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AN INVERSE PROBLEM FOR A DOUBLE PHASE IMPLICIT

OBSTACLE PROBLEM WITH MULTIVALUED TERMS
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and Patrick Winkert9

Abstract. In this paper, we study an inverse problem of estimating three discontinuous parameters in
a double phase implicit obstacle problem with multivalued terms and mixed boundary conditions which
is formulated by a regularized optimal control problem. Under very general assumptions, we introduce
a multivalued function called a parameter-to-solution map which admits weakly compact values. Then,
by employing the Aubin-Cellina convergence theorem and the theory of nonsmooth analysis, we prove
that the parameter-to-solution map is bounded and continuous in the sense of Kuratowski. Finally, a
generalized regularization framework for the inverse problem is developed and a new existence theorem
is provided.

Mathematics Subject Classification. 35J20, 35J25, 35J60, 35R30, 49N45, 65J20.

Received October 7, 2022. Accepted March 26, 2023.

1. Introduction

Assume that Ω ⊂ RN (with N ≥ 2) is a bounded domain such that its boundary Γ := ∂Ω is Lipschitz which
is separated into four mutually disjoint parts Γ1, Γ2, Γ3, and Γ4. Set

BV(Ω) :=
{
ζ ∈ L1(Ω) : TV(ζ) < +∞

}
,
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where TV: D(TV) ⊂ L1(Ω)→ [0,+∞) is defined by

TV(ζ) := sup
ϕ∈C1(Ω;RN )

{∫
Ω

ζ(x) divϕ(x) dx : |ϕ(x)| ≤ 1 for all x ∈ Ω

}
for all ζ ∈ BV(Ω).

Given constants 1 < p < N , p < q, 1 < δ1 < p∗ and 1 < δ2 < p∗ (here p∗ and p∗ are given in equation (2.1),
see below), three nonempty sets Σ ⊂ BV(Ω) ∩ L∞(Ω), A ⊂ Lδ

′
1(Ω) and B ⊂ Lδ

′
2(Γ2) with 1

δ1
+ 1

δ′1
= 1 and

1
δ2

+ 1
δ′2

= 1, in the present paper, we are interested in the investigation of the nonlinear inverse problem as

follows:

Problem 1.1. Find ω∗ ∈ Σ and (α∗, β∗) ∈ A×B such that

inf
ω∈Σ and (α,β)∈A×B

J(ω, α, β) = J(ω∗, α∗, β∗), (1.1)

where the cost functional J : Σ×A×B → R is given by

J(ω, α, β) := min
u∈Λ(ω,α,β)

C(u) + κTV(a) + τG(α, β), (1.2)

Λ(ω, α, β) stands for the solution set in the weak sense of the following double phase implicit obstacle problem
with respect to ω ∈ L∞(Ω) ∩ BV(Ω) and (α, β) ∈ A×B:

−div
(
ω(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ g(x, u) + µ(x)|u|q−2u ∈ U1(x, u) + α(x) in Ω,

u = 0 on Γ1,

∂u

∂νω
= β(x) on Γ2,

∂u

∂νω
∈ U2(x, u) on Γ3,

− ∂u

∂νω
∈ ∂cφ(x, u) on Γ4,

L(u) ≤ H(u),

(1.3)

where µ : Ω→ [0,∞) is a bounded function,

∂u

∂νω
:=
(
ω(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ν,

with ν being the outward unit normal vector on Γ, ∂cφ is the convex subdifferential operator of convex function
s 7→ φ(x, s), τ > 0 and κ > 0 are two given regularized parameters. Here, nonlinear functions C : W 1,H(Ω)→ R,
G : A×B → R, L : W 1,H(Ω)→ R, H : W 1,H(Ω)→ R, g : Ω×R→ R, and set-valued operators U1 : Ω×R→ 2R

and U2 : Γ3 × R→ 2R will be specialized in Section 2.

Under very general assumptions, we introduce a multivalued function called a parameter-to-solution map
which admits weakly compact values. Then, by using the Aubin-Cellina convergence theorem and the theory
of nonsmooth analysis, we prove that the parameter-to-solution map is bounded and continuous in the sense
of Kuratowski. Finally, a generalized regularization framework for the inverse problem is developed and a new
existence theorem is provided, see Section 3.

Inverse problems of parameter identification in partial differential equations is an important area in math-
ematics, motivated by various applications in form of equations and inequalities. In this direction we mention
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the work of Migórski-Khan-Zeng [34] who treated the inverse problem of mixed quasi-variational inequalities in
the general form

〈T (a, u), v − u〉+ ϕ(v)− ϕ(u) ≥ 〈m, v − u〉 for all v ∈ K(u),

where K : C → 2C is a set-valued map, T : B × V → V ∗ is a nonlinear map, ϕ : V → R ∪ {+∞} is a functional
and m ∈ V ∗, while V is a real reflexive Banach space, B is another Banach space and C is a nonempty, closed,
convex subset of V . Such results are very useful and can be applied to different kind of problems, for example
for p-Laplace equations in terms of hemivariational inequalities, see also [33]. Other results can be found in the
papers of Clason-Khan-Sama-Tammer [14] for noncoercive variational problems, Gwinner [20] for variational
inequalities of second kind, Gwinner-Jadamba-Khan-Sama [21] for an optimization setting, Migórski-Ochal [35]
for nonlinear parabolic problems and Papageorgiou-Vetro [44] for existence and relaxation theorems for different
types of problems. For more details on this topics the reader is welcome to consult [1–4, 6, 9, 22, 23, 27] and
the references therein.

The nonlinear and nonhomogeneous differential operator involved in equation (1.3) is the following weighted
double phase operator

div
(
a(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
for u ∈W 1,H(Ω). (1.4)

Such differential operator has been studied by Liu-Dai [29] when a takes a positive constant. More particularly,
if a ≡ 1, then it is not hard to verify that the integral form of (1.4) is defined by∫

Ω

(
|∇u|p + µ(x)|∇u|q

)
dx. (1.5)

It should be mentioned that the initial motivation for studying the energy functional equation (1.5) is to
apply the unbalance growth formulation for explaining various natural phenomena and describing models from
mechanics, physics and engineering sciences which have strongly anisotropic structures (for instance, anisotropic
materials), see Zhikov [52–54]. After that double phase differential/integral operators (1.4) and (1.5) have been
widely applied to study of duality theory and of the Lavrentiev phenomenon in the last years. We refer to
the papers of Baroni-Colombo-Mingione [7, 8], Byun-Oh [10], Colombo-Mingione [15, 16], Marcellini [31, 32],
Mingione-Rădulescu [37]. and Ragusa-Tachikawa [46], see also the references therein.

Another interesting phenomenon of Problem 1.1 and in particular, of equation (1.3), is the occurrence
of multivalued functions in a very general setting which are motivated by several physical applications.
We refer to the books of Facchinei-Pang [18], Hu-Papageorgiou [24, 25], Carl-Le [11], Carl-Le-Motreanu
[12] and Panagiotopoulos [38, 39] for model problems in mechanics and physics. For existence results to
multivalued problems using different tools we refer to the works of Pang [40], Carl-Le-Winkert [13], Pang-
Stewart [41, 42], Iannizzotto-Papageorgiou [26], Liu-Zeng-Motreanu [30], Papageorgiou-Rădulescu-Repovš [43]
and Zeng-Bai-Gasiński-Winkert [48–50].

The remainder of the paper is organized as follows. Section 2 is devoted to recall some preliminary materials
which will be used in Section 3 and to impose the detailed assumptions on the data of the double phase implicit
obstacle problem (1.3). Section 3 states and proves the main results of our paper, see Theorem 3.1, and points
out some special cases, see Corollaries 3.3 and 3.4.

2. Mathematical preliminaries and hypotheses

The content of this section is twofold. The first part of this section is to recall some basic definitions and
preliminaries which contain Musielak-Orlicz Lebesgue and Musielak-Orlicz Sobolev spaces as well as some
necessary results in nonsmooth analysis. In the second part, we will impose the general assumptions on the data
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of the double phase implicit obstacle problem (1.3) and we recall an existence theorem for weak solutions of
problem (1.3).

2.1. Preliminaries

Under the assumptions of Section 1, in what follows, for any r ∈ [1,∞) and ∅ 6= Π ⊂ Ω, by Lr(Π) := Lr(Π;R)
and ‖ · ‖r,Π, we denote the usual Lebesgue space and its standard r-norm. Set Lr(Π)+ := {u ∈ Lr(Π) : u(x) ≥
0 for a. a.x ∈ Π}, and define W 1,r(Ω) := {u ∈ Lr(Ω) | ∇u ∈ Lr(Ω;RN )} and

‖u‖1,r,Ω := ‖u‖r,Ω + ‖∇u‖r,Ω for all u ∈W 1,r(Ω).

Let s > 1, we denote by s′ > 1 to satisfy 1
s + 1

s′ = 1. Also, we adopt the symbols s∗ and s∗ to stand for the
critical exponents of s in the domain and on the boundary, respectively,

s∗ =

{
Ns
N−s if s < N,

+∞ if s ≥ N,
and s∗ =

{
(N−1)s
N−s if s < N,

+∞ if s ≥ N.
(2.1)

Consider the r-Laplacian eigenvalue problem with Steklov boundary condition formulated by

−∆ru = −|u|r−2u in Ω,

|∇u|r−2∇u · ν = λ|u|r−2u on Γ,
(2.2)

for 1 < r <∞. From Lê [28] we know that equation (2.2) has a smallest eigenvalue λS1,r > 0 which is isolated
and simple. Moreover, it can be written as

λS1,r = inf
u∈W 1,r(Ω)\{0}

‖∇u‖rr,Ω + ‖u‖rr,Ω
‖u‖rr,Γ

. (2.3)

Next, we formulate the conditions on the exponents p, q and the weight function µ. In the entire paper we
assume the following conditions:

1 < p < N, p < q < p∗ and 0 ≤ µ(·) ∈ L∞(Ω). (2.4)

Let us consider the following nonlinear and nonhomogeneous function H : Ω× [0,∞)→ [0,∞) defined by

H(x, t) = tp + µ(x)tq for all (x, t) ∈ Ω× [0,∞).

In the sequel, the Musielak-Orlicz Lebesgue space LH(Ω) described by the nonlinear function H is defined by

LH(Ω) = {u : Ω→ R is measurable : ρH(u) < +∞} ,

where the modular function ρH(·) is given by

ρH(u) :=

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p + µ(x)|u|q

)
dx.

The space LH(Ω) endowed with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1
}
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becomes a reflexive Banach space since it is uniformly convex. We also need the following seminormed space
Lqµ(Ω) driven by the weight function µ : Ω→ [0,+∞) given by

Lqµ(Ω) =

{
u : Ω→ R is measurable :

∫
Ω

µ(x)|u|q dx < +∞
}

endowed with the following seminorm

‖u‖q,µ =

(∫
Ω

µ(x)|u|q dx

) 1
q

.

In this paper, we use the function space

V :=
{
u ∈W 1,H(Ω) : u = 0 on Γ1

}
,

which is a closed subspace V of W 1,H(Ω), where W 1,H(Ω) is the Musielak-Orlicz Sobolev space defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
.

It is well-known that W 1,H(Ω) equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

with ‖∇u‖H = ‖ |∇u| ‖H is a reflexive Banach space. This means that V endowed the norm ‖u‖V = ‖u‖1,H for
all u ∈ V becomes a reflexive Banach space as well.

Let us recall some embedding results for the spaces LH(Ω) and W 1,H(Ω), see Liu-Dai [29] and Gasiński-
Winkert [19].

Proposition 2.1. Assume that equation (2.4) hold and let p∗, p∗ be the critical exponents to p as given in
equation (2.1) for s = p. Then we have

(i) LH(Ω) ↪→ Lr(Ω) and W 1,H(Ω) ↪→W 1,r(Ω) are continuous for all r ∈ [1, p];
(ii) W 1,H(Ω) ↪→ Lr(Ω) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);

(iii) W 1,H(Ω) ↪→ Lr(Γ) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);
(iv) LH(Ω) ↪→ Lqµ(Ω) is continuous;

(v) Lq(Ω) ↪→ LH(Ω) is continuous.

It is obvious to see that the embeddings (ii) and (iii) of Proposition 2.1 still hold, when we replace the space
W 1,H(Ω) by V .

Besides, we recall the following proposition which reveals the essential relationship between the norm ‖ · ‖H
and the modular function ρH : LH(Ω) → [0,+∞). Its detailed proof can be found in Liu-Dai [29] or Crespo-
Blanco-Gasiński-Harjulehto-Winkert [17].

Proposition 2.2. Assume that equation (2.4) hold. For any y ∈ LH(Ω), we have the following assertions:

(i) if y 6= 0, then ‖y‖H = λ if and only if ρH
(
y
λ

)
= 1;

(ii) ‖y‖H < 1 (resp. > 1 and = 1) if and only if ρH(y) < 1 (resp. > 1 and = 1);
(iii) if ‖y‖H < 1, then ‖y‖qH ≤ ρH(y) ≤ ‖y‖pH;
(iv) if ‖y‖H > 1, then ‖y‖pH ≤ ρH(y) ≤ ‖y‖qH;
(v) ‖y‖H → 0 if and only if ρH(y)→ 0;
(vi) ‖y‖H → +∞ if and only if ρH(y)→ +∞.
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In the sequel, we use the symbols “
w−→ ” and “→” to represent the weak and the strong convergences,

respectively, in various spaces. Given a function w : Ω→ (0,+∞) such that

ω ∈ L∞(Ω) and inf
x∈Ω

ω(x) > 0, (2.5)

we consider the nonlinear operator A : V → V ∗ defined by

〈A(u), v〉 :=

∫
Ω

(
ω(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx

+

∫
Ω

(|u|p−2u+ µ(x)|u|q−2u)v dx

(2.6)

for u, v ∈ V , where 〈·, ·〉 stands for the duality pairing between V and its dual space V ∗. The following proposition
delivers the main properties of the operator A : V → V ∗. We refer to Liu-Dai [29], Proposition 3.1 for its proof.

Proposition 2.3. Assume that equation (2.4) and equation (2.5) hold. Then, the operator A defined by equation
(2.6) is bounded (maps bounded sets of V into bounded sets of V ∗), continuous, monotone (hence maximal
monotone) and of type (S+), that is,

un
w−→ u in V and lim sup

n→∞
〈Aun, un − u〉 ≤ 0,

imply un → u in V .

We call a function j : E → R locally Lipschitz at x ∈ E if there is a neighborhood O(x) of x and a constant
Lx > 0 such that

|j(y)− j(z)| ≤ Lx‖y − z‖E for all y, z ∈ O(x).

We denote by

j◦(x; y) := lim sup
z→x, λ↓0

j(z + λy)− j(z)
λ

,

the generalized directional derivative of j at the point x in the direction y and ∂j : E → 2E
∗

given by

∂j(x) := { ξ ∈ E∗ : j◦(x; y) ≥ 〈ξ, y〉E∗×E for all y ∈ E} for all x ∈ E

is the generalized gradient of j at x in the sense of Clarke.
The next proposition summarizes the main properties of generalized gradients and generalized directional

derivatives of a locally Lipschitz function. We refer to Migórski-Ochal-Sofonea [36], Proposition 3.23 for its
proof.

Proposition 2.4. Let j : E → R be locally Lipschitz with Lipschitz constant Lx > 0 at x ∈ E. Then we have
the following:

(i) The function y 7→ j◦(x; y) is positively homogeneous, subadditive, and satisfies

|j◦(x; y)| ≤ Lx‖y‖E for all y ∈ E;

(ii) The function (x, y) 7→ j◦(x; y) is upper semicontinuous;
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(iii) For each x ∈ E, ∂j(x) is a nonempty, convex, and weak∗ compact subset of E∗ with ‖ξ‖E∗ ≤ Lx for all
ξ ∈ ∂j(x);

(iv) j◦(x; y) = max {〈ξ, y〉E∗×E | ξ ∈ ∂j(x)} for all y ∈ E;
(v) The multivalued function E 3 x 7→ ∂j(x) ⊂ E∗ is upper semicontinuous from E into the subsets of E∗

with weak∗ topology.

Finally, let us recall the definition of Kuratowski limits, see, for example, Papageorgiou-Winkert [45],
Definition 6.7.4.

Definition 2.5. Let (X, τ) be a Hausdorff topological space and let {An}n∈N ⊂ 2X be a sequence of sets. We
define the sequential τ -Kuratowski lower limit of the sets An by

τ - lim inf
n→∞

An :=
{
x ∈ X : x = τ - lim

n→∞
xn, xn ∈ An for all n ≥ 1

}
,

and the sequential τ -Kuratowski upper limit of the sets An

τ - lim sup
n→∞

An :=

{
x ∈ X : x = τ - lim

k→∞
xnk

, xnk
∈ Ank

, n1 < n2 < . . . < nk < . . .

}
.

If

A = τ - lim inf
n→∞

An = τ - lim sup
n→∞

An,

then A is called sequential τ -Kuratowski limit of the sets An.

2.2. Functional framework and existence theorem to problem (1.3)

In order to present an existence theorem for problem (1.3), we first impose the following hypotheses on the
data of problem (1.3).

H(g): The function g : Ω× R→ R is such that the following conditions hold:
(i) the function x 7→ g(x, s) is measurable for all s ∈ R;
(ii) the function s 7→ g(x, s) is continuous for a. a.x ∈ Ω;

(iii) there exist ag > 0 and bg ∈ L1(Ω) such that

g(x, s)s ≥ ag|s|ς − bg(x),

for all s ∈ R and for a. a.x ∈ Ω, where p < ς < p∗;
(iv) for any u, v ∈ Lp∗(Ω), the function x 7→ g(x, u(x))v(x) belongs to L1(Ω);
(v) the function s 7→ g(x, s) is nondecreasing for a. a.x ∈ Ω, i.e.,

(g(x, s1)− g(x, s2))(s1 − s2) ≥ 0

for all s1, s2 ∈ R and for a. a.x ∈ Ω.

H(U1): The multivalued mapping U1 : Ω× R→ 2R is such that the following conditions hold:
(i) for s ∈ R and x ∈ Ω, the set U1(x, s) is nonempty, bounded, closed and convex in R;
(ii) the multivalued mapping x 7→ U1(x, s) is measurable in Ω for all s ∈ R;

(iii) the multivalued mapping s 7→ U1(x, s) is upper semicontinuous for a. a.x ∈ Ω;
(iv) there exist aU1

∈ Lp′(Ω)+ and bU1
≥ 0 such that

|η| ≤ aU1(x) + bU1 |s|p−1,
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for all η ∈ U1(x, s), for all s ∈ R and for a. a.x ∈ Ω.

H(U2): U2 : Γ3 × R→ 2R satisfies the following conditions:
(i) U2(x, s) is a nonempty, bounded, closed and convex set in R for a. a.x ∈ Γ3 and for all s ∈ R;
(ii) x 7→ U2(x, s) is measurable on Γ3 for all s ∈ R;

(iii) s 7→ U2(x, s) is u.s.c. for a. a.x ∈ Γ3;
(iv) there exist aU2 ∈ Lp

′
(Γ3)+ and bU2 ≥ 0 such that

|ξ| ≤ aU2
(x) + bU2

|s|p−1

for all ξ ∈ U2(x, s) for a. a.x ∈ Γ3 and for all s ∈ R.

H(φ): φ : Γ4 × R→ R satisfies the following conditions:
(i) x 7→ φ(x, r) is measurable on Γ4 for all r ∈ R such that x 7→ φ(x, 0) belongs to L1(Γ4);
(ii) for a. a.x ∈ Γ4, r 7→ φ(x, r) is convex and l.s.c.;

(iii) for each function u ∈ Lp(Γ4) the function x 7→ φ(x, u(x)) belongs to L1(Γ4).

H(0): ω ∈ L∞(Ω) is such that infx∈Ω ω(x) ≥ cΣ > 0 and (α, β) ∈ A×B.

H(1): The inequality

cΣ − bU2

(
λS1,p

)−1
> 0

holds, where λS1,p is the first eigenvalue of the p-Laplacian with Steklov boundary condition, see
equations (2.2) and (2.3).

H(L): L : V → R is positively homogeneous and subadditive such that

L(u) ≤ lim sup
n→∞

L(un),

whenever {un}n∈N ⊂ V is such that un
w−→ u in V for some u ∈ V .

H(H): H : V → (0,+∞) is weakly continuous, that is, for any sequence {un}n∈N ⊂ V such that un
w−→ u

for some u ∈ V , we have

H(un)→ H(u).

Let us introduce a multivalued mapping K : V → 2V defined by

K(u) := {v ∈ V : L(v) ≤ H(u)} (2.7)

for all u ∈ V . Under the hypotheses H(L) and H(H), we have the following lemma which was proved by
Zeng-Rǎdulescu-Winkert [51].

Lemma 2.6. Let H : V → (0,+∞) and L : V → R be two functions such that H(L) and H(H) are satisfied.
Then, the following statements hold:

(i) for each u ∈ V , K(u) is closed and convex in V such that 0 ∈ K(u);
(ii) the graph Gr(K) of K is sequentially closed in Vw × Vw, that is, K is sequentially closed from V with the

weak topology into the subsets of V with the weak topology;
(iii) if {un}n∈N ⊂ V is a sequence such that

un
w−→ u in V as n→∞
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for some u ∈ V , then for each v ∈ K(u) there exists a sequence {vn}n∈N ⊂ V such that

vn ∈ K(un) and vn → v in V as n→∞.

Moreover, we state the definition of a solution in the weak sense to problem (1.3) as follows.

Definition 2.7. A function u ∈ V is said to be a weak solution of problem (1.3), if there exist functions
η ∈ L1(Ω) and ξ ∈ L1(Γ3) with η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω and ξ(x) ∈ U2(x, u(x)) for a. a.x ∈ Γ3 such
that u ∈ K(u) and the inequality∫

Ω

(
ω(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇(v − u) dx+

∫
Ω

g(x, u)(v − u) dx

+

∫
Ω

µ(x)|u|q−2u(v − u) dx+

∫
Γ4

φ(x, v) dΓ−
∫

Γ4

φ(x, u) dΓ

≥
∫

Ω

(η(x) + α(x))(v − u) dx+

∫
Γ2

β(x)(v − u) dΓ +

∫
Γ3

ξ(x)(v − u) dΓ

is satisfied for all v ∈ K(u), where the multivalued mapping K is defined by equation (2.7).

We end this section to deliver a generalized existence theorem of weak solutions to problem (1.3) which can
be proved via applying the same arguments as in the proof of Theorem 3.9 of Zeng-Rădulescu-Winkert [51].

Theorem 2.8. Assume that equation (2.4), H(U1), H(g), H(φ), H(U2), H(L), H(H), H(0) and H(1) are ful-
filled. Then, the solution set of problem (1.3) corresponding to (ω, α, β) ∈ Σ×A×B, denoted by Λ(ω, α, β), is
nonempty and weakly compact in V .

3. Main results

This section is devoted to develop a generalized framework to study the inverse problem given in Problem
1.1. More precisely, we are going to establish a generalized theorem to identify the discontinuous parameters
ω ∈ Σ and α ∈ A in the domain as well as the discontinuous boundary datum β ∈ B for the double phase
implicit elliptic obstacle problem given in equation (1.3).

We suppose the following assumptions to Problem 1.1.

H(2): Σ ⊂ BV(Ω) ∩ L∞(Ω), A ⊂ Lδ′1(Ω) and B ⊂ Lδ′2(Γ2) are nonempty, closed and convex sets such that

Σ := {ω ∈ BV(Ω) : 0 < cΣ ≤ ω(x) ≤ dΣ for a. a.x ∈ Ω}

for some 0 < cΣ ≤ dΣ.

H(C): C : V → R is a weakly l.s.c. and bounded from below function, i.e.,

lim inf
n→∞

C(un) ≥ C(u) and C(v) ≥MC for all v ∈ V ,

whenever {un}n∈N ⊂ V and u ∈ V are such that un
w−→ u in V for some MC ∈ R.

H(G): G : A×B → R is bounded from below such that
(i) G is coercive, that is,

G(α, β)→ +∞ as ‖α‖δ′1,Ω + ‖β‖δ′2,Γ2
→ +∞;

(ii) G is weakly lower semicontinuous.
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The existence theorem to the regularized optimal control problem given in Problem 1.1 is stated as follows

Theorem 3.1. Assume that all conditions of Theorem 2.8 are satisfied. If, in addition, H(2), H(C) and H(G)
are satisfied, then the solution set of Problem 1.1 is nonempty and weakly compact.

Proof. The proof of this theorem is divided into five steps.
Step 1: The functional J defined in equation (1.2) is well-defined.
It is sufficient to show that for each fixed (ω, α, β) ∈ Σ×A×B, there is at least one function u∗ ∈ Λ(ω, α, β)

such that the following equality holds

inf
u∈Λ(ω,α,β)

C(u) = C(u∗). (3.1)

Recall that C is bounded from below. Thus there exists a minimizing sequence {un}n∈N ⊂ Λ(ω, α, β) to the
optimal problem infu∈Λ(ω,α,β) C(u), that is,

inf
u∈Λ(ω,α,β)

C(u) = lim
n→∞

C(un).

Keeping in mind that Λ(ω, α, β) is weakly compact (see Thm. 2.8), we are able to select a subsequence

of {un}n∈N, not relabeled, such that un
w−→ u∗ in V for some u∗ ∈ Λ(ω, α, β). From the weakly lower

semicontinuity of C (see hypothesis H(C)) it follows that

inf
u∈Λ(ω,α,β)

C(u) = lim inf
n→∞

C(un) ≥ C(u∗) ≥ inf
u∈Λ(ω,α,β)

C(u).

This indicates that for every (ω, α, β) ∈ Σ × A × B there exists a function u∗ ∈ Λ(ω, α, β) such that equality
equation (3.1) is valid. Hence J is well-defined.

Step 2: Λ maps bounded sets of Σ×A×B to bounded sets of V .
Let (ω, α, β) ∈ Σ× A× B and u ∈ Λ(ω, α, β) be arbitrary. From hypotheses H(g), H(φ), H(U1), H(U2), the

definition of Σ and the fact that 0 ∈ K(u), we have

0 ≥
∫

Ω

ω(x)|∇u|p + µ(x)|∇u|q dx+

∫
Ω

g(x, u)udx+

∫
Ω

µ(x)|u|q dx−
∫

Γ4

φ(x, 0) dΓ

+

∫
Γ4

φ(x, u) dΓ−
∫

Ω

(η(x) + α(x))udx−
∫

Γ2

β(x)udΓ−
∫

Γ3

ξ(x)udΓ

≥ cΛ‖∇u‖pp,Ω + ‖∇u‖qq,µ + ‖u‖qq,µ +

∫
Ω

ag|u|ς − bg(x) dx−
∫

Ω

aU1
(x)|u|+ bU2

|u|p dΓ

−
∫

Γ3

aU2
(x)|u|+ bU2

|u|p dΓ−
∫

Γ4

φ(x, 0) dΓ− cφ‖u‖V − dφ −m0

(
‖α‖δ′1,Ω + ‖β‖δ′2,Γ2

)
‖u‖V

≥
(
cΛ − bU2

(
λS1,p

)−1
)
‖∇u‖pp,Ω + ‖∇u‖qq,µ + ag‖u‖ςς,Ω + ‖u‖qq,µ − ‖bg‖1,Ω −

∫
Γ4

φ(x, 0) dΓ

− cφ‖u‖V − d0 (‖cU1‖p′,Ω + ‖cU2‖p′,Γ3) ‖u‖V −
(
bU1 + bU2

(
λS1,p

)−1
)
‖u‖pp,Ω − dφ

−m0

(
‖α‖δ′1,Ω + ‖β‖δ′2,Γ2

)
‖u‖V

≥ M̂0

(
‖∇u‖pp,Ω + ‖∇u‖qq,µ + ‖u‖pp,Ω + ‖u‖qq,µ

)
+
ag
2
‖u‖ςς,Ω − ‖bg‖1,Ω −m1 −

∫
Γ4

φ(x, 0) dΓ

− d0 (‖cU1‖p′,Ω + ‖cU2‖p′,Γ3) ‖u‖V − cφ‖u‖V − dφ −m0

(
‖α‖δ′1,Ω + ‖β‖δ′2,Γ2

)
‖u‖V

= M̂0 (ρH(∇u) + ρH(u)) +
ag
2
‖u‖ςς,Ω − ‖bg‖1,Ω − d0 (‖cU1

‖p′,Ω + ‖cU2
‖p′,Γ3

) ‖u‖V −m1
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−
∫

Γ4

φ(x, 0) dΓ− cφ‖u‖V − dφ −m0

(
‖α‖δ′1,Ω + ‖β‖δ′2,Γ2

)
‖u‖V

≥ M̂0 min {‖u‖pV , ‖u‖
q
V }+

ag
2
‖u‖ςς,Ω − ‖bg‖1,Ω − d0 (‖cU1

‖p′,Ω + ‖cU2
‖p′,Γ3

) ‖u‖V −m1

−
∫

Γ4

φ(x, 0) dΓ− cφ‖u‖V − dφ −m0

(
‖α‖δ′1,Ω + ‖β‖δ′2,Γ2

)
‖u‖V

for some m0,m1, d0 > 0, where we have used Young’s inequality, Proposition 2.2, the convexity of

V 3 u 7→
∫

Γ4

φ(x, u) dΓ ∈ R,

and cφ, dφ, M̂0 ≥ 0 are such that

M̂0 := min
{
cΛ − bU2

(
λS1,p

)−1
, 1
}

and

∫
Γ4

φ(x, v) dΓ ≥ −cφ‖v‖V − dφ for all v ∈ V.

From the estimates above and 1 < p, it is not difficult to see that Λ maps bounded sets of Σ×A×B to bounded
sets of V .

Step 3: If {(ωn, αn, βn)}n∈N ⊂ Σ× A× B is a sequence such that {ωn}n∈N is bounded in BV(Ω), ωn → ω

in L1(Ω), αn
w−→ α in A and βn

w−→ β in B for some (ω, α, β) ∈ L1(Ω)×A×B, then we have ω ∈ Σ and

∅ 6= w– lim sup
n→∞

Λ(ωn, αn, βn) = s– lim sup
n→∞

Λ(ωn, αn, βn) ⊂ Λ(ω, α, β). (3.2)

From the definition of Σ we directly have that ω ∈ Σ. Making use of Step 2, we conclude that⋃
n≥1 Λ(ωn, αn, βn) is bounded in V . The latter combined with the reflexivity of V implies that the set

w– lim supn→∞ Λ(ωn, αn, βn) is nonempty. Let u ∈ w– lim supn→∞ Λ(ωn, αn, βn) be arbitrary. Passing to a
subsequence if necessary, we are able to find a sequence {un}n∈N ⊂ V such that

un ∈ Λ(ωn, αn, βn) and un
w−→ u in V.

Therefore, for every n ∈ N, there exist functions ηn ∈ Lδ
′
1(Ω) and ξn ∈ Lδ

′
2(Γ2) such that

∫
Ω

(
ωn(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(v − un) dx+

∫
Ω

µ(x)|un|q−2un(v − un) dx

+

∫
Ω

g(x, un)(v − un) dx+

∫
Γ4

φ(x, v) dΓ−
∫

Γ4

φ(x, un) dΓ

≥
∫

Ω

(ηn(x) + αn(x))(v − un) dx+

∫
Γ2

βn(x)(v − un) dΓ +

∫
Γ3

ξn(x)(v − un) dΓ

(3.3)

for all v ∈ K(un). By the weak closedness of the graph of K (see Lem. 2.6), un ∈ K(un) and the convergence

un
w−→ u in V , we get u ∈ K(u). Applying again Lemma 2.6, we are able to find a sequence {vn}n∈N ⊂ V such
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that vn ∈ K(un) for each n ∈ N and vn → u in V . Inserting v = un in equation (3.3) yields∫
Ω

(
ωn(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(vn − un) dx+

∫
Ω

µ(x)|un|q−2un(vn − un) dx

+

∫
Ω

g(x, un)(vn − un) dx+

∫
Γ4

φ(x, vn) dΓ−
∫

Γ4

φ(x, un) dΓ

≥
∫

Ω

(ηn(x) + αn(x))(vn − un) dx+

∫
Γ2

βn(x)(vn − un) dΓ +

∫
Γ3

ξn(x)(vn − un) dΓ.

(3.4)

From hypotheses H(U1)(iv) and H(U2)(iv), it is not difficult to prove that the sequences {ηn}n∈N and {ξn}n∈N
are bounded in Lp

′
(Ω) and Lp

′
(Γ3), respectively. Keeping in mind that the embedding of V to Lγ(Ω) is compact

for all 1 < γ < p∗ and the convexity, lower semicontinuity of V 3 u 7→
∫

Ω
φ(x, u) dΓ ∈ R (see hypotheses H(φ),

i.e., V 3 u 7→
∫

Γ4
φ(x, u) dΓ ∈ R is continuous and weakly l.s.c.), we have

lim
n→∞

∫
Ω

µ(x)|un|q−2un(un − vn) dx = 0,

lim
n→∞

∫
Ω

(
g(x, un)− |un|p−2un

)
(vn − un) dx = 0,

lim
n→∞

∫
Ω

(ηn(x) + αn(x))(vn − un) dx = 0,

lim
n→∞

∫
Γ2

βn(x)(vn − un) dΓ = 0,

lim
n→∞

∫
Γ3

ξn(x)(vn − un) dΓ = 0,

lim inf
n→∞

∫
Γ4

φ(x, vn)− φ(x, un) dΓ ≤
∫

Γ4

φ(x, u)− φ(x, u) dΓ = 0,

(3.5)

where we have also used the compactness of V ↪→ Lγ(Γ) for all 1 < γ < p∗. Passing to the upper limit as n→∞
and using equation (3.5) gives

lim sup
n→∞

(∫
Ω

(
ωn(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − vn) dx

+

∫
Ω

(
|un|p−2un + µ(x)|un|q−2un

)
(un − vn) dx

)
≤ 0.

(3.6)

Next, we are going to prove that ∇un → ∇u in Lp(Ω;RN ). Because {un}n∈N and {vn}n∈N are both bounded
in V . So, without loss of generality, we may assume that there exists a constant m2 > 0 such that

(
‖∇un‖pΩ,p + ‖∇vn‖pp,Ω

)− 2−p
p ≥ m2. (3.7)

Indeed, if there exists a subsequence of {‖∇un‖pΩ,p + ‖∇vn‖pp,Ω}n∈N, not relabeled, such that it converges to 0,

then from the convergences vn → u, un
w−→ u in V and the continuity of the embedding of V to W 1,p(Ω) we

obtain ∇un → ∇u = 0 in Lp(Ω;RN ). In this case we would be done. So, we can assume that equation (3.7) is
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fulfilled. By Simon [47], formula (2.2), we have the well-known inequalities

Mp|ξ − η|p ≤
(
|ξ|p−2ξ − |η|p−2η

)
· (ξ − η), if p ≥ 2, (3.8)

Mp|ξ − η|2 ≤
(
|ξ|p−2ξ − |η|p−2η

)
· (ξ − η) (|ξ|p + |η|p)

2−p
p , if 1 ≤ p < 2, (3.9)

for all ξ, η ∈ RN with some constants Mp, Mp > 0 independent of ξ, η ∈ RN .
Let us distinguish the following cases: 1 < p < 2 and p ≥ 2. Assuming p ≥ 2, it follows from equation (3.8)

that ∫
Ω

ωn(x)
(
|∇un|p−2∇un − |∇vn|p−2∇vn

)
· ∇(un − vn) dx ≥ cΛMp‖∇(un − vn)‖pp,Ω.

If 1 < p < 2, let us consider the sets

Ωn = {x ∈ Ω : ∇un 6= 0} ∪ {x ∈ Ω : ∇vn 6= 0},
Σn = {x ∈ Ω : ∇vn = ∇un = 0}.

Then we have Ω = Ωn ∪Σn and Ωn ∩Σn = ∅. Invoking the absolute continuity of the Lebesgue integral we get

∫
Σn

ωn(x)
(
|∇un|p−2∇un − |∇vn|p−2∇vn

)
· ∇(un − vn) dx = 0.

This means that ∫
Ω

ωn(x)
(
|∇un|p−2∇un − |∇vn|p−2∇vn

)
· ∇(un − vn) dx

=

∫
Ωn

ωn(x)
(
|∇un|p−2∇un − |∇vn|p−2∇vn

)
· ∇(un − vn) dx

+

∫
Σn

ωn(x)
(
|∇un|p−2∇un − |∇vn|p−2∇vn

)
· ∇(un − vn) dx

=

∫
Ωn

ωn(x)
(
|∇un|p−2∇un − |∇vn|p−2∇vn

)
· ∇(un − vn) dx.

Making use of equation (3.9) implies

∫
Ω

ωn(x)
(
|∇un|p−2∇un − |∇vn|p−2∇vn

)
· ∇(un − vn) dx

=

∫
Ωn

ωn(x)
(
|∇un|p−2∇un − |∇vn|p−2∇vn

)
· ∇(un − vn)

(|∇un|p + |∇vn|p)
2−p
p

(|∇un|p + |∇vn|p)
2−p
p

dx

≥Mp

∫
Ωn

ωn(x) |∇un −∇u|2 (|∇un|p + |∇vn|p)
p−2
p dx

≥ cΛMp

∫
Ωn

|∇un −∇vn|2 (|∇un|p + |∇vn|p)
p−2
p dx.

(3.10)
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Recall that 1 < p < 2, so 2
p > 1. Using this and Hölder’s inequality we obtain

∫
Ω

|∇un −∇vn|p dx =

∫
Ω

|∇un −∇vn|2·
p
2 dx

=

∫
Ω

(
|∇un −∇vn|2 (|∇un|p + |∇vn|p)

p−2
p

) p
2

(|∇un|p + |∇vn|p)
2−p
2 dx

≤
(∫

Ω

|∇un −∇vn|2 (|∇un|p + |∇vn|p)
p−2
p dx

) p
2

×
(∫

Ω

(|∇un|p + |∇vn|p) dx

) 2−p
2

.

Therefore, we have

∫
Ω

|∇un −∇vn|2 (|∇un|p + |∇un|p)
p−2
p dx

≥
(∫

Ω

|∇un −∇vn|p dx

) 2
p
(∫

Ω

(|∇un|p + |∇vn|p) dx

)− 2−p
p

.

Inserting the inequality above into equation (3.10) gives

∫
Ω

ωn(x)
(
|∇un|p−2∇un − |∇vn|p−2∇vn

)
· ∇(un − vn) dx

≥ cΛMp

(∫
Ω

|∇un −∇vn|p dx

) 2
p
(∫

Ω

(|∇un|p + |∇vn|p) dx

)− 2−p
p

≥ cΛMpm2

(∫
Ω

|∇un −∇vn|p dx

) 2
p

.

(3.11)

From Hölder’s inequality it follows that

∫
Ω

(
(ωn(x)− ω(x))|∇vn|p−2∇vn

)
· ∇(un − vn) dx

≥ −
∫

Ω

|ωn(x)− ω(x)||∇vn|p−1|∇(un − vn)|dx

= −
∫

Ω

|ωn(x)− ω(x)|
p−1
p |∇vn|p−1|ωn(x)− ω(x)|

1
p |∇(un − vn)|dx

≥ −
(∫

Ω

|ωn(x)− ω(x)||∇vn|p dx

) p−1
p
(∫

Ω

|ωn(x)− ω(x)||∇(un − vn)|p dx

) 1
p

≥ − (2cΛ)
1
p ‖∇(un − vn)‖p,Ω

(∫
Ω

|ωn(x)− ω(x)||∇vn|p dx

) p−1
p

.

Note that ωn → ω in L1(Ω) and vn → u in V . Without loss of generality, we may suppose that ωn(x)→ ω(x)
and ∇vn(x)→ ∇u(x) for a. a.x ∈ Ω. Since {un− vn}n∈N is bounded in V , we pass to the upper limit as n→∞
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for the inequality above and utilize Lebesgue’s dominated convergence theorem to find

lim
n→∞

∫
Ω

(
(ωn(x)− ω(x))|∇vn|p−2∇vn

)
· ∇(un − vn) dx

≥ lim
n→∞

[
− (2cΛ)

1
p ‖∇(un − vn)‖p,Ω

(∫
Ω

|ωn(x)− ω(x)||∇vn|p dx

) p−1
p

]
= 0.

(3.12)

Note that∫
Ω

(
ωn(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − vn) dx

=

∫
Ω

ωn(x)
(
|∇un|p−2∇un − |∇vn|p−2∇vn

)
· ∇(un − vn) dx

+

∫
Ω

(
(ωn(x)− ω(x))|∇vn|p−2∇vn

)
· ∇(un − vn) dx+

∫
Ω

(
ω(x)|∇vn|p−2∇vn

)
· ∇(un − vn) dx

+

∫
Ω

(
µ(x)|∇un|q−2∇un

)
· ∇(un − vn) dx.

Hence, we can take lim supn→∞ in equation (3.4) and apply equation (3.5), equation (3.11), equation (3.12) as
well as

lim
n→∞

∫
Ω

(
ω(x)|∇vn|p−2∇vn + µ(x)|∇vn|q−2∇vn

)
· ∇(un − vn) dx = 0,∫

Ω

(
µ(x)

(
|∇un|q−2∇un − |∇vn|q−2∇vn

))
· ∇(un − vn) dx ≥ 0,

in order to find that

lim sup
n→∞

‖∇(un − u)‖pp,Ω ≤ 0 if p ≥ 2,

lim sup
n→∞

‖∇(u− un)‖2p,Ω ≤ 0 if 1 < p < 2.

This implies that ∇un → ∇u in Lp(Ω;RN ).
Moreover, we shall verify that un → u in V . From the convergence ∇un → ∇u and ∇vn → ∇u in Lp(Ω;RN )

and ωn → ω in L1(Ω), we apply Lebesgue dominate convergence theorem to get

lim
n→∞

∫
Ω

(
ω(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(u− vn) dx = 0,

lim
n→∞

∫
Ω

(
|un|p−2un + µ(x)|un|q−2un

)
(u− vn) dx = 0,

lim
n→∞

∫
Ω

|ω(x)− ωn(x)||∇un|p−1|∇(u− vn)|dx = 0,

lim
n→∞

∫
Ω

|ωn(x)− ω(x)||∇un|p−1|∇(u− un)|dx = 0.
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The convergences above together with (3.6) implies

0 ≥ lim sup
n→∞

(∫
Ω

(
ωn(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − u) dx

+

∫
Ω

(
|un|p−2un + µ(x)|un|q−2un

)
(un − u) dx

)
+ lim inf

n→∞

(∫
Ω

(
ωn(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(u− vn) dx

+

∫
Ω

(
|un|p−2un + µ(x)|un|q−2un

)
(u− vn) dx

)
≥ lim sup

n→∞

(∫
Ω

(
ω(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − u) dx

+

∫
Ω

(
|un|p−2un + µ(x)|un|q−2un

)
(un − u) dx

)
+ lim
n→∞

(∫
Ω

(
ω(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(u− vn) dx

+

∫
Ω

(
|un|p−2un + µ(x)|un|q−2un

)
(u− vn) dx

)
− lim
n→∞

∫
Ω

|ω(x)− ωn(x)||∇un|p−1|∇(u− vn)|dx

− lim
n→∞

∫
Ω

|ωn(x)− ω(x)||∇un|p−1|∇(u− un)|dx

= lim sup
n→∞

(∫
Ω

(
ω(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − u) dx

+

∫
Ω

(
|un|p−2un + µ(x)|un|q−2un

)
(un − u) dx

)
.

Therefore, from the (S+)-property of A (see Prop. 2.3), we conclude that un → u in V , that is,

s– lim sup
n→∞

Λ(ωn, αn, βn) 6= ∅.

This means that

∅ 6= w– lim sup
n→∞

Λ(ωn, αn, βn) = s– lim sup
n→∞

Λ(ωn, αn, βn),

due to

s– lim sup
n→∞

Λ(ωn, αn, βn) ⊂ w– lim sup
n→∞

Λ(ωn, αn, βn).

Furthermore, we will show that u is a solution of problem (1.3) corresponding to ω ∈ Σ and (α, β) ∈ A×B,
i.e., u ∈ Λ(ω, α, β). Assumptions H(U1)(iv) and H(U2)(iv) guarantee that {ηn}n∈N ⊂ Lp

′
(Ω) and {ξn}n∈N ⊂

Lp
′
(Γ3) are bounded. Employing the reflexivity of Lp

′
(Ω) and Lp

′
(Γ3), we are able to find functions η ∈ Lp′(Ω)

and ξ ∈ Lp′(Γ3) satisfying, by passing to a subsequence if necessary,

ηn
w−→ η in Lp

′
(Ω) and ξn

w−→ ξ in Lp
′
(Γ3).
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On the other hand, by virtue of hypotheses H(U1) and H(U2) and Aubin-Cellina convergence theorem (see e.g.
Aubin-Cellina [5], Thm. 1, p. 60), we can prove that

η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω and ξ(x) ∈ U2(x, u(x)) for a. a.x ∈ Γ3.

For any fixed v ∈ K(u), we use Lemma 2.6 to infer that there exists a sequence {zn}n∈N ⊂ V such that
zn ∈ K(un) for each n ∈ N and zn → v in V . Applying Lebesgue’s dominated convergence theorem gives

lim
n→∞

∫
Ω

(
ωn(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(zn − un) dx

=

∫
Ω

lim
n→∞

(
ωn(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(zn − un) dx

=

∫
Ω

(
ω(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇(v − u) dx.

Putting v = zn into equation (3.3), passing to the upper limit as n→∞ for the resulting inequality (3.3) and
applying the convergence properties above, we obtain∫

Ω

(
ω(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇(v − u) dx+

∫
Ω

g(x, u)(v − u) dx

+

∫
Ω

µ(x)|u|q−2u(v − u) dx+

∫
Γ4

φ(x, v) dΓ−
∫

Γ4

φ(x, u) dΓ

≥
∫

Ω

(η(x) + α(x))(v − u) dx+

∫
Γ2

β(x)(v − u) dΓ +

∫
Γ3

ξ(x)(v − u) dΓ

for all v ∈ K(u). Therefore, we can observe that u ∈ K(u) is a solution of problem (1.3) corresponding to
(ω, α, β) ∈ Σ×A×B, that is, u ∈ Λ(ω, α, β). Hence w– lim supn→∞ Λ(ωn, αn, βn) ⊂ Λ(ω, α, β) and so we have
proved equation (3.2).

Step 4: If {(ωn, αn, βn)}n∈N ⊂ Σ × A × B is such that {ωn}n∈N is bounded in BV(Ω), ωn → ω in L1(Ω),

αn
w−→ α in Lδ

′
1(Ω) and βn

w−→ β in Lδ
′
2(Γ2) for some (ω, α, β) ∈ L1(Ω)×A×B, then the inequality

J(ω, α, β) ≤ lim inf
n→∞

J(ωn, αn, β) (3.13)

holds.
Let {(ωn, αn, βn)}n∈N ⊂ Σ×A×B be such that {ωn}n∈N is bounded in BV(Ω), ωn → ω in L1(Ω), αn

w−→ α

in Lδ
′
1(Ω) and βn

w−→ β in Lδ
′
2(Γ2) for some (ω, α, β) ∈ L1(Ω) × A × B. From Step 3 one has ω ∈ Λ. Let

{un}n∈N ⊂ V be a sequence satisfying

un ∈ Λ(ωn, αn, βn) and inf
u∈Λ(ωn,αn,βn)

C(u) = C(un) (3.14)

for each n ∈ N.
Keeping in mind that

⋃
n≥1 Λ(ωn, αn, βn) is bounded (see Step 2), without loss of any generality, we may

suppose that un
w−→ u∗ in V for some u∗ ∈ V . Then, from Step 3, we have that un → u∗ in V and u∗ ∈

s– lim supn→∞ Λ(ωn, αn, βn) ⊂ Λ(ω, α, β). Whereas, from the lower semicontinuity of the function L1(Ω) 3 ω 7→
TV(ω) ∈ R, the continuity of V 3 u 7→ C(u) ∈ R and the weakly lower semicontinuity of A × B 3 (α, β) 7→
G(α, β) ∈ R, we get that

lim inf
n→∞

J(ωn, αn, βn) = lim inf
n→∞

[C(un) + κTV(ωn) +G(αn, βn)]
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≥ lim inf
n→∞

C(un) + lim inf
n→∞

κTV(ωn) + lim inf
n→∞

G(αn, βn)

≥ C(u∗) + κTV(ω) +G(α, β)

≥ inf
u∈Λ(ω,α,β)

C(u) + κTV(ω) +G(α, β)

= J(ω, α, β).

Hence equation (3.13) follows.
Step 5: The solution set of Problem 1.1 is nonempty and weakly compact.
From the formulation of J and hypotheses H(C) and H(G) we can observe that the cost functional J is

bounded from below. Therefore, there exists a minimizing sequence {(ωn, αn, βn)}n∈N ⊂ Σ×A×B of equation
(1.1) such that

inf
ω∈Λ and (α,β)∈A×B

J(ω, α, β) = lim
n→∞

J(ωn, αn, βn). (3.15)

By the definition of J we easily see that the sequences {ωn}n∈N ⊂ Σ and {(αn, βn)}n∈N ⊂ A×B are bounded
in BV(Ω) and Lδ

′
1(Ω)× Lδ′2(Γ2), respectively. Passing to a subsequence if necessary we have

ωn → ω∗ in L1(Ω), αn
w−→ α∗ in Lδ

′
1(Ω) and βn

w−→ β∗ in Lδ
′
2(Γ2) (3.16)

for some (ω∗, α∗, β∗) ∈ Σ × A × B, where we have used the closedness of Σ in L1(Ω) and the compactness of
the embedding BV(Ω) to L1(Ω).

Let us consider a sequence {un}n∈N ⊂ V satisfying equation (3.14). Employing the convergence (3.16) and
the boundedness of Λ (see Step 2), we get the boundedness of the sequence {un}n∈N in V . So, we are able to

select a subsequence of {un}n∈N, not relabeled, such that un
w−→ u∗ in V for some u∗ ∈ V . From Step 3 it is

clear that u∗ ∈ Λ(ω∗, α∗, β∗). Therefore, we have

lim inf
n→∞

J(ωn, αn, βn) = lim inf
n→∞

[C(un) + κ TV(ωn) +G(αn, βn)]

≥ lim inf
n→∞

C(un) + κ lim inf
n→∞

TV(ωn) + lim inf
n→∞

G(αn, βn)

≥ C(u∗) + κTV(ω∗) +G(α∗, β∗)

≥ inf
u∈Λ(ω∗,α∗,β∗)

C(u) + κTV(ω∗) +G(α∗, β∗)

= J(ω∗, α∗, β∗)

≥ inf
ω∈Σ and (α,β)∈A×B

J(ω, α, β).

(3.17)

The latter combined with equation (3.15) implies that (ω∗, α∗, β∗) ∈ Σ×A×B is a solution of Problem 1.1.
It remains us to verify that the solution set to Problem 1.1 is weakly compact. For any solution sequence

{(ωn, αn, βn)}n∈N of Problem 1.1, we can observe that {ωn}n∈N ⊂ Σ is bounded in BV(Ω) and {(αn, βn)}n∈N
is bounded in Lδ

′
1(Ω)×Lδ2(Γ2), respectively. Arguing as in the proof of existence part, it is possible to suppose

that equation (3.16) holds with some (ω∗, α∗, β∗) ∈ Σ × A × B. Analogously, we are able to find a sequence
{un}n∈N satisfying equation (3.14) and un → u∗ in V for some u∗ ∈ Λ(ω∗, α∗, β∗). Therefore, we have equation
(3.17). This means that (ω∗, α∗, β∗) ∈ Σ × A × B is a solution of Problem 1.1, namely, the solution set of
Problem 1.1 is weakly compact.

Let r1 : R → R, r2 : R → R, j1 : Ω × R → R and j2 : Γ3 × R → R be functions that satisfy the following
conditions:

H(j1): The functions j1 : Ω× R→ R and r1 : R→ R are such that the following conditions hold:
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(i) x 7→ j1(x, s) is measurable in Ω for all s ∈ R with x 7→ j1(x, 0) belonging to L1(Ω);
(ii) s 7→ j1(x, s) is locally Lipschitz continuous for a. a.x ∈ Ω and the function r1 : R→ R is continuous;

(iii) there exist a function αj1 ∈ Lp
′
(Ω)+ and a constant aj1 ≥ 0 such that

|r1(s)η| ≤ αj1(x) + aj1 |s|p−1

for all η ∈ ∂j1(x, s), for a. a.x ∈ Ω and for all s ∈ R.

H(j2): The functions j2 : Γ3 × R→ R and r2 : R→ R are such that the following conditions hold:
(i) x 7→ j2(x, s) is measurable on Γ3 for all s ∈ R with x 7→ j2(x, 0) belonging to L1(Γ3);
(ii) s 7→ j2(x, s) is locally Lipschitz continuous for a. a.x ∈ Γ3 and the function r2 : R→ R is continuous;

(iii) there exist a function αj2 ∈ Lp
′
(Γ3)+ and a constant aj2 ≥ 0 such that

|r2(s)ξ| ≤ αj2(x) + aj2 |s|p−1

for all ξ ∈ ∂j2(x, s), for a. a.x ∈ Γ3 and for all s ∈ R.

We have the following lemma.

Lemma 3.2. Assume that H(j1) and H(j2) are satisfied. Then, the multivalued mappings U1 : Ω×R→ 2R and
U2 : Γ3 × R→ 2R defined by

U1(x, s1) = r1(s1)∂j1(x, s1) and U2(y, s2) = r2(s2)∂j2(y, s2)

for a. a.x ∈ Ω, for all y ∈ Γ3 and for all s1, s2 ∈ R, satisfy hypotheses H(U1) and H(U2), respectively, where
∂j1(x, s) (resp. ∂j2(x, s)) is the generalized Clarke subdifferential of s 7→ j1(x, s) (resp. s 7→ j2(x, s)).

Proof. Via Proposition 2.4, we can see that for a. a.x ∈ Ω (resp. for a. a.x ∈ Γ3) and for all s ∈ R the set U1(x, s)
(resp.U2(x, s)) is nonempty, bounded, closed and convex in R. This means that H(U1)(i) (resp. H(U2)(i)) has
been verified. However, hypotheses H(j1)(i) and H(j2)(i) reveal that for all s ∈ R, functions x 7→ U1(x, s) = r1(s)
∂j1(x, s) and x 7→ U2(x, s) = r2(s)∂j2(x, s) are measurable in Ω and on Γ3, respectively. Therefore, H(U1)(ii)
and H(U2)(ii) are available.

Moreover, we assert that s 7→ r1(s)∂j1(x, s) is u.s.c. Invoking Proposition 3.8 of Migórski-Ochal-Sofonea [36],
we are sufficiently to prove that for each closed set D ⊂ R the set (r1(·)∂j1(x, ·))−(D) is closed in R. We take
a sequence {sn}n∈N ⊂ (r1(·)∂j1(x, ·))−(D) satisfying sn → s. So, there is a sequence {ηn}n∈N ⊂ R such that
ηn ∈ r1(sn)∂j1(x, sn) ∩D for each n ∈ N. It is obvious there exists a sequence {ξn}n∈N having the properties
ηn = r1(sn)ξn and ξn ∈ ∂j1(x, sn) for all n ∈ N and for a. a.x ∈ Ω. Because of sn → s, it is now in a position
to apply Proposition 2.4(iii) and (v) to find that {ξn}n∈N is bounded in R. Without loss of generality, it
holds ξn → ξ in R for some ξ ∈ D, because of the closedness of D. Whereas, Proposition 2.4(v) indicates that
ξ ∈ ∂j1(x, s). The latter together with the continuity of r1 implies ηn = r1(sn)ξn → r1(s)ξ ∈ r1(s)∂j1(x, s). This
means that s ∈ (r1(·)∂j1(x, ·))−(D), namely, (r1(·)∂j1(x, ·))−(D) is closed. Furthermore, we utilize Proposition
3.8 of Migórski-Ochal-Sofonea [36] to obtain that s 7→ r1(s)∂j1(x, s) is u.s.c. As before we have done, it is valid
as well that s 7→ r2(s)∂j2(x, s) is u.s.c. Consequently, H(U1)(iii) and H(U2)(iii) hold.

Finally, using hypotheses H(j1)(iii) and H(j2)(iii), we observe that H(U1)(iv) and H(U2)(iv) hold with r =
δ = p, aU1 = αj1 , aU2 = αj2 , bU1 = aj1 and bU2 = aj2 .

It is obvious that when U1 and U2 are presented by the functions

U1(x, s1) = r1(s1)∂j1(x, s1) and U2(y, s2) = r2(s2)∂j2(y, s2)
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for a. a.x ∈ Ω, for a. a. y ∈ Γ3 and for s1, s2 ∈ R, then problem (1.3) reduces to the following double phase
implicit obstacle problem with generalized Clarke subdifferentials:

−div
(
ω(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+g(x, u) + µ(x)|u|q−2u

∈ r1(u)∂j1(x, u) + α(x) in Ω,

u = 0 on Γ1,

∂u

∂νω
= β(x) on Γ2,

∂u

∂νω
∈ r2(u)∂j2(x, u) on Γ3,

− ∂u

∂νω
∈ ∂cφ(x, u) on Γ4,

L(u) ≤ H(u).

(3.18)

Employing Lemma 3.2 and Theorems 2.8 and 3.1, we have the following corollaries.

Corollary 3.3. Assume that equation (2.4), H(j1), H(g), H(φ), H(j2), H(L), H(H), H(0) and the inequality

cΣ − aj2
(
λS1,p

)−1
> 0 are fulfilled. Then, the solution set of problem (3.18) corresponding to (ω, α, β) ∈ Σ×A×

B, denoted by Λ(ω, α, β), is nonempty and weakly compact in V .

Corollary 3.4. Assume that all conditions of Corollary 3.3 are satisfied. If, in addition, H(2), H(C) and H(G)
are satisfied, then the solution set of the following problem is nonempty and weakly compact: find ω∗ ∈ Σ and
(α∗, β∗) ∈ A×B such that

inf
ω∈Σ and (α,β)∈A×B

J(ω, α, β) = J(ω∗, α∗, β∗),

where the cost functional J : Σ × A × B → R is defined in (1.2) and Λ(ω, α, β) is the solution set in the weak
sense of problem (3.18) with respect to ω ∈ L∞(Ω) ∩ BV(Ω) and (α, β) ∈ A×B.

Remark 3.5. In our framework, the functions C and G have many possibilities. For example,

C(u) = ‖∇u− z‖ζ1p,Ω and G(α, β) = ‖α‖ζ2δ′1,Ω + ‖β‖ζ3δ′2,Γ2
(3.19)

for all u ∈ V and (α, β) ∈ A×B, where z ∈ Lp(Ω;RN ) is the known observed or measured datum and ζ1, ζ2, ζ3 ≥
1.

Conclusions

We have investigated an inverse problem associated with the identification of two discontinuous parameters
in the domain and a discontinuous boundary datum. This analysis is performed in the setting of a double
phase obstacle problem with multivalued terms and mixed boundary conditions, which is formulated by a reg-
ularized optimal control problem. Under general hypotheses, we first introduce a multivalued function called a
parameter-to-solution map which admits weakly compact values. Next, by employing the Aubin-Cellina conver-
gence theorem and the theory of nonsmooth analysis, we prove that the parameter-to-solution map is bounded
and continuous in the sense of Kuratowski. Finally, a generalized regularization framework for the inverse prob-
lem is developed and a new existence theorem is provided. The analysis carried out in this paper is developed
in the general framework of the function space BV of integrable functions with bounded variation.
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