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Abstract
In this paper, we investigate the existence and concentration of solutions for the fol-
lowing 1-biharmonic Choquard equation with steep potential well

{
�2

1 − �1u + (1 + λV (x)) u
|u| = (

Iμ ∗ F(u)
)

f (u) in RN ,

u ∈ BL(RN ),

where N ≥ 3, λ > 0 is a positive parameter, V : RN → R, f : R → R are continuous
functions verifying further conditions, � = int(V −1({0})) has nonempty interior and
Iμ : RN → R is the Riesz potential of order μ ∈ (N −1, N ). For λ > 0 large enough,
we prove the existence of a nontrivial solution uλ of the problem above via variational
methods and the concentration behavior of uλ which is explored on the set �.
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1 Introduction

In this work, we consider the existence and concentration of solutions to the following
quasilinear elliptic problems with steep potential well

{
�2

1 − �1u + (1 + λV (x)) u
|u| = (

Iμ ∗ F(u)
)

f (u) inRN ,

u ∈ BL(RN ),
(1.1)

where N ≥ 3, λ > 0 is a positive parameter, the 1-Laplacian operator is defined as

�1u = div

(
Du

|Du|
)

,

and the 1-biharmonic operator is given by

�2
1u = �

(
�u

|�u|
)

.

The nonlinearity f : R → R and the potential V : RN → R satisfy the following
assumptions:

(f1) f : R → R is continuous;
(f2) lim|s|→0

f (s) = 0;

(f3) There exist constants σ > 0 and 1 < q1 ≤ q2 <
μ

N−1 such that

| f (s)| ≤ σ(|s|q1−1 + |s|q2−1) for all s ∈ R;

(f4) There exists κ ∈ (1,+∞) such that

0 < κ F(s) ≤ f (s)s, for s �= 0,

where F(s) = ∫ s
0 f (t) dt ;

(f5) f is increasing.
(V1) V ∈ C(RN ) and V (x) ≥ 0 for all x ∈ R

N ;
(V2) There exists M0 > 0 such that the Lebesgue measure |{x ∈ R

N : V (x) ≤
M0}| < +∞;
(V3) � = int(V −1({0})) is nonempty with smooth boundary and � = V −1({0}).
Moreover, Iμ : RN → R is the Riesz potential of order μ ∈ (N − 1, N ) on the

Euclidean space RN of dimension N ≥ 3, defined for each x ∈ R
N \ {0} by

Iμ(x) =
�

(
N−μ
2

)
�

(
μ
2

)
π

N
2 2μ|x |N−μ

,
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where �(·) stands for a standard Gamma function. The Choquard equation was intro-
ducedbyChoquard in 1976 in themodeling of a one-component plasma, seeLieb–Loss
[25]. It seems to originate from Fröhlich’s and Pekar’s model of the polaron, which is a
quasiparticle used in condensed matter physics to understand the interactions between
electrons and atoms in a solid material, see Fröhlich [19] and Hajaiej [20]. For the
study of this equation, we refer, for example, to the papers of Alves–Nóbrega–Yang
[3], Alves–Yang [5], Lee–Kim–Bae–Park [23], Liang–Zhang [24], Yang–Tang–Gu
[32], and the references therein.

Quasilinear elliptic equations are nonlinear generalizations of linear elliptic partial
differential equations. It is well known that linear elliptic equations represent mod-
els of various physical problems, such as Laplace and Poisson equation. That is why
they have been studied for more than two hundred years and still attract researchers
even today. As a branch or evolution of variational calculus, variational methods are
almost entirely related to nonlinearity. The earliest origin of variational methods was
in the Euler era, and the great development in modern times originated from the pio-
neering work of Ambrosetti and Rabinowitz in the 1970s. The emergence of modern
variational tools such as the mountain path theorem and the symmetric mountain path
theorem injected new vitality into ancient variational methods. The variational method
has achieved rich results in the existence and multiplicity of solutions for nonlinear
elliptic equations or systems. We recommend readers to refer to the works of Anthal–
Giacomoni–Sreenadh [6], Bai–Papageorgiou–Zeng [8], Cen–Khan–Motreanu–Zeng
[13], Papageorgiou–Rădulescu–Repovs̆ [26], Rădulescu–Repovs̆ [30], Rădulescu–
Vetro [31], Zeng–Migorski–Khan [33], and the references therein.

The 1-biharmonic problem is studied in the space of functions BL(�) with |�| <

+∞ or BL(RN ). Unlike the usual Sobolev spaces, the space BL is neither reflexive
nor uniformly convex and the associated energy functional lacks smoothness. This is
the reason why it is so difficult to prove that functionals defined on this space satisfy
compactness properties like the Palais-Smale condition and we have to use the critical
point theory of nonsmooth functionals. Clearly, the 1-biharmonic problem can also
be seen as the limit of the p-biharmonic ones, as the parameter p → 1+. It is worth
noting that the critical exponent for the 1-biharmonic operator is 1∗ = N

N−1 instead

of N
N−2 .
In [27], Parini–Ruf–Tarsi first studied this kind of operator and dealt with the related

eigenvalue problem. The authors proved that

	1,1(�) = inf
u∈BL0(�)\{0}

∫
�

|�u|
‖u‖1

is attained by a non-negative and superharmonic function v that belongs to the space

BL0(�) =
{

u ∈ W 1,1
0 (�) : �u ∈ M(�)

}
,

whereM(�) is the space of the Radon measures defined on � and
∫
�

|�u| is defined
in (2.1). In fact, their results are more general since they also provide information
about the shape of the domain � that maximizes 	1,1(�). In [29], the same authors
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considered the following minimization problem

	c
1,1(�) = inf

u∈C∞
c (�)\{0}

∫
�

|�u|
‖u‖1 .

and studied the shape of the subset that maximizes the quantity 	c
1,1(�). Further-

more, in Parini–Ruf–Tarsi [28], some optimal constants of Sobolev embeddings in
certain function spaces related to the 1-biharmonic operator are proved. In [9], Barile–
Pimenta obtained the existence results of bounded variation solutions to the following
quasilinear fourth-order problem

{
�2

1u = f (x, u) in �,

u = �u
|�u| = 0 on ∂�.

In particular, Hurtado–Pimenta–Miyagaki [21] proved some compactness results of
the BL(RN ) of radially symmetric functions and the existence of the ground-state
solution for the quasilinear elliptic problem

{
�2

1 − �1u + u
|u| = f (u) in RN ,

u ∈ BL(RN ).

Moreover, Bartsch, Pankow, and Wang studied such a situation for the first time
and proved the existence of solutions of a nonlinear Schrödinger equation with steep
potential well for λ large enough, see the papers in [10–12]. In recent years, elliptic
equations with steep potential well have attracted much attention. We also refer to
the works of Alves–Figueiredo–Pimenta [2], Alves–Nóbrega–Yang [3], Ding-Tanaka
[16], Jia–Luo [22] for the subcritical case and Alves–de Morais Filho–Souto [1],
Alves–Souto [4], Costa [15], and Zhang–Lou [34] for the critical case, see also the
references therein.

Motivated by the aforementioned works, in this paper, we consider the 1-bihar-
monic Choquard problem with the steep potential well. The main results in our paper
are the following ones.

Theorem 1.1 Suppose that assumptions (f1)–(f5) and (V1)–(V3) hold. Then there exists
λ∗ > 0 such that for each λ ≥ λ∗, problem (1.1) has a nontrivial ground-state solution
uλ.

Theorem 1.2 Suppose that assumptions (f1)–(f5) and (V1)–(V3) hold. If uλ is a non-
trivial solution obtained by Theorem 1.1, then there exists u� ∈ BL(RN ) such that,
if λn → +∞, then, up to a subsequence not relabeled, uλn → u� in Lq

loc(R
N ) for

1 ≤ q < 1∗ and

‖un‖λn − ‖u�‖� → 0 as n → +∞,
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where ‖ · ‖λ and ‖ · ‖� are defined in (2.4) and (4.2). Furthermore, u� ≡ 0 a.e. in
R

N \ � and u� is a solution of

{
�2

1 − �1u + u
|u| = (

Iμ ∗ F(u)
)

f (u) in �,

u = 0 on ∂�.

This paper is organized as follows. In Sect. 2, we give a detailed description of the
variational framework and the properties of the related function space defined by the
energy functional. In Sect. 3, we give the proof of Theorem 1.1, studying separately
the arguments on the existence of solutions for λ large enough. Finally, in Sect. 4,
we prove Theorem 1.2, studying the arguments on the concentration of solutions for
λ → +∞.

2 Preliminaries

In this section, we recall the basic notions and preliminaries to the underlying function
space of problem (1.1). This space is defined by

BL(RN ) :=
{

u ∈ W 1,1(RN ) : �u ∈ M(RN )
}

,

whereM(RN ) is the set of all Radon measures on RN . Parini–Ruf–Tarsi [27] proved
that u ∈ W 1,1(RN ) belongs to BL(RN ) if and only if

∫
RN

|�u| < +∞,

where

∫
RN

|�u| := sup

{∫
RN

u�ϕ dx : ϕ ∈ C∞
0 (RN ), ‖ϕ‖∞ ≤ 1

}
. (2.1)

The space BL(RN ) is a Banach space when endowed with the following norm

‖u‖ =
∫
RN

|�u| + ‖∇u‖1 + ‖u‖1,

which is continuously embedded into Lr (RN ) for all r ∈ [1, 1∗], see Hurtado–
Pimenta–Miyagaki [21].

Moreover, the space of smooth functions is not dense in BL(RN ) with respect to
the topology of the norm. However, it is with respect to the topology induced by the
following notion of convergence. This has motivated people to define a weaker sense
of convergence in BL(RN ). We say that a sequence (un)n∈N ⊂ BL(RN ) converges to
u ∈ BL(RN ) in the sense of the strict convergence if both of the following conditions
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are satisfied

un → u in W 1,1(RN ),

and

∫
RN

|�un| →
∫
RN

|�u|,

as n → +∞. In fact, with respect to the strict convergence, C∞(RN ) ∩ BL(RN ) is
dense in BL(RN ) and C∞

0 (RN ) is dense in BL(RN ).
For a vectorial Radon measure μ ∈ M(RN ,RN ), we denote by μ = μa + μs

the usual decomposition stated in the Radon–Nikodym Theorem, where μa and μs

are, respectively, the absolute continuous and the singular parts with respect to the
N -dimensional Lebesgue measure LN . With |μ| as the scalar Radon measure, the
usual Lebesgue–Radon–Nikodym derivative of μ with respect to |μ| is given by

μ

|μ| (x) = lim
r→0

μ(Br (x))

|μ|(Br (x))
.

It is easy to see that J : BL(RN ) → R, given by

J (u) =
∫
RN

|�u| +
∫
RN

|∇u| dx +
∫
RN

|u| dx

is a convex functional which is Lipschitz continuous in its domain and lower semi-
continuous with respect to the W 1,r (RN ) topology, for r ∈ [1, 1∗]. Meanwhile,
J is lower semicontinuous with respect to the Lr (RN )-topology for r ∈ [1, 1∗),
see Hurtado–Pimenta–Miyagaki [21]. Although nonsmooth, the functional J admits
some directional derivatives. More precisely, as is shown by Anzellotti in [7], given
u ∈ BL(RN ), for all v ∈ BL(RN ) such that (�v)s is absolutely continuous with
respect to (�u)s , (�v)a vanishesLN -a.e. in

{
x ∈ R

N : (�u)a(x) = 0
}
,∇v vanishes

a.e. in the set where ∇u vanishes and v ≡ 0, a.e. in the set where u vanishes, it follows
that

J ′(u)v =
∫
RN

(�u)a(�v)a

|(�u)a | dx +
∫
RN

�u

|�u| (x)
�v

|�v| (x)
∣∣(�v)s

∣∣
+

∫
RN

∇u · ∇v

|∇u| dx +
∫
RN

sgn(u)v dx,

(2.2)

where sgn(u(x)) = 0 if u(x) = 0 and sgn(u(x)) = u(x)/|u(x)| if u(x) �= 0. In
particular, taking (2.2) into account, for all u ∈ BL(RN ), we have

J ′(u)u = J (u). (2.3)
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Now let Xλ be the subspace of BL(RN ) given by

Xλ =
{

u ∈ BL(RN ) :
∫
RN

(1 + λV (x))|u| dx < +∞
}

endowed with the norm

‖u‖λ =
∫
RN

|�u| +
∫
RN

|∇u| dx +
∫
RN

(1 + λV (x))|u| dx . (2.4)

Note that the embedding Xλ ↪→ BL(RN ) is continuous in such a way that Xλ is a
Banach space that is continuously embedded into Lr (RN ) for r ∈ [

1, 1∗].
Let us present the energy functional associated with problem (1.1). Let λ : Xλ

→ R be given by

λ(u) = Jλ(u) − F(u), (2.5)

where Jλ = ‖u‖λ and F : Xλ → R is defined by

F(u) =
∫
RN

(Iμ ∗ F(u))F(u) dx .

Concerned with the nonlocal type problems with Riesz potential, we need the
following well-known Hardy–Littlewood–Sobolev inequality, see Lieb–Loss [25].

Lemma 2.1 (Hardy–Littlewood–Sobolev inequality) Let s, r > 1 and 0 < α < N
with 1/s + (N − μ)/N + 1/r = 2. Let g ∈ Ls(RN ) and h ∈ Lr (RN ). Then there
exists a sharp constant C(s, N , μ, r), independent of g and h, such that

∫
RN

∫
RN

g(x)h(y)

|x − y|N−μ
dx dy ≤ C(s, N , μ, r)‖g‖Ls (RN )‖h‖Lr (RN ).

Remark 2.2 In particular, F(v) = |v|q1 for some q1 > 0. By the Hardy–Littlewood–
Sobolev inequality,

∫
RN

∫
RN

F(u(x))F(u(y))

|x − y|N−μ
dy dx

is well defined if F(u) ∈ Ls(RN ) for s > 1 which satisfies

s = r and
2

s
+ N − μ

N
= 2.

Since u ∈ BL(RN ), we require that sq1 ∈ [
1, 1∗]. For the subcritical case, we have

to assume that

1

2

(
2 − N − μ

N

)
< q1 ≤ q2 <

1∗

2

(
2 − N − μ

N

)
.
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In our paper, we are assuming a stronger condition on q1, q2, andμ, because we intend
to study the concentration of the solutions.

Then it is easy to check thatJλ is a convex functional which is Lipschitz continuous
in its domain and F ∈ C1(Xλ,R). Similar to (2.3), we have

J ′
λ(u)v =

∫
RN

(�u)a(�v)a

|(�u)a | dx +
∫
RN

�u

|�u| (x)
�v

|�v| (x)
∣∣(�v)s

∣∣
+

∫
RN

∇u · ∇v

|∇u| dx +
∫
RN

(1 + λV (x)) sgn(u)v dx .

(2.6)

In particular, note that, for all u ∈ Xλ, J ′
λ(u)u = Jλ(u). Moreover, taking v = u in

(2.6), it follows that

′
λ(u)u = J ′

λ(u)u −
∫
RN

(Iμ ∗ F(u)) f (u)u dx

= ‖u‖λ −
∫
RN

(Iμ ∗ F(u)) f (u)u dx .

Let us give a precise definition of the solution we are considering. Since λ can be
written as the difference between the Lipschitz functional Jλ and a smooth functional
F , we say that uλ ∈ Xλ is a solution of (1.1) if 0 ∈ ∂λ(uλ), where ∂λ(uλ) denotes
the subdifferential of λ in uλ, as defined, for example, in Chang [14]. This in turn is
equivalent to F ′(uλ) ∈ ∂Jλ(uλ). However, since the convexity of Jλ, it implies that
F ′(uλ) ∈ ∂Jλ(uλ) if and only if

Jλ(v) − Jλ(uλ) ≥ F ′(uλ)(v − uλ) for all v ∈ Xλ,

or equivalently

‖v‖λ − ‖uλ‖λ ≥
∫
R

(Iμ ∗ F(u)) f (uλ)(v − uλ) dx for all v ∈ Xλ. (2.7)

Hence, every uλ ∈ Xλ for which (2.7) holds is going to be called a solution of (1.1).
In fact, from Parini–Ruf–Tarsi [27], we know that if uλ ∈ Xλ satisfies (2.7), there

exists a function γ ∈ L∞,N (RN ) and a vector field z ∈ W 1,1(RN ) ∩ L∞(RN ) such
that |z|∞ ≤ 1 and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
div z ∈ L∞,N (RN ),�z ∈ L∞,N (RN ),∫
RN uλ�z − ∫

RN uλ div z dx = ∫
RN |�uλ| + ∫

RN |∇uλ| dx,

γ |uλ| = (1 + λV (x))uλ a.e. in RN ,

�z − div z + γ = (Iμ ∗ F(uλ)) f (uλ), a.e. in RN ,

(2.8)

where

L∞,N

(
R

N
)

=
{

g : RN → R | g is measurable and ‖g‖∞,N < ∞
}
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and

‖g‖∞,N = sup
‖λ‖1+‖λ‖1∗≤1

∣∣∣∣
∫
RN

gλ dx

∣∣∣∣ .
Hence, (2.8) is the precise version of (1.1).

3 Proof of Theorem 1.1

Let us first recall the Mountain–Pass Theorem in its version from Figueiredo–Pimenta
[17].

Theorem 3.1 (Mountain–Pass Theorem) Let E be a Banach space, � = I0− I , where
I ∈ C1(E,R) and I0 is a locally Lipschitz convex functional defined in E. Suppose
that the functional � satisfies the following conditions:

(g1) There exist ρ > 0 and α > �(0) such that �|∂ Bρ(0) ≥ α.

(g2) �(e) < �(0), for some e ∈ E \ Bρ(0).

Then for all τ > 0, there exists xτ ∈ E such that

c − τ < � (xτ ) < c + τ,

and

I0(y) − I0 (xτ ) ≥ I ′ (xτ ) (y − xτ ) − τ ‖y − xτ‖ for all y ∈ E,

where c ≥ α is characterized by

c = inf
γ∈�

sup
t∈[0,1]

�(γ (t)),

where � = {γ ∈ C([0, 1], E) : γ (0) = 0 and γ (1) = e}.
Motivated by the paper of Alves–Yang [5], we have the following uniform bound-

edness results.

Proposition 3.2 There exists K > 0 such that

|Iμ ∗ F(u)| ≤ K for all u ∈ Xλ. (3.1)

Proof Indeed, by assumptions (f2) and (f3), we have that

|F(u)| ≤ σ
(|u|q1 + |u|q2) ,

and it follows that

|Iμ ∗ F(u)| =
∣∣∣∣
∫
RN

F(u)

|x − y|N−μ
dy

∣∣∣∣
123
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=
∣∣∣∣
∫

|x−y|≤1

F(u)

|x − y|N−μ
dy

∣∣∣∣ +
∣∣∣∣
∫

|x−y|≥1

F(u)

|x − y|N−μ
dy

∣∣∣∣
≤ σ

∫
|x−y|≤1

|u|q1 + |u|q2
|x − y|N−μ

dy + σ

∫
|x−y|≥1

(|u|q1 + |u|q2) dy

≤ σ

∫
|x−y|≤1

|u|q1 + |u|q2
|x − y|N−μ

dy + C,

where we used the fact that 1 < q1 ≤ q2 < 1∗. Choosing t1 ∈ ( N
μ

, N
(N−1)q1

) and

t2 ∈ ( N
μ

, N
(N−1)q2

), it follows from Hölder’s inequality that

∫
|x−y|≤1

|u|q1
|x − y|N−μ

dy

≤
(∫

|x−y|≤1
|u|t1q1 dy

) 1
t1

⎛
⎝∫

|x−y|≤1

1

|x − y|
t1(N−μ)

t1−1

dy

⎞
⎠

t1−1
t1

≤ C1

(∫
|r |≤1

|r |N−1− t1(N−μ)

t1−1 dr

) t1−1
t1

.

Similarly, we get

∫
|x−y|≤1

|u|q2
|x − y|N−μ

dy ≤ C2

(∫
|r |≤1

|r |N−1− t2(N−μ)

t2−1 dr

) t2−1
t2

.

Since N − 1 − ti (N−μ)
ti −1 > −1 for i = 1, 2, there exists a constant C > 0 such that

∫
|x−y|≤1

|u|q1 + |u|q2
|x − y|N−μ

dy ≤ C for all x ∈ R
N .

Hence the inequality implies the uniform boundedness given in (3.1). ��
Now let us verify that the functional λ : Xλ → R defined in (2.5) satisfies the

geometrical conditions of the Mountain-Pass Theorem.

Lemma 3.3 The functional λ verifies the following properties:

(g1) There exist ρ > 0 and α > λ(0) such that λ|∂ Bρ(0) ≥ α.

(g2) λ(e) < λ(0) for some e ∈ Xλ\Bρ(0).

Proof We start to verify the first condition. Note that, from (f2) and (f3), there exists

|F(u)| ≤ σ
(|u|q1 + |u|q2) , (3.2)
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where q1, q2 are as in (f3). Then, by (3.2) and the Hardy–Littlewood–Sobolev inequal-
ity, we get that∣∣∣∣

∫
RN

(Iμ ∗ F(u))F(u) dx

∣∣∣∣ ≤ C1‖F(u)‖s‖F(u)‖s

≤ C2

(∫
RN

(|u|q1 + |u|q2)s dx

) 2
s

,

where 1
s = 1 − N−μ

2N . Since 1
2

(
2 − N−μ

N

)
< q1 ≤ q2 < 1∗

2

(
2 − N−μ

N

)
, we can see

that 1 < sq1 ≤ sq2 < 1∗. By using the continuous embeddings of Xλ, we have that

(∫
RN

(|u|q1 + |u|q2)s dx

) 2
s ≤ C3(‖u‖2q1

λ + ‖u‖2q2
λ ).

Therefore,

λ(u) =
∫
RN

|�u| +
∫
RN

|∇u| dx +
∫
RN

(1 + λV (x))|u| dx

−
∫
RN

(Iμ ∗ F(u))F(u) dx

= ‖u‖λ −
∫
RN

(Iμ ∗ F(u))F(u) dx

≥ ‖u‖λ − C4(‖u‖2q1
λ + ‖u‖2q2

λ ).

Since q2 ≥ q1 ≥ 1, the claim follows if we choose ρ small enough.
Now let us prove that λ satisfies (g2). For a fixed positive function u0 ∈

C∞
0

(
R

N
) \{0} with u0 > 0, we set

φ(t) := H
(

tu0

‖u0‖λ

)
for t > 0,

where

H(u) :=
∫
RN

(
Iμ ∗ F(u)

)
F(u) dx .

By using the Ambrosetti–Rabinowitz condition (f4), we deduce that

φ′(t) = H′
(

tu0

‖u0‖λ

)
u0

‖u0‖λ

=
∫
RN

[
Iμ ∗ F

(
tu0

‖u0‖λ

)]
f

(
tu0

‖u0‖λ

)
u0

‖u0‖λ

dx

≥ κ

t

∫
RN

[
Iμ ∗ F

(
tu0

‖u0‖λ

)]
F

(
tu0

‖u0‖λ

)
dx
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≥ κ

t
φ(t).

Integrating this on
[
1, t ‖u0‖λ

]
with t > 1

‖u0‖λ
, we find

φ (t ‖u0‖λ) ≥ φ(1) (t ‖u0‖λ)
κ ,

which implies

H (tu0) ≥ H
(

u0

‖u0‖λ

)
‖u0‖κ

λ tκ .

Thus,

λ(tu0) ≤ t‖u0‖λ − H
(

u0

‖u0‖λ

)
‖u0‖κ

λ tκ → −∞, (3.3)

as t → +∞ since κ > 1. Then we can choose e = tu0 ∈ Xλ such that λ(e) < 0.

��
From Theorem 3.1, we get that, for all λ > 0, given a sequence (τn)n∈N with

τn → 0, there exists a sequence (un)n∈N ∈ Xλ such that

lim
n→∞ λ(un) = cλ

and

‖v‖λ − ‖un‖λ ≥
∫
RN

(
Iμ ∗ F(un)

)
f (un)(v − un) dx − τn‖v − un‖λ, (3.4)

for all v ∈ Xλ where cλ is given by

cλ = inf
γ∈�λ

sup
t∈[0,1]

λ(γ (t))

and �λ = {γ ∈ C([0, 1], Xλ) : γ (0) = 0,λ(γ (1)) < 0}.
In addition, let us define the Nehari manifold associated to problem (1.1) for λ > 0

which is given by

Nλ = {
u ∈ Xλ \ {0} : ′

λ(u)u = 0
}
.

From Figueiredo–Pimenta [18], it follows that

cλ = inf
u∈Xλ\{0}max

t≥0
λ(tu) = inf

u∈Nλ

λ(u).

In the following result, we give lower and upper bounds for cλ.
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Lemma 3.4 For each λ > 0, there exist positive constants α0 and β0 independent of
λ such that

α0 ≤ cλ ≤ β0.

Proof From the proof of the property (g1) in Lemma 3.3, it is obvious that we can take
0 < α0 < α < cλ. On the other hand, by e ∈ C∞

0 (�), for all t > 0, as in (3.3), we
have

λ(te) ≤ t

(∫
RN

|�e| +
∫
RN

|∇e| dx +
∫
RN

|e| dx

)
− H

(
e

‖e‖λ

)
‖e‖κ

λ tκ → −∞,

as t → ∞. Thus, there exists a constant β0 > 0 such that

cλ ≤ max
t>0

λ(te) ≤ β0.

��
Next we are going to prove that the sequence (un)n∈N is bounded in BL(RN ).

Lemma 3.5 The sequence (un)n∈N is bounded in BL(RN ).

Proof Taking the test function v = 2un in (3.4) yields

‖un‖λ ≥
∫
RN

(
Iμ ∗ F(un)

)
f (un)un dx − τn‖un‖λ,

which implies that

(1 + τn)‖un‖λ ≥
∫
RN

(
Iμ ∗ F(un)

)
f (un)un dx . (3.5)

Then, by (f4) and (3.5), we get

cλ + on(1) ≥ λ(un)

= ‖un‖λ +
∫
RN

(
Iμ ∗ F(un)

) (
1

κ
f (un)un − F(un)

)
dx

−
∫
RN

1

κ

(
Iμ ∗ F(un)

)
f (un)un dx

≥ ‖un‖λ

(
1 − 1

κ
− τn

κ

)
≥ C‖un‖λ,

for some C > 0 which does not depend on n ∈ N and λ > 0. Thus, we conclude that
(un)n∈N is bounded in BL(RN ). ��

From Lemmas 3.4 and 3.5, we obtain the following result.
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Corollary 3.6 There exists a positive constant C > 0 independent of λ such that

‖un‖λ ≤ C for all n ∈ N

and

lim inf
n→+∞ ‖un‖λ ≥ α0 for all λ > 0.

Since the sequence (un)n∈N is bounded in BL(RN ) and the compactness of the
embedding BL(RN ) ↪→ Lr

loc(R
N ) for 1 ≤ r < 1∗, there exists uλ ∈ BLloc(R

N ) such
that

un → uλ in Lr
loc(R

N ) for 1 ≤ r < 1∗,

and

un → uλ a.e. in RN ,

as n → +∞. Note that uλ ∈ BL(RN ). Indeed, by Fatou’s Lemma, it follows that uλ ∈
L1(RN ). For a given (R > 0), from the semicontinuity of the norm in (BL(BR(0)))
with respect to the (Lq(BR(0))) convergence, we have that

∫
BR(0)

|�uλ| ≤ lim inf
n→+∞

∫
BR(0)

|�un| ≤ lim inf
n→+∞ ‖un‖BL(RN ) ≤ C, (3.6)

where C does not depend on n and on R. Since the last inequality holds for every
(R > 0), then (�uλ ∈ M(RN )). Hence, by Hurtado-Pimenta-Miyagaki [21], it
follows that (uλ ∈ BL(RN )).

The following result is crucial for obtaining the compactness properties in ourwork.

Lemma 3.7 For all fixed q ∈ [1, 1∗) and for a given ε > 0, there exist λ∗(q, ε) > 0
and R > 0 such that ∫

Bc
R(0)

|un|q dx ≤ ε,

for all λ ≥ λ∗(q, ε) and for all n ∈ N, where Bc
R(0) = {x ∈ R

N : |x | > R}.
Proof For a given R > 0, let us define the sets

A(R) = {x ∈ R
N : |x | > R and V (x) ≥ M0},

B(R) = {x ∈ R
N : |x | > R and V (x) < M0},

where M0 is given in (V2).
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Note that, by Corollary 3.6, (V2) and the definition of ‖ · ‖λ, we have∫
A(R)

(1 + λM0)|un| dx ≤
∫

A(R)

(1 + λV (x))|un| dx ≤ ‖un‖λ,

which implies that∫
A(R)

|un| dx ≤ 1

1 + λM0
‖un‖λ ≤ C

1 + λM0
<

ε

2
(3.7)

for all n ∈ N whenever λ > λ∗(ε) and λ∗(ε) ≥ M−1
0 ( 2C

ε
− 1).

On the other hand, by Corollary 3.6, (V2), Hölder’s inequality and the embeddings
of Xλ, we obtain∫

B(R)

|un| dx ≤ C‖un‖1∗
1∗ |B(R)| 1

N ≤ C |B(R)| 1
N <

ε

2
, (3.8)

where R > 0 is large enough and |B(R)| → 0 as R → +∞.
Then, if λ > λ∗(ε) and R > 0 is large enough, from (3.7) and (3.8), it follows the

result for q = 1.
For q ∈ (1, 1∗), by Corollary 3.6 and interpolation in Lebesgue spaces, the estimate

follows for λ greater than a certain λ∗(q, ε), since (un)n∈N is bounded in L1∗
(RN ).

This completes the proof. ��
Now we will prove that uλ is nontrivial.

Lemma 3.8 There exists λ∗ > 0 such that uλ �= 0 for all λ ≥ λ∗.

Proof Taking the test function v = un + tun in (3.4) and letting t → 0±, we get that

′
λ(un)un = on(1),

which implies that

‖un‖λ =
∫
RN

(
Iμ ∗ F(un)

)
f (un)un dx + on(1)

=
∫

BR(0)

(
Iμ ∗ F(un)

)
f (un)un dx

+
∫
RN \BR(0)

(
Iμ ∗ F(un)

)
f (un)un dx + on(1).

(3.9)

From (f3) and Proposition 3.2, we have∫
RN \BR(0)

(
Iμ ∗ F(un)

)
f (un)un dx

≤ Kσ

∫
RN \BR(0)

|un|q1 dx + Kσ

∫
RN \BR(0)

|un|q2 dx .

(3.10)

123



  276 Page 16 of 27 H. Tao et al.

Then, by Lemma 3.7, taking λ∗ ≥ max{λ∗( α0
4Kσ

, q1), λ∗( α0
4Kσ

, q2)} where α0 is as in
Corollary 3.6, it follows that (3.10) implies that

lim sup
n→+∞

∫
RN \BR(0)

(
Iμ ∗ F(un)

)
f (un) un dx

≤ K lim sup
n→+∞

∫
RN \BR(0)

f (un) un dx ≤ α0

2
.

(3.11)

From the compactness of the embedding BL(BR(0)) ↪→ Lq(BR(0)) for q ∈ [1, 1∗),
(f2) and (f3), we have that

lim
n→+∞

∫
BR(0)

(
Iμ ∗ F(un)

)
f (un)un dx =

∫
BR(0)

(
Iμ ∗ F(uλ)

)
f (uλ)uλ dx . (3.12)

Hence, from (3.12), (3.9), (3.11) and Corollary 3.6, we obtain

∫
BR(0)

(
Iμ ∗ F(uλ)

)
f (uλ)uλ dx

= lim
n→+∞

∫
BR(0)

(
Iμ ∗ F(un)

)
f (un)un dx

≥ lim inf
n→+∞

(
‖un‖λ −

∫
RN \BR(0)

(
Iμ ∗ F(un)

)
f (un)un dx

)

≥ lim inf
n→+∞ ‖un‖λ − α0

2

≥ α0

2
,

where λ ≥ λ∗. Thus uλ �= 0. ��
The following result is the pivotal point.

Lemma 3.1 ′
λ(uλ)uλ ≤ 0.

Proof Let ϕ ∈ C∞
0 (RN ) be such that

0 ≤ ϕ ≤ 1, ϕ ≡ 1 in BR(0), ϕ ≡ 0 in Bc
2R(0)

and let C > 0 be a constant such that |∇ϕ| ≤ C and |�ϕ| ≤ C , for ϕR := ϕ(·/R).
Then, for all u ∈ BL(RN ), it follows that

(�(ϕRu))s is absolutely continuous w.r.t. (�u)s . (3.13)

Indeed, note that

�(ϕRu) = �ϕRu + 2∇ϕR · ∇u + ϕR�u

= �ϕRu + 2∇ϕR · ∇u + ϕR(�u)a + ϕR(�u)s in D′(RN ).
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Then it follows that

(�(ϕRu))s = (ϕR(�u)s)s = ϕR(�u)s .

Taking (3.13) into account and the fact that ϕRun is equal to 0 a.e. in the set where
un vanishes, we see that ϕRun and un fulfill two of the three requirements that would
allow us to calculate ′

λ(un)(ϕRun). However, we have to ensure that

(�(ϕRun))a = �ϕRu + 2∇ϕR∇u + ϕR(�u)a

vanishes a.e. in the set {
x ∈ R

N : (�un)a(x) = 0
}

.

Hence, it might not be possible to calculate the Gateaux derivative ′
λ(un)(ϕRun).

We have to work in a slightly different way. In fact, it will be enough to work with the
left Gateaux derivative

lim
t→0−

λ(un + tϕRun) − λ(un)

t
,

which, by (3.4), satisfies

lim
t→0−

λ(un + tϕRun) − λ(un)

t
≤ on(1). (3.14)

In order to calculate the limit above, let us first calculate separately a part of it. Let us
define for all u ∈ BL(RN ),

Ja(u) =
∫
RN

∣∣(�u)a(x)
∣∣ dx .

Then, for all u, v ∈ BL(RN ), we have that

lim
t→0−

Ja(u + tv) − Ja(u)

t

= lim
t→0−

1

t

∫
RN

(
∣∣(�u)a + t(�v)a

∣∣ − ∣∣(�u)a
∣∣) dx

= −
∫

Tu

∣∣(�v)a
∣∣ dx +

∫
RN \Tu

(�u)a(�v)a

|(�u)a | dx,

(3.15)

where Tu = {
x ∈ R

N : (�u)a(x) = 0
}
.

Taking into account (3.14) and (3.15), it follows that

on(1) ≥
∫
RN \Tun

(�un)a[�ϕRun + 2∇ϕR · ∇un + ϕR(�un)a]
|(�un)a | dx
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−
∫

Tun

|(�ϕRun + 2∇ϕR · ∇un)| dx

+
∫
RN

�un

|�un|
ϕR(�un)s

|ϕR(�un)s | |ϕR(�un)s |

+
∫
RN

∇un · (∇ϕRun + ϕR∇un)

|∇un| dx

+
∫
RN

(1 + λV (x)) sgn(un)(ϕRun) dx

−
∫
RN

(
Iμ ∗ F(un)

)
f (un)ϕRun dx

=
∫
RN \Tun

ϕR |(�un)
a | dx

+
∫
RN \Tun

(�un)a(�ϕRun + 2∇ϕR · ∇un)

|(�un)a | dx

−
∫

Tun

|(�ϕRun + 2∇ϕR · ∇un)| dx

+
∫
RN

�un

|�un|
ϕR(�un)s

|ϕR(�un)s |
∣∣ϕR(�un)s

∣∣
+

∫
RN

∇un · (∇ϕRun + ϕR∇un)

|∇un| dx

+
∫
RN

(1 + λV (x)) |un| ϕR dx

−
∫
RN

(
Iμ ∗ F(un)

)
f (un)ϕRun dx .

Noting that
∫
RN \Tun

ϕR |(�un)a | dx = ∫
RN ϕR |(�un)a | dx and calculating the

limn→+∞ in the inequality above, we have that

0 ≥ lim inf
n→+∞

(∫
RN

ϕR
∣∣(�un)a

∣∣ dx

+
∫
RN

(�un)s

|(�un)s |
ϕR(�un)s

|ϕR(�un)s |
∣∣ϕR(�un)s

∣∣)

+ lim inf
n→+∞

∫
RN \Tun

(�un)a(�ϕRun + 2∇ϕR · ∇un)

|(�un)a | dx

− lim sup
n→+∞

∫
Tun

|(�ϕRun + 2∇ϕR · ∇un)| dx

+ lim inf
n→+∞

∫
RN

∇un · (∇ϕRun + ϕR∇un)

|∇un| dx

+
∫
RN

(1 + λV (x)) |uλ| ϕR dx −
∫
RN

(
Iμ ∗ F(uλ)

)
f (uλ)ϕRuλ dx .

(3.16)
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Now, by the lower semicontinuity of the norm in BL(BR(0)) w.r.t. the L1(BR(0))-
convergence and also by the fact that ϕRμ

|ϕRμ| = μ
|μ| a.e. in BR(0) with (3.16), we have

that∫
BR(0)

|�uλ| dx

≤ − lim inf
n→+∞

∫
RN \Tun

(�un)
a(�ϕRun + 2∇ϕR · ∇un)

|(�un)a | dx

+ lim sup
n→+∞

∫
Tun

|(�ϕRun + 2∇ϕR · ∇un)| dx

− lim inf
n→+∞

∫
RN

∇un · (∇ϕRun + ϕR∇un)

|∇un| dx

−
∫
RN

(1 + λV (x)) |uλ| ϕR dx +
∫
RN

(
Iμ ∗ F(uλ)

)
f (uλ)ϕRuλ dx .

(3.17)

Furthermore, since (un)n∈N is a bounded sequence in L1(RN ), it follows that

lim
R→+∞

∣∣∣∣∣lim inf
n→∞

∫
RN \Tun

un(�un)a · �ϕR

|(�un)a | dx

∣∣∣∣∣
≤ lim

R→+∞(lim inf
n→∞

∫
RN \Tun

|un| |�ϕR | dx)

≤ lim
R→+∞

C

R
(lim inf

n→∞

∫
RN \Tun

|un| dx) = 0.

(3.18)

Similarly, we can also get that

lim
R→+∞

∣∣∣∣∣lim inf
n→∞

∫
RN \Tun

(�un)a(2∇ϕR · ∇un)

|(�un)a | dx

∣∣∣∣∣ = 0,

lim
R→+∞

∣∣∣∣∣lim inf
n→+∞

∫
Tun

|(un�ϕR + 2∇ϕR · ∇un)| dx

∣∣∣∣∣ = 0,

(3.19)

and

lim
R→+∞

∣∣∣∣lim inf
n→+∞

∫
RN

un∇un · ∇ϕR

|∇un| dx

∣∣∣∣ = 0. (3.20)

Letting R → +∞ in both sides of (3.17) and taking (3.18), (3.19) and (3.20) into
account, we get that∫

RN
|�uλ| +

∫
RN

|∇uλ| dx +
∫
RN

(1 + λV (x)) |uλ| dx

≤
∫
RN

(
Iμ ∗ F(uλ)

)
f (uλ)uλ dx .
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This shows the assertion of the lemma. ��
By the last result, there exists tλ ∈ (0, 1] such that tλuλ ∈ Nλ. Note also that

cλ + on(1) = λ(un) + on(1) = λ(un) − ′
λ(un)un

=
∫
RN

(
Iμ ∗ F(un)

)
( f (un)un − F(un)) dx,

(3.21)

and under (f5), it is easy to see that t �→ f (t)t − F(t) is increasing for t ∈ (0,+∞)

and decreasing for t ∈ (−∞, 0), then by Fatou’s Lemma in the last inequality, we
derive that

cλ ≥
∫
RN

(
Iμ ∗ F(uλ)

)
( f (uλ)uλ − F(uλ)) dx

≥
∫
RN

(
Iμ ∗ F(uλ)

)
( f (tλuλ)tλuλ − F(tλuλ)) dx

= λ(tλuλ) − ′
λ(tλuλ)tλuλ

= λ(tλuλ)

≥ cλ.

Hence, tλ = 1, λ(uλ) = cλ, and by (3.21),

(
Iμ ∗ F(un)

)
( f (un)un − F(un))

→ (
Iμ ∗ F(uλ)

)
( f (uλ)uλ − F(uλ)) in L1(RN ).

(3.22)

Moreover, by (f4), we have

0 ≤
(
1 − 1

κ

)
f (un)un ≤ f (un)un − F(un),

and

0 ≤ (κ − 1)F(un) ≤ f (un)un − F(un).

Then, by (3.22), we can apply Lebesgue’s Dominated Convergence Theorem to get

(
Iμ ∗ F(un)

)
f (un)un → (

Iμ ∗ F(uλ)
)

f (uλ)uλ in L1(RN ), (3.23)

and

(
Iμ ∗ F(un)

)
F(un) → (

Iμ ∗ F(uλ)
)

F(uλ) in L1(RN ).

Since

‖uλ‖λ =
∫
RN

(
Iμ ∗ F(uλ)

)
f (uλ)uλ dx
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and

‖un‖λ =
∫
RN

(
Iμ ∗ F(un)

)
f (un)un dx + on(1),

by the limit (3.23), we obtain

‖un‖λ → ‖uλ‖λ, (3.24)

from which we conclude that

‖un‖1 → ‖uλ‖1, (3.25)

as n → +∞.
Now we can prove Theorem 1.1.

Proof of Theorem 1.1 Based on the previous results, we can finish the proof of Theorem
1.1. Indeed, by (3.4), (3.24), (3.25), and the lower semicontinuity of the norm ‖ · ‖λ

w.r.t. the L1(RN )-convergence, it follows that

‖v‖λ − ‖uλ‖λ ≥
∫
RN

(
Iμ ∗ F(uλ)

)
f (uλ)(v − uλ) dx for all v ∈ Xλ.

Then, uλ is a nontrivial solution of problem (1.1) and λ(uλ) = cλ. Thus, uλ is also
a ground-state solution of problem (1.1). ��

4 Proof of Theorem 1.2

In this section, we first consider the problem

{
�2

1 − �1u + u
|u| = (

Iμ ∗ F(u)
)

f (u) in �,

u = 0 on ∂�.
(4.1)

The corresponding energy functional �(u) : BL(�) → R is given by

�(u) = ‖u‖� −
∫

�

(
Iμ ∗ F(u)

)
F(u) dx,

where

‖u‖� =
∫

�

|�u| +
∫

�

|∇u| dx +
∫

�

|u| dx +
∫

∂�

|u|dHN−1. (4.2)

Also, we have that u ∈ BL(�) is a solution of (4.1) if

‖v‖� − ‖u‖� ≥
∫

�

(
Iμ ∗ F(u)

)
f (u)(v − u) for all v ∈ BL(�).

123



  276 Page 22 of 27 H. Tao et al.

Definition 4.1 A sequence (wn)n∈N ⊂ BL(RN ) is called a (PS)c,∞-sequence for the
family (λ)λ≥1, if there is a sequence λn → ∞ such that un ∈ Xλn for n ∈ N,

λn (wn) → c,

as n → +∞, and

‖v‖λn − ‖wn‖λn

≥
∫
RN

(
Iμ ∗ F(wn)

)
f (wn) (v − wn) − τn ‖v − wn‖λn

(4.3)

for all v ∈ Xλn , where τn → 0 as n → +∞.

Similarly to the proof of Lemma 3.3, � also satisfies the geometric conditions of
the Mountain-Pass Theorem. Then, the Nehari manifold associated to � is also well
defined by

N� = {
u ∈ BL(�) \ {0} : ′

�(u)u = 0
}
,

and

c� = inf
N�

� = inf
γ∈��

max
t∈[0,1] �(γ (t)),

where

�� = {γ ∈ C([0, 1],BL(�)) : γ (0) = 0 and �(γ (1)) < 0} .

Lemma 4.1 Let (wn)n∈N ⊂ BL(RN ) be a (PS)d,∞-sequence for (λ)λ≥1 with d ∈ R.
Then either d = 0 or d ≥ c�. Moreover, there exists w� ∈ BL(RN ) such that, up to
a subsequence not relabeled, wn → w� in Lq

loc(R
N ), for all 1 ≤ q < 1∗, w� ≡ 0

a.e. in R
N \� and w� is a solution of problem (4.1). Moreover, if d = c�, then

‖wn‖λn − ‖w�‖� → 0 as n → +∞.

Proof Note that as in the proof of Lemma 3.5, we have that

d + on(1) ≥ C ‖wn‖λn ,

which implies that d ≥ 0. We also conclude that (‖wn‖λn )n∈N is a bounded sequence
and then we know that (wn)n∈N is bounded in BL(RN ).

By the Sobolev embedding, there exists w� ∈ BLloc(R
N ) such that

wn → w� in Lq
loc(R

N ) for 1 ≤ q < 1∗,
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and

wn(x) → w�(x) a.e. x ∈ R,

as n → +∞. Moreover, it is possible to show that in fact w� belongs to BL(RN ).
Next let us show that w� ≡ 0 a.e. in RN \�. In fact, for each m ∈ N, let us define

Cm =
{

x ∈ R
N : V (x) ≥ 1

m

}
,

and note thatRN \� = ⋃+∞
i=1 Cm ∪∂�. Then, since (‖wn‖λn )n∈N is bounded, we have

∫
Cm

|wn| dx ≤ m

λn

∫
Cm

λn V (x) |wn| dx

≤ m

λn
‖wn‖λn

= on(1),

which implies by Fatou’s Lemma that

∫
Cm

|w�| dx = 0.

Hence, since RN \� = ⋃+∞
i=1 Cm ∪ ∂� and |∂�| = 0, it follows that

∫
RN \�

|w�| dx = 0,

and then that w� = 0 a.e. in RN \�.
If d = 0, it implies that ‖wn‖λn

→ 0 as n → +∞ and we are done.
If d > 0, since

d + on(1) = λn (wn) ≤ ‖wn‖λn ,

it is possible to argue as in Lemma 3.8 in order to show that in fact w� �= 0.
Similar to the proof of Lemma 3.1, we also get that

′
� (w�) w� ≤ 0.

From the last conclusion, there exists t� ∈ (0, 1] such that t�w� ∈ N�. Note also
that

d + on(1) = λn (wn) + on(1) = λn (wn) − ′
λn

(wn)wn

=
∫
RN

(
Iμ ∗ F(wn)

)
( f (wn)wn − F(wn)) dx .

(4.4)
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Then, by Fatou’s Lemma in the last inequality, we derive that

d ≥
∫
RN

(
Iμ ∗ F(w�)

)
( f (w�)w� − F(w�)) dx

≥
∫
RN

(
Iμ ∗ F(w�)

)
( f (t�w�)t�w� − F(t�w�)) dx

= �(t�w�) − ′
�(t�w�)t�w�

= �(t�w�)

≥ c�,

which implies that d ≥ c�.
Finally, we consider the case d = c�. In this case, we have t� = 1, �(w�) = c�

and w� ∈ N�. Then, by (4.4), we obtain

(
Iμ ∗ F(wn

)
( f (wn)wn − F(wn))

→ (
Iμ ∗ F(w�)

)
( f (w�)w� − F(w�)) in L1(RN ).

Moreover, by (f4), we also get(
Iμ ∗ F(wn)

)
f (wn)wn → (

Iμ ∗ F(w�)
)

f (w�)w� in L1(RN ), (4.5)(
Iμ ∗ F(wn)

)
F(wn) → (

Iμ ∗ F(w�)
)

F(w�) in L1(RN ),

‖wn‖λn → ‖w�‖�,

‖wn‖1 → ‖w�‖1, (4.6)

as n → +∞. For each v ∈ BL(�), let us consider the extension of ṽ of v(x) given by

ṽ(x) =
{
0 if x ∈ R

N \ �,

v(x) if x ∈ �,

and note that

‖ṽ‖λn =
∫
RN

|�ṽ| +
∫
RN

|∇ṽ| dx +
∫
RN

(1 + λn V (x)) |ṽ| dx

=
∫

�

|�ṽ| +
∫

�

|∇ṽ| dx +
∫

∂�

|ṽ|dHN−1 +
∫

�

|ṽ| dx

= ‖ṽ‖�.

Then, using the lower limit in (4.3) and taking (4.5) and (4.6) into account, it follows
that

‖ṽ‖� − ‖w�‖� ≥
∫

�

(
Iμ ∗ F(w�)

)
f (w�) (ṽ − w�) dx,

which shows that w� is a solution of problem (4.1). The proof is complete. ��
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Now we can give the proof of Theorem 1.2.

Proof of Theorem 1.2 Let {λn}n∈N ⊂ [λ∗,+∞) be any sequence with λn → +∞
and let un := uλn be critical points of λn obtained by Theorem 1.1, which implies
λn (un) = cλn .

For a given u ∈ BL(�), denoting by u its extension by zero on R
N \�, it follows

from Green’s Formula for BL-functions that∫
RN

|�u| +
∫
RN

|∇u| dx +
∫
RN

|u| dx

=
∫

�

|�u| +
∫

�

|∇u| dx +
∫

�

|u| dx +
∫

∂�

|u|dHN−1.

Then u ∈ Xλ and�(u) = λ(u) for each λ > 0. Hence, for each γ ∈ ��, it follows
that γ ∈ �λ. This fact shows that

cλ = inf
γ∈�λ

max
t∈[0,1] λ(γ (t)) ≤ inf

γ∈��

max
t∈[0,1] �(γ (t)) = c�, (4.7)

for every λ > 0, which implies that, up to a subsequence, λn (un) = d ∈ [0, c�] as
n → +∞. Since un satisfies (4.3) with τn = 0, it follows that (un)n∈N is indeed a
(PS)d,∞-sequence.

Finally, by Lemma 3.4, we have d > 0, hence d ≥ c� from Lemma 4.1. Then, from
the last inequality and (4.7), we obtain d = c� and (un)n∈N is a (PS)c�,∞-sequence.
Again by Lemma 4.1, there exists u� ∈ BL(RN ) such that, up to a subsequence,
un → u� in Lq

loc

(
R

N
)
for 1 ≤ q < 1∗, u� ≡ 0 a.e. in R

N \�, u� is a solution of
problem (4.1), and

‖un‖λn
− ‖u�‖� → 0 as n → +∞.

Hence, Theorem 1.2 is proved. ��
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26. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis-Theory and Methods.

Springer, Cham (2019)
27. Parini, E., Ruf, B., Tarsi, C.: The eigenvalue problem for the 1-biharmonic operator. Ann. Sc. Norm.

Super. Pisa Cl. Sci. (5) 13(2), 307–332 (2014)
28. Parini, E., Ruf, B., Tarsi, C.: Limiting Sobolev inequalities and the 1-biharmonic operator. Adv. Non-

linear Anal. 3(suppl. 1), s19–s36 (2014)

123



1-Biharmonic Choquard Equation with Steep Potential Well in R
N . Page 27 of 27   276 

29. Parini, E., Ruf, B., Tarsi, C.: Higher-order functional inequalities related to the clamped 1-biharmonic
operator. Ann. Mat. Pura Appl. (4) 194(6), 1835–1858 (2015)
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