountain pass geometry”.

Proposition 4.5  Let (H1) be satisfied and f fulfill (f1 ), (f2 ) and (f4 ). Then there exist con-
stants C1,C2,C3 > 0 such that

Proof  Here only the case for � will be shown. For the other two cases note in the first 
inequality that �p(⋅)(±u±) ≤ �p(⋅)(u) and �r(⋅)(±u±) ≤ �r(⋅)(u) and the rest of the proof is 
identical.

Let u ∈ W
1,H

0
(Ω) . By Lemma 4.4 (iv), Poincaré inequality for the modular in W1,p(⋅)

0
(Ω) 

with constant Cp(⋅) , see Proposition 2.2, the embedding of W1,H

0
(Ω) ↪ Lr(⋅)(Ω) with con-

stant CH , see Proposition 2.7 (iii), and Proposition 2.5 (iii) and (iv), it follows

By picking 0 < 𝜀 <
p−(q+−p+)

Cp(⋅)q+p+
 and C3 = 1∕CH , and by applying Proposition 2.6 (iii) and (iv) 

the result follows with

	�  ◻

�(u) = ∫
Ω

(|∇u|p(x)
p(x)

+ �(x)
|∇u|q(x)
q(x)

)
dx − ∫

Ω

F(x, u) dx .

�±(u) = ∫
Ω

(|∇u|p(x)
p(x)

+ �(x)
|∇u|q(x)
q(x)

)
dx − ∫

Ω

F±(x, u) dx ,

�±(u) = ∫
Ω

(|∇u|p(x)
p(x)

+ �(x)
|∇u|q(x)
q(x)

)
dx − ∫

Ω

F(x,±u±) dx .

�(u),�±(u) ≥
�

C1‖u‖q+1,H,0
− C2‖u‖r−1,H,0

, if ‖u‖1,H,0 ≤ min{1,C3},

C1‖u‖p−1,H,0
− C2‖u‖r+1,H,0

. if ‖u‖1,H,0 ≥ max{1,C3}.

�(u) ≥ 1

p+
�p(⋅)(∇u) +

1

q+
�q(⋅),�(∇u) −

�

p−
�p(⋅)(u) − C��r(⋅)(u)

≥
�

1

p+
−

Cp(⋅)�

p−

�
�p(⋅)(∇u) +

1

q+
�q(⋅),�(∇u) − C� max

k∈{r+,r−}
{Ck

H
‖u‖k

1,H,0
}

≥ min

�
1

p+
−

Cp(⋅)�

p−
,
1

q+

�
�H(∇u) − C� max

k∈{r+,r−}
{Ck

H
‖u‖k

1,H,0
}.

C1 =
1

q+
, C2 = C𝜀C

r−
H

for ‖u‖1,H,0 ≤ C3, C2 = C𝜀C
r+
H

for ‖u‖1,H,0 > C3.
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The next result follows directly from Proposition 4.5.

Proposition 4.6  Let (H1) be satisfied and f fulfill (f1 ), (f2 ) with q+ < r− and (f4 ). Then there 
exist 𝛿 > 0 such that

Moreover, there exists 𝛿′ > 0 such that 𝜑(u) > 0 for 0 < ‖u‖1,H,0 < 𝛿′.

Proposition 4.7  Let (H1) be satisfied and f fulfill (f1 ), (f2 ) and (f3 ). Let 0 ≠ u ∈ W
1,H

0
(Ω) , 

then �(tu)
t→±∞
�����������������������→ −∞ . Furthermore, if u ≥ 0 a. e. in Ω , �±(tu)

t→±∞
�����������������������→ −∞.

Proof  First we prove the assertion for � . Fix 0 ≠ u ∈ W
1,H

0
(Ω) , |t| ≥ 1 and � ≥ 1 , by 

Lemma 4.4 (v) we can derive (note that ‖u‖q+ < ∞ by the embedding W1,H

0
(Ω) ↪ Lq+ (Ω) 

from Proposition 2.7 (iii) and Lemma 4.4 (ii))

Choosing � big enough such that the second term is negative it follows that �(tu)
t→±∞
�����������������������→ −∞

.
For the cases for �± one only has to note that if u ≥ 0 a.  e.  in Ω , �±(tu) = �(tu) for 

±t > 0 . 	�  ◻

Finally, in order to apply the mountain pass theorem, it is only left to see that the neces-
sary compactness condition is satisfied.

Proposition 4.8  Let (H1) be satisfied and f fulfill (f1 ), (f2 ), (f3 ) and (f5 ). Then the function-
als �± satisfy the (C)-condition.

Proof  We write the proof for �+ , the case for �− is very similar.
Let {un}n∈ℕ ⊆ W

1,H

0
(Ω) be a sequence such that

In the following, recall that for v ∈ W
1,H

0
(Ω) , there holds that v+ ∈ W

1,H

0
(Ω) by Proposi-

tion 2.8. By (4.2), for all v ∈ W
1,H

0
(Ω) and for a sequence �n → 0 as n → ∞ it holds

inf‖u‖1,H,0=𝛿
𝜑(u) > 0 and inf‖u‖1,H,0=𝛿

𝜑±(u) > 0.

�(tu) ≤ �t�p+
p−

�p(⋅)(∇u) +
�t�q+
q−

�q(⋅),�(∇u) −
��t�q+
q+

‖u‖q+
q+

+ C��Ω�

=
�t�p+
p−

�p(⋅)(∇u) + �t�q+
�
�q(⋅),�(∇u)

q−
− �

‖u‖q+
q+

q+

�
+ C��Ω�.

(4.1)||𝜑+(un)
|| ≤ M1 for M1 > 0 and for all n ∈ ℕ,

(4.2)(1 + ‖‖un‖‖1,H,0
)��

+
(un) → 0 inW

1,H

0
(Ω)∗.
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So for the case v = −u−
n
∈ W

1,H

0
(Ω) , as the supports of u+

n
 and −u−

n
 do not overlap, it follows

hence by Proposition 2.6 (v)

Claim: The sequence {u+
n
}n∈ℕ ⊆ W

1,H

0
(Ω) is bounded.

First, from (4.1) and (4.4) it follows

and choosing v = u+
n
∈ W

1,H

0
(Ω) in (4.3) gives

Combining these two equations yields

Now, without loss of generality, assume that l− ≤ l̃− . By (f5 ), there exist K̃,K0 > 0 such 
that

which together with the previous equation results in

By (f2 ) and (f5 ) we know that l− < r+ < p∗
−
 , hence there exists t ∈ (0, 1) such that

The interpolation inequality (see, for example, Papageorgiou and Winkert [41, Proposition 
2.3.17]) and (4.5) yield

(4.3)

�������
�
Ω

���∇un��p(x)−2∇un + �(x)��∇un��q(x)−2∇un
�
⋅ ∇v dx − �

Ω

f (x, u+
n
)v dx

�������
≤ �n‖v‖1,H,0

1 + ��un��1,H,0

.

�H
(
−∇u−

n

)
= �

Ω

(||∇u−n ||p(x) + �(x)||∇u−n ||q(x)
)
dx ≤ �n for all n ∈ ℕ,

(4.4)−u−
n
→ 0 in W

1,H

0
(Ω).

�H(∇u
+
n
) − �

Ω

q+F(x, u
+
n
) dx ≤ M2 for all n ∈ ℕ,

−�H(∇u
+
n
) + �

Ω

f (x, u+
n
)u+

n
dx ≤ �n for all n ∈ ℕ.

�
Ω

(
f (x, u+

n
)u+

n
− q+F(x, u

+
n
)
)
dx ≤ M3 for all n ∈ ℕ.

K̃|s|l− − K0 ≤ f (x, s)s − q+F(x, s) for all s ∈ ℝ and for a. a. x ∈ Ω,

(4.5)‖‖u+n ‖‖l− ≤ M4 for all n ∈ ℕ.

1

r+
=

t

p∗
−

+
1 − t

l−
.

(4.6)‖‖u+n ‖‖r+r+ ≤ (‖‖u+n ‖‖tp∗
−

‖‖u+n ‖‖1−tl−

)r+ ≤ M
(1−t)r+
4

‖‖u+n ‖‖tr+p∗
−

for all n ∈ ℕ.
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We may assume that ‖‖u+n ‖‖1,H,0
≥ 1 for all n ∈ ℕ . Testing again in (4.3) with v = u+

n
 together 

with Proposition 2.6 (iv) and (f2 ) one has

and by (4.6) and the embedding W1,H

0
(Ω) ↪ W

1,p−
0

(Ω) ↪ Lp
∗
− (Ω) , which is given by Propo-

sition 2.7 (i) and classical Sobolev embeddings, we get

Hence ‖‖u+n ‖‖p−1,H,0
 must be bounded as by (f5 ) it holds

This finishes the proof of the Claim.
From (4.4) and the Claim we know that {un}n∈ℕ is bounded in W1,H

0
(Ω) , therefore there 

exists u ∈ W
1,H

0
(Ω) and a subsequence {unk}k∈ℕ such that

Furthermore, by testing (4.3) with v = unk − u ∈ W
1,H

0
(Ω) , as 

���unk − u
���1,H,0

≤ ���unk
���1,H,0

+ ‖u‖1,H,0 is upper bounded uniformly in k, it follows

and by the strong continuity of Lemma 4.4 (vi) (note that f+(x, s) = f (x, s+) still satisfies 
(f1 ) and (f2))

In conclusion we obtain

The (S+)-property of the double phase operator A from Proposition 2.10 implies that

	�  ◻

Now we are finally in the position to apply the mountain pass theorem.

Theorem 4.9  Let (H1) be satisfied and f fulfill (f1 ), (f2 ), (f3 ), (f4 ) and (f5 ). Then there exist 
nontrivial weak solutions of problem (1.1) u0, v0 ∈ W

1,H

0
(Ω) ∩ L∞(Ω) such that u0 ≥ 0 and 

v0 ≤ 0 a. e. in Ω.

‖‖u+n ‖‖p−1,H,0
≤ �H(∇u

+
n
) ≤ M5(1 +

‖‖u+n ‖‖r+r+ ) for all n ∈ ℕ,

‖‖u+n ‖‖p−1,H,0
≤ M6

(
1 + ‖‖u+n ‖‖tr+1,H,0

)
for all n ∈ ℕ.

tr+ =
p∗
−
(r+ − l−)

p∗
−
− l−

=
Np−(r+ − l−)

Np− − Nl− + p−l−
<

Np−(r+ − l−)

Np− − Nl− + p−(r+ − p−)
N

p−

= p−.

unk ⇀ u inW
1,H

0
(Ω).

lim
k→∞

⟨��
+
(unk ), unk − u⟩ = 0,

lim
k→∞

⟨
I�
f+
(unk ), unk − u

⟩
= 0.

lim
k→∞

⟨A(unk ), unk − u⟩ = 0.

unk → u in W
1,H

0
(Ω).
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Proof  We can apply Theorem  2.11 to the truncated energy functionals �± because of 
Propositions 4.6,  4.7 and 4.8. Then we know that there exist u0, v0 ∈ W

1,H

0
(Ω) such that 

��
+
(u0) = 0 = ��

−
(v0) and

This shows u0 ≠ 0 ≠ v0.
Finally, observe that if we test ��

+
(u0) = 0 with −u−

0
 we obtain �H(−∇u−0 ) = 0 , which 

by Proposition 2.6 (i) and Proposition 2.9 implies that −u−
0
= 0 a. e. in Ω , so u0 = u+

0
≥ 0 

a. e. in Ω . With an analogous argument, v0 ≤ 0 a. e. in Ω . The boundedness of the solutions 
follows from Theorem 3.1. 	�  ◻

5 � Sign‑changing solution

In this section we will prove the existence of a solution with non-trivial positive and 
negative part on top of the two solutions from the previous section. This will be carried 
out by using the so-called Nehari manifold and we base our arguments on the ideas of 
the paper by Gasiński and Winkert [25]. For a broader description of the Nehari mani-
fold method, check the book chapter by Szulkin and Weth [46].

First, note that the Nehari manifold of � is the set

As the weak solutions of (1.1) are exactly the critical points of � , N  still contains all the 
weak solutions of (1.1) except for possibly u = 0 . Also note that this set might not be in 
general a manifold (and this will not be important in the present work), but in any case the 
usual name in the literature is Nehari manifold.

As we want to deal with sign-changing solutions, we will be actually more interested 
in the set

First, it is necessary to prove some interesting properties of N  that will be useful later.

Proposition 5.1  Let (H1) be satisfied and f fulfill (f1 ), (f2 ), (f3 ), (f4 ) and (f6 ). Then for 
any u ∈ W

1,H

0
(Ω) ⧵ {0} there exists a unique tu > 0 such that tuu ∈ N  . Furthermore, 

𝜑(tuu) > 0 , d

dt
𝜑(tu) > 0 for 0 < t < tu , 

d

dt
�(tu) = 0 for t = tu , 

d

dt
𝜑(tu) < 0 for t > tu , and 

therefore 𝜑(tu) < 𝜑(tuu) for all 0 < t ≠ tu.

Proof  Fix u ∈ W
1,H

0
(Ω) ⧵ {0} and let ku ∶ [0,∞) → ℝ be defined by ku(t) = �(tu) . From 

the composition of functions, ku is C1 in (0,∞) and continuous in [0,∞) . By Proposi-
tions 4.6 and 4.7 one gets that there exist K, 𝛿 > 0 such that

𝜑+(u0),𝜑−(v0) ≥ inf‖u‖1,H,0=𝛿
𝜑±(u) > 0 = 𝜑+(0).

N =
�
u ∈ W

1,H

0
(Ω) ∶ ⟨��(u), u⟩ = 0, u ≠ 0

�
.

N0 =
{
u ∈ W

1,H

0
(Ω) ∶ ±u± ∈ N

}
.

(5.1)ku(t) > 0 for 0 < t < 𝛿 and ku(t) < 0 for t > K,
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and clearly ku(0) = 0 . By this and the extreme value theorem, there exists 0 < tu ≤ K such 
that

In particular, tu is a local maximum in the interior of [0,∞) , hence a critical point of ku and 
by the chain rule we have

Thus, tuu ∈ N .
It is now left to see the uniqueness of tu , the sign of the derivatives and that it is a strict 

maximum. First note that (f6 ) for t > 0 implies (as functions only depending on t)

The equation k�
u
(t) = 0 with t > 0 is a necessary condition for tu ∈ N  . Multiplying this 

condition by 1∕tq+−1 one gets

where, by the comment above and p(x) < q(x) ≤ q+ for all x ∈ Ω , the integrand is strictly 
decreasing in the set {∇u ≠ 0} and at least decreasing outside. Hence the integral is strictly 
decreasing as a function of t, so there can be at most a single value for which the equation 
holds, i.e. there is at most a single value tu ∈ (0,∞) such that k�

u
(tu) = 0 . As a consequence 

there can be at most a single value tu ∈ (0,∞) such that tuu ∈ N  . On the other hand, k�
u
(t) 

is non-vanishing with constant sign in (0, tu) and in (tu,∞) , which by (5.1) must be positive 
and negative, respectively. Thus tu is a strict maximum of ku . 	�  ◻

Another reason to restrict ourselves to N  is that the restriction of our energy func-
tional � has better properties.

Proposition 5.2  Let (H1) be satisfied and f fulfill (f1 ), (f2 ), (f3 ), (f4 ) and (f6 ). Then the func-
tional �|N  is sequentially coercive, in the sense that for any sequence {un}n∈ℕ ⊆ N  such 
that ‖‖un‖‖1,H,0

n→∞
�������������������→ +∞ it follows that �(un)

n→∞
�������������������→ +∞.

Proof  Let {un}n∈ℕ ⊆ N  be a sequence such that ‖‖un‖‖1,H,0

n→∞
�������������������→ +∞ and let yn =

un‖un‖1,H,0

 

for all n ∈ ℕ . Then, by the compact embedding W1,H

0
(Ω) ↪ Lr(Ω) of Proposition 2.7 (iii), 

there exist a subsequence {ynk}k∈ℕ and y ∈ W
1,H

0
(Ω) such that

Claim: y = 0

sup
t∈[0,∞)

ku(t) = max
t∈[0,K]

ku(t) = ku(tu).

0 = k�
u
(tu) = ⟨��(tuu), u⟩.

f (x, tu)

tq+−1|u|q+−1 increasing, hence
f (x, tu)u

tq+−1
increasing , for x ∈ Ω with u(x) > 0,

f (x, tu)

tq+−1|u|q+−1 decreasing, hence
f (x, tu)u

tq+−1
increasing , for x ∈ Ω with u(x) < 0.

∫
Ω

(
1

tq+−p(x)
|∇u|p(x) + 1

tq+−q(x)
�(x)|∇u|q(x) − f (x, tu)u

tq+−1

)
dx = 0,

ynk ⇀ y in W
1,H

0
(Ω), ynk → y in Lr(⋅)(Ω) and pointwisely a. e. in Ω.
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Assume that y ≠ 0 . By Proposition 2.6 (iv) and for k ≥ k0 such that ‖‖‖unk
‖‖‖1,H,0

≥ 1 we 
obtain

Therefore, dividing by ‖‖‖unk
‖‖‖
q+

1,H,0
 , one gets

where this limit follows from (f3 ), because

and also by Fatou’s Lemma and Lemma 4.4 (iii), taking Ω0 = {x ∈ Ω ∶ y(x) = 0} in

However, by Proposition  5.1 we know that 𝜑(un) > 0 for all n ∈ ℕ , so the limit above 
yields a contradiction. This finishes the proof of the Claim.

Now fix any t > 1 . As unk ∈ N  , Proposition 2.6 (iv) and Proposition 5.1 yield for all 
k ∈ ℕ

Furthermore, as tynk ⇀ 0 , by the strong continuity of the F term (see Lemma 4.4 (vi)) there 
exists k0 ∈ ℕ such that for k ≥ k0

As the choice of t > 1 was arbitrary, �(unk )
k→∞
�������������������→ +∞ . The subsequence principle yields 

the result for the whole sequence, i.e. �(un)
n→∞
�������������������→ +∞ . 	�  ◻

�(unk ) ≤ 1

p−
�p(⋅)(∇unk ) +

1

q−
�q(⋅),�(∇unk ) − �

Ω

F(x, unk ) dx

≤ 1

p−

‖‖‖unk
‖‖‖
q+

1,H,0
− �

Ω

F(x, unk ) dx .

�(unk )

‖‖‖unk
‖‖‖
q+

1,H,0

≤ 1

p−
− �

Ω

F(x, unk )

|||unk
|||
q+

|||ynk
|||
q+
dx → −∞ as k → ∞,

lim
k→∞

F(x, unk )

|||unk
|||
q+

|||ynk
|||
q+

= +∞ for all x ∈ Ω with y(x) ≠ 0,

�
Ω

F(x, unk )

|||unk
|||
q+

|||ynk
|||
q+
dx = �Ω⧵Ω0

F(x, unk )

|||unk
|||
q+

|||ynk
|||
q+
dx + �Ω0

F(x, unk )

‖‖‖unk
‖‖‖
q+

1,H,0

dx

≥ �Ω⧵Ω0

F(x, unk )

|||unk
|||
q+

|||ynk
|||
q+
dx −

M|Ω|
‖‖‖unk

‖‖‖
q+

1,H,0

k→∞
�������������������→ +∞.

�(unk ) ≥ �(tynk ) ≥ 1

p+
�p(⋅)(∇(tynk )) +

1

q+
�q(⋅),�(∇(tynk )) − �

Ω

F(x, tynk )

≥ 1

q+

‖‖‖tynk
‖‖‖
p−

1,H,0
− �

Ω

F(x, tynk ) =
tp−

q+
− �

Ω

F(x, tynk ) dx .

�(unk ) ≥ tp−

q+
− 1.
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Now we will make use of the properties proved in the previous results to obtain the 
existence of a minimizer of our energy functional � restricted to N0.

Proposition 5.3  Let (H1) be satisfied and f fulfill (f1 ), (f2 ), (f3 ), (f4 ) and (f6 ). Then

Proof  Let u ∈ N  , by Propositions 4.6 and 5.1 it follows

Hence

Also, as for each u ∈ N0 it holds that u+,−u− ∈ N  , it follows that

Therefore

	�  ◻

Proposition 5.4  Let (H1) be satisfied and f fulfill (f1 ), (f2 ), (f3 ), (f4 ) and (f6 ). Then there 
exists w0 ∈ N0 such that �(w0) = infu∈N0

�(u).

Proof  We will proceed by the direct method of calculus of variations. Let {un}n∈ℕ ⊆ N0 be 
a minimizing sequence, that is,

In the following, recall that for v ∈ W
1,H

0
(Ω) , we have v± ∈ W

1,H

0
(Ω) by Proposition 2.8. As 

�(un) = �(u+
n
) +�(−u−

n
) for all n ∈ ℕ , by Proposition 5.1 it holds that 𝜑(±u±

n
) > 0 for all 

n ∈ ℕ , and by the coercivity of Proposition 5.2 it follows that {±u±
n
}n∈ℕ are both bounded 

sequences in N  . By the compact embedding W1,H

0
(Ω) ↪ Lr(Ω) of Proposition  2.7 (iii), 

there exist subsequences {±u±
nk
}k∈ℕ and u± ∈ W

1,H

0
(Ω) such that

Assume that u± = 0 . Then, as ±u±
nk
∈ N  , we get

inf
u∈N

𝜑(u) > 0 and inf
u∈N0

𝜑(u) > 0.

𝜑(u) ≥ 𝜑

�
𝛿

‖u‖1,H,0

u

�
≥ inf‖u‖1,H,0=𝛿

𝜑(u) > 0.

inf
u∈N

𝜑(u) ≥ inf‖u‖1,H,0=𝛿
𝜑(u) > 0.

𝜑(u) = 𝜑(u+) + 𝜑(−u−) ≥ 2 inf
u∈N

𝜑(u) > 0.

inf
u∈N0

𝜑(u) ≥ 2 inf
u∈N

𝜑(u) > 0.

lim
n→∞

�(un) = inf
u∈N0

�(u).

(5.2)

± u±
nk
⇀ u± in W

1,H

0
(Ω), ±u±

nk
→ u± in Lr(⋅)(Ω)

and pointwisely a. e. with

⎧⎪⎨⎪⎩

u+ ≥ 0,

u− ≤ 0,

u+u− = 0.
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and by the strong continuity of the f term (see Lemma 4.4 (vi)), it follows that �H(±∇u±nk ) 
→ 0 . From Proposition 2.6 (v) we derive that ±u±

nk
→ 0 in W1,H

0
(Ω) , so

which is a contradiction. Hence u+ ≠ 0 ≠ u−.
By Proposition 5.1, there exist t± > 0 such that t±u± ∈ N  . Take w0 = t+u+ + t−u− , by 

(5.2) it holds that ±(w0)
± = t±u± and hence w0 ∈ N0.

Finally, observe that � is sequentially weakly lower semicontinuous because the map-
ping I ∶ W

1,H

0
(Ω) → ℝ given by

is sequentially weakly lower semicontinuous (note that each addend is convex and continu-
ous, hence each of them is sequentially weakly lower semicontinuous) and the F term is 
strongly continuous by Lemma 4.4 (vi). As a consequence, together with Proposition 5.1, 
this gives

Hence, �(w0) = infu∈N0
�(u) . 	�  ◻

Finally, the minimizer obtained in Proposition 5.4 turns out to be a critical point of � 
as well and so it is a weak solution of problem (1.1).

Proposition 5.5  Let (H1) be satisfied and f fulfill (f1 ), (f2 ), (f3 ), (f4 ) and (f6 ). Let w0 ∈ N0 
such that �(w0) = infu∈N0

�(u) . Then w0 is a critical point of �.

Proof  First, two key observations for the proof. 

(a)	 By Proposition 5.1, for any (s, t) ∈ [0,∞)2⧵{(1, 1)}

(b)	 For any v ∈ W
1,H

0
(Ω) , as w+

0
≠ 0 ≠ w−

0

0 = ⟨��(±u±
nk
),±u±

nk
⟩ = �H(±∇u

±
nk
) − ∫

Ω

f (x,±u±
nk
)(±u±

nk
) dx ,

0 < inf
u∈N

𝜑(u) ≤ 𝜑(±u±
nk
)

k→∞
�������������������→ 𝜑(0) = 0,

I(u) = ∫
Ω

|∇u|p(x)
p(x)

dx + ∫
Ω

�(x)
|∇u|q(x)
q(x)

dx

inf
u∈N0

�(u) = lim
k→∞

�(unk ) = lim
k→∞

�(u+
nk
) + �(−u−

nk
)

≥ lim inf
k→∞

�(t+u
+
nk
) + �(−t−u

−
nk
)

≥ �(t+u+) + �(t−u−) = �(w0) ≥ inf
u∈N0

�(u).

𝜑(sw+
0
− tw−

0
) = 𝜑(sw+

0
) + 𝜑(−tw−

0
) < 𝜑(w+

0
) + 𝜑(−w−

0
) = 𝜑(w0) = inf

u∈N0

𝜑(u).

��w0 − v��1,H,0
≥ C−1

H
��w0 − v��p− ≥

⎧⎪⎨⎪⎩

C−1
H

���w−
0

���p− , if v− = 0,

C−1
H

���w
+
0

���p− , if v+ = 0,
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 where CH > 0 is the constant of the embedding W1,H

0
(Ω) ↪ Lp− (Ω) . Hence, if for 

 we have ‖‖w0 − v‖‖1,H,0
< 𝛿0 , it follows that v+ ≠ 0 ≠ v−.

The proof consists of arguing by contradiction using the deformation lemma (see 
Lemma 2.12). Assume that ��(w0) ≠ 0 . Then there exist 𝛼, 𝛿1 > 0 such that

Let

Consider again the mapping from  (a) defined on [0,∞)2 → W
1,H

0
(Ω) and given by 

(s, t) ↦ sw+
0
− tw−

0
 , which is continuous. Hence given 𝛿 > 0 , there exists 1 > 𝛾 > 0 such 

that

Let

By (a) it follows that

With the notation of the quantitative deformation lemma (Lemma 2.12), let

From (5.3) it follows that

so all the assumptions of the lemma are fulfilled. Furthermore

Altogether, by the quantitative deformation lemma there exists a mapping 
� ∈ C([0, 1] ×W

1,H

0
(Ω),W1,H

0
(Ω)) such that 

	 (i)	 �(t, u) = u , if t = 0 or if u ∉ �−1([c − 2�, c + 2�]) ∩ S2�,
	 (ii)	 �(�(1, u)) ≤ c − � for all u ∈ �−1((−∞, c + �]) ∩ S,
	 (iii)	 �(t, ⋅) is an homeomorphism of W1,H

0
(Ω) for all t ∈ [0, 1],

0 < 𝛿0 < min

{
C−1
H

‖‖‖w
+
0

‖‖‖p− ,C
−1
H
‖‖w−

0
‖‖p−

}
,

(5.3)‖‖𝜑�(u)‖‖∗ ≥ 𝛼 for all u ∈ W
1,H

0
(Ω) with ‖‖u − w0

‖‖1,H,0
< 3𝛿1.

� = min{�0∕2, �1}.

(5.4)
‖‖‖sw

+
0
− tw−

0
− w0

‖‖‖1,H,0
< 𝛿 for all (s, t) ∈ [0,∞)2

such that max{|s − 1|, |t − 1|} < 𝛾 .

D = (1 − � , 1 + �)2.

𝛽 = max
(s,t)∈𝜕D

𝜑(sw+
0
− tw−

0
) < 𝜑(w0) = inf

u∈N0

𝜑(u).

S = B(w0, �), c = inf
u∈N0

�(u), � = min

{
c − �

4
,
��

8

}
and � be as above.

‖‖��(u)‖‖∗ ≥ � ≥ 8�

�
for all u ∈ S2� = B(w0, 3�),

(5.5)𝜑(sw+
0
− tw−

0
) ≤ 𝛽 + c − c < c −

(
c − 𝛽

2

)
≤ c − 2𝜀 for all (s, t) ∈ 𝜕D.
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	 (iv)	 ‖�(t, u) − u‖ ≤ � for all u ∈ W
1,H

0
(Ω) and t ∈ [0, 1],

	 (v)	 �(�(⋅, u)) is decreasing for all u ∈ W
1,H

0
(Ω),

	 (vi)	 𝜑(𝜂(t, u)) < c for all u ∈ �−1((−∞, c]) ∩ S� and t ∈ (0, 1].

We define now h ∶ [0,∞)2 → W
1,H

0
(Ω) given by h(s, t) = �(1, sw+

0
− tw−

0
) , which has the 

following properties: 

(vii)	h ∈ C
(
[0,∞)2,W1,H

0
(Ω)

)
,

(viii)	�(h(s, t)) ≤ c − � for all (s, t) ∈ D , by (ii), (a) and (5.4),
(ix)	 h(s, t) = sw+

0
− tw−

0
 for all (s, t) ∈ �D , by (i) and (5.5),

(x)	 h(D) ⊆ S𝛿 = B(w0, 2𝛿) , by (iv) and (5.4).

Consider the mappings H0,H1 ∶ (0,∞)2 → ℝ2 defined by

As � is a C1 functional and by (vii) both are continuous functions. By Proposition 5.1 we 
have

Let us denote by deg(g,A, y) the Brouwer degree over A ⊆ ℝn open and bounded of the 
function g ∈ C(A,ℝN) at the value y ∈ ℝN ⧵ g(�A) . By its Cartesian product property (see 
Dinca and Mawhin [15, Lemma 7.1.1 and Theorem 7.1.1]) and the one-dimensional case 
over intervals (in the same book [15, Proposition 1.2.3]) we have

By (ix) we have H0|�D = H1|�D , so by the dependence on the boundary values of the Brou-
wer degree (see again the book by Dinca and Mawhin [15, Corollary 1.2.7]), it follows

which by the solution property of the Brouwer degree (in the same book [15, Corollary 
1.2.5]) implies that there exists (s0, t0) ∈ D such that H1(s0, t0) = (0, 0) , i.e.

Furthermore, by (x)

and then (b) yields

H0(s, t) =
� ⟨��(sw+

0
),w+

0
⟩ , ⟨��(−tw−

0
),−w−

0
⟩ �,

H1(s, t) =
�
1

s
⟨��(h+(s, t)), h+(s, t)⟩ , 1

t
⟨��(−h−(s, t)),−h−(s, t)⟩

�
.

⟨𝜑�(tw+
0
),w+

0
⟩ > 0 and ⟨𝜑�(−tw−

0
),−w−

0
⟩ > 0 for all 0 < t < 1,

⟨𝜑�(tw+
0
),w+

0
⟩ < 0 and ⟨𝜑�(−tw−

0
),−w−

0
⟩ < 0 for all t > 1.

deg(H0,D, 0)

= deg
�⟨��(sw+

0
),w+

0
⟩, (1 − � , 1 + �), 0

�
deg

�⟨��(−tw−
0
),−w−

0
⟩, (1 − � , 1 + �), 0

�

= (−1)(−1) = 1.

deg(H1,D, 0) = deg(H0,D, 0) = 1,

⟨��(h+(s0, t0)), h
+(s0, t0)⟩ = 0 = ⟨��(−h−(s0, t0)),−h

−(s0, t0)⟩.

‖‖h(s0, t0) − w0
‖‖1,H,0

≤ 2� ≤ �0,

h+(s0, t0) ≠ 0 ≠ −h−(s0, t0).
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Altogether, we have that h(s0, t0) ∈ N0 , which by (viii) fulfills 𝜑(h(s0, t0)) < c − 𝜀 . This is a 
contradiction with c = infu∈N0

�(u) and the proof is complete. 	�  ◻

Now we can combine Theorems 3.1, 4.9 and Propositions 5.4, 5.5 to get the following 
result.

Theorem 5.6  Let (H1) be satisfied and f fulfill (f1 ), (f2 ), (f3 ), (f4 ), (f5 ) and (f6 ). Then there 
exist nontrivial weak solutions of problem (1.1) u0, v0,w0 ∈ W

1,H

0
(Ω) ∩ L∞(Ω) such that 

u0 ≥ 0 , v0 ≤ 0 and w0 has changing sign.

6 � Nodal domains

It is possible to derive further properties of the sign-changing solution obtained in the pre-
vious section. We will deal here with the number of nodal domains, that is, the number of 
maximal regions where it does not change sign. The usual definition of nodal domains for 
u ∈ C(Ω,ℝ) are the connected components of Ω⧵Z , where the set Z = {x ∈ Ω ∶ u(x) = 0} 
is called the nodal set of u. However, since we do not know whether our solutions are con-
tinuous, this is not helpful. Thus we propose the following, alternative definition.

Let u ∈ W
1,H

0
(Ω) and A be a Borelian subset of Ω with |A| > 0 . We say A is a nodal 

domain of u if 

	 (i)	 u ≥ 0 a. e. on A or u ≤ 0 a. e. on A;
	 (ii)	 0 ≠ u1A ∈ W

1,H

0
(Ω);

	 (iii)	 A is minimal w.r.t. (i) and (ii), i.e., if B ⊆ A with B being a Borelian subset of Ω , 
|B| > 0 and B satisfies (i) and (ii), then |A ⧵ B| = 0.

Remark 6.1     

(a)	 The reason to assume (ii) in the previous definition is that we want to rule out vanishing 
sets and sets such that the weak derivative of u1A does not exist.

(b)	 The relation in general between the usual definition and this one is unknown for the 
authors.

In order to prove the extra properties of our sign-changing solution we also need the 
assumption (f7).

Proposition 6.2  Let (H1) be satisfied and f fulfill (Hf  ). Then, any minimizer of �|N0

 (which 
by Proposition 5.5 is also a sign-changing weak solution of (1.1)) has exactly two nodal 
domains.

Proof  We fix any representative of w0 denoted by w̃0 and set Ω± = {x ∈ Ω ∶ ±�w0(x) > 0} . 
Both, Ω+ and Ω− , satisfy conditions (i) and (ii) in the definition above because 
w01Ω±

= ±w̃0
± a. e. in Ω.
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It remains to show that they are minimal. The proof follows arguing by contradic-
tion. Without loss of generality, assume that there exist Borelian subsets A1,A2 of Ω 
such that they are disjoint, of positive measure, with Ω− = A1∪̇A2 and A1 satisfies (i) 
and (ii) in the definition above. As a consequence, A2 also satisfies (i) and (ii) because 
w01A2

= w01Ω−
− w01A1

∈ W
1,H

0
(Ω) and w01A2

= �w01A2
< 0 a. e. in A2 . Hence we have

and

where Ω0 = {x ∈ Ω ∶ w̃0(x) = 0}.
Take u = 1Ω+

w0 + 1A1
w0 and v = 1A2

w0 and note that u+ = 1Ω+
w0 and −u− = 1A1

w0 . As 
��(w0) = 0 and as the supports of u+,−u− and v are disjoint, it holds

thus u+ ∈ N  . Analogously, −u− ∈ N  and hence u ∈ N0 . With the same argument it also 
holds that ⟨��(v), v⟩ = 0.

Finally, by these properties and condition (f7 ), we get

which is a contradiction because p+ < q+ and v ≠ 0 . This finishes the proof. 	�  ◻

Finally, combining Theorem 5.6 and Proposition 6.2, we have the following result.

Theorem 6.3  Let (H1) be satisfied and f fulfill (Hf  ). Then there exist nontrivial weak solu-
tions of problem (1.1) u0, v0,w0 ∈ W

1,H

0
(Ω) ∩ L∞(Ω) such that
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1Ω+
w0 ≥ 0, 1A1

w0 ≤ 0, 1A2
w0 ≤ 0 for a. a. x ∈ Ω

1Ω+
w0 + 1A1

w0 + 1A2
w0 = 1Ω+

w0 + 1Ω−
w0 + 1Ω0

0 = w0 for a. a. x ∈ Ω,

0 = ⟨��(w0), u
+⟩ = ⟨��(u+), u+⟩,

inf
u∈N0

�(u) = �(w0) = �(u) + �(v) −
1

q+
⟨��(v), v⟩

≥ �(u) +

�
1

p+
−

1

q+

�
�p(⋅)(∇v) + �

Ω

�
1

q+
f (x, v)v − F(x, v)

�
dx

≥ �(u) +

�
1

p+
−

1

q+

�
�p(⋅)(∇v)

≥ inf
u∈N0

�(u) +

�
1

p+
−

1

q+

�
�p(⋅)(∇v),

u0 ≥ 0, v0 ≤ 0, w0 being sing-changing with two nodal domains.
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