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Abstract
In this paper we present new embedding results for Musielak–Orlicz Sobolev spaces of
double phase type. Based on the continuous embedding of W 1,H(�) into LH∗(�), where
H∗ is the Sobolev conjugate function ofH, we present much stronger embeddings as known
in the literature. Based on these results, we consider generalized double phase problems
involving such new type of growth with Dirichlet and nonlinear boundary condition and
prove appropriate boundedness results of corresponding weak solutions based on the De
Giorgi iteration along with localization arguments.

Mathematics Subject Classification 35B45 · 35B65 · 35D30 · 35J60 · 46E35

1 Introduction

Recently, Crespo–Blanco–Gasiński–Harjulehto–Winkert [16] studied the so-called double
phase operator with variable exponents given by

div
(
|∇u|p(x)−2∇u + μ(x)|∇u|q(x)−2∇u

)
, u ∈ W 1,H(�) (1.1)

with p, q ∈ C(�) such that 1 < p(x) < q(x) < N for all x ∈ �, 0 ≤ μ(·) ∈ L1(�) and
W 1,H(�) is the corresponding Musielak–Orlicz Sobolev space being a uniformly convex
space. Under the assumptions above, it is shown that the operator is continuous, bounded and
strictly monotone. Moreover, under some Lipschitz continuity properties on the exponents
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and the weight function, we have the continuous embedding

W 1,H(�) ↪→ LH∗(�), (1.2)

where the function H∗ is called the Sobolev conjugate function of H given by

H(x, t) = t p(x) + μ(x)tq(x) for (x, t) ∈ � × [0,∞),

see Definition 3.1 for the precise characterization of H∗. The proof of the embedding (1.2)
is based on general embedding results of Musielak–Orlicz Sobolev spaces obtained by Fan
[29] under the additional condition

q+

p− < 1 + 1

N

with q+ and p− being the maximum and minimum of q and p on�, respectively. It is known
that the embedding in (1.2) is not sharp, see Adams–Fournier [1], Donaldson–Trudinger [28]
or Fan [29]. In the case of sharp embedding results from Orlicz Sobolev spaces into Orlicz
spaces we refer to the work of Cianchi [14]. So far, there does not exist any generalization
of such sharp embeddings to Musielak–Orlicz Sobolev spaces.

The main objective of the paper is twofold. In the first part we want to discuss how we can
obtain better embedding results from W 1,H(�) into Lϕ(�) by using the embedding (1.2). It
will be seen that we get indeed a much better continuous embedding of the form

W 1,H(�) ↪→ LG∗
(�), (1.3)

with

G∗(x, t) := t p∗(x) + μ(x)
q∗(x)
q(x) tq∗(x), (x, t) ∈ � × [0,∞), (1.4)

where for a function r ∈ C(�) with 1 < r(x) < N for all x ∈ �, the critical exponent r∗(·)
is given by

r∗(x) := Nr(x)

N − r(x)
, x ∈ �.

In addition we are able to prove that the exponent q∗(x)
q(x)

in (1.4) of μ is optimal under all
possible exponents so that (1.3) hold true. However, we do not know if the embedding in
(1.3) is sharp under all generalized �-functions. In the first part we furthermore obtain trace
embeddings from W 1,H(�) into Lϕ(∂�). Based on a general trace embedding result for
Musielak–Orlicz Sobolev spaces obtained by Liu–Wang–Zhao [50], we show the following
critical trace embedding

W 1,H(�) ↪→ LT ∗
(∂�), (1.5)

with

T ∗(x, t) := t p∗(x) + μ(x)
q∗(x)
q(x) tq∗(x), (x, t) ∈ � × [0,∞), (1.6)

where for a function r ∈ C(�) with 1 < r(x) < N for all x ∈ �, the critical exponent r∗(·)
is given by

r∗(x) := (N − 1)r(x)

N − r(x)
, x ∈ �.

We also prove corresponding “subcritical” embeddings related to (1.3) and (1.5) which turn
out to be compact.
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In the second part of the paper, based on the new embedding results in (1.3) and (1.5), we
study the boundedness of weak solutions to Dirichlet and Neumann problems of the form

− divA(x, u,∇u) = B(x, u,∇u) in �,

u = 0 on ∂�,
(1.7)

and
− divA(x, u,∇u) = B(x, u,∇u) in �,

A(x, u,∇u) · ν = C(x, u) on ∂�,
(1.8)

where� is a bounded domain inRN , N ≥ 2, with Lipschitz boundary� := ∂�, ν(x) denotes
the outer unit normal of � at x ∈ � and the functionsA : � ×R×R

N → R
N , B : � ×R×

R
N → R and C : � ×R → R are Carathéodory functions that fulfill structure conditions as

developed in (1.4) and (1.6), see hypotheses (D1), (D2), (N1) and (N2). Our results are based
on the so-called De Giorgi–Nash–Moser theory, which provides iterative methods based
on truncation techniques to get a priori bounds for certain equations, see the works of De
Giorgi [25], Nash [57] and Moser [55]. The techniques developed in these papers provided
powerful tools to prove local and global boundedness, the Harnack and the weak Harnack
inequality and the Hölder continuity of weak solutions. For more information we refer to
the monographs of Gilbarg–Trudinger [36], Ladyženskaja–Ural′ceva [46], Ladyženskaja–
Solonnikov–Ural′ceva [47] and Lieberman [48]. Our proofs for L∞-bounds are mainly based
on the papers of Ho–Kim [41], Ho–Kim–Winkert–Zhang [42] and Winkert–Zacher [69,
70]. We also mention the boundedness results in the works of Barletta–Cianchi–Marino [4]
(for problems in Orlicz spaces), Gasiński–Winkert [33, 35] (for double phase Dirichlet and
Neumann problems), Ho–Sim [40] (for weighted problems), Kim–Kim–Oh–Zeng [44] (for
variable exponent double phase problems with a growth less than p∗(·)), Marino-Winkert
[53, 54] (for critical problems in W 1,p(�)) and Winkert [68] (for subcritical problems in
W 1,p(�)).

Coming back to the operator (1.1), it is clear that this is a natural extension of the classical
double phase operator when p and q are constants, namely

div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
. (1.9)

It is easy to verify, that if inf� μ ≥ μ0 > 0 or μ ≡ 0, then the operator in (1.1) becomes the
weighted (q(·), p(·))-Laplacian or the p(·)-Laplacian, respectively. The energy functional
I : W 1,H(�) → R related to the double phase operator (1.1) is given by

I (u) =
∫

�

(
|∇u|p(x)

p(x)
+ μ(x)

|∇u|q(x)

q(x)

)
dx, (1.10)

where the integrand

R(x, ξ) = 1

p(x)
|ξ |p(x) + μ(x)

q(x)
|ξ |q(x) for all (x, ξ) ∈ � × R

N

of I has unbalanced growth if 0 ≤ μ(·) ∈ L∞(�), that is,

c1|ξ |p(x) ≤ R(x, ξ) ≤ c2
(
1 + |ξ |q(x)

)

for a. a. x ∈ � and for all ξ ∈ R
N with c1, c2 > 0. The main feature of the functional

I given in (1.10) is the change of ellipticity on the set where the weight function is zero,
that is, on the set {x ∈ � : μ(x) = 0}. This means, that the energy density of I exhibits
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ellipticity in the gradient of order q(x) in the set {x ∈ � : μ(x) > ε} for any fixed
ε > 0 and of order p(x) on the points x where μ(x) vanishes. Therefore, the integrand
R switches between two different phases of elliptic behaviours and so it is called double
phase.

We point out that Zhikov [74] was the first who considered functionals defined by

u �→
∫ (|∇u|p + μ(x)|∇u|q) dx,

whose integrands change their ellipticity according to a point in order to provide models for
strongly anisotropicmaterials. This type of functional given in (1.10) has been treated inmany
papers concerning regularity of local minimizers. In this direction we mention the works of
Baroni–Colombo–Mingione [5–7], Baroni–Kuusi–Mingione [8], Byun–Oh [12], Colombo–
Mingione [17, 18], De Filippis [19], De Filippis–Palatucci [26], Harjulehto–Hästö–Toivanen
[38], Marcellini [51, 52], Ok [58, 59], Ragusa–Tachikawa [65, 66] and the references therein.
Moreover, recent results for nonuniformly elliptic variational problems and nonautonomous
functionals can be found in the papers of Beck–Mingione [9, 10], De Filippis–Mingione [20–
24] and Hästö–Ok [39]. For other applications in physics and engineering of double phase
differential operators and related energy functionals given in (1.9) and (1.10), respectively, we
refer to the works of Bahrouni–Rădulescu–Repovš [2] on transonic flows, Benci–D’Avenia–
Fortunato–Pisani [11] on quantum physics and Cherfils-Il′yasov [13] on reaction diffusion
systems. For example, in the elasticity theory, the modulating coefficient μ(·) dictates the
geometry of composites made of two different materials with distinct power hardening expo-
nents q(·) and p(·), see Zhikov [75].

At the end we also want to mention some recent existence results in the direc-
tion of double phase problems developed with different methods and techniques. We
refer to the papers of Bahrouni-Rădulescu–Winkert [3] (Baouendi–Grushin operator),
Colasuonno–Squassina [15] (double phase eigenvalue problems), Farkas–Winkert [31]
(Finsler double phase problems), Gasiński-Papageorgiou [32] (locally Lipschitz right-hand
sides), Gasiński–Winkert [34, 35] (convection and superlinear problems), Liu–Dai [49]
(Nehari manifold treatment), Papageorgiou-Rădulescu–Repovš [60, 61] (property of the
spectrum and ground state solutions), Perera–Squassina [63] (Morse theory for double
phase problems), Zhang–Rădulescu [73] and Shi–Rădulescu-Repovš–Zhang [67] (double
phase anisotropic variational problems with variable exponents), Zeng–Bai–Gasiński–
Winkert [71] (implicit obstacle double phase problems), Zeng–Rădulescu–Winkert [72]
(implicit obstacle double phase problems with mixed boundary condition), see also the
references therein. It is worth pointing out that while these works treat double phase
problems in terms of two exponents p(·) and q(·) with p(·) < q(·), its nonlinear terms
have a growth that does not exceed p∗(·). Our new embeddings will provide a neces-
sary ingredient to study double phase problems which have a growth between p∗(·) and
q∗(·).

The paper is organized as follows. In Sect. 2 we recall some properties of the double
phase operator with variable exponents and present relevant embedding results. Section3
is devoted to the study of the critical and subcritical embeddings mentioned above, see
Propositions 3.4, 3.5 and3.6 for the critical case andPropositions 3.7 and3.8 for the subcritical
case. In Sect. 4we consider problems (1.7) and (1.8) wherewe suppose subcritical growth and
prove a priori bounds for corresponding weak solutions, see Theorems 4.2 and 4.3. Finally,
using the critical embedding in (1.3), we also develop boundedness results for weak solutions
of (1.7) and (1.8) in this case, see Theorems 5.1 and 5.2 in Sect. 5.
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2 Preliminaries and notations

In this sectionwe recall themain properties toMusielak–Orlicz Sobolev spaces and the double
phase operator with variable exponents. These results aremainly taken fromCrespo–Blanco–
Gasiński–Harjulehto–Winkert [16],we refer also to the books ofDiening–Harjulehto–Hästö–
Růžička [27], Harjulehto–Hästö [37],Musielak [56], Papageorgiou–Rădulescu–Repovš [62],
Rădulescu–Repovš [64] and the papers of Colasuonno–Squassina [15], Fan [29], Fan–Zhao
[30], Kováčik–Rákosník [45] and Liu–Wang–Zhao [50].

Let � be a bounded domain in R
N with Lipschitz boundary � := ∂� and let M(�) be

the space of all measurable functions u : � → R.
We start with the following definition.

Definition 2.1 (i) A continuous and convex function ϕ : [0,∞) → [0,∞) is said to be a
�-function if ϕ(0) = 0 and ϕ(t) > 0 for all t > 0.

(ii) A function ϕ : �×[0,∞) → [0,∞) is said to be a generalized�-function if ϕ(·, t) ∈
M(�) for all t ≥ 0 and ϕ(x, ·) is a �-function for a. a. x ∈ �. We denote the set of all
generalized �-functions on � by �(�).

(iii) A function ϕ ∈ �(�) is locally integrable if ϕ(·, t) ∈ L1(�) for all t > 0.
(iv) Given ϕ,ψ ∈ �(�), we say that ϕ is weaker than ψ , denoted by ϕ ≺ ψ , if there exist

two positive constants C1, C2 and a nonnegative function h ∈ L1(�) such that

ϕ(x, t) ≤ C1ψ(x, C2t) + h(x)

for a. a. x ∈ � and for all t ∈ [0,∞).
(v) Let φ,ψ ∈ �(�). We say that φ increases essentially slower than ψ near infinity, if

for any k > 0

lim
t→∞

φ(x, kt)

ψ(x, t)
= 0 uniformly for a. a. x ∈ �.

We write φ  ψ .

For a given ϕ ∈ �(�) we define the corresponding modular ρϕ by

ρϕ(u) :=
∫

�

ϕ (x, |u|) dx .

Then, the Musielak–Orlicz space Lϕ(�) is defined by

Lϕ(�) := {
u ∈ M(�) : there exists α > 0 such that ρϕ(αu) < +∞}

equipped with the norm

‖u‖ϕ,� := inf
{
α > 0 : ρϕ

( u

α

)
≤ 1

}
.

Similarly, we defineMusielak–Orlicz spaces Lϕ(�) on the boundary equipped with the norm
‖ · ‖ϕ,� , where we use the (N − 1)-dimensional Hausdorff surface measure σ on R

N .
The following proposition can be found in Musielak [56, Theorems 7.7 and 8.5].

Proposition 2.2 (i) Let ϕ ∈ �(�). Then the Musielak–Orlicz space Lϕ(�) is complete with
respect to the norm ‖ · ‖ϕ,�, that is,

(
Lϕ(�), ‖ · ‖ϕ,�

)
is a Banach space.

(ii) Let ϕ,ψ ∈ �(�) be locally integrable with ϕ ≺ ψ . Then

Lψ(�) ↪→ Lϕ(�).
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Next, we defineMusielak–Orlicz Sobolev spaces. For this purpose, we need the following
definition.

Definition 2.3 (i) The function ϕ : [0,∞) → [0,∞) is called N -function if it is a �-
function such that

lim
t→0+

ϕ(t)

t
= 0 and lim

t→∞
ϕ(t)

t
= ∞.

(ii) We call a function ϕ : �×R → [0,∞) a generalized N -function if ϕ(·, t) is measurable
for all t ∈ R and ϕ(x, ·) is a N -function for a. a. x ∈ �. We denote the class of all
generalized N -functions by N (�).

Let ϕ ∈ N (�) be locally integrable. TheMusielak–Orlicz Sobolev space W 1,ϕ(�) is defined
by

W 1,ϕ(�) := {
u ∈ Lϕ(�) : |∇u| ∈ Lϕ(�)

}

equipped with the norm

‖u‖1,ϕ = ‖u‖ϕ + ‖∇u‖ϕ,

where ‖∇u‖ϕ = ‖ |∇u| ‖ϕ . The completion of C∞
0 (�) in W 1,ϕ(�) is denoted by W 1,ϕ

0 (�).
The next theorem can be found in Musielak [56, Theorem 10.2] and Fan [29, Propositions

1.7 and 1.8].

Theorem 2.4 Let ϕ ∈ N (�) be locally integrable such that

inf
x∈�

ϕ(x, 1) > 0.

Then the spaces W 1,ϕ(�) and W 1,ϕ
0 (�) are separable Banach spaces which are reflexive if

Lϕ(�) is reflexive.

Let us now come to our special Musielak–Orlicz Sobolev space and its properties, which
was introduced in [16]. In the following, for h ∈ C(�) we denote

h− := inf
x∈�

h(x) and h+ := sup
x∈�

h(x).

We suppose the following assumptions:

(H1) p, q ∈ C(�) such that 1 < p(x) < N and p(x) < q(x) for all x ∈ � and 0 ≤ μ(·) ∈
L1(�).

Under hypothesis (H1), let H : � × [0,∞) → [0,∞) be the nonlinear function defined
by

H(x, t) := t p(x) + μ(x)tq(x) for all (x, t) ∈ � × [0,∞). (2.1)

Recall that the corresponding modular to H is given by

ρH(u) =
∫

�

H(x, |u|) dx . (2.2)

Then, the corresponding Musielak–Orlicz space LH(�) is given by

LH(�) = {u ∈ M(�) : ρH(u) < +∞} ,
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endowed with the norm

‖u‖H = inf
{
τ > 0 : ρH

(u

τ

)
≤ 1

}
.

Next, we can introduce the Musielak–Orlicz Sobolev space W 1,H(�) defined by

W 1,H(�) = {
u ∈ LH(�) : |∇u| ∈ LH(�)

}

equipped with the norm

‖u‖1,H = ‖u‖H + ‖∇u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. Moreover, W 1,H
0 (�) is the completion of C∞

0 (�) in W 1,H(�).

We know that LH(�), W 1,H(�) and W 1,H
0 (�) are reflexive Banach spaces, see [16, Propo-

sition 2.12].
The following proposition gives the relation between the modular ρH and its norm ‖ · ‖H,

see [16, Proposition 2.13].

Proposition 2.5 Let hypotheses (H1) be satisfied, u ∈ LH(�) and let ρH be defined as in
(2.2).

(i) If u �= 0, then ‖u‖H = λ if and only if ρH( u
λ
) = 1.

(ii) ‖u‖H < 1 (resp.> 1, = 1) if and only if ρH(u) < 1 (resp.> 1, = 1).

(iii) If ‖u‖H < 1, then ‖u‖q+
H ≤ ρH(u) ≤ ‖u‖p−

H .

(iv) If ‖u‖H > 1, then ‖u‖p−
H ≤ ρH(u) ≤ ‖u‖q+

H .

On W 1,H(�), we will also work with the following equivalent norm

‖u‖1,H,� := inf
{
λ > 0 : ρ̂1,H,�

(u

λ

)
≤ 1

}
, (2.3)

where the modular ρ̂1,H,� is given by

ρ̂1,H,�(u) =
∫

�

[
|∇u|p(x) + μ(x)|∇u|q(x) + |u|p(x) + μ(x)|u|q(x)

]
dx (2.4)

for u ∈ W 1,H(�).
The following results can be found in [16, Proposition 2.14].

Proposition 2.6 Let hypotheses (H1) be satisfied, let y ∈ W 1,H(�) and let ρ̂1,H,� be defined
as in (2.4).

(i) If y �= 0, then ‖y‖1,H,� = λ if and only if ρ̂1,H,�(
y
λ
) = 1.

(ii) ‖y‖1,H,� < 1 (resp.> 1, = 1) if and only if ρ̂1,H,�(y) < 1 (resp.> 1, = 1).

(iii) If ‖y‖1,H,� < 1, then ‖y‖q+
1,H,� ≤ ρ̂1,H,�(y) ≤ ‖y‖p−

1,H,�.

(iv) If ‖y‖1,H,� > 1, then ‖y‖p−
1,H,� ≤ ρ̂1,H,�(y) ≤ ‖y‖q+

1,H,�.

Whenμ(·) ≡ 0, wewrite L p(·)(�), L p(·)(�), W 1,p(·)(�), W 1,p(·)
0 (�), ‖·‖p(·),�, ‖·‖p(·),�

and ‖ · ‖1,p(·),� in place of LH(�), LH(�), W 1,H(�), W 1,H
0 (�), ‖ · ‖H,�, ‖ · ‖H,� and

‖ · ‖1,H,�, respectively. For a function r ∈ C(�) with 1 < r(x) < N for all x ∈ � we define

r∗(x) = Nr(x)

N − r(x)
and r∗(x) = (N − 1)r(x)

N − r(x)
, x ∈ �. (2.5)

The following embedding results can be found in [16].
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Proposition 2.7 Let hypotheses (H1) be satisfied. Then the following embeddings hold:

(i) LH(�) ↪→ Lr(·)(�), W 1,H(�) ↪→ W 1,r(·)(�), W 1,H
0 (�) ↪→ W 1,r(·)

0 (�) are contin-
uous for all r ∈ C(�) with 1 ≤ r(x) ≤ p(x) for all x ∈ �;

(ii) if p ∈ C0,1(�), then W 1,H(�) ↪→ Lr(·)(�)and W 1,H
0 (�) ↪→ Lr(·)(�)are continuous

for r ∈ C(�) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ �;
(iii) W 1,H(�) ↪→ Lr(·)(�) and W 1,H

0 (�) ↪→ Lr(·)(�) are compact for r ∈ C(�) with
1 ≤ r(x) < p∗(x) for all x ∈ �;

(iv) if p ∈ W 1,γ (�) for some γ > N, then W 1,H(�) ↪→ Lr(·)(�) and W 1,H
0 (�) ↪→

Lr(·)(�) are continuous for r ∈ C(�) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ �;
(v) W 1,H(�) ↪→ Lr(·)(�) and W 1,H

0 (�) ↪→ Lr(·)(�) are compact for r ∈ C(�) with
1 ≤ r(x) < p∗(x) for all x ∈ �;

(vi) if μ ∈ L∞(�), then Lq(·)(�) ↪→ LH(�) is continuous.

Remark 2.8 Note that for a bounded domain � ⊂ R
N and γ > N it holds C0,1(�) ⊂

W 1,γ (�).

Let us now suppose stronger conditions as in (H1):

(H2) p, q ∈ C(�) such that 1 < p(x) < N and p(x) < q(x) < p∗(x) for all x ∈ � and
0 ≤ μ(·) ∈ L∞(�).

Under (H2) we have the following result, see [16, Proposition 2.18].

Proposition 2.9 Let hypothesis (H2) be satisfied. Then the following hold:

(i) W 1,H(�) ↪→ LH(�) is a compact embedding;
(ii) there exists a constant C > 0 independent of u such that

‖u‖H ≤ C‖∇u‖H for all u ∈ W 1,H
0 (�).

Nextwemention the following lemmaconcerning the geometric convergence of sequences
of numbers will be the key to our arguments to obtain the boundedness of solutions via the
De Giorgi iteration. The proof of the lemma can be found in the paper of Ho-Sim [43, Lemma
4.3]

Lemma 2.10 Let {Zn}, n = 0, 1, 2, . . . , be a sequence of positive numbers, satisfying the
recursion inequality

Zn+1 ≤ K bn (Z1+μ1
n + Z1+μ2

n

)
, n = 0, 1, 2, . . . ,

for some b > 1, K > 0 and μ2 ≥ μ1 > 0. If

Z0 ≤ min

(
1, (2K )

− 1
μ1 b

− 1
μ21

)

or

Z0 ≤ min

(
(2K )

− 1
μ1 b

− 1
μ21 , (2K )

− 1
μ2 b

− 1
μ1μ2

− μ2−μ1
μ22

)
,

then Zn ≤ 1 for some n ∈ N ∪ {0}. Moreover,

Zn ≤ min

(
1, (2K )

− 1
μ1 b

− 1
μ21 b

− n
μ1

)
, for all n ≥ n0,

where n0 is the smallest n ∈ N ∪ {0} satisfying Zn ≤ 1. In particular, Zn → 0 as n → ∞.
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Furthermore, in the next sections we frequently use Young’s inequality of the form

ab ≤ 1

η
εaη + η − 1

η
ε
− 1

η−1 b
η

η−1 ≤ εaη + ε
− 1

η−1 b
η

η−1 for all a, b ≥ 0, ε > 0, η > 1.

Let us now fix our notation. We write N0 := N ∪ {0} and for a real number t > 1 we
denote by t ′ := t

t−1 the conjugate number of t . For a measurable function v : � → R we set

v+ := max{v, 0} and v− := max{−v, 0}.
By |E |we denote the N -dimensional Lebesguemeasure of E ⊂ R

N and by |E |σ the (N −1)-
dimensional surface measure of E ⊂ R

N . For 1 ≤ ρ ≤ ∞, the space Lρ(E) is the usual
Lebesgue space with norm ‖ · ‖ρ,E .

3 New embedding results for Musielak–Orlicz Sobolev spacesW1,H(Ä)

In this section, we want to discuss new embedding results for the space W 1,H(�) into an
Musielak–Orlicz space Lϕ(�) for a suitable �-function ϕ. These results extend those in
Proposition 2.7.

First, we are going to introduce the Sobolev conjugate function of H. We define for all
x ∈ �

H1(x, t) =
{

tH(x, 1) if 0 ≤ t ≤ 1,

H(x, t) if t > 1.

It is well known, since � is a bounded domain, that LH(�) = LH1(�) and W 1,H(�) =
W 1,H1(�), see Musielak [56]. Hence, for embedding results of W 1,H(�) we may use H1

instead of H. For simplification, we write H instead of H1.
We start with the following definition.

Definition 3.1 We denote byH−1(x, ·) : [0,∞) → [0,∞) for all x ∈ � the inverse function
of H(x, ·). Furthermore, we define H−1∗ : � × [0,∞) → [0,∞) by

H−1∗ (x, s) =
∫ s

0

H−1(x, τ )

τ
N+1

N

dτ for all (x, s) ∈ � × [0,∞), (3.1)

whereH∗ : (x, t) ∈ � × [0,∞) → s ∈ [0,∞) is such thatH−1∗ (x, s) = t . The functionH∗
is called the Sobolev conjugate function of H.

In order to have further properties on W 1,H(�) and W 1,H
0 (�), we suppose the following

stronger assumptions as those in (H1) and (H2).

(H3) p, q ∈ C0,1(�) such that 1 < p(x) < q(x) < N for all x ∈ �,
(

q
p

)+
< 1 + 1

N and

0 ≤ μ(·) ∈ C0,1(�).

The next proposition, obtained in [16, Proposition 2.21], provides fundamental embedding
results on W 1,H(�) and W 1,H

0 (�).

Proposition 3.2 Let hypotheses (H3) be satisfied. Then the following hold:

(i) W 1,H(�) ↪→ LH∗(�) continuously.
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(ii) Let K : � × [0,∞) → [0,∞) be continuous such that K ∈ N (�) and K  H∗, then
W 1,H(�) ↪→ LK(�) compactly.

(iii) It holds H  H∗ and in particular, W 1,H(�) ↪→ LH(�) compactly.
(iv) There exists a constant C > 0 independent of u such that

‖u‖H ≤ C‖∇u‖H for all u ∈ W 1,H
0 (�). (3.2)

It is worth pointing out that in [16, Proposition 2.21] the authors did not assume q+ < N

as well as they used a stronger condition of q(·)
p(·) , namely q+

p− < 1 + 1
N . However, from the

proof of [16, Proposition 2.21], we can easily see that it indeed needs the condition q+ < N
and while one can relax the condition of q(·)

p(·) as mentioned above. Note that thanks to the

Poincaré-type inequality (3.2), the norm ‖∇ · ‖H is an equivalent norm on W 1,H
0 (�).

Regarding the critical boundary trace embedding, we have the following proposition.

Proposition 3.3 Under hypotheses (H3) it holds that

W 1,H(�) ↪→ LH
N−1

N∗ (�)

continuously, where

H
N−1

N∗ (x, t) := [H∗(x, t)]
N−1

N for all (x, t) ∈ � × [0,∞).

The proof of this result can be easily obtained by repeating the argument in the proof of [16,
Proposition 2.19] to verify the conditions of Theorem 4.2 in Liu-Wang-Zhao [50]. We leave
the details for the reader.

In the following, we will give an exact form of the critical terms, which will help us to
study double phase problems with a larger class of nonlinear terms than in previous works.

We have the following proposition.

Proposition 3.4 Let hypotheses (H3) be satisfied. Then we have the continuous embedding

W 1,H(�) ↪→ LG∗
(�), (3.3)

where G∗ is given by

G∗(x, t) := t p∗(x) + μ(x)
q∗(x)
q(x) tq∗(x) for (x, t) ∈ � × [0,∞). (3.4)

Proof First, we are going to prove that

G∗(x, t) ≤ 2
[(

q∗)q∗]+
H∗(x, t) for all (x, t) ∈ � × [0,∞), (3.5)

where H∗ is the Sobolev conjugate function of H given in Definition 3.1.

For any (x, t) ∈ � × [0,∞) we have H(x, t) ≥ t p(x) and so H−1(x, t) ≤ t
1

p(x) . From
this and (3.1) we get

H−1∗ (x, t) ≤
∫ t

0

τ
1

p(x)

τ
N+1

N

dτ = p∗(x)t
1

p∗(x) for all (x, t) ∈ � × [0,∞).

It follows that

t = H−1∗ (x,H∗(x, t)) ≤ p∗(x) [H∗(x, t)]
1

p∗(x) for all (x, t) ∈ � × [0,∞),
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this means

H∗(x, t) ≥ [p∗(x)]−p∗(x)t p∗(x) for all (x, t) ∈ � × [0,∞). (3.6)

Similarly, we obtain for any (x, t) ∈ (�\μ−1({0}))× [0,∞) that

H−1(x, t) ≤ μ(x)
− 1

q(x) t
1

q(x) ,

which implies

H−1∗ (x, t) ≤
∫ t

0

μ(x)
− 1

q(x) τ
1

q(x)

τ
N+1

N

dτ = q∗(x)μ(x)
− 1

q(x) t
1

q∗(x)

for all (x, t) ∈ (�\μ−1({0}))× [0,∞). Thus we have

t = H−1∗ (x,H∗(x, t)) ≤ q∗(x)μ(x)
− 1

q(x) [H∗(x, t)]
1

q∗(x)

for all (x, t) ∈ (�\μ−1({0}))× [0,∞). This finally gives

H∗(x, t) ≥ [q∗(x)]−q∗(x)μ(x)
q∗(x)
q(x) tq∗(x) for all (x, t) ∈ � × [0,∞). (3.7)

From (3.6) and (3.7) we get that

[p∗(x)]−p∗(x)t p∗(x) + [q∗(x)]−q∗(x)μ(x)
q∗(x)
q(x) tq∗(x) ≤ 2H∗(x, t) for all (x, t) ∈ � × [0,∞).

Then, (3.5) follows.
Invoking Propositions 2.2(ii) and 3.2 along with (3.5) we have the continuous embeddings

W 1,H(�) ↪→ LH∗(�) ↪→ LG∗
(�),

which shows (3.3). The proof is complete. ��
Even the embedding W 1,H(�) ↪→ LH∗(�) is not optimal as mentioned in the Introduction,
we will try to determine the optimal Musielak–Orlicz Space LBr,s,α (�) among those with
Br ,s,α of the form

Br ,s,α(x, t) := tr(x) + μ(x)α(x)t s(x) for (x, t) ∈ � × [0,∞),

where r , s, α are positive continuous functions on �, such that the following continuous
embedding holds

W 1,H(�) ↪→ LBr,s,α (�). (3.8)

By the optimal N (�)-function Br0,s0,α0 for the embedding (3.8), we mean that if (3.8) holds
for any data (p, q, μ,�) satisfying the assumption (H3), then there must be r ≤ r0, s ≤ s0
and α ≥ α0.

Proposition 3.5 Let hypotheses (H3) be satisfied with constant exponents. Then B
p∗,q∗, q∗

q
is

the optimal N (�)-function for the embedding (3.8).

Proof For simplification, let � = B be the unit ball in R
N and let p, q, α are constants

satisfying α > 1, 1 < p < q < N and q
p < 1 + 1

N . First, we will show that if (3.8) holds
then r ≤ p∗ and s ≤ q∗.

Fix u ∈ C∞
c (B) \ {0}. For each λ > 0, we define

vλ(x) := u(λx), x ∈ R
N .
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Clearly, vλ ∈ W 1,H
0 (B) for all λ ≥ 1. If the embedding (3.8) holds, then by Proposition 2.9

we find C > 0 such that

‖vλ‖Br,s,α,� ≤ C‖∇vλ‖H for all λ ≥ 1. (3.9)

By the definition of the Musielak–Orlicz norm, we easily see that for ϕ(x, t) := tα +w(x)tβ

in B × [0,∞) with 1 ≤ α ≤ β, and 0 ≤ w(·) ∈ L1(B), it holds

1

2

[(∫

B
|v|α dx

) 1
α +

(∫

B
w(x)|v|β dx

) 1
β

]

≤ ‖v‖ϕ,B ≤ 2
1
α

[(∫

B
|v|α dx

) 1
α +

(∫

B
w(x)|v|β dx

) 1
β

]

for all v ∈ Lϕ(B). By means of this fact, from (3.9) we find a constant C̄ > 0 such that

(∫

B
|vλ|r dx

) 1
r +

(∫

B
μ(x)α|vλ|s dx

) 1
s

≤ C̄

[(∫

B
|∇vλ|p dx

) 1
p +

(∫

B
μ(x)|∇vλ|q dx

) 1
q
]

for all λ ≥ 1.

(3.10)

In order to see s ≤ q∗, let μ(x) ≡ 1. From (3.10) we get

(∫

B
|vλ|s dx

) 1
s ≤ C̄

[(∫

B
|∇vλ|p dx

) 1
p +

(∫

B
|∇vλ|q dx

) 1
q
]

for all λ ≥ 1. (3.11)

By change of the variable y = λx we get from (3.11) that

λ− N
s

(∫

B
|u(y)|s dy

) 1
s

≤ C̄

[
λ

p−N
p

(∫

B
|∇u(y)|p dy

) 1
p + λ

q−N
q

(∫

B
|y||∇u(y)|q dy

) 1
q
]

for all λ ≥ 1.

Since the preceding inequality holds for all λ ≥ 1, noticing p−N
p <

q−N
q , we obtain

− N

s
≤ q − N

q
, i.e., s ≤ q∗.

Next, let μ(x) = |x |. Then, from (3.10) we have

(∫

B
|vλ|r dx

) 1
r ≤ C̄

[(∫

B
|∇vλ|p dx

) 1
p +

(∫

B
|x ||∇vλ|q dx

) 1
q
]

for all λ ≥ 1,

and

(∫

B
|x |α|vλ|s dx

) 1
s ≤ C̄

[(∫

B
|∇vλ|p dx

) 1
p +

(∫

B
|x ||∇vλ|q dx

) 1
q
]

for all λ ≥ 1.

(3.12)
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By change of the variable y = λx we get from (3.11) that

λ− N
r

(∫

B
|u(y)|r dy

) 1
r

≤ C̄

[
λ

p−N
p

(∫

B
|∇u(y)|p dy

) 1
p + λ

q−N−1
q

(∫

B
|y||∇u(y)|q dy

) 1
q
]

for all λ ≥ 1.

Since the preceding inequality holds for all λ ≥ 1, noticing that q
p < 1 + 1

N is equivalent to
p−N

p >
q−N−1

q , we obtain

− N

r
≤ p − N

p
, i.e., r ≤ p∗.

Finally, we will show α ≥ q∗
q . For this purpose, let p, q, α > 1 be constants satisfying

N+1
N < q < N and

q

p
= 1 + 1

N
− ε (3.13)

for ε ∈ (0, 1) small enough. From (3.12) we get

λ− α+N
s

(∫

B
|y|α|u(y)|s dy

) 1
s

≤ C̄

[
λ

p−N
p

(∫

B
|∇u(y)|p dy

) 1
p + λ

q−N−1
q

(∫

B
|y||∇u(y)|q dy

) 1
q
]

for all λ ≥ 1.

Since the preceding inequality holds for all λ ≥ 1, noticing p−N
p >

q−N−1
q , we obtain

−α + N

q∗ ≤ p − N

p
.

From this and (3.13) we easily deduce that

α ≥ s

q
− N 2

N − q
ε. (3.14)

This means that if α <
q∗
q , then by taking p ∈ (1, q) satisfying (3.13) with ε > 0 sufficiently

small such that α <
q∗
q − N2

N−q ε we have that (3.14) cannot happen. Hence the embedding
(3.8) does not hold. Thus, we have shown that the necessary condition for (3.8) to be valid
for all p ∈ (1, q) and for all 0 ≤ μ(·) ∈ C0,1(�) is r ≤ p∗, s ≤ q∗ and α ≥ q∗

q .
��

Next, we will look for an explicit form for the critical boundary trace embedding.We have
the following proposition.

Proposition 3.6 Let hypotheses (H3) be satisfied. Then we have the continuous embedding

W 1,H(�) ↪→ LT ∗
(�),

where T ∗ is given by

T ∗(x, t) := t p∗(x) + μ(x)
q∗(x)
q(x) tq∗(x) for (x, t) ∈ � × [0,∞)

123



  227 Page 14 of 38 K. Ho, P. Winkert

with the critical exponents p∗, q∗ given in (2.5).

Proof From Jensen’s inequality and (3.5), we have

[
T ∗(x, t)

] N
N−1 ≤ 2

N
N−1−1G∗(x, t) ≤ 2

N
N−1

[(
q∗)q∗]+

H∗(x, t) for all (x, t) ∈ � × [0,∞).

This implies that

T ∗(x, t) ≤ 2

([(
q∗)q∗]+) N−1

N

[H∗(x, t)]
N−1

N for all (x, t) ∈ � × [0,∞). (3.15)

Let u ∈ W 1,H(�). From Proposition 3.3 we have u ∈ LW (�), where W(x, t) :=
[H∗(x, t)]

N−1
N . Hence, u ∈ LT ∗

(�) due to (3.15). We set λ = ‖u‖W,� and assume first that
λ > 0. Then, we obtain

1 =
∫

�

W
(

x,

∣∣∣u
λ

∣∣∣
)
dσ ≥ c−1

0

∫

�

T ∗ (x,

∣∣∣u
λ

∣∣∣
)
dσ,

where c0 := 2

([
(q∗)q∗]+) N−1

N

. This implies

1 ≥
∫

�

T ∗

⎛
⎜⎝x,

∣∣∣∣∣∣∣
u

c
1

(q∗)+
0 λ

∣∣∣∣∣∣∣

⎞
⎟⎠ dσ.

Hence, we get

‖u‖T ∗,� ≤ c
1

(q∗)+
0 λ = c

1
(q∗)+
0 ‖u‖W,�.

From this and Proposition 3.3 we arrive at

‖u‖T ∗,� ≤ C‖u‖1,H,�,

where C is a positive constant independent of u. The proof is complete. ��
In the last part of this section we prove new compact embedding results.

Proposition 3.7 Let hypotheses (H3) be satisfied and let

�(x, t) := tr(x) + μ(x)
s(x)
q(x) t s(x) for (x, t) ∈ � × [0,∞),

where r , s ∈ C(�) satisfy 1 < r(x) ≤ p∗(x) and 1 < s(x) ≤ q∗(x) for all x ∈ �. Then, we
have the continuous embedding

W 1,H(�) ↪→ L�(�). (3.16)

Furthermore, if r(x) < p∗(x) and s(x) < q∗(x) for all x ∈ �, then the embedding in (3.16)
is compact.

Proof First, it is clear that

�(x, t) ≤ t p∗(x) + 1 + μ(x)
q∗(x)
q(x) tq∗(x) + 1 = G∗(x, t) + 2 for all (x, t) ∈ � × [0,∞).

From this along with Propositions 2.2 and 3.4 we obtain (3.16).
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Let us now suppose that r(x) < p∗(x) and s(x) < q∗(x) for all x ∈ �. In order to prove
the compactness of the embedding in (3.16) it is sufficient to show that �  H∗ due to
Proposition 3.2 (ii). This means, for any k > 0, we need to show that

lim
t→∞

�(x, kt)

H∗(x, t)
= 0 uniformly for a. a. x ∈ �. (3.17)

Indeed, from (3.5) we have for (x, t, k) ∈ � × [0,∞) × (0,∞) the estimate

�(x, kt)

H∗(x, t)
≤ 2

[(
q∗)q∗]+ kr(x)tr(x) + ks(x)μ(x)

s(x)
q(x) t s(x)

t p∗(x) + μ(x)
q∗(x)
q(x) tq∗(x)

≤ 2
[(

q∗)q∗]+ (
1 + kr+ + ks+) tr(x) + μ(x)

s(x)
q(x) t s(x)

t p∗(x) + μ(x)
q∗(x)
q(x) tq∗(x)

.

Then, by using Young’s inequality with ε > 0, we obtain

tr(x) ≤ εt p∗(x) + ε
− r(x)

p∗(x)−r(x) ≤ εt p∗(x) + ε
−
(

r
p∗−r

)+
+ 1

and

μ(x)
s(x)
q(x) t s(x) ≤ εμ(x)

q∗(x)
q(x) tq∗(x) + ε

− s(x)
q∗(x)−s(x) ≤ εμ(x)

q∗(x)
q(x) tq∗(x) + ε

−
(

s
q∗−r

)+
+ 1.

Combining the last three estimates, we easily get (3.17) and this completes the proof. ��
Similarly to Proposition 3.7, we have the following compact boundary trace embedding.

Proposition 3.8 Let hypotheses (H3) be satisfied and let

ϒ(x, t) = t�(x) + μ(x)
m(x)
q(x) tm(x) for (x, t) ∈ � × [0,∞),

where �, m ∈ C(�) satisfy 1 < �(x) ≤ p∗(x) and 1 < m(x) ≤ q∗(x) for all x ∈ �. Then,
we have the continuous embedding

W 1,H(�) ↪→ Lϒ(�). (3.18)

Furthermore, if �(x) < p∗(x) and m(x) < q∗(x) for all x ∈ �, then the embedding (3.18)
is compact.

Proof We have

ϒ(x, t) ≤ t p∗(x) + 1 + μ(x)
q∗(x)
q(x) tq∗(x) + 1 = T ∗(x, t) + 2 for all (x, t) ∈ � × [0,∞).

(3.19)

Then, the embedding (3.18) follows from Propositions 2.2 and 3.6 by taking (3.19) into
account.

Next, suppose that �(x) < p∗(x) and m(x) < q∗(x) for all x ∈ � and note that

W 1,H(�) ↪→ W 1,p−
(�) ↪→↪→ L1(�). (3.20)

Let {un}n∈N be a bounded sequence in W 1,H(�). From (3.20) we can suppose, up to a
subsequence not relabeled, that un → u in measure on �. Let ε > 0 be given and set

v j,k(x) := u j (x) − uk(x)

ε
for j, k ∈ N.
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From Proposition 3.6 we see that {v j,k} j,k∈N is bounded in LT ∗
(�), say ‖v j,k‖T ∗,� ≤ k0

for all j, k ∈ N. Arguing as in the proof of Proposition 3.7, we find t0 > 0 such that

ϒ(x, t) ≤ 1

4
T ∗
(

x,
t

k0

)
for all (x, t) ∈ � × (t0,∞).

Then, arguing as in the proof of Theorem 8.24 of Adams–Fournier [1], we find Nε such that
‖v j,k‖ϒ,� < 1 for all j, k ≥ Nε. That is, we have shown that ‖u j − uk‖ϒ,� < ε for all
j, k ≥ Nε . Hence, un → u in Lϒ(�). The proof is complete. ��

4 A priori bounds for generalized double phase problems with
subcritical growth

In this section, we prove the boundedness of weak solutions to the problems (1.7) and (1.8)
when the nonlinearities involved satisfy a subcritical growth as developed in Propositions 3.7
and 3.8. The proofs are using ideas from the papers of Ho-Kim [41], Ho-Kim-Winkert-Zhang
[42] and Winkert-Zacher [69, 70].

Let hypotheses (H3) be satisfied. We suppose the following structure conditions onA and
B:
(D1): The functions A : � × R × R

N → R
N and B : � × R × R

N → R are Carathéodory
functions such that

(i) |A(x, t, ξ)| ≤ α1

[
|t |

p∗(x)

p′(x) + μ(x)
N−1

N−q(x) |t |
q∗(x)

q′(x) + |ξ |p(x)−1 + μ(x)|ξ |q(x)−1 + 1

]
,

(ii) A(x, t, ξ) · ξ ≥ α2
[|ξ |p(x) + μ(x)|ξ |q(x)

]− α3

[
|t |r(x) + μ(x)

s(x)
q(x) |t |s(x) + 1

]
,

(iii) |B(x, t, ξ)| ≤ β

[
|t |r(x)−1 + μ(x)

s(x)
q(x) |t |s(x)−1 + |ξ |

p(x)

r ′(x) + μ(x)
1

q(x)
+ 1

s′(x) |ξ |
q(x)

s′(x) + 1

]
,

for a. a. x ∈ � and for all (t, ξ) ∈ R × R
N , where α1, α2, α3, β are positive constants and

r , s ∈ C(�) satisfy p(x) < r(x) < p∗(x) and q(x) < s(x) < q∗(x) for all x ∈ �.
For the second problem (1.8) with nonlinear boundary condition we need the additional

assumption on C:
(N1): The function C : � × R → R is a Carathéodory function such that

|C(x, t)| ≤ γ

[
|t |�(x)−1 + μ(x)

h(x)
q(x) |t |h(x)−1 + 1

]

for a. a. x ∈ � and for all t ∈ R, where γ is a positive constant and �, h ∈ C(�) satisfy
p(x) < �(x) < p∗(x) and q(x) < h(x) < q∗(x) for all x ∈ �.

The weak formulation of (1.7) and (1.8) read as follows.

Definition 4.1 (i) We say that u ∈ W 1,H
0 (�) is a weak solution of problem (1.7) if

∫

�

A(x, u,∇u) · ∇ϕ dx =
∫

�

B(x, u,∇u)ϕ dx (4.1)

is satisfied for all ϕ ∈ W 1,H
0 (�).

(ii) We say that u ∈ W 1,H(�) is a weak solution of problem (1.8) if
∫

�

A(x, u,∇u) · ∇ϕ dx =
∫

�

B(x, u,∇u)ϕ dx +
∫

�

C(x, u)ϕ dσ (4.2)

is satisfied for all ϕ ∈ W 1,H(�).
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Under the assumptions (D1) and (N1) we know that the terms in (4.1) and (4.2) are well-
defined due to Propositions 3.7 and 3.8.

For the Dirichlet problem (1.7) we have the following result.

Theorem 4.2 Let hypotheses (H3) and (D1) be satisfied. Then, any weak solution u ∈
W 1,H

0 (�) of problem (1.7) belongs to L∞(�) and satisfies the following a priori estimate

‖u‖∞,� ≤ C max
{‖u‖τ1

�,�, ‖u‖τ2
�,�

}
, (4.3)

where C, τ1, τ2 are positive constants independent of u and

�(x, t) := tr(x) + μ(x)
s(x)
q(x) t s(x) for (x, t) ∈ � × [0,∞).

Proof The proof is based on the ideas used in Ho-Kim [41], Winkert-Zacher [69, 70] and
will use Lemma 2.10. Let u be a weak solution of problem (1.7).

Step 1.Defining the recursion sequence and basic estimates.
For each n ∈ N0, we define

Zn :=
∫

Aκn

[
(u − κn)r(x) + μ(x)

s(x)
q(x) (u − κn)s(x)

]
dx,

where

Aκ := {x ∈ � : u(x) > κ}, κ ∈ R (4.4)

and

κn := κ∗
(
2 − 1

2n

)
, n ∈ N0 (4.5)

with κ∗ > 0 to be specified later. Obviously,

κn ↗ 2κ∗ and κ∗ ≤ κn < 2κ∗ for all n ∈ N0.

It is clear that

Aκn+1 ⊂ Aκn and Zn+1 ≤ Zn for all n ∈ N0. (4.6)

Moreover, from the estimates

u(x) − κn ≥ u(x)

(
1 − κn

κn+1

)
= u(x)

2n+2 − 1
for a. a. x ∈ Aκn+1

and

|Aκn+1 | ≤
∫

Aκn+1

(
u − κn

κn+1 − κn

)r(x)

dx ≤
∫

Aκn

2r(x)(n+1)

κ
r(x)∗

(u − κn)r(x) dx,

we obtain the following inequalities

u(x) ≤ (2n+2 − 1)(u(x) − κn) for a. a. x ∈ Aκn+1 for all n ∈ N0 (4.7)

and

|Aκn+1 | ≤
(
κ−r−
∗ + κ−r+

∗
)
2(n+1)r+

Zn ≤ 2
(
1 + κ−r+

∗
)
2(n+1)r+

Zn for all n ∈ N0. (4.8)

By the assumptions on the exponents we have
∫

Aκn+1

[
(u − κn+1)

p(x) + μ(x)(u − κn+1)
q(x)

]
dx
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≤
∫

Aκn+1

[
(u − κn+1)

r(x) + μ(x)
s(x)
q(x) (u − κn+1)

s(x) + 2

]
dx .

Combining this with (4.6) and (4.8) gives
∫

Aκn+1

[
(u − κn+1)

p(x) + μ(x)(u − κn+1)
q(x)

]
dx ≤ 5

(
1 + κ−r+

∗
)
2(n+1)r+

Zn (4.9)

for all n ∈ N0.
Next, we are going to show the following estimate for truncated energies
∫

Aκn+1

[
|∇u|p(x) + μ(x)|∇u|q(x)

]
dx ≤ C1(1 + κ−r+

∗ )2n(r++s+) Zn for all n ∈ N0.

(4.10)

Here and in the rest of the proof, Ci (i ∈ N) are positive constants independent of u, n and
κ∗. To this end, testing (4.1) by ϕ = (u − κn+1)+ ∈ W 1,H

0 (�) gives
∫

Aκn+1

A(x, u,∇u) · ∇u dx =
∫

Aκn+1

B(x, u,∇u)(u − κn+1) dx . (4.11)

Since u ≥ u −κn+1 > 0 on Aκn+1 , using (D1)(ii) and (D1)(iii) along with Young’s inequality
and the fact that u ≤ ur(x) + 1 on Aκn+1 , we obtain the estimates
∫

Aκn+1

A(x, u,∇u) · ∇u dx

≥ α2

∫

Aκn+1

[
|∇u|p(x) + μ(x)|∇u|q(x)

]
dx − α3

∫

Aκn+1

[
ur(x) + μ(x)

s(x)
q(x) us(x) + 1

]
dx

and
∫

Aκn+1

B(x, u,∇u)(u − κn+1) dx

≤ β

∫

Aκn+1

(
ur(x)−1 + μ(x)

s(x)
q(x) us(x)−1 + |∇u|

p(x)

r ′(x) + μ(x)
1

q(x)
+ 1

s′(x) |∇u|
q(x)

s′(x) + 1

)
u dx

≤ α2

2

∫

Aκn+1

[
|∇u|p(x) + μ(x)|∇u|q(x)

]
dx + C2

∫

Aκn+1

[
ur(x) + μ(x)

s(x)
q(x) us(x) + 1

]
dx .

Combining the last two estimates with (4.11) and then using (4.7) it follows
∫

Aκn+1

[
|∇u|p(x) + μ(x)|∇u|q(x)

]
dx

≤ C3

∫

Aκn+1

[
ur(x) + μ(x)

s(x)
q(x) us(x) + 1

]
dx

≤ C3

∫

Aκn+1

([
(2n+2 − 1)(u − κn)

]r(x) + μ(x)
s(x)
q(x)

[
(2n+2 − 1)(u − κn)

]s(x)
)

dx + C3|Aκn+1 |

≤ C42
n(r++s+

)

∫

Aκn

[
(u − κn)r(x) + μ(x)

s(x)
q(x) (u − κn)s(x)

]
dx + C3|Aκn+1 |.

From this and (4.8) we obtain (4.10).
Step 2. Estimating Zn+1 by Zn .
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In the following, we estimate Zn+1 by Zn with n ∈ N0. To this end, let {Bi }m
i=1 be a finite

open covering of �, where Bi (i ∈ {1, · · · , m}) are open balls of radius R in R
N such that

�i := Bi ∩ � (i ∈ {1, · · · , m}) are Lipschitz domains. We may take R sufficiently small
such that

|�i | < 1 for all i ∈ {1, · · · , m}, (4.12)

and

p+
i < r−

i ≤ r+
i <

(
p∗)−

i and q+ < s−
i ≤ s+

i <
(
q∗)−

i for all i ∈ {1, · · · , m}, (4.13)

where for a function f ∈ C
(
�
)
and i ∈ {1, · · · , m}, we denote

f +
i := max

x∈�i

f (x) and f −
i := min

x∈�i

f (x).

Let n ∈ N0 and denote vn := (u − κn+1)+. For each i ∈ {1, · · · , m}, α̂ > 0, and β̂ > 0, we
denote

Tn,i (α̂, β̂) :=
∫

�i

[
vα̂

n + μ(x)
β̂

q(x) vβ̂
n

]
dx .

We have

Zn+1 =
∫

�

[
vr(x)

n + μ(x)
s(x)
q(x) vs(x)

n

]
dx ≤

m∑
i=1

∫

�i

[
vr(x)

n + μ(x)
s(x)
q(x) vs(x)

n

]
dx .

From this and the basic inequality

t β̃ ≤ t α̃ + t γ̃ for all t ≥ 0 and for all α̃, β̃, γ̃ with 0 < α̃ ≤ β̃ ≤ γ̃ , (4.14)

we obtain

Zn+1 ≤
m∑

i=1

[
Tn,i (r

−
i , s−

i ) + Tn,i (r
+
i , s+

i )
]
. (4.15)

From (4.13), we can fix ε such that

0 < ε < min
1≤i≤m

min
{(

p∗)−
i − r+

i ,
(
q∗)−

i − s+
i

}
. (4.16)

Let i ∈ {1, · · · , m} and let � ∈ {+,−}. By Hölder’s inequality and (4.12) we have

Tn,i (r
�
i , s�

i ) =
∫

Aκn+1∩�i

[
v

r�
i

n + μ(x)
s�i

q(x) v
s�
i

n

]
dx

≤
(∫

�i

v
r�

i +ε
n dx

) r�
i

r�
i +ε |Aκn+1 ∩ �i |

ε

r�
i +ε

+
(∫

�i

μ(x)
s�i +ε

q(x) v
s�
i +ε

n dx

) s�i
s�i +ε |Aκn+1 ∩ �i |

ε

s�i +ε

≤ |Aκn+1 ∩ �i |
ε

r++s++ε

⎡
⎢⎣
(∫

�i

v
r�

i +ε
n dx

) r�
i

r�
i +ε +

(∫

�i

μ(x)
s�i +ε

q(x) v
s�
i +ε

n dx

) s�i
s�i +ε

⎤
⎥⎦ .

(4.17)
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Denote

��(x, t) := tr�
i +ε + μ(x)

s�i +ε

q(x) t s�
i +ε.

By (4.16), it holds

r�
i + ε <

(
p∗)−

i and s�
i + ε <

(
q∗)−

i .

Hence, we have

W 1,p(·)(�i ) ↪→ W 1,p−
i (�i ) ↪→ Lr�

i +ε(�i ) (4.18)

and

W 1,H(�i ) ↪→ L��(�i ) (4.19)

in view of Proposition 2.7 (for the case � = �i ) and Proposition 3.7 (for the case � = �i ),
respectively. Taking the embedding (4.18) and Proposition 2.6 (for the case μ ≡ 0 and
� = �i ) into account we have

(∫

�i

v
r�

i +ε
n dx

) r�
i

r�
i +ε ≤ C5‖vn‖r�

i
1,p(·),�i

≤ C5

⎛
⎝R

r�
i

p−
i

n,i + R

r�
i

p+
i

n,i

⎞
⎠ , (4.20)

where

Rn,i :=
∫

�i

[
|∇vn |p(x) + μ(x)|∇vn |q(x)

]
dx +

∫

�i

[
v

p(x)
n + μ(x)v

q(x)
n

]
dx .

On the other hand, by invoking the embedding (4.19) and Proposition 2.6 we have

(∫

�i

μ(x)
s�i +ε

q(x) v
s�
i +ε

n dx

) s�i
s�i +ε ≤ ‖vn‖s�

i
��,�i

≤ C6‖vn‖s�
i
1,H,�i

≤ C6

⎛
⎝R

s�i
p−
i

n,i + R

s�i
q+
i

n,i

⎞
⎠ .

(4.21)

From (4.17), (4.20) and (4.21), we obtain

Tn,i (r
�
i , s�

i ) ≤ C7|Aκn+1 ∩ �i |
ε

r++s++ε

⎛
⎝R

r�
i

p−
i

n,i + R

r�
i

p+
i

n,i + R

s�i
p−
i

n,i + R

s�i
q+
i

n,i

⎞
⎠ . (4.22)

Invoking (4.22) and (4.14) we infer

Tn,i (r
�
i , s�

i ) ≤ C8|Aκn+1 |
ε

r++s++ε

(
R1+γ1

n + R1+γ2
n

)
, (4.23)

where

Rn :=
∫

�

[
|∇vn |p(x) + μ(x)|∇vn |q(x)

]
dx +

∫

�

[
v

p(x)
n + μ(x)v

q(x)
n

]
dx

and

0 < γ1 := min
1≤i≤m

min

{
r−

i

p+
i

,
s−

i

q+
i

}
− 1 ≤ γ2 := max

1≤i≤m
max

{
r+

i

p−
i

,
s+

i

p−
i

}
− 1.
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Using the estimate (4.23), we deduce from (4.15) that

Zn+1 ≤ C9|Aκn+1 |
ε

r++s++ε

(
R1+γ1

n + R1+γ2
n

)
. (4.24)

On the other hand, combining (4.9) with (4.10) gives

Rn ≤ C10

(
1 + κ−r+

∗
)
2n(r++s+) Zn for all n ∈ N0.

Thus,

R1+γ1
n + R1+γ2

n ≤ C11

(
1 + κ

−r+(1+γ2)∗
)
2n(r++s+)(1+γ2)

(
Z1+γ1

n + Z1+γ2
n

)
. (4.25)

Moreover, (4.8) implies that

|Aκn+1 |
ε

r++s++ε ≤ C12

(
κ

− εr−
r++s++ε∗ + κ

− εr+
r++s++ε∗

)
2

εr+
r++s++ε

n Z
ε

r++s++ε
n . (4.26)

From (4.24), (4.25) and (4.26) along with (4.14) we arrive at

Zn+1 ≤ C13

(
κ

−μ1∗ + κ
−μ2∗

)
bn (Z1+δ1

n + Z1+δ2
n

)
for all n ∈ N0, (4.27)

where

0 < μ1 := εr−

r+ + s+ + ε
< μ2 := r+(1 + γ2) + εr+

r+ + s+ + ε
,

1 < b := 2(r++s+)(1+γ2)+ εr+
r++s++ε

(4.28)

and

0 < δ1 := γ1 + ε

r+ + s+ + ε
≤ δ2 := γ2 + ε

r+ + s+ + ε
. (4.29)

Step 3. A priori bounds.
In this step, we will obtain (4.3) by using an argument similar as in Ho-Kim [41, Proof of

Theorem 4.2]. From Lemma 2.10, we get using (4.27) that

Zn → 0 as n → ∞ (4.30)

provided

Z0 ≤ min

{
(2C13(κ

−μ1∗ + κ
−μ2∗ ))

− 1
δ1 b

− 1
δ21 ,
(
2C13

(
κ

−μ1∗ + κ
−μ2∗

))− 1
δ2 b

− 1
δ1δ2

− δ2−δ1
δ22

}
.

(4.31)

In order to specify κ∗ satisfying (4.31), we first estimate

Z0 =
∫

�

[
(u − κ∗)p(x)

+ + μ(x)(u − κ∗)q(x)
+

]
dx ≤

∫

�

�(x, |u|) dx . (4.32)

Note that
∫

�

�(x, |u|) dx ≤ (2C13)
− 1

δ1 (κ
−μ1∗ + κ

−μ2∗ )
− 1

δ1 b
− 1

δ21 ,

∫

�

�(x, |u|) dx ≤ (2C13)
− 1

δ2 (κ
−μ1∗ + κ

−μ2∗ )
− 1

δ2 b
− 1

δ1δ2
− δ2−δ1

δ22

(4.33)
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is equivalent to

κ
−μ1∗ + κ

−μ2∗ ≤ (2C13)
−1b

− 1
δ1

(∫

�

�(x, |u|) dx

)−δ1

,

κ
−μ1∗ + κ

−μ2∗ ≤ (2C13)
−1b

− 1
δ1

− δ2−δ1
δ2

(∫

�

�(x, |u|) dx

)−δ2

.

On the other hand we have that

2κ−μ1∗ ≤ (2C13)
−1b

− 1
δ1

− δ2−δ1
δ2 min

{(∫

�

�(x, |u|) dx

)−δ1

,

(∫

�

�(x, |u|) dx

)−δ2
}

,

2κ−μ2∗ ≤ (2C13)
−1b

− 1
δ1

− δ2−δ1
δ2 min

{(∫

�

�(x, |u|) dx

)−δ1

,

(∫

�

�(x, |u|) dx

)−δ2
}

,

is equivalent to

κ∗ ≥ (4C13)
1

μ1 b
1

μ1

(
1
δ1

+ δ2−δ1
δ2

)
max

⎧⎨
⎩
(∫

�

�(x, |u|) dx

) δ1
μ1

,

(∫

�

�(x, |u|) dx

) δ2
μ1

⎫⎬
⎭ ,

κ∗ ≥ (4C13)
1

μ2 b
1

μ2

(
1
δ1

+ δ2−δ1
δ2

)
max

⎧
⎨
⎩
(∫

�

�(x, |u|) dx

) δ1
μ2

,

(∫

�

�(x, |u|) dx

) δ2
μ2

⎫
⎬
⎭ .

(4.34)

Therefore, by choosing

κ∗ = max

{
(4C13)

1
μ1 , (4C13)

1
μ2

}
b

1
μ1

(
1
δ1

+ δ2−δ1
δ2

)

max

⎧⎨
⎩
(∫

�

�(x, |u|) dx

) δ1
μ2

,

(∫

�

�(x, |u|) dx

) δ2
μ1

⎫⎬
⎭ ,

(4.34) holds and so (4.33) follows. From this and (4.32), we derive (4.31). Hence, (4.30)
holds. Meanwhile, by Lebesgue’s dominated convergence theorem, we have

Zn =
∫

�

[
(u − κn)

r(x)
+ + μ(x)

s(x)
q(x) (u − κn)

s(x)
+
]
dx

→
∫

�

[
(u − 2κ∗)r(x)

+ + μ(x)
s(x)
q(x) (u − 2κ∗)s(x)

+
]
dx as n → ∞.

This implies that
∫

�

[
(u − 2κ∗)r(x)

+ + μ(x)
s(x)
q(x) (u − 2κ∗)s(x)

+
]
dx = 0

and so

ess supx∈� u(x) ≤ 2κ∗.

Replacing u with −u in the arguments above, we obtain

ess supx∈�(−u)(x) ≤ 2κ∗.
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Therefore,

‖u‖∞,� ≤ C max

⎧
⎨
⎩
(∫

�

�(x, |u|) dx

) δ1
μ2

,

(∫

�

�(x, |u|) dx

) δ2
μ1

⎫
⎬
⎭ , (4.35)

where C is a positive constant independent of u. Note that by Proposition 2.5, we have the
following relation

∫

�

�(x, |u|) dx ≤ max
{
‖u‖r−

�,�, ‖u‖s+
�,�

}
.

Combining this and (4.35), we derive (4.3) and the proof is complete. ��
Next, we want to prove a priori bounds for problem (1.8). We have the following result.

Theorem 4.3 Let hypotheses (H3), (D1) and (N1) be satisfied. Then, any weak solution u ∈
W 1,H(�) of problem (1.8) belongs to L∞(�) ∩ L∞(�) and satisfies the following a priori
estimate

‖u‖∞,� + ‖u‖∞,� ≤ C max
{(‖u‖�,� + ‖u‖ϒ,�

)τ1 ,
(‖u‖�,� + ‖u‖ϒ,�

)τ2} , (4.36)

where C, τ1, τ2 are positive constants independent of u and

�(x, t) := tr(x) + μ(x)
s(x)
q(x) t s(x), ϒ(x, t) := t�(x) + μ(x)

h(x)
q(x) th(x)

for all (x, t) ∈ � × [0,∞).

Proof The proof uses similar ideas as the proof of Theorem 4.2.
Step 1. Defining the recursion sequence {Xn}n∈N0 and basic estimates.
For each n ∈ N0, we define

Xn := Zn + Yn,

where

Zn :=
∫

Aκn

[
(u − κn)r(x) + μ(x)

s(x)
q(x) (u − κn)s(x)

]
dx

and

Yn :=
∫

�κn

[
(u − κn)�(x) + μ(x)

h(x)
q(x) (u − κn)h(x)

]
dσ.

Here Aκ and {κn}n∈N0 are given by (4.4) and (4.5), respectively, and

�κ := {x ∈ � : u(x) > κ}, κ ∈ R. (4.37)

It is also clear that

�κn+1 ⊂ �κn and Yn+1 ≤ Yn for all n ∈ N0.

Arguing as that obtained in (4.7) and (4.8) we have

u(x) ≤ (2n+2 − 1)(u(x) − κn) for a. a. x ∈ �κn+1 and for all n ∈ N0 (4.38)

and

|�κn+1 |σ ≤
(
κ−�−
∗ + κ−�+

∗
)
2(n+1)�+

Yn ≤ 2
(
1 + κ−�+

∗
)
2(n+1)�+

Yn for all n ∈ N0.

(4.39)
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Furthermore, we are going to show the following truncated energy estimate
∫

Aκn+1

[
|∇u|p(x) + μ(x)|∇u|q(x)

]
dx ≤ C1(1 + κ−α0∗ )2nβ0 Xn for all n ∈ N0, (4.40)

where α0 := max{r+, �+} and β0 := max{r+, s+, �+, h+}. As before, we denote by Ci

(i ∈ N) positive constants independent of u, n and κ∗. In order to prove (4.40), we test (4.2)
with ϕ = (u − κn+1)+ ∈ W 1,H(�) in order to get

∫

Aκn+1

A(x, u,∇u) · ∇u dx

=
∫

Aκn+1

B(x, u,∇u)(u − κn+1) dx +
∫

�κn+1

C(x, u)(u − κn+1) dσ.

(4.41)

From the previous subsection, by using the structure conditions in (D1)(ii) and (D1)(iii), we
have∫

Aκn+1

A(x, u,∇u) · ∇u dx

≥ α2

∫

Aκn+1

[
|∇u|p(x) + μ(x)|∇u|q(x)

]
dx − α3

∫

Aκn+1

[
ur(x) + μ(x)

s(x)
q(x) us(x) + 1

]
dx

and
∫

Aκn+1

B(x, u,∇u)(u − κn+1) dx

≤ α2

2

∫

Aκn+1

[
|∇u|p(x) + μ(x)|∇u|q(x)

]
dx + C2

∫

Aκn+1

[
ur(x) + μ(x)

s(x)
q(x) us(x) + 1

]
dx .

From the fact that 0 < u − κn+1 < u ≤ u�(x) + 1 on �κn+1 and hypothesis (N1) we get
∫

�κn+1

C(x, u)(u − κn+1) dσ ≤ γ

∫

�κn+1

[
u�(x)−1 + μ(x)

h(x)
q(x) uh(x)−1 + 1

]
u dσ

≤ 2γ
∫

�κn+1

[
u�(x) + μ(x)

h(x)
q(x) uh(x) + 1

]
dσ.

Combining the last three estimates with (4.41) and then using (4.7) and (4.38), we obtain
∫

Aκn+1

[
|∇u|p(x) + μ(x)|∇u|q(x)

]
dx

≤ C3

∫

Aκn+1

[
ur(x) + μ(x)

s(x)
q(x) us(x) + 1

]
dx + C4

∫

�κn+1

[
u�(x) + μ(x)

h(x)
q(x) uh(x) + 1

]
dσ

≤ C3

∫

Aκn+1

([
(2n+2 − 1)(u − κn)

]r(x) + μ(x)
s(x)
q(x)

[
(2n+2 − 1)(u − κn)

]s(x)
)

dx + C3|Aκn+1 |

+ C4

∫

�κn+1

([
(2n+2 − 1)(u − κn)

]�(x) + μ(x)
h(x)
q(x)

[
(2n+2 − 1)(u − κn)

]h(x)
)

dσ + C4|�κn+1 |σ .

This yields
∫

Aκn+1

[
|∇u|p(x) + μ(x)|∇u|q(x)

]
dx ≤ C52

nβ0 Xn + C3|Aκn+1 | + C4|�κn+1 |σ .
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Combining this with (4.8) and (4.39) we obtain (4.40).
Step 2. Estimating Xn+1 by Xn .
Let n ∈ N0. We are going to estimate Xn+1 by Xn through estimating Zn+1 by Zn and

Yn+1 by Xn . To this end, let {Bi }m
i=1 be a finite open cover of � as in Step 2 of the proof of

Theorem 4.2 with the same notations. Denote by I the set of all i ∈ {1, · · · , m} such that
�i := Bi ∩ � �= ∅. We may take R such that (4.12) and (4.13) hold and

|∂�i |σ < 1 for all i ∈ I (4.42)

and

p+
i < �−

i ≤ �+
i < (p∗)−i and q+

i < h−
i ≤ h+

i < (q∗)−i for all i ∈ I . (4.43)

From Step 2 of the proof of Theorem 4.2, we have

Zn+1 ≤ C6

(
κ

−μ1∗ + κ
−μ2∗

)
bn (Z1+δ1

n + Z1+δ2
n

)
for all n ∈ N0, (4.44)

where b, μ1, μ2 are given by (4.28) and δ1, δ2 are given by (4.29).
Next we estimate Yn+1 by Xn . For each i ∈ I , α̂ > 0, and β̂ > 0, we denote

Hn,i (α̂, β̂) :=
∫

∂�i

[
vα̂

n + μ(x)
β̂

q(x) vβ̂
n

]
dσ,

where vn := (u − κn+1)+. We have

Yn+1 =
∫

�

[
v�(x)

n + μ(x)
h(x)
q(x) vh(x)

n

]
dσ ≤

∑
i∈I

∫

∂�i

[
v�(x)

n + μ(x)
h(x)
q(x) vh(x)

n

]
dσ.

From this and (4.14) we obtain

Yn+1 ≤
∑
i∈I

[
Hn,i (�

−
i , h−

i ) + Hn,i (�
+
i , h+

i )
]
. (4.45)

From (4.43), we can fix ε such that

0 < ε < min
i∈I

min
{
(p∗)−i − �+

i , (q∗)−i − h+
i

}
. (4.46)

Let i ∈ I and let � ∈ {+,−}. By Hölder’s inequality and (4.42) we have

Hn,i (�
�
i , h�

i ) =
∫

�κn+1∩∂�i

[
v

��
i

n + μ(x)
h�

i
q(x) v

h�
i

n

]
dσ

≤
(∫

∂�i

v
��

i +ε
n dσ

) ��i
��i +ε |�κn+1 ∩ ∂�i |

ε

��i +ε

σ

+
(∫

∂�i

μ(x)
h�

i +ε

q(x) v
h�

i +ε
n dσ

) h�
i

h�
i +ε |�κn+1 ∩ ∂�i |

ε

h�
i +ε

σ

≤ |�κn+1 |
ε

�++h++ε
σ

⎡
⎢⎣
(∫

∂�i

v
��

i +ε
n dσ

) ��i
��i +ε +

(∫

∂�i

μ(x)
h�

i +ε

q(x) v
h�

i +ε
n dσ

) h�
i

h�
i +ε

⎤
⎥⎦ .

(4.47)
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We denote

��(x, t) := t�
�
i +ε + μ(x)

h�
i +ε

q(x) th�
i +ε for (x, t) ∈ � × [0,∞).

Since ��
i + ε < (p∗)−i and h�

i + ε < (q∗)−i (see (4.46)), we have

W 1,p(·)(�i ) ↪→ W 1,p−
i (�i ) ↪→ L��

i +ε(∂�i ) (4.48)

and

W 1,H(�i ) ↪→ L��(∂�i ) (4.49)

in view of Proposition 2.7 and Remark 2.8 (for the case � = �i ), and Proposition 3.8 (for
the case � = �i ). Applying Proposition 2.6 (for the case μ ≡ 0 and � = �i ) and the
embedding (4.48), we have

(∫

∂�i

v
��

i +ε
n dσ

) ��i
��i +ε ≤ C7‖vn‖��

i
1,p(·),�i

≤ C8

⎛
⎝R

��i
p−
i

n + R

��i
p+
i

n

⎞
⎠ , (4.50)

where

Rn :=
∫

�

[
|∇vn |p(x) + μ(x)|∇vn |q(x)

]
dx +

∫

�

[
v

p(x)
n + μ(x)v

q(x)
n

]
dx .

On the other hand, by invoking the embedding (4.49) and Proposition 2.6 we have

(∫

∂�i

μ(x)
h�

i +ε

q(x) v
h�

i +ε
n dσ

) h�
i

h�
i +ε

≤ ‖vn‖h�
i

��,∂�i
≤ C9‖vn‖h�

i
1,H,�i

≤ C9

⎛
⎝R

h�
i

p−
i

n + R

h�
i

q+
i

n

⎞
⎠ . (4.51)

From (4.47), (4.50) and (4.51), we obtain

Hn,i (�
�
i , h�

i ) ≤ C10|�κn+1 |
ε

�++h++ε
σ

⎛
⎝R

��i
p−
i

n + R

��i
p+
i

n + R

h�
i

p−
i

n + R

h�
i

q+
i

n

⎞
⎠ . (4.52)

From (4.52) and (4.14) we infer

Hn,i (�
�
i , h�

i ) ≤ C11|�κn+1 |
ε

�++h++ε
σ

(
R1+γ̄1

n + R1+γ̄2
n

)
, (4.53)

where

0 < γ̄1 := min
1≤i≤m

min

{
�−

i

p+
i

,
h−

i

q+
i

}
− 1 ≤ γ̄2 := max

1≤i≤m
max

{
�+

i

p−
i

,
h+

i

p−
i

}
− 1.

Utilizing the estimate (4.53), we deduce from (4.45) that

Yn+1 ≤ C11|�κn+1 |
ε

�++h++ε
σ

(
R1+γ̄1

n + R1+γ̄2
n

)
for all n ∈ N0. (4.54)

Note that by (4.9) and (4.40) we have

Rn ≤ C12(1 + κ−α0∗ )2nβ0 Xn for all n ∈ N0,
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where α0 and β0 are given in (4.40). It follows that

R1+γ̄1
n + R1+γ̄2

n ≤ C13

(
1 + κ

−α0(1+γ̄2)∗
)
2nβ0(1+γ̄2)

(
X1+γ̄1

n + X1+γ̄2
n

)
. (4.55)

On the other hand, we deduce from (4.39) that

|�κn+1 |
ε

�++h++ε
σ ≤ C14

(
κ

− ε�−
�++h++ε∗ + κ

− ε�+
�++h++ε∗

)
2

ε�+
�++h++ε

nY
ε

�++h++ε
n . (4.56)

From (4.54), (4.55) and (4.56) we arrive at

Yn+1 ≤ C15

(
κ

−μ̄1∗ + κ
−μ̄2∗

)
b̄n
(

X1+δ̄1
n + X1+δ̄2

n

)
for all n ∈ N0, (4.57)

where

0 < μ̄1 := ε�−

�+ + h+ + ε
< μ̄2 := α0(1 + γ̄2) + ε�+

�+ + h+ + ε
,

1 < b̄ := 2β0(1+γ̄2)+ ε�+
�++h++ε ,

and

0 < δ̄1 := γ̄1 + ε

�+ + h+ + ε
≤ δ̄2 := γ̄2 + ε

�+ + h+ + ε
.

Finally, combining (4.44) with (4.57) gives

Xn+1 ≤ C16

(
κ

−η1∗ + κ
−η2∗
)

bn
0

(
X1+λ1

n + X1+λ2
n

)
for all n ∈ N0, (4.58)

where

0 < η1 := min{μ1, μ̄1} ≤ η2 := max{μ2, μ̄2}, 1 < b0 := max{b, b̄},
and

0 < λ1 := min{δ1, δ̄1} ≤ λ2 := max{δ2, δ̄2}.
Step 3. A priori bounds.
We will also apply Lemma 2.10 to the sequence {Xn}n∈N0 with the recursion inequality

(4.58). Note that

X0 =
∫

�

[
(u − κ∗)p(x)

+ + μ(x)(u − κ∗)q(x)
+

]
dx

+
∫

�

[
(u − κ∗)�(x)

+ + μ(x)
h(x)
q(x) (u − κ∗)h(x)

+
]
dσ

≤
∫

�

�(x, |u|) dx +
∫

�

ϒ(x, |u|) dσ

and

Xn =
∫

�

[
(u − κn)

r(x)
+ + μ(x)

s(x)
q(x) (u − κn)

s(x)
+
]
dx

+
∫

�

[
(u − κn)

�(x)
+ + μ(x)

h(x)
q(x) (u − κn)

h(x)
+

]
dσ

→
∫

�

[
(u − 2κ∗)r(x)

+ + μ(x)
s(x)
q(x) (u − 2κ∗)s(x)

]
dx
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+
∫

�

[
(u − 2κ∗)�(x)

+ + μ(x)
h(x)
q(x) (u − 2κ∗)h(x)

+
]
dσ as n → ∞.

By repeating the arguments in Step 3 of the proof of Theorem 4.2 we get that

‖u‖∞,� + ‖u‖∞,� ≤ C max
{

G(u)τ̄1 , G(u)τ̄2
}

, (4.59)

where C , τ̄1 and τ̄2 are positive constants independent of u and

G(u) :=
∫

�

�(x, |u|) dx +
∫

�

ϒ(x, |u|) dσ.

In view of Proposition 2.5 we easily derive (4.36) from (4.59) and this completes the proof.
��

5 The boundedness for generalized double phase problems with
critical growth

The aim of this section is to discuss the boundedness of weak solutions to the problems (1.7)
and (1.8) when we suppose a critical growth based on the Propositions 3.4 and 3.6 via the
idea inHo-Kim-Winkert-Zhang [42] using theDeGiorgi iteration together with a localization
method. Let hypotheses (H3) be satisfied and we state our hypotheses on the data.

(D2): The functionsA : �×R×R
N → R

N andB : �×R×R
N → R are Carathéodory

functions such that

(i) |A(x, t, ξ)| ≤ α1

[
1 + |t |

p∗(x)

p′(x) + μ(x)
N−1

N−q(x) |t |
q∗(x)

q′(x) + |ξ |p(x)−1 + μ(x)|ξ |q(x)−1
]

,

(ii) A(x, t, ξ) · ξ ≥ α2
[|ξ |p(x) + μ(x)|ξ |q(x)

]− α3

[
|t |p∗(x) + μ(x)

q∗(x)
q(x) |t |q∗(x) + 1

]
,

(iii) |B(x, t, ξ)| ≤ β

[
|t |p∗(x)−1 + μ(x)

q∗(x)
q(x) |t |q∗(x)−1+|ξ |

p(x)

(p∗)′(x) +μ(x)
N+1

N |ξ |
q(x)

(q∗)′(x) +1

]
,

for a. a. x ∈ � and for all (t, ξ) ∈ R×R
N , where α1, α2, α3 and β are positive constants.

For problem (1.8) we need an additional assumption for the boundary term.

(N2): The function C : � × R → R is a Carathéodory function such that

|C(x, t)| ≤ γ

[
|t |p∗(x)−1 + μ(x)

q∗(x)
q(x) |t |q∗(x)−1 + 1

]

for a. a. x ∈ � and for all t ∈ R, where γ is a positive constant.

The definitions of weak solutions to problems (1.7) and (1.8) are the same as that given
in Definition 4.1. In view of Propositions 3.4 and 3.6, these definitions make sense under the
above conditions (D2) and (N2).

We start with the Dirichlet problem (1.7) and have the following result.

Theorem 5.1 Let hypotheses (H3) and (D2) be satisfied. Then, any weak solution u ∈
W 1,H

0 (�) of problem (1.7) is of class L∞(�).

Proof As before, we can cover� by balls {Bi }m
i=1 with radius R such that each�i := Bi ∩�

(i = 1, · · · , m) is a Lipschitz domain. Note that by (H3), it holds q(x) < p∗(x) for all
x ∈ �. Thus, we may take the radius R sufficiently small such that

q+
i := max

x∈�i

q(x) < (p∗)−i := min
x∈�i

p∗(x) for all i ∈ {1, · · · , m}. (5.1)
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Let u be a weak solution to problem (1.7) and let κ∗ ≥ 1 be sufficiently large such that
∫

Aκ∗
H(x, |∇u|) dx +

∫

Aκ∗
H(x, |u|) dx +

∫

Aκ∗
G∗(x, |u|) dx < 1, (5.2)

where Aκ for κ ∈ R is defined in (4.4) and recall that, for all (x, t) ∈ � × [0,∞),

H(x, t) := t p(x) + μ(x)tq(x) and G∗(x, t) := t p∗(x) + μ(x)
q∗(x)
q(x) tq∗(x),

see (2.1) and (3.4). Then, let {κn}n∈N0 be as in (4.5) and define vn := (u − κn+1)+ for each
n ∈ N0. Moreover, we define

Zn :=
∫

Aκn

H(x, |∇u|) dx +
∫

Aκn

G∗(x, u − κn) dx . (5.3)

Similarly to the previous Sect. 4, we easily obtain

Zn+1 ≤ Zn for all n ∈ N0 (5.4)

and

|Aκn+1 | ≤ 2(n+1)(p∗)+

κ
(p∗)−∗

Zn ≤ 2(n+1)(p∗)+ Zn for all n ∈ N0. (5.5)

In order to apply Lemma 2.10, in the following we will establish recursion inequalities
for {Zn}n∈N0 . In the rest of the proof, as before, Ci (i ∈ N) stand for positive constants
independent of n and κ∗.

Claim 1 There exist constants μ1, μ2 > 0 such that

∫

Aκn+1

G∗(x, vn) dx ≤ C12
n((p∗)+)

2

p− (
Z1+μ1

n + Z1+μ2
n

)
for all n ∈ N0.

Indeed, we have
∫

Aκn+1

G∗(x, vn) dx =
∫

�

G∗(x, vn) dx ≤
m∑

i=1

∫

�i

G∗(x, vn) dx . (5.6)

Let i ∈ {1, · · · , m}. From (5.2) and the relation between the norm and the modular (see
Proposition 2.5) we get

∫

�i

G∗(x, vn) dx ≤ ‖vn‖(p∗)−i
G∗,�i

.

Then, applying Proposition 3.4 for � = �i we obtain∫

�i

G∗(x, vn) dx ≤ C2
[‖∇vn‖H,�i + ‖vn‖H,�i

](p∗)−i .

From the equivalent norm in (2.3) and Proposition 2.6, noticing (5.2) again, we then have

∫

�i

G∗(x, vn) dx ≤ C3

(∫

�i

H(x, |∇vn |) dx +
∫

�i

H(x, vn) dx

) (p∗)
−
i

q+
i

≤ C4

(∫

Aκn+1

H(x, |∇vn |) dx +
∫

Aκn+1

G∗(x, vn) dx + |Aκn+1 |
) (p∗)

−
i

q+
i

.
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Using this along with (5.3), (5.4) and (5.5) we infer that

∫

�i

G∗(x, vn) dx ≤ C52

n(p∗)+(p∗)
−
i

q+
i Z

(p∗)
−
i

q+
i

n .

Now, if we combine this with (5.6) and (4.14) we arrive at

∫

Aκn+1

G∗(x, vn) dx ≤ C62
n((p∗)+)

2

q− (
Z1+μ1

n + Z1+μ2
n

)
,

where

0 < μ1 := min
1≤i≤m

(p∗)−i
q+

i

− 1 ≤ μ2 := max
1≤i≤m

(p∗)−i
q+

i

− 1

due to (5.1). This shows Claim 1.

Claim 2 It holds that

∫

Aκn+1

H(x, |∇u|) dx ≤ C72
n

[
((p∗)+)

2

q− +(q∗)+
]
(

Z1+μ1
n−1 + Z1+μ2

n−1

)
for all n ∈ N.

We test (4.1) with ϕ = vn ∈ W 1,H
0 (�) to get

∫

Aκn+1

A(x, u,∇u) · ∇u dx =
∫

Aκn+1

B(x, u,∇u)(u − κn+1) dx . (5.7)

Note that u ≥ u − κn+1 > 0 and u > κn+1 ≥ 1 on Aκn+1 . Applying this along with
the structure conditions in (D2)(ii), (D2)(iii) along with Young’s inequality, we reach the
following estimates
∫

Aκn+1

A(x, u,∇u) · ∇u dx ≥ α2

∫

Aκn+1

H(x, |∇u|) dx − α3

∫

Aκn+1

[
G∗(x, u) + 1

]
dx

≥ α2

∫

Aκn+1

H(x, |∇u|) dx − 2α3

∫

Aκn+1

G∗(x, u) dx

and
∫

Aκn+1

B(x, u,∇u)(u − κn+1) dx

≤ β

∫

Aκn+1

(
1 + u p∗(x)−1 + μ(x)

q∗(x)
q(x) uq∗(x)−1 + |∇u|

p(x)

(p∗)′(x) + μ(x)
N+1

N |∇u|
q(x)

(q∗)′(x)

)
u dx

≤ α2

2

∫

Aκn+1

H(x, |∇u|) dx + C8

∫

Aκn+1

G∗(x, u) dx .

Combining the last two estimates with (5.7) and then using (4.7), we obtain
∫

Aκn+1

H(x, |∇u|) dx

≤ C9

∫

Aκn+1

[
u p∗(x) + μ(x)

q∗(x)
q(x) uq∗(x)

]
dx
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≤ C9

∫

Aκn+1

([
(2n+2 − 1)(u − κn)

]p∗(x) + μ(x)
q∗(x)
q(x)

[
(2n+2 − 1)(u − κn)

]q∗(x)
)

dx .

This yields
∫

Aκn+1

H(x, |∇u|) dx ≤ C102
n(q∗)+

∫

Aκn

G∗(x, vn−1) dx .

Thus, from Claim 1 and the last inequality we obtain the assertion in Claim 2.
Using the Claims 1 and 2 along with (5.4) gives us

Zn+1 ≤ C11bn
(

Z1+μ1
n−1 + Z1+μ2

n−1

)
for all n ∈ N, (5.8)

where b := 2

[ ((p∗)+)
2

q− +(q∗)+
]

> 1. This implies

Z2(n+1) ≤ C11b2n+1
(

Z1+μ1
2n + Z1+μ2

2n

)
for all n ∈ N0.

So, writing Z̃n := Z2n and b̃ := b2, we have

Z̃n+1 ≤ bC11b̃n (Z̃1+μ1
n + Z̃1+μ2

n

)
for all n ∈ N0. (5.9)

Now we can apply Lemma 2.10 to (5.9). This yields

Z2n = Z̃n → 0 as n → ∞ (5.10)

provided that

Z̃0 ≤ min

{
(2bC11)

− 1
μ1 b̃

− 1
μ21 , (2bC11)

− 1
μ2 b̃

− 1
μ1μ2

− μ2−μ1
μ22

}
. (5.11)

Using again (5.8) we also obtain

Z2(n+1)+1 ≤ C11b2(n+1)
(

Z1+μ1
2n+1 + Z1+μ2

2n+1

)
for all n ∈ N0,

which for Z̄n := Z2n+1 and again b̃ := b2, reads as

Z̄n+1 ≤ b̃C11b̃n (Z̄1+μ1
n + Z̃1+μ2

n

)
for all n ∈ N0. (5.12)

Lemma 2.10 applied to (5.12) now leads to

Z2n+1 = Z̄n → 0 as n → ∞ (5.13)

provided that

Z̄0 ≤ min

{
(2b̃C11)

− 1
μ1 b̃

− 1
μ21 ,
(
2b̃C11

)− 1
μ2 b̃

− 1
μ1μ2

− μ2−μ1
μ22

}
. (5.14)

We point out that

Z̄0 = Z1 ≤ Z0 = Z̃0 ≤
∫

Aκ∗
H(x, |∇u|) dx +

∫

Aκ∗
G∗(x, u) dx .

Hence, if we choose κ∗ > 1 sufficiently large, we obtain
∫

Aκ∗
H(x, |∇u|) dx +

∫

Aκ∗
G∗(x, u) dx
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≤ min

{
1, (2b̃C11)

− 1
μ1 b̃

− 1
μ21 ,
(
2b̃C11

)− 1
μ2 b̃

− 1
μ1μ2

− μ2−μ1
μ22

}
.

Therefore, (5.2), (5.11) and (5.14) are satisfied and we then get (5.10) and (5.13) which says
that

Zn =
∫

Aκn

H(x, |∇u|) dx +
∫

Aκn

G∗(x, u − κn) dx → 0 as n → ∞.

This implies that
∫

�

(u − 2κ∗)p∗(x)
+ dx = 0.

Thus, (u − 2κ∗)+ = 0 a. e. in � and so

ess sup� u ≤ 2κ∗.

Replacing u by −u in the above arguments we also get that

ess sup�(−u) ≤ 2κ∗.

From the last two estimates we obtain

‖u‖∞,� ≤ 2κ∗.

This shows the assertion of the theorem. ��
Next, we are going to study the boundedness of weak solutions of (1.8) under critical

growth and the additional structure condition (N2). This result reads as follows.

Theorem 5.2 Let hypotheses (H3), (D2) and (N2) be satisfied. Then, any weak solution of
problem (1.8) is of class L∞(�) ∩ L∞(�).

Proof As in proof of Theorem 5.1, we cover � by balls {Bi }m
i=1 with radius R such that

each �i := Bi ∩ � (i = 1, . . . , m) is a Lipschitz domain. Denoting by I the set of all
i ∈ {1, . . . , m} such that �i := Bi ∩ � �= ∅, we may take R sufficiently small such that

p+
i < (p∗)−i and q+

i < (p∗)−i for all i ∈ {1, · · · , m}, (5.15)

where as before, for a function f ∈ C
(
�
)
and i ∈ {1, · · · , m} we denote

f +
i := max

x∈�i

f (x) and f −
i := min

x∈�i

f (x).

Let u be a weak solution to problem (1.8) and let κ∗ ≥ 1 be sufficiently large such that
∫

Aκ∗
H(x, |∇u|) dx +

∫

Aκ∗
G∗(x, |u|) dx +

∫

�κ∗
T ∗(x, |u|) dσ < 1, (5.16)

where Aκ and�κ are defined by (4.4) and (4.37), respectively, and for all (x, t) ∈ �×[0,∞),

G∗(x, t) := t p∗(x) + μ(x)
q∗(x)
q(x) tq∗(x) and T ∗(x, t) := t p∗(x) + μ(x)

q∗(x)
q(x) tq∗(x).

Let {κn}n∈N0 be as in (4.5) and for each n ∈ N0, we define vn := (u − κn+1)+ and

Zn :=
∫

Aκn

H(x, |∇u|) dx +
∫

Aκn

G∗(x, u − κn) dx +
∫

�κn

T ∗(x, u − κn) dσ, (5.17)
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where as before, we see that

Zn+1 ≤ Zn for all n ∈ N0, (5.18)

and

u(x) ≤ (2n+2 − 1)(u(x) − κn) for a. a. x ∈ Aκn+1 for all n ∈ N0, (5.19)

u(x) ≤ (2n+2 − 1)(u(x) − κn) for a. a. x ∈ �κn+1 for all n ∈ N0, (5.20)

|Aκn+1 | ≤ 2(n+1)(p∗)+

κ
(p∗)−∗

Zn ≤ 2(n+1)(p∗)+ Zn for all n ∈ N0. (5.21)

In the rest of the proof, Ci (i ∈ N) are again positive constants independent of n and κ∗.
As in the proof of Theorem 5.1 the following assertion holds.

Claim 1 It holds that
∫

Aκn+1

G∗(x, vn) dx ≤ C12
n((p∗)+)

2

q− (
Z1+ν1

n + Z1+ν2
n

)
for all n ∈ N0,

where

0 < ν1 := min
1≤i≤m

(p∗)−i
q+

i

− 1 ≤ ν2 := max
1≤i≤m

(p∗)−i
q+

i

− 1.

We also have a similar estimate for the trace of u.

Claim 2 There exist positive constants ν3, ν4 such that
∫

�κn+1

T ∗(x, vn) dσ ≤ C22
n(p∗)+(q∗)+

p− (
Z1+ν3

n + Z1+ν4
n

)
for all n ∈ N0.

Indeed, we have
∫

�κn+1

T ∗(x, vn) dσ =
∫

�

T ∗(x, vn) dσ ≤
∑
i∈I

∫

∂�i

T ∗(x, vn) dσ. (5.22)

Let i ∈ I . From the relation between the norm and themodular (see Propositions 2.5 and 2.6),
the critical trace embedding for W 1,p(·)(�i ) (see Proposition 2.7 and Remark 2.8) and due
to (5.16), we have

∫

∂�i

v
p∗(x)
n dσ ≤ ‖vn‖(p∗)−i

p∗(·),∂�i
≤ C3‖vn‖(p∗)−i

1,p(·),�i
≤ C3R

(p∗)
−
i

p+
i

n , (5.23)

where

Rn :=
∫

�

H(x, |∇vn |) dx +
∫

�

H(x, vn) dx .

Define ϕ(x, t) := μ(x)
q∗(x)
q(x) tq∗(x) for (x, t) ∈ � × [0,∞). From the relation between the

norm and the modular, Proposition 3.6, and due to (5.16) again, we have

∫

∂�i

μ(x)
q∗(x)
q(x) v

q∗(x)
n dσ ≤ ‖vn‖(q∗)−i

ϕ,∂�i
≤ ‖vn‖(q∗)−i

T ∗,∂�i
≤ C4‖vn‖(q∗)−i

1,H,�i
≤ C4R

(q∗)
−
i

q+
i

n . (5.24)
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Combining (5.23) with (5.24) gives

∫

∂�i

T ∗(x, vn) dσ ≤ C3R

(p∗)
−
i

p+
i

n + C4R

(q∗)
−
i

q+
i

n

≤ C5

(∫

Aκn+1

H(x, |∇u|) dx +
∫

Aκn+1

G∗(x, vn) dx + |Aκn+1 |
) (p∗)

−
i

p+
i

+ C5

(∫

Aκn+1

H(x, |∇u|) dx +
∫

Aκn+1

G∗(x, vn) dx + |Aκn+1 |
) (q∗)

−
i

q+
i

.

From this, (5.17), (5.18) and (5.21) we obtain

∫

∂�i

T ∗(x, vn) dσ ≤ C62

n(p∗)+(p∗)
−
i

p+
i Z

(p∗)
−
i

p+
i

n + C72

n(p∗)+(q∗)
−
i

q+
i Z

(q∗)
−
i

q+
i

n .

Combining this with (5.22) and noticing (4.14) we arrive at
∫

�

T ∗(x, vn) dσ ≤ C82
n(p∗)+(q∗)+

p− (
Z1+ν3

n + Z1+ν4
n

)
,

where

0 < ν3 := min
1≤i≤m

min

{
(p∗)−i

p+
i

,
(q∗)−i

q+
i

}
− 1 ≤ ν4 := max

1≤i≤m
max

{
(p∗)−i

p+
i

,
(q∗)−i

q+
i

}
− 1,

see (5.15). Hence, we have proved Claim 2.

Claim 3 It holds that

∫

Aκn+1

H(x, |∇u|) dx ≤ C92
n
[ ((p∗)+)

2

q− + (p∗)+(q∗)+
p− +(q∗)+

] (
Z1+μ1

n−1 + Z1+μ2
n−1

)
for all n ∈ N,

where 0 < μ1 := min1≤i≤4 νi ≤ μ2 := max1≤i≤4 νi .

Testing (4.2) by ϕ = vn ∈ W 1,H(�) gives
∫

Aκn+1

A(x, u,∇u) · ∇u dx =
∫

Aκn+1

B(x, u,∇u)(u − κn+1) dx

+
∫

�κn+1

C(x, u)(u − κn+1) dσ.

Arguing as in the proof of Theorem 5.1 (see the proof of Claim 2), we obtain
∫

Aκn+1

A(x, u,∇u) · ∇u dx ≥ α2

∫

Aκn+1

H(x, |∇u|) dx − 2α3

∫

Aκn+1

G∗(x, u) dx,

and∫

Aκn+1

B(x, u,∇u)(u − κn+1) dx ≤ α2

2

∫

Aκn+1

H(x, |∇u|) dx + C10

∫

Aκn+1

G∗(x, u) dx .

123



New embedding results for double phase problems with variable... Page 35 of 38   227 

Furthermore, by hypothesis (N2), we have
∫

�κn+1

C(x, u)(u − κn+1) dσ ≤ γ

∫

�κn+1

[
u p∗(x)−1 + μ(x)

q∗(x)
q(x) uq∗(x)−1 + 1

]
u dσ

≤ 2γ
∫

�κn+1

T ∗(x, u) dσ.

Combining the last three estimates, we obtain
∫

Aκn+1

H(x, |∇u|) dx ≤ C11

∫

Aκn+1

G∗(x, u) dx + C12

∫

�κn+1

T ∗(x, u) dσ.

Then, by using (5.19) and (5.20) we deduce from the preceding inequality that

∫

Aκn+1

H(x, |∇u|) dx ≤ C132
n(q∗)+

[∫

Aκn

G∗(x, vn−1) dx +
∫

�κn

T ∗(x, vn−1) dσ

]
.

Then, Claim 3 follows from the last inequality and Claims 1 and 2.
From Claims 1–3 and (5.18) we arrive at

Zn+1 ≤ C14bn
(

Z1+μ1
n−1 + Z1+μ2

n−1

)
for all n ∈ N, (5.25)

where b := 2

[ ((p∗)+)
2

q− + (p∗)+(q∗)+
p− +(q∗)+

]
> 1. Repeating the arguments used in the proof of

Theorem 5.1, by choosing κ∗ > 1 sufficiently large such that
∫

Aκ∗
H(x, |∇u|) dx +

∫

Aκ∗
G∗(x, u) dx +

∫

�κ∗
T ∗(x, u) dσ

≤ min

{
1, (2b̃C14)

− 1
μ1 b̃

− 1
μ21 ,
(
2b̃C14

)− 1
μ2 b̃

− 1
μ1μ2

− μ2−μ1
μ22

}
,

where b̃ := b2, we deduce from (5.25) that

Zn =
∫

�

H(x, |∇vn−1|) dx +
∫

�

G∗(x, vn−1) dx +
∫

�

T ∗(x, vn−1) dσ → 0 as n → ∞.

This implies that
∫

�

(u − 2κ∗)p∗(x)
+ dx +

∫

�

(u − 2κ∗)p∗(x)
+ dσ = 0.

Therefore, (u − 2κ∗)+ = 0 a. e. in � and (u − 2κ∗)+ = 0 a. e. on �. This means

ess supx∈� u(x) + ess supx∈� u(x) ≤ 4κ∗.

Replacing u by −u in the above arguments we also obtain

ess supx∈�(−u)(x) + ess supx∈�(−u)(x) ≤ 4κ∗.

Hence

‖u‖∞,� + ‖u‖∞,� ≤ 4κ∗.

This finishes the proof. ��
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67. Shi, X., Rădulescu, V.D., Repovš, D.D., Zhang, Q.: Multiple solutions of double phase variational prob-

lems with variable exponent. Adv. Calc. Var. 13(4), 385–401 (2020)
68. Winkert, P.: L∞-estimates for nonlinear elliptic Neumann boundary value problems. NoDEA Nonlinear

Differ. Equ. Appl. 17(3), 289–302 (2010)
69. Winkert, P., Zacher, R.: A priori bounds for weak solutions to elliptic equations with nonstandard growth.

Discrete Contin. Dyn. Syst. Ser. S 5(4), 865–878 (2012)
70. Winkert, P., Zacher, R.: Corrigendum to A priori bounds for weak solutions to elliptic equations with

nonstandard growth [Discrete Contin. Dyn. Syst. Ser. S 5 (2012), 865–878]. Discrete Contin. Dyn. Syst
Ser. S published on-line as note 2015, 1–3 (2012)
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