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Abstract: In this paper, we study multiplicity results for double phase problems of Kirchhoff type with right-
hand sides that include a parametric singular term and a nonlinear term of subcritical growth. Under very
general assumptions on the data, we prove the existence of at least two weak solutions that have different
energy sign. Our treatment is based on the fibering method in form of the Nehari manifold. We point out
that we cover both the nondegenerate as well as the degenerate Kirchhoff case in our setting.

Keywords: double phase operator, fibering method, Kirchhoff term, multiple solutions, Nehari manifold,
singular problems

MSC 2020: 35A15, 35J15, 35J60, 35J62, 35J75

1 Introduction

In this work, we are concerned with multiple solutions for double phase problems with a nonlocal Kirchhoff
term and a singular right-hand side. To be more precise, we study the problem
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with Ω N�⊂ (N 2≥ ) being a bounded domain with Lipschitz boundary Ω∂ , λ 0> is the parameter to be
specified, and p q

a
,� denotes the double phase operator given by
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Furthermore, we suppose the following conditions:
(H)

(i) p N1 < < , p q p< < ∗, and a L0 Ω( ) ( )≤ ⋅ ∈ ∞ with p∗ being the critical Sobolev exponent to p given
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(ii) γ0 1< < and m : 0, 0,[ ) [ )∞ → ∞ is a continuous function defined by

m t a b t tfor all 0,θ
0 0

1( ) = + ≥− (1.3)

where a 00 ≥ , b 00 > with θ 1, r
q⎡

⎣ )∈ and r qθ p,( )∈ ∗ .

Problems of type Pλ( ) combine several interesting phenomena into one problem. First, the differential
operator involved is the so-called double phase operator given in (1.1). In 1986, Zhikov [37] introduced for
the first time in the literature the related energy functional to (1.1) defined by

ω ω a x ω xd .p q
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This kind of functional has been used to describe models for strongly anisotropic materials in the context of
homogenization and elasticity. Indeed, the hardening properties of strongly anisotropic materials change
point by point. For this, the modulating coefficient a( )⋅ helps to regulate the mixture of two different
materials, with hardening powers p and q. From the mathematical point of view, the behavior of (1.4) is
related to the sets on which the weight function a( )⋅ vanishes or not. Hence, there are two phases a x 0( ) =
and a x 0( ) ≠ , and so (1.4) is said to be of double phase type. In this direction, functional (1.4) has several
mathematical applications in the study of duality theory and of the Lavrentiev gap phenomenon, see Zhikov
[38,39]. Also, (1.4) belongs to the class of the integral functionals with nonstandard growth condition,
according to Marcellini’s terminology [30,31]. Following this line of research, Mingione et al. provide
famous results in the regularity theory of local minimizers of (1.4), see, for example, the works by Baroni
et al. [4,5] and Colombo and Mingione [8,9].

A second interesting phenomenon is the appearance of a nonlocal Kirchhoff term given in (1.3), which
was first introduced by Kirchhoff [27]. Problems as in Pλ( ) involving a Kirchhoff term are said to be degen-
erate if a 00 = and nondegenerate if a 00 > . It is worth noting that the degenerate case is rather interesting
and is treated in well-known articles in the Kirchhoff theory. We do cover the degenerate case in our paper,
which has several applications in physics. For example, the transverse oscillations of a stretched string with

nonlocal flexural rigidity depends continuously on the Sobolev deflection norm of u via m u xd
Ω

2( ∣ ∣ )∫ ∇ , that

is, m 0 0( ) = is nothing less than the base tension of the string is zero.
A third fascinating aspect of our problem is the presence of a nonlinear singular term in Pλ( ). The study

of elliptic or integral equations involving singular terms started in the early sixties by the work of Fulks and
Maybee [18], originating from the models of heat conduction in electrically conducting materials. More
precisely, let Ω be an electrically conducting medium in 3� and u be the steady-state temperature distribu-
tion in the region Ω. Then, if λ

uγ is the rate of generation of heat with constant voltage λ (as in our model

Pλ( )), then the temperature distribution in the conducting medium satisfies the local and linear counterpart
of the equation mentioned in Pλ( ). For interested readers, we refer to the works of Diaz et al. [11], Nachman
and Callegari [32], and Stuart [34] for applications in non-Newtonian fluid flows in porous media and
heterogeneous catalysts, pseudo-plastic fluids, and in the theory of radiative transfer in semi-infinite atmo-
spheres, respectively.
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and indicating withW Ω0
1,� ( ) the homogeneous Musielak-Orlicz Sobolev space, which will be introduced in

Section 2, we can state the following definition of a weak solution to problem Pλ( ).
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Definition 1.1. A function u W Ω0
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Based on hypotheses (H) and Proposition 2.1 in Section 2, it is clear that the definition of a weak

solution is well defined. Moreover, we introduce the corresponding energy functional J W: Ωλ 0
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The main result in this paper reads as follows.

Theorem 1.2. Let hypotheses (H) be satisfied. Then there exists λ 0>∗ such that for all λ λ0,( ]∈ ∗ problem Pλ( )
has at least two weak solutions uλ, v W Ωλ 0

1,� ( )∈ such that J u J v0λ λ λ λ( ) ( )< < .

The proof of Theorem 1.2 is based on a careful study of the corresponding fibering map, which was
initiated by the work of Drábek and Pohozaev [12]. The idea is to define the related Nehari manifold of Pλ( ) in
the form of the first derivative of the fibering mapping, and then we split the Nehari manifold into three
disjoint parts, which are related to the second derivative of the fibering function. It turns out that the global
minimizers of Jλ restricted to two of them are the solutions we seek and the third one is the empty set for
small values of the parameter λ 0> . This method has become a very powerful tool and has been used in
several papers.

To the best of our knowledge, the only work dealing with a double phase operator and a nonlocal
Kirchhoff term has been recently done by Fiscella and Pinamonti [17] who studied the problem
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with a Carathéodory f : Ω � �× → satisfying subcritical growth and the Ambrosetti-Rabinowitz condition.
Based on the mountain-pass theorem, the existence of a nontrivial weak solution of (1.5) is shown. In
addition, the authors in [17] considered the problem
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and proved the existence of infinitely many weak solutions with unbounded energy by using the fountain
theorem. Even if the double phase operator does not explicitly appear in (1.6), this problem has still a
variational structure set in the same double phase framework of (1.5). Further results in the context of
double phase Kirchhoff problems can be found in the recent works of Arora et al. [1], Fiscella et al. [16],
Gupta and Dwivedi [23], Ho and Winkert [25] and Isernia and Repovš [26].
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Finally, we mention some existence and multiplicity results for double phase problems without
Kirchhoff term, that is, m t 1( ) ≡ for all t 0≥ . We refer to the papers of Arora and Shmarev [2,3] (parabolic
double phase problems), Colasuonno and Squassina [7] (eigenvalue problems), Farkas and Winkert [14],
Farkas et al. [13] (singular Finsler double phase problems), Fiscella [15] (Hardy potentials), Gasiński and
Papageorgiou [19] (locally Lipschitz right-hand side), Gasiński and Winkert [20–22] (convection and super-
linear problems), Liu and Dai [28] (Nehari manifold approach), Liu et al. [29] (singular problems), Perera
and Squassina [33] (Morse theoretical approach), Zeng et al. [35,36] (multivalued obstacle problems), and
the references therein.

This paper is organized as follows. In Section 2, we recall the main properties of Musielak-Orlicz
Sobolev spacesW Ω0

1,� ( ) and state the main embeddings concerning these spaces. Section 3 gives a detailed
analysis of the fibering map and presents the main properties of the three disjoints subsets of the Nehari
manifold. In Section 4, we prove the existence of at least two weak solutions of problem Pλ( ), see
Propositions 4.4 and 4.6. Finally, in Section 5, we study a singular Kirchhoff problem driven by the left-
hand side of (1.6), inspired by [17].

2 Preliminaries

In this section, we will recall the main properties and embedding results for Musielak-Orlicz Sobolev
spaces. To this end, we suppose that Ω N�⊂ (N 2≥ ) is a bounded domain with Lipschitz boundary Ω∂ .
For any r 1,[ )∈ ∞ , we denote by L LΩ Ω;r r �( ) ( )= and L Ω;r N�( ) the usual Lebesgue spaces with the norm

r‖⋅‖ . Moreover, the Sobolev space W Ωr
0
1, ( ) is equipped with the equivalent norm r‖∇⋅‖ for r1 < < ∞.
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tion 2.1] or Crespo-Blanco et al. [10, Proposition 2.13].
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Furthermore, we define the seminormed space
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hypothesis (H)(i), we know that we can equip the space W Ω0
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see Proposition 2.16(ii) of Crespo-Blanco et al. [10]. It is known that L Ω� ( ), W Ω1,� ( ) and W Ω0
1,� ( ) are

uniformly convex and so reflexive Banach spaces, see Colasuonno-Squassina [7, Proposition 2.14] or Har-
julehto-Hästö [24, Theorem 6.1.4].

We end this section by recalling the following embeddings for the spaces L Ω� ( ) and W Ω0
1,� ( ), see

Colasuonno and Squassina [7, Proposition 2.15] or Crespo-Blanco et al. [10, Propositions 2.17 and 2.19].

Proposition 2.2. Let (H)(i) be satisfied and let p∗ be the critical exponent to p given in (1.2). Then the following
embeddings hold:

(i) L LΩ Ωr� ( ) ( )↪ and W WΩ Ωr
0
1,

0
1,� ( ) ( )↪ are continuous for all r p1,[ ]∈ ;

(ii) W LΩ Ωr
0
1,� ( ) ( )↪ is continuous for all r p1,[ ]∈ ∗ and compact for all r p1,[ )∈ ∗ ;

(iii) L LΩ Ωa
q� ( ) ( )↪ is continuous;

(iv) L LΩ Ωq �( ) ( )↪ is continuous.

Remark 2.3. Since q p< ∗ by hypothesis (H)(i), we know from Proposition 2.2(ii) that W LΩ Ωq
0
1,� ( ) ( )↪ is

compact.

3 Analysis of the fibering function

As mentioned in Section 1, the proof of Theorem 1.2 relies on the fibering map corresponding to our

problem. For this purpose, we recall that the energy functional J W: Ωλ 0
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Due to the presence of the singular term, we know that Jλ is not C1. For u W Ω 00
1,� ( ) { }∈ ⧹ , we introduce the

fibering function ψ : 0,u �[ )∞ → defined by
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On this basis, we can introduce the Nehari manifold related to our problem, which is defined by
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than the whole space W Ω0
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Now, we show the coercivity of the energy functional Jλ restricted to the Nehari manifold λ� .
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with positive constants C1 and C2, where we have used the estimate

ϕ u u
p

u
q

u u u
q

u
q

uϱ 1 1 1 ϱ 1 .θ
p
p

q a
q

θ

p
p

q a
q

θ
θ

θ
pθ1

,

1

, 1 1� � �
( ) ( ) ⎡

⎣⎢
⎤
⎦⎥

[ ] ( )∇ ∇ = ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖ ≥ ∇ ≥ ‖ ‖−
−

− −

Since pθ p γ1≥ > − , the coercivity of Jλ λ�∣ follows. If we set

h t C t C t tfor all 0,pθ γ
1 2

1( ) = − >−

then it is easy to see that h attains its unique minimum at

t C γ
C pθ
1 .0

2

1

pθ γ
1
1

⎜ ⎟
⎛
⎝

( ) ⎞
⎠

=
− − +

Hence, Jλ λ�∣ is bounded from below. This completes the proof. □

Let S be the best Sobolev constant in W Ωp
0
1, ( ) defined as follows:

S
u

u
inf .

u W

p
p

p
pΩ 0p

0
1, ( ) { }

=
‖∇ ‖
‖ ‖∈ ⧹ ∗

(3.3)
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Lemma 3.2. Let hypotheses (H) be satisfied. Then there exists Λ 01 > such that λ� = ∅∘ for all λ 0, Λ1( )∈ .

Proof. Arguing by contradiction, we suppose that for each λ 0> , there exists u W Ω 00
1,� ( ) { }∈ ⧹ such that

ψ ψ1 0 1u u( ) ( )′ = = ″ . That is,

a b ϕ u u u λ u x u xd dθ
p
p

q a
q γ r

0 0
1

,

Ω

1

Ω
�

[ ( )]( ) ∣ ∣ ∣ ∣∫ ∫+ ∇ ‖∇ ‖ + ‖∇ ‖ = +− − (3.4)

and

a b ϕ u p u q u b θ ϕ u u u

λγ u x r u x

1 1 1

d 1 d .

θ
p
p

q a
q θ

p
p

q a
q

γ r

0 0
1

, 0
2

,
2

Ω

1

Ω

� �
[ ( )][( ) ( ) ] ( ) ( )( )

∣ ∣ ( ) ∣ ∣∫ ∫
+ ∇ − ‖∇ ‖ + − ‖∇ ‖ + − ∇ ‖∇ ‖ + ‖∇ ‖

= − + −

− −

− (3.5)

Multiplying (3.4) with γ and adding it to (3.5) yields

a b ϕ u p γ u q γ u b θ ϕ u u u

r γ u x

1 1 1

1 d .

θ
p
p

q a
q θ

p
p

q a
q

r

0 0
1

, 0
2

,
2

Ω

� �
[ ( )][( ) ( ) ] ( ) ( )( )

( ) ∣ ∣∫
+ ∇ − + ‖∇ ‖ + − + ‖∇ ‖ + − ∇ ‖∇ ‖ + ‖∇ ‖

= − +

− −

(3.6)

On the other hand, by subtracting (3.5) from (3.4) multiplied by r 1( )− , we obtain

a b ϕ u r p u r q u b θ ϕ u u u

r γ λ u x

1

1 d .

θ
p
p

q a
q θ

p
p

q a
q

γ

0 0
1

, 0
2

,
2

Ω

1

� �
[ ( )][( ) ( ) ] ( ) ( )( )

( ) ∣ ∣∫
+ ∇ − ‖∇ ‖ + − ‖∇ ‖ − − ∇ ‖∇ ‖ + ‖∇ ‖

= − +

− −

− (3.7)

We define the functional T :λ λ �� → given by

T u
a b ϕ u p γ u q γ u

r γ
b θ ϕ u u u

r γ
u x

1 1
1

1
1

d .

λ

θ
p
p

q a
q

θ
p
p

q a
q

r

0 0
1

,

0
2

,
2

Ω

�

�

( )
[ ( )][( ) ( ) ]

( )

( ) ( )( )

( )
∣ ∣∫

=
+ ∇ − + ‖∇ ‖ + − + ‖∇ ‖

− +

+
− ∇ ‖∇ ‖ + ‖∇ ‖

− +
−

−

−
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From (3.6), we see that T u 0λ( ) = for all u λ�∈ ∘ . Since θ 1≥ , by using Hölder’s inequality and (3.3) along
with the estimate pϕ u u p

p
�

( )∇ ≥ ‖∇ ‖ , we obtain

T u p γ
r γ

a u b
p

u S u

p γ
r γ

b
p

u S u

u A u B

1
1

Ω

1
1

Ω

,

λ p
p

θ p
pθ

p
r

θ p
pθ

p
r

p
r

p
pθ r

0
0

1
1

0
1

1

r
p

r
p

r
p

r
p

⎜ ⎟

⎜ ⎟

( )
( )
( )

⎛
⎝

⎞
⎠

∣ ∣

( )
( )

⎛
⎝

⎞
⎠

∣ ∣

( )

≥
− +
− +

‖∇ ‖ + ‖∇ ‖ − ‖∇ ‖

≥
− +
− +

‖∇ ‖ − ‖∇ ‖

= ‖∇ ‖ ‖∇ ‖ −

−
− −

−
− −

−

∗

∗
(3.8)

where

A p γ b
p r γ

B S1
1

0 and Ω 0.θ
0

1
1r

p
r
p⎜ ⎟

⎛
⎝

( )
( )

⎞
⎠

∣ ∣≔
− +

− +
> ≔ >−

− − ∗

Since p q< , it is easy to see that

u u qϕ u .p
p

q a
q

, �
( ) ( )‖∇ ‖ + ‖∇ ‖ ≤ ∇ (3.9)

Using (3.9) in (3.7), Hölder’s inequality and the best Sobolev constant S defined in (3.3), it follows that

b ϕ u r p q θ u r q q θ u

a r p u r q u b ϕ u r p q θ u r q q θ u

a b ϕ u r p u r q u b θ ϕ u u u

r γ λ u x

r γ λ S u

1 1

1 1

1

1 d

1 Ω .

θ
p
p

q a
q

p
p

q a
q θ

p
p

q a
q

θ
p
p

q a
q θ

p
p

q a
q

γ

p
γ

0
1

,

0 , 0
1

,

0 0
1

, 0
2

,
2

Ω

1

1 1γ
p

γ
p

1 1

�

�

� �

( )[( ( )) ( ( )) ]

[( ) ( ) ] ( )[( ( )) ( ( )) ]

[ ( )][( ) ( ) ] ( ) ( )( )

( ) ∣ ∣

( ) ∣ ∣

∫

∇ − − − ‖∇ ‖ + − − − ‖∇ ‖

≤ − ‖∇ ‖ + − ‖∇ ‖ + ∇ − − − ‖∇ ‖ + − − − ‖∇ ‖

≤ + ∇ − ‖∇ ‖ + − ‖∇ ‖ − − ∇ ‖∇ ‖ + ‖∇ ‖

= − +

≤ − + ‖∇ ‖

−

−

− −

−

− − −
−
∗

−

Again using pϕ u u p
p

�
( )∇ ≥ ‖∇ ‖ , this implies

b r p q θ
p

u r γ λ S u1 1 Ω .θ p
pθ

p
γ0

1
1 1γ

p
γ

p
1 1( ( ))

( ) ∣ ∣
− − − ‖∇ ‖ ≤ − + ‖∇ ‖−

− − −
−
∗

−

From qθ r< and p q< , we conclude that

u r γ λ S p
b r p q θ

Cλ C1 Ω
1

with 0.p
θ1 1

0

γ
p

γ
p

pθ γ

pθ γ

1 1
1
1

1
1

⎛

⎝
⎜

( ) ∣ ∣
( ( ))

⎞

⎠
⎟‖∇ ‖ ≤

− +
− − −

≕ >
− − −

−
∗

− − +

− + (3.10)

By using (3.10) along with θ r
q

r
p< < , we obtain from (3.8) that

T u u A Cλ B .λ p
r pθ γ pθ r

1
1( ) ⎛

⎝
( ) ⎞

⎠
≥ ‖∇ ‖ −− + −

Setting

A
BC

Λ ,r pθ1

pθ γ
r pθ

1

⎛
⎝

⎞
⎠

≔ −

− +
−

we see that T u 0λ( ) > whenever λ 0, Λ1( )∈ contradicting the fact that T u 0λ( ) = for all u λ�∈ ∘ . This proves
the result. □

Let us now analyze the map ψ tu( )′ in more detail. First, we can write

ψ t t σ t λ u x td , 0,u
γ

u
γ

Ω

1( )
⎛

⎝
⎜⎜

( ) ∣ ∣
⎞

⎠
⎟⎟∫′ = − >− − (3.11)
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where

σ t a b ϕ t u t u t u t u xd .u
θ p γ

p
p q γ

q a
q r γ r

0 0
1 1 1

,
1

Ω
�

( ) [ ( )]( ) ∣ ∣∫= + ∇ ‖∇ ‖ + ‖∇ ‖ −− − + − + − +

From the definition in (3.11), it is clear that tu λ�∈ if and only if

σ t λ u xd .u
γ

Ω

1( ) ∣ ∣∫= − (3.12)

The next lemma shows that the sets λ�
+ and λ�

− are nonempty, whenever λ is sufficiently small.

Lemma 3.3. Let hypotheses (H) be satisfied and let u W Ω 00
1,� ( ) { }∈ ⧹ . Then there exist Λ 02 > and unique

t t tu u u
1 max 2< < such that

t u t u and σ t σ t, maxu
λ

u
λ u

u
t

u1 2 max
0

� � ( ) ( )∈ ∈ =+ −

>

whenever λ 0, Λ2( )∈ .

Proof. Let u W Ω 00
1,� ( ) { }∈ ⧹ . The equation

σ t a b ϕ t u p γ t u q γ t u

b θ ϕ t u t u t u t u t u

r γ t u x

0 1 1

1

1 d

u
θ p γ

p
p q γ

q a
q

θ p γ
p
p q γ

q a
q p

p
p q

q a
q

r γ r

0 0
1 2 2

,

0
2 1 1

,
1 1

,

2

Ω

�

�

( ) [ ( )][( ) ( ) ]

( ) ( )( )( )

( ) ∣ ∣∫

= ′ = + ∇ − + ‖∇ ‖ + − + ‖∇ ‖

+ − ∇ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖

− − +

− − + − +

− − + − + − −

− +

is equivalent to

a b ϕ t u p γ t u q γ t u

b θ ϕ t u t u t u t u t u

r γ u x

1 1

1

1 d .

θ p r
p
p q r

q a
q

θ p r
p
p q r

q a
q p

p
p q

q a
q

r

0 0
1

,

0
2 1 1

,
1 1

,

Ω

�

�

[ ( )][( ) ( ) ]

( ) ( )( )( )

( ) ∣ ∣∫

+ ∇ − + ‖∇ ‖ + − + ‖∇ ‖

+ − ∇ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖

= − +

− − −

− − + − + − −
(3.13)

Note that r qθ> and θ 1≥ imply

p θ p r p θ q r q θ p r
p θ q r q θ p r

q θ q r qθ r

1 min 1 , 1
max 1 , 1

1 0.

( ) { ( ) ( ) }
{ ( ) ( ) }

( )

− + − < − + − − + −
≤ − + − − + −
< − + − = − <

(3.14)

Denoting the left-hand side of (3.13) as follows:

T t a b ϕ t u p γ t u q γ t u

b θ ϕ t u t u t u t u t u

1 1

1 ,
u

θ p r
p
p q r

q a
q

θ p r
p
p q r

q a
q p

p
p q

q a
q

0 0
1

,

0
2 1 1

,
1 1

,

�

�

( ) [ ( )][( ) ( ) ]

( ) ( )( )( )

= + ∇ − + ‖∇ ‖ + − + ‖∇ ‖

+ − ∇ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖

− − −

− − + − + − −

and using (3.14) as well as γ p q r0 1< < < < < , we easily observe that
(i) T tlimt u0 ( ) = ∞→ + ;
(ii) T tlim 0t u( ) =→∞ ;
(iii) T t 0u( )′ < for all t 0> .

From (i) and (ii) along with the intermediate value theorem, there exists t 0u
max > such that (3.13) holds.

From (iii), we see that t u
max is unique due to the injectivity of Tu. Moreover, if we consider σ t 0u( )′ > , then in

place of (3.13), we obtain
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T t r γ u x1 d ,u
r

Ω

( ) ( ) ∣ ∣∫> − +

and sinceTu is strictly decreasing, this holds for all t t u
max< . The same can be said for σ t 0u( )′ < and t t u

max> .
Therefore, σu is injective in t0, u

max( ) and in t ,u
max( )∞ . In addition,

σ t σ tmaxu
u

t
umax

0
( ) ( )=

>

with t 0u
max > being the global maximum of σu. Moreover, we have

σ t σ tlim 0 and lim .
t

u
t

u
0

( ) ( )= = −∞
→ →∞+

By using again pϕ u u p
p

�
( )∇ ≥ ‖∇ ‖ we observe that

σ t b
p

p γ t u r γ t u x1 1 d ,u θ
pθ γ

p
pθ r γ r0

1
2 2

Ω

( ) ( ) ( ) ∣ ∣∫′ ≥ − + ‖∇ ‖ − − +−
− + − +

which gives by applying Hölder’s inequality and (3.3) that

t
u

b p γ S
p r γ

t1 1
1 Ω

.u

p

r
p

θ
u

max
0
1 1 0r

p

r pθ
1

⎛

⎝
⎜

( )

( )∣ ∣
⎞

⎠
⎟≥

‖∇ ‖
− +
− +

≔
− − ∗

−

(3.15)

Since σu is increasing on t0, u
max( ), we obtain from pϕ u u p

p
�

( )∇ ≥ ‖∇ ‖ , Hölder’s inequality, (3.3) and the
representation of t u

0 in (3.15) that

σ t σ t b
p

t u t u x

t u b
p

t S u

r p
r γ

b
p

t u

r p
r γ

u b
p

b p γ S
p r γ

u x

d

Ω

1

1
1

1 Ω

Λ d ,

u
u

u
u

θ
u pθ γ

p
pθ u r γ r

u pθ γ
p
pθ

θ
u r pθ

p
r pθ

θ
u pθ γ

p
pθ

p
γ

θ

r
p

θ

γ

max 0
0

1 0
1

0
1

Ω

0
1 0

1 0
1

0
1 0

1

1 0
1

0
1 1

2

Ω

1

r
p

r
p

r
p

pθ γ
r pθ

1

⎜ ⎟

⎜ ⎟

⎜ ⎟

( ) ( ) ( ) ( ) ∣ ∣

( ) ⎛
⎝

( ) ∣ ∣ ⎞
⎠

⎛
⎝

⎞
⎠

( )

⎛
⎝

⎞
⎠

⎛

⎝
⎜

( )

( )∣ ∣
⎞

⎠
⎟

∣ ∣

∫

∫

≥ ≥ ‖∇ ‖ −

≥ ‖∇ ‖ − ‖∇ ‖

≥ −
− +

‖∇ ‖

≥ −
− +

‖∇ ‖
− +
− +

≥

−
− + − +

− +
−

− − − −

−
− +

−
− − −

−

∗

∗

− +
−

where

b
p

r p
r γ

b p γ S
p r γ

SΛ
1

1
1 Ω Ω

.θ

r
p

θ2
0

1
0
1 1 r

p

pθ γ
r pθ γ

p

p γ
p

1
1

1
⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝
⎜

( )

( )∣ ∣
⎞

⎠
⎟

∣ ∣
= −

− +
− +
− +− − − ∗

− +
− −

∗+ −
∗

From the aforementioned considerations, we see that

σ t λ u xdu
u γ
max

Ω

1( ) ∣ ∣∫> −

whenever λ 0, Λ2( )∈ .
Recall that σu is injective in t0, u

max( ) and in t ,u
max( )∞ . Hence, we find unique t t, 0u u

1 2 > such that

σ t λ u x σ t σ t σ td with 0 .u
u γ

u
u

u
u

u
u

1

Ω

1
2 2 1( ) ∣ ∣ ( ) ( ) ( )∫= = ′ < < ′−

In addition, we have t uu
1 , t uu

λ2 �∈ , see (3.12). By using the representation in (3.11), we observe that
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σ t t ψ t γt ψ t .u
γ

u
γ

u
1( ) ( ) ( )′ = ″ + ′−

Since ψ t ψ t 0u
u

u
u

1 2( ) ( )′ = ′ = and σ t σ t0u
u

u
u

2 1( ) ( )′ < < ′ , we get

σ t t ψ t σ t t ψ t0 and 0 .u
u u γ

u
u

u
u u γ

u
u

1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( )< ′ = ″ > ′ = ″

Hence, t uu
λ1 �∈ + and t uu

λ2 �∈ −, which completes the proof. □

Next we prove lower and upper bounds for the modular ϱ
�

( )∇⋅ for the elements of λ�
+ and λ�

−,
respectively.

Proposition 3.4. Let hypotheses (H) be satisfied and let λ 0> . Then there exist constants D D λ 01 1( )= > and
D 02 > such that

u u D and v Dp
p

q a
q

p
p

, 1 2‖∇ ‖ + ‖∇ ‖ < ‖∇ ‖ >

for every u λ�∈ + and for every v λ�∈ −.

Proof. Let u λ�∈ +. From ψ 1 0u( )′ = and ψ 1 0u ( )″ > , we obtain

r a b ϕ u u u λ r u x

a b ϕ u p u q u b θ ϕ u u u

λγ u x

1 1 d

1 1 1

d .

θ
p
p

q a
q γ

θ
p
p

q a
q θ

p
p

q a
q

γ

0 0
1

,

Ω

1

0 0
1

, 0
2

,
2

Ω

1

�

� �

( )[ ( )]( ) ( ) ∣ ∣

[ ( )](( ) ( ) ) ( ) ( )( )

∣ ∣

∫

∫

− + ∇ ‖∇ ‖ + ‖∇ ‖ − −

< + ∇ − ‖∇ ‖ + − ‖∇ ‖ + − ∇ ‖∇ ‖ + ‖∇ ‖

+

− −

− −

−

By using ϕ u u uq p
p

q a
q1

,�
( ) ( )∇ ≥ ‖∇ ‖ + ‖∇ ‖ in the aforementioned inequality along with Hölder’s inequality and

(3.3), it follows

a r p u r q u b ϕ u r p q θ u r qθ u

λ r γ u x λ r γ S u

1

1 d 1 Ω .

p
p

q a
q θ

p
p

q a
q

γ
p

γ

0 , 0
1

,

Ω

1 1 1γ
p

γ
p

1 1

�
(( ) ( ) ) ( )(( ( )) ( ) )

( ) ∣ ∣ ( )∣ ∣∫
− ‖∇ ‖ + − ‖∇ ‖ + ∇ − − − ‖∇ ‖ + − ‖∇ ‖

< − + ≤ − + ‖∇ ‖

−

− − − −
−
∗

− (3.16)

Since r θq> , we have r p q θ r q q θ1 1 0( ) ( )− − − ≥ − − − > . Hence, we obtain from (3.16)

λ r γ S b
p

r p q θ u1 Ω 1 ,θ p
pθ γ1 0

1
1γ

p
γ

p
1 1

( )∣ ∣ ( ( ))− + > − − − ‖∇ ‖− −
−

− +
−
∗

−

which gives

u A λp r γ S
b r p q θ

1 Ω
1

.p
p

θ
1

1 1

0

γ
p

γ
p

p
pθ γ1 1 1⎛

⎝
⎜

( )∣ ∣
( ( ))

⎞

⎠
⎟‖∇ ‖ < ≔

− +
− − −

− − −
−
∗

− − +

(3.17)

By putting (3.17) in (3.16), we get

λ r γ S A b
q

r qθ u1 Ω ,
γ

p
θ q a

qθ1
1

1
0

1 ,
γ

p
γ

p
1 1

( )∣ ∣ ( )− + > − ‖∇ ‖− −
−

−

−
∗

−

which results in

u A λq r γ S A
b r qθ

1 Ω .q a
q

θ
γ

p

, 2
1 1

1

1

0

γ
p

γ
p

θ1 1

1

⎛

⎝

⎜
⎜

( )∣ ∣
( )

⎞

⎠

⎟
⎟

‖∇ ‖ < ≔
− +

−

− − −
−−

∗
−

(3.18)
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From (3.17) and (3.18), we conclude that

u u A A D .p
p

q a
q

, 1 2 1‖∇ ‖ + ‖∇ ‖ < + ≕

Next let us we fix v λ�∈ −. Then ψ 1 0v( )′ = and ψ 1 0v ( )″ < gives us

a b ϕ v p v q v γ a b ϕ v v v

b θ ϕ v v v

r γ v x r γ S v

1 1

1

1 d 1 Ω .

θ
p
p

q a
q θ

p
p

q a
q

θ
p
p

q a
q

r
p
r

0 0
1

, 0 0
1

,

0
2

,
2

Ω

1 r
p

r
p

� �

�

[ ( )](( ) ( ) ) [ ( )]( )

( ) ( )( )

( ) ∣ ∣ ( )∣ ∣∫

+ ∇ − ‖∇ ‖ + − ‖∇ ‖ + + ∇ ‖∇ ‖ + ‖∇ ‖

+ − ∇ ‖∇ ‖ + ‖∇ ‖

< − + ≤ − + ‖∇ ‖

− −

−

− −∗

Therefore, we obtain

v D b p
p r γ S

1
1 Ω

.p
p

θ2
0

1 1 r
p

r
p

p
r pθ⎛

⎝
⎜

( )

( )∣ ∣
⎞

⎠
⎟‖∇ ‖ > ≔ −

− +− − −∗

−

Thus, the proof is finished. □

4 Existence of solutions for problem Pλ( )

In this section, we use the results from Section 3 in order to prove Theorem 1.2. To this end, we first define

J uΘ inf .λ
u

λ
λ�

( )=+

∈ +

The next proposition shows that this minimum is achieved and it has negative energy.

Proposition 4.1. Let hypotheses (H) be satisfied and let λ 0, min Λ , Λ1 2( { })∈ , with Λ1 and Λ2 given in Lemmas
3.2 and 3.3. Then Θ 0λ <+ and there exists uλ λ�∈ + such that J u Θ 0λ λ λ( ) = <+ with u 0λ ≥ a.e. in Ω.

Proof. Let u λ�∈ +. Then we have

a b ϕ u u u u x λ u xd dθ
p
p

q a
q r γ

0 0
1

,

Ω Ω

1
�

[ ( )]( ) ∣ ∣ ∣ ∣∫ ∫− + ∇ ‖∇ ‖ + ‖∇ ‖ + = −− − (4.1)

and

a b ϕ u p u q u b θ ϕ u u u

λγ u x r u x

1 1 1

d 1 d .

θ
p
p

q a
q θ

p
p

q a
q

γ r

0 0
1

, 0
2

,
2

Ω

1

Ω

� �
[ ( )][( ) ( ) ] ( ) ( )( )

∣ ∣ ( ) ∣ ∣∫ ∫
+ ∇ − ‖∇ ‖ + − ‖∇ ‖ + − ∇ ‖∇ ‖ + ‖∇ ‖

+ > −

− −

− (4.2)

Combining (4.1) multiplied with γ− and (4.2) yields

r γ u x a b ϕ u p γ u q γ u

b θ ϕ u u u

1 d 1 1

1 .

r θ
p
p

q a
q

θ
p
p

q a
q

Ω

0 0
1

,

0
2

,
2

�

�

( ) ∣ ∣ [ ( )][( ) ( ) ]

( ) ( )( )

∫− + < + ∇ − + ‖∇ ‖ + − + ‖∇ ‖

+ − ∇ ‖∇ ‖ + ‖∇ ‖

−

−

(4.3)

By using (4.1) and (4.3), we obtain
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J u a ϕ u b
θ

ϕ u λ
γ

u x
r

u x

a ϕ u b
θ

ϕ u
γ

a b ϕ u u u r γ
r γ

u x

a ϕ u b
θ

ϕ u a b ϕ u p γ
r γ γ

u

q γ
r γ γ

u b θ
r γ

ϕ u u u

a
p

p γ r
r γ

u
q

q γ r
r γ

u

b
ϕ u

θ
ϕ u p γ r

r γ
u

ϕ u q γ r
r γ

u

θ
r γ

ϕ u u u

a B b B

1
d 1 d

1
1

1
1

d

1
1

1
1

1
1

1
1

1
1

1 1
1

1 1
1

1
1

1
1

1
1

,

λ
θ γ r

θ θ
p
p

q a
q r

θ θ
p
p

q a
q θ

p
p

q a
q

p
p

q a
q

θ θ

p
p

θ

q a
q

θ
p
p

q a
q

0
0

Ω

1

Ω

0
0

0 0
1

,

Ω

0
0

0 0
1

, 0
2

,
2

0 ,

0

1 1

,

2
,

2

0 1 0 2

� �

� � �

� � �

�

� � �

�

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

( ) ⎡
⎣

( ) ( )⎤
⎦

∣ ∣ ∣ ∣

⎡
⎣

( ) ( )⎤
⎦

[ ( )]( )
( )

∣ ∣

⎡
⎣

( ) ( )⎤
⎦

[ ( )]⎡

⎣
⎢

⎛
⎝ ( )

⎞
⎠

⎛
⎝ ( )

⎞
⎠

⎤

⎦
⎥

( )
( )

( )( )

⎡

⎣
⎢

⎛
⎝ ( )

⎞
⎠

⎛
⎝ ( )

⎞
⎠

⎤

⎦
⎥

⎡

⎣
⎢

( ) ( )( )

( )

( )( )

( )

( )
( )

( )( ) ⎤
⎦⎥

∫ ∫

∫

= ∇ + ∇ −
−

−

= ∇ + ∇ −
−

+ ∇ ‖∇ ‖ + ‖∇ ‖ +
− +
−

< ∇ + ∇ + + ∇
− +
−

−
−

‖∇ ‖

+
− +
−

−
−

‖∇ ‖ + −
−

∇ ‖∇ ‖ + ‖∇ ‖

= +
− + −

−
‖∇ ‖ + +

− + −
−

‖∇ ‖

+
∇

+
∇ − + −

−
‖∇ ‖ +

∇ − + −
−

‖∇ ‖

+ −
−

∇ ‖∇ ‖ + ‖∇ ‖

= +

−

−

−

−

− −

−

with

B
p

p γ r
r γ

u
q

q γ r
r γ

u

B
ϕ u

θ
ϕ u p γ r

r γ
u

ϕ u q γ r
r γ

u

θ
r γ

ϕ u u u

1 1
1

1 1
1

,

1
1

1
1

1
1

.

p
p

q a
q

θ θ

p
p

θ

q a
q

θ
p
p

q a
q

1 ,

2

1 1

,

2
,

2

� � �

�

⎜ ⎟ ⎜ ⎟
⎛
⎝ ( )

⎞
⎠

⎛
⎝ ( )

⎞
⎠

( ) ( )( )

( )

( )( )

( )
( )
( )

( )( )

= +
− + −

−
‖∇ ‖ + +

− + −
−

‖∇ ‖

=
∇

+
∇ − + −

−
‖∇ ‖ +

∇ − + −
−

‖∇ ‖

+ −
−

∇ ‖∇ ‖ + ‖∇ ‖

− −

−

From the assumptions (H), we have

p
p γ r

r γ
p r p γ

pr γ q
q γ r

r γ
q r q γ

qr γ
1 1

1
1

1
0, 1 1

1
1

1
0.

( )
( )( )

( ) ( )
( )( )

( )
+

− + −
−

=
− − +

−
< +

− + −
−

=
− − +

−
≤

Therefore, B 01 < .
Let us consider B2. By using

ϕ u u u qϕ u u u ,θ
p
p

q a
q θ

p
p

q a
q2

,
2 1

,� �
( )( ) ( )( )∇ ‖∇ ‖ + ‖∇ ‖ ≤ ∇ ‖∇ ‖ + ‖∇ ‖− −

we get

B
ϕ u

θ
ϕ u p γ r q θ

r γ
u ϕ u q γ r q θ

r γ
u

ϕ u
pθ

p γ r q θ
r γ

u
qθ

qθ γ r
r γ

u

1 1
1

1 1
1

1 1 1
1

1 1
1

.

θ
θ

p
p θ

q a
q

θ
p
p

q a
q

2
1 1

,

1
,

�

� �

�
⎜ ⎟ ⎜ ⎟

( )
( )

( ) ( )
( )

( )
( ) ( )

( )

( )⎡

⎣
⎢

⎛
⎝

( ) ( )
( )

⎞
⎠

⎛
⎝

( )
( )

⎞
⎠

⎤

⎦
⎥

≤
∇

+ ∇
− + − + −

−
‖∇ ‖ + ∇

− + − + −
−

‖∇ ‖

= ∇ +
− + − + −

−
‖∇ ‖ + +

− + −
−

‖∇ ‖

− −

−

Now, since θ 1≥ and θq r< , we obtain

pθ
p γ r q θ

r γ
r γ pθ p γ r pθq θ rp rp

pθr γ
pθ r p γ p θ θq r

pθr γ

1 1 1
1

1 1 1
1

1 1
1

0,

( ) ( )
( )

( ) ( ) ( )
( )

( )( ) ( )( )
( )

+
− + − + −

−
=

− + − + − + − − +
−

=
− − + + − −

−
<

because θp θq r< < . Similarly, we have
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qθ
qθ γ r

r γ
r γ qθ qθ γ r qθr qθr

qθr γ
qθ r qθ γ

qθr γ

1 1
1

1 1
1

1
1

0.

( )
( )

( ) ( )
( )

( )( )
( )

+
− + −

−
=

− + − + − − +
−

=
− − +

−
<

From the aforementioned considerations, it follows that B 02 < . Hence J u 0λ( ) < , which implies that

J uΘ 0.λ λ( )≤ <+

Let us now prove the second part of the proposition. To this end, let un n λ� �{ } ⊂∈
+ be a minimizing

sequence, that is,

J u nΘ 0 as .λ n λ( )↘ < → ∞+

By Lemma 3.1, we know that un n �{ } ∈ is bounded in W Ω0
1,� ( ). Hence, by Proposition 2.2(ii) along with the

reflexivity of W Ω0
1,� ( ), there exist a subsequence still denoted by un n �{ } ∈ and u W Ωλ 0

1,� ( )∈ such that

u u W u u L u uin Ω , in Ω and a.e. in Ωn λ n λ
s

n λ0
1,� ( ) ( )⇀ → → (4.4)

for any s p1,[ )∈ ∗ . By applying the weak lower semicontinuity of the norms and seminorms and Lebesgue’s
dominated convergence theorem, we infer that

J u J u Jliminf Θ 0 0 .λ λ
n

λ n λ λ( ) ( ) ( )≤ = < =
→∞

+

Thus, u 0λ ≠ . From Lemma 3.3, we know that there exists a unique t 0u
1

λ > such that t uu
λ λ1

λ �∈ +.

Claim: u un λ→ in W Ω0
1,� ( )

Let us suppose by contradiction that

u uliminf .
n

n p
p

λ p
p‖∇ ‖ > ‖∇ ‖

→∞

From this inequality along with ψ t 0u
u
1λ

λ( )′ = , (4.4), the weak lower semicontinuity of the norms and semi-
norms and Lebesgue’s dominated convergence theorem, we infer that

ψ t t u t u a b ϕ t u λ t u x

t u x

t u t u a b ϕ t u λ t u x

t u x

ψ t

liminf liminf d

d

d

d

0.

n u
u

n
u p

n p
p u q

n q a
q θ u

n
u γ

n
γ

u r
n

r

u p
λ p

p u q
λ q a

q θ u
λ

u γ
λ

γ

u r
λ

r

u
u

1 1
1

1
1

, 0 0
1

1 1

Ω

1

1
1

Ω

1
1

1
1

, 0 0
1

1 1

Ω

1

1
1

Ω

1

n
λ λ λ λ λ

λ

λ λ λ λ

λ

λ
λ

�

�

⎡

⎣
⎢
⎢

[ ]( ) ∣ ∣

∣ ∣
⎤

⎦
⎥
⎥

[ ]( ) ∣ ∣

∣ ∣

( ) ( ) ( ) ( ) ( ) ∫

( ) ∫

( ) ( ) ( ) ( ) ∫

( ) ∫

( )

′ = ‖∇ ‖ + ‖∇ ‖ + ∇ −

−

> ‖∇ ‖ + ‖∇ ‖ + ∇ −

−

= ′ =

→∞ →∞
− − − − −

−

− − − − −

−

Thus, we can find a number n0 �∈ such that

ψ t n n0 for all .u
u
1 0n

λ( )′ > ≥

Recalling the representation in (3.11), we obtain that ψ t 0un
( )′ < for t 0, 1( )∈ , and since ψ 1 0un

( )′ = , this
implies t 1u

1
λ > . Hence, t uu

λ λ1
λ �∈ + gives that

J t u J u J uΘ liminf Θ ,λ λ
u

λ λ λ
n

λ n λ1
λ ( ) ( )( )≤ ≤ < =+

→∞

+

which is a contradiction. Therefore, we find a subsequence such that
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u ulim .
n

n p
p

λ p
p‖∇ ‖ = ‖∇ ‖

→∞

If we suppose that

u ulim ,
n

n q a
q

λ q a
q

, ,‖∇ ‖ > ‖∇ ‖
→∞

then we can argue as above reaching a contradiction. Therefore, for a subsequence, we have

u ulim .
n

n q a
q

λ q a
q

, ,‖∇ ‖ = ‖∇ ‖
→∞

From these considerations, we obtain that u uϱ ϱn λ� �
( ) ( )∇ → ∇ , and since the integrand corresponding

to the modular function is uniformly convex, we get that ϱ 0u u
2

n λ
�

( ) →∇ − ∇ . From Proposition 2.1(v), we
obtain that u un λ→ in W Ω0

1,� ( ). The continuity of Jλ implies that J u J uλ n λ λ( ) ( )→ and so J u Θλ λ λ( ) = +.
Finally, we have to show that uλ λ�∈ +. Since un λ�∈ + for all n �∈ , it holds

ψ a b ϕ u u u λ u x u x1 d d 0u
θ

n n p
p

n q a
q

n
γ

n
r

0 0
1

,

Ω

1

Ω
n �
( ) [ ( )]( ) ∣ ∣ ∣ ∣∫ ∫′ = + ∇ ‖∇ ‖ + ‖∇ ‖ − − =− − (4.5)

and

ψ a b ϕ u p u q u

b θ ϕ u u u

λγ u x r u x

1 1 1

1

d 1 d 0.

u
θ

n n p
p

n q a
q

θ
n n p

p
n q a

q

n
γ

n
r

0 0
1

,

0
2

,
2

Ω

1

Ω

n �

�

( ) [ ( )][( ) ( ) ]

( ) ( )( )

∣ ∣ ( ) ∣ ∣∫ ∫

″ = + ∇ − ‖∇ ‖ + − ‖∇ ‖

+ − ∇ ‖∇ ‖ + ‖∇ ‖

+ − − >

−

−

−

(4.6)

Passing to the limit as n → ∞ in (4.5) and (4.6), we obtain

ψ ψ1 0 and 1 0.u uλ λ
( ) ( )′ = ″ ≥

Recall that λ 0, min Λ , Λ1 2( { })∈ . Then Lemma 3.2 says that λ� = ∅∘ and so ψ 1 0uλ
( )″ > . This shows that

uλ λ�∈ +. Noting that we can work with uλ∣ ∣ instead of uλ, we conclude that u 0λ ≥ a.e. in Ω. □

Lemma 4.2. Let hypotheses (H) be satisfied, u λ�∈ ± and let λ 0> . Then there exist ε 0> and a continuous
function ζ B: 0 0,ε( ) ( )→ ∞ such that

ζ and ζ v u v for all v B0 1 0 ,λ ε�( ) ( )( ) ( )= + ∈ ∈±

where B v W v ε0 Ω :ε 0
1,�( ) { ( ) }≔ ∈ ‖ ‖ < .

Proof. We define the map F W: Ω 0,0
1, �� ( ) ( )× ∞ → given by

F v t t ψ t v t W, for , Ω 0, .γ
u v 0

1,�( ) ( ) ( ) ( ) ( )= ′ ∈ × ∞+

Note that

F
t

v t γt ψ t t ψ t, .γ
u v

γ
u v

1( ) ( ) ( )
∂
∂

= ′ + ″−
+ + (4.7)

Since u λ�∈ +, we obtain

F ψ F
t

ψ0, 1 1 0 and 0, 1 1 0.u u( ) ( ) ( ) ( )= ′ = ∂
∂

= ″ > (4.8)

Hence, we can apply the implicit function theorem to F at 0, 1( ) (see, for example, Berger [6, p. 115]) to claim
that there exists ε 0> such that for any v W Ω0

1,� ( )∈ with v ε‖ ‖ < , the equation F v t, 0( ) = has a continuous
unique solution t ζ v 0( )= > . From this and (4.8), we infer that

ζ F v ζ v v W0 1 and , 0 for all Ω ,0
1,�( ) ( ( )) ( )= = ∈
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whenever v ε‖ ‖ ≤ . Therefore, ζ v u v λ�( )( )+ ∈ for all v ε‖ ‖ ≤ , and from (4.7), we conclude that

F
t

v ζ v ζ v ψ ζ v v ε, for all .γ
u v( ( )) ( ( )) ( ( ))

∂
∂

= ″ ‖ ‖ ≤+

Recall that ζ 0 1( ) = and 0, 1 0F
t ( ) >∂
∂

. We observe that for δ 0, 1( )∈ , the mapping

W δ δ v ψ: Ω 1 , 1 defined as ,u δ u v, 0
1, �� �

� ( ) [ ] ( ) ( )× − + → ℓ ≔ ″ ℓ+

is continuous. Hence, we can choose ε 0> small enough such that

ζ v u v v εfor all .λ�( )( )+ ∈ ‖ ‖ ≤+

The proof for the case u λ�∈ − works similar. □

Proposition 4.3. Let hypotheses (H) be satisfied and let λ 0, min Λ , Λ1 2( { })∈ , with Λ1 and Λ2 given in Lemmas
3.2 and 3.3. Then there exist ε δ, 0> such that

J u J u th for all h W Ωλ λ λ λ 0
1,�( ) ( ) ( )≤ + ∈

when t P t δ th B0, : 0δ ε{ [ ] ( )}∈ ≔ ∈ ∈ , where uλ is as defined in Proposition 4.1.

Proof. For h W Ω0
1,� ( )∈ , we define the function f : 0,h �[ )∞ → given by

f t ψ t1 for 0, .h u thλ
( ) ( ) [ )= ″ ∈ ∞+

Since uλ λ�∈ +, we obtain

f ψ0 1 0.h uλ
( ) ( )= ″ >

By recalling the expression of ψu″ in (3.1), u 0λ ≢ in Ω and by using the same arguments as in Lemma 4.2, we
assert that there exists δ 00 > such that

ψ f t t δ1 0 for all 0, .u th h 0λ
( ) ( ) [ ]″ = > ∈+

From Lemma 4.2 for uλ λ�∈ +, we find ε 0> and a continuous map ζ B: 0 0,ε( ) ( )→ ∞ such that

ζ th u th t P ζ th tfor all with 1 as 0 .λ λ δ0�( )( ) ( )+ ∈ ∈ → →+ +

This implies, in particular, the convexity of the function ψu thλ
″+ in a neighborhood of 1 by taking δ0 small

enough. The continuity of the map u ψ 1λ uλ
( )↦ ″ and the fact that ψ ζ th 0u thλ

( ( ))′ =+ allows us to choose
δ δ0, 0( )∈ such that ψ 1 0u thλ

( )″ >+ and ψ ζ t ψ 1u th u thλ λ
( ( )) ( )≤+ + for t Pδ∈ . Therefore, by taking Proposition

4.1 into account, we get

J u J ζ t u th ψ ζ t ψ J u thΘ 1 .λ λ λ λ λ u th u th λ λλ λ
( ) ( ( )( )) ( ( )) ( ) ( )= ≤ + = ≤ = ++

+ + □

Now we are ready to prove the existence of the first weak solution to problem Pλ( ).

Proposition 4.4. Let hypotheses (H) be satisfied and let λ 0, min Λ , Λ1 2( { })∈ , with Λ1 and Λ2 given in Lemmas
3.2 and 3.3. Then, uλ is a weak solution of problem Pλ( ) with J u 0λ λ( ) < .

Proof. We have to show that u 0λ > a.e. in Ω and for every φ W Ω0
1,� ( )∈ , u φ L Ωλ

γ 1( )∈− and

m ϕ u u φ λ u φ x u φ x, d d .λ p q
a

λ
γ

λ
r

,

Ω Ω

1
�

�
( ( )) ( ) ∫ ∫∇ ⟨ ⟩ = +− −

(4.9)

We divide the proof into three steps.
Step 1: u 0λ > a.e. in Ω.
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From Proposition 4.1, we already know that u 0λ ≥ a.e. in Ω. To prove the strict positivity, we argue by
contradiction. Suppose that there exists a set K Ω⊂ with positive measure such that u 0λ ≡ in K . Applying

Proposition 4.3 with h W Ω0
1,� ( )∈ satisfying h 0> and let t P 0δ { }∈ ⧹ , then u th uλ

γ
λ

γ1 1( )+ >− − in KΩ⧹ , and we
obtain

J u th J u

M ϕ u th M ϕ u λ
γ

u th u x
r

u th u

M ϕ u th M ϕ u λt
γ

h x
r

u th u

0

1
d 1

1
d 1 .

λ λ λ λ

λ λ λ
γ

λ
γ

λ r
r

λ r
r

λ λ
γ

K

γ
λ r

r
λ r

r

Ω

1 1

1
1

� �

� �

( ) ( )

[ ( ( ))] [ ( )] [( ) ] [ ]

[ ( ( ))] [ ( )]
( )

( )

∫

∫

≤ + −

= ∇ + − ∇ −
−

+ − − ‖ + ‖ − ‖ ‖

< ∇ + − ∇ −
−

− ‖ + ‖ − ‖ ‖

− −

−
−

Dividing by t 0> and passing to the limit as t 0→ + in the aforementioned estimate, we conclude that

J u th J u
t

0 ,λ λ λ λ( ) ( )≤ + − → −∞

which is a contradiction. Thus, u 0λ > a.e. in Ω.

Step 2: For any h W Ω0
1,� ( )∈ with h 0≥ , let us verify

m ϕ u u h λ u h x u h x, d d .λ p q
a

λ
γ

λ
r

,

Ω Ω

1
�

�
( ( )) ( ) ∫ ∫∇ ⟨ ⟩ ≥ +− −

(4.10)

For this purpose, let us consider the nonnegative and measurable functions ζ : Ωn �→ + defined by

ζ x u x t h x u x
tn

λ n
γ

λ
γ

n

1 1
( )

( ( ) ( )) ( )≔ + −− −

where tn n �{ } ∈ is a decreasing sequence such that tlim 0n n =→∞ . Clearly, we have

ζ x γ u x h x xlim 1 for a.a. Ω.
n n λ

γ( ) ( ) ( ) ( )= −   ∈
→∞

−

Now, by using Fatou’s lemma, we get

λ u h x λ
γ

ζ xd
1

liminf d .λ
γ

n n

Ω Ω

∫ ∫≤
−

−

→∞ (4.11)

Arguing similarly to Step 1 and applying again Proposition 4.3, we obtain

J u t h J u
t

M ϕ u t h M ϕ u
t

λ
γ

ζ x
r

u t h u
t

x

0

1
d 1 d .

λ λ n λ λ

n

λ n λ

n
n

λ n
r

λ
r

n
Ω Ω

� �

( ) ( )

[ ( ( ))] [ ( )] ( )∫ ∫

≤ + −

=
∇ + − ∇

−
−

−
+ −

Letting n → ∞ in the aforementioned inequality and using (4.11), it follows that

λ u h x m ϕ u u h u h xd , d .λ
γ

λ p q
a

λ
r

Ω

,

Ω

1
�

�
( ( )) ( )∫ ∫≤ ∇ ⟨ ⟩ −− −

Hence, (4.11) is satisfied, and we also infer that u h L Ωλ
γ 1( )∈− . Therefore, we have u φ L Ωλ

γ 1( )∈− for
φ W Ω0

1,� ( )∈ since φ φ φ= −+ − with φ φmax , 0{ }= ±± .
Step 3: uλ satisfies (4.9).
Let φ W Ω0

1,� ( )∈ and let ε 0> . We take h u εφλ( )= + + as test function in (4.10) and use uλ λ�∈ as well
as u εφ u εφΩ 0 0λ λ{ } { }= + > ∪ + ≤ . This leads to
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m ϕ u u u εφ λ u u εφ x u u εφ x

m ϕ u u u a x u u u εφ x

λ u u εφ x u u εφ x

m ϕ u u u a x u u u εφ x

λ u u εφ x u u εφ x

ε m ϕ u u u a x u u φ x λu u φ x

m ϕ u u u a x u u u εφ x

λ u u εφ x u u εφ x

ε m ϕ u u u a x u u φ x λu u φ x

m ϕ u u u a x u u φ x

0 , d d

d

d d

d

d d

d d

d

d d

d d

d .

λ p q
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λ λ λ
γ
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r

λ

λ λ
p

λ λ
q

λ λ

λ
γ

λ λ
r

λ

λ

u εφ

λ
p

λ λ
q
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(4.12)

Since x u x εφ xΩ : 0 0λ∣{ ( ) ( ) }∣∈ + ≤ → as ε 0→ by Step 1, we know that

m ϕ u u u a x u u φ x εd 0 as 0.λ

u εφ
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( ( )) (∣ ∣ ( )∣ ∣ )

{ }

∫∇ ∇ ∇ + ∇ ∇ ⋅∇ → →
+ ≤
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(4.13)

Now, by dividing (4.12) by ε and passing to the limit as ε 0→ by using (4.13), we obtain

m ϕ u u φ λ u φ x u φ x, d d .λ p q
a

λ λ
γ

λ
r

,

Ω Ω

1
�

�
( ( )) ( ) ∫ ∫∇ ⟨ ⟩ ≥ +− −

The arbitrariness of φ W Ω0
1,� ( )∈ implies that equality must hold. Hence, u W Ωλ 0

1,� ( )∈ is a weak solution of
problem Pλ( ) with J u Θ 0λ λ λ( ) = <+ . □

Let us now prove the existence of a second weak solution of problem Pλ( ). For this, we minimize the
energy functional Jλ restricted to the set λ�

−. We define

J uΘ inf .λ
u

λ
λ�

( )=−

∈ −

Proposition 4.5. Let hypotheses (H) be satisfied. Then there exists Λ 0, min Λ , Λ3 1 2( { }]∈ , with Λ1 and Λ2 given
in Lemmas 3.2 and 3.3, such that Θ 0λ >− for all λ 0, Λ3( )∈ . Moreover, for every λ 0, Λ3( )∈ , there exists
vλ λ�∈ − such that v 0λ ≥ a.e. in Ω and J vΘλ λ λ( )=− .

Proof. The first assertion will be proved by contradiction. Thus, let us suppose there exists v λ0 �∈ − such
that J v 0λ 0( ) ≤ , that is,
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By using pϕ u u p
p

�
( )∇ ≥ ‖∇ ‖ , we obtain the following estimate:
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Since v λ λ0 � �∈ ⊂− , we have

qθ
m ϕ v v v λ

qθ
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Now, by using (4.14), (4.15), (4.16), and r qθ> along with Hölder’s inequality and (3.3), we obtain
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Combining the aforementioned considerations with Proposition 3.4 gives

D v D
D

λ0 .
pθ γ

p
p
pθ γ

2

1

0
1 4

3
< ≤ ‖∇ ‖ ≤

− +
− +

Letting λ 0→ yields a contradiction. Therefore, we can find Λ 0, min Λ , Λ3 1 2( { }]∈ such that Θ 0λ >− for
all λ 0, Λ3( )∈ .

Let us now prove the second assertion of the proposition. To this end, let vn n �{ } ∈ be a minimizing
sequence in λ�

− such that J v Θλ n λ( ) → −. Since λ λ� �⊂− , Lemma 3.1 implies that vn n �{ } ∈ is a bounded sequence

inW Ω0
1,� ( ). Therefore, by Proposition 2.2(ii) along with the reflexivity ofW Ω0

1,� ( ), there exist a subsequence
still denoted by vn n �{ } ∈ , and v W Ωλ 0

1,� ( )∈ such that

v v W v v L v vin Ω , in Ω and a.e. in Ωn λ n λ
s

n λ0
1,� ( ) ( )⇀ → → (4.17)

for any s p1,[ )∈ ∗ . From vn λ�∈ −, pϕ u u p
p

�
( )∇ ≥ ‖∇ ‖ and Hölder’s inequality along with (3.3), we have
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Hence, due to the strong convergence of v vn λ→ in L Ωr( ), see (4.17), we can conclude that v 0λ ≠ .
Since v 0λ ≢ , from Lemma 3.3, we know there exists a unique t 0v

2
λ > such that t vv

λ λ2
λ �∈ −.

Now, we are going to show, up to a subsequence, that v vlim ϱ ϱn n λ( ) ( )∇ = ∇→∞ . For this, we repeat the
same arguments as in the proof of Proposition 4.1 by establishing

v v v vliminf and liminf .
n
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λ p
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q
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Then, using the inequality above, (4.17) and the continuity and increasing property of the primitive of the
Kirchhoff term M , we obtain
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Note that vn is the global maximum since ψ 1 0vn
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λ �∈ −, we conclude that
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λ ( )( )≤ < =−
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−

Thus, we get a contradiction. The other case works similarly and so we know that there is a subsequence
(not relabeled) such v vlim ϱ ϱn n λ( ) ( )∇ = ∇→∞ . Using the uniform convexity of the modular function
ρ

�
and the continuity of the energy functional Jλ, we obtain v vn λ→ due to Proposition 2.1(v) and

J v J v Θλ n λ λ λ( ) ( )→ = − up to a subsequence.
To show vλ λ�∈ −, we use the fact that vn λ�∈ − for every n �∈ and so by passing to the limit inψ 1 0vn

( )″ < ,

we obtain

a b ϕ v p v q v
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−
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Since v 0λ ≢ and using Lemma 4.2 with λ 0, min Λ , Λ , Λ1 2 3( { })∈ , we infer that the equality cannot occur, so
we have a strict inequality, which gives vλ λ�∈ −. As mentioned earlier, since we can work with vλ∣ ∣ instead of
vλ, we can assume that v 0λ ≥ a.e. in Ω. □

Now we show that vλ obtained in Proposition 4.5 is indeed a weak solution of our problem Pλ( ).

Proposition 4.6. Let hypotheses (H) be satisfied and let λ 0, min Λ , Λ , Λ1 2 3( { })∈ , with Λ1, Λ2, and Λ3 given in
Lemmas 3.2 and 3.3 as well as Proposition 4.5. Then vλ is a weak solution of problem Pλ( ) with J v 0λ λ( ) > .
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Proof. The proof works similar to the one of Proposition 4.4. Let h W Ω0
1,� ( )∈ with h 0.> As we already

know, vλ λ�∈ − and v 0λ ≥ a.e. in Ω. Then from Lemma 4.2 and Proposition 4.5, there exist ε 0> and a
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Now, we claim that v 0λ > a.e. in Ω. We proceed by contradiction. Suppose there exists a set K Ω ⊂ of
positive measure such that v 0λ = in K. Since ζ th 1( ) → as t 0→ +, by continuity of the map ψvλ
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which is a contradiction, and hence, v 0λ > a.e. inΩ. The rest of the proof can be done by following the same
arguments as in the proof of Proposition 4.4, using ψ ψ ζ th1v vλ λ

( ) ( ( ))≥ along with v 0λ > and (4.18). □

Proof of Theorem 1.2. Choosing λ 0, min Λ , Λ , Λ1 2 3( { })∈∗ , the assertions of the theorem follow now from
Propositions 4.4 and 4.6. □

5 A second Kirchhoff double phase problem

Inspired by (1.6) studied in [17], in this section, we deal with a Kirchhoff problem of double phase type with
p and q elliptic terms separated. Namely, we consider
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satisfying the same structural assumption of Pλ( ). Problem (Pλ͠ ) has still a variational setting, where the
corresponding energy functional J W: Ωλ 0

1, �� ( ) →∼
associated to problem (Pλ͠ ) is given by
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Of course the critical points of Jλ
∼
coincides with the weak solutions of (Pλ͠ ), verifying the following complete

definition.
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Definition 5.1. A function u W Ω0
1,� ( )∈ is said to be a weak solution of problem (Pλ͠ ) if u φ L Ωγ 1( )∈− , u 0>
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is satisfied for all φ W Ω0
1,� ( )∈ .

Then, by arguing similarly to Theorem 1.2, we are able to provide the following result.

Theorem 5.2. Let hypotheses (H) be satisfied. Then there exists λ 0͠ > such that for all λ λ0,( ]͠∈ problem (Pλ͠ )
has at least two weak solutions wλ, z W Ωλ 0

1,� ( )∈ such that J w J z0λ λ λ λ( ) ( )< <∼ ∼
.

The proof of Theorem 5.2 works exactly as the one for Theorem 1.2, up to slight changes of constants.

For this, we omit the detailed proof and we just introduce the fibering function ψ : 0,u �[ )͠ ∞ → defined for
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In this case, we still have ψ C 0,u (( ))͠ ∈ ∞∞ satisfying for t 0>
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From this, we can still set the Nehari manifold λ� and the related submanifolds as done in Section 3. Then,
we construct the two solutions wλ and zλ of (Pλ͠ ) as minimizers of

J u J uΘ inf , Θ infλ
u

λ λ
u

λ
λ λ� �

( ) ( )͠ ͠= =∼ ∼−

∈

+

∈− +

completing the proof of Theorem 5.2.
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