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In this paper we study a class of double phase problems involving critical growth, 
namely

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
= λ|u|ϑ−2u + |u|p∗−2u in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded Lipschitz domain, 1 < ϑ < p < q < N , q < p∗ and μ(·)
is a nonnegative bounded weight function. The operator involved is the so-called 
double phase operator, which reduces to the p-Laplacian or the (p, q)-Laplacian 
when μ ≡ 0 or inf μ > 0, respectively. Based on variational and topological tools 
such as truncation arguments and genus theory, we show the existence of λ∗ > 0
such that the problem above has infinitely many weak solutions with negative energy 
values for any λ ∈ (0, λ∗).

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In 1991, García Azorero-Peral Alonso [23] studied the critical p-Laplacian problem

− div
(
|∇u|p−2∇u

)
= |u|p∗−2u + λ|u|q−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where λ > 0, 1 < p < N , 1 < q < p < p∗ with p∗ being the critical Sobolev exponent given by
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p∗ = Np

N − p
. (1.2)

Using critical point theory and ideas of Benci-Fortunato [5] and of García Azorero-Peral Alonso [22], prob-
lem (1.1) admits infinitely many solutions whenever λ ∈ (0, λ1) for λ1 > 0 small enough, see Theorem 4.5 in 
[23]. The main difficulty in their treatment is the lack of compactness in the embedding W 1,p

0 (Ω) ↪→ Lp∗(Ω)
and so the corresponding energy functional does not satisfy the Palais-Smale condition in general. After-
ward, the techniques in [23] have been transferred by several authors to different type of problems with 
critical growth. We refer to the works of Candito-Marano-Perera [9] for the (p, q)-Laplacian case with (p, q)-
linear term, Corrêa-Costa [13] for Kirchhoff p(x)-Laplace problems, Figueiredo-Santos Júnior-Suárez [19]
for anisotropic equations, Li-Zhang [30] and Yin-Yang [42] for (p, q)-Laplace equations with sublinear/su-
perlinear nonlinearities and Zhang-Fiscella-Liang [45] for fractional p-Laplacian Kirchhoff problems, see also 
the references therein.

Originally, the study of elliptic equations involving critical growth was initiated by the work of Brézis-
Nirenberg [8] who are concerned with the existence of positive solutions to the semilinear equation

−Δu = up + f(x, u) in Ω,

u = 0 on ∂Ω,
(1.3)

where p +1 = 2N/(N−2) is the critical Sobolev exponent of the embedding H1
0 (Ω) ↪→ Lp(Ω) and f : Ω ×R →

R is a lower-order perturbation of up in the sense that lim
s→∞

f(x, s)
sp

= 0. Problems of type (1.3) are motivated 

by variational problems in geometry and physics where the lack of compactness also occurs, for example, 
the Yamabe problem on Riemannian manifolds, see Yamabe [41] or the existence of nonminimal solutions 
for Yang-Mills functions, see Taubes [39,40]. We refer to [8] for more examples.

In the current paper, we are interested of equations of type (1.1) which are driven by the so-called double 
phase operator which is given by

div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
for u ∈ W 1,H

0 (Ω) (1.4)

with an appropriate Musielak-Orlicz Sobolev space W 1,H
0 (Ω). It is easy to see that this operator is a 

generalization of the p-Laplacian and the (p, q)-Laplacian for p < q by setting μ ≡ 0 or inf μ > 0, respectively. 
In 1986, Zhikov [46] studied the corresponding energy functional to (1.4) given by

ω �→
∫
Ω

(
1
p
|∇ω|p + μ(x)

q
|∇ω|q

)
dx (1.5)

in order to provide models for strongly anisotropic materials, that is, the modulating coefficient μ(·) dictates 
the geometry of composites made of two different materials with distinct power hardening exponents p and 
q. Note that (1.5) is a prototype of a functional whose integrands change their ellipticity according to the 
points where μ(·) vanishes or not. We refer to the papers of Baroni-Colombo-Mingione [2,3], Colombo-
Mingione [11,12] and Marcellini [32,33] for deeper investigations of (local) minimizers of (1.5), see also the 
paper of Mingione-Rădulescu [34] about recent developments for problems with nonstandard growth and 
nonuniform ellipticity.

Given a bounded domain Ω ⊂ RN , N ≥ 2 with Lipschitz boundary ∂Ω, in this paper we consider the 
following quasilinear elliptic equation with critical growth

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
= λ|u|ϑ−2u + |u|p∗−2u in Ω,

(1.6)

u = 0 on ∂Ω,
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where λ > 0 is a real parameter to be specified, p∗ is the critical exponent to p given in (1.2) and we suppose 
that

1 < ϑ < p < q < N, q < p∗ and 0 ≤ μ(·) ∈ L∞(Ω). (1.7)

The main result in this paper reads as follows.

Theorem 1.1. Let (1.7) be satisfied. Then there exists λ∗ > 0 such that problem (1.6) admits infinitely many 
weak solutions with negative energy values for any λ ∈ (0, λ∗).

The proof of Theorem 1.1 relies on a careful combination of variational and topological tools, such as 
truncation techniques and genus theory introduced by Krasnosel’skii [29]. Indeed, in the study of problem 
(1.6) there are lots of difficulties to be overcome. First, the corresponding energy functional to problem 
(1.6) does not contain the norm of the space W 1,H

0 (Ω), so the truncation argument introduced by García 
Azorero-Peral Alonso [23] in order to have a local Palais-Smale condition needs a more careful treatment. 
Second, in contrast to the works with the (p, q)-Laplacian, see [30] and [42], because of (1.7), we are not 
working in usual Sobolev spaces but in Musielak-Orlicz Sobolev spaces. In this direction, even if we know 
that W 1,H

0 (Ω) ↪→ W 1,p
0 (Ω) continuously, the classical Lions’ concentration-compactness principle in W 1,p

0 (Ω)
cannot work for (1.6). Indeed, because of the q-term appearing in the double phase operator, we need to 
know if for u ∈ W 1,H

0 (Ω) we can reach u ∈ Lq∗(Ω), with q∗ = Nq/(N − q) being the critical Sobolev 
exponent at level q. However, the optimality of Sobolev type embeddings for W 1,H

0 (Ω) is still an open 
problem. In order to handle the critical Sobolev nonlinearity in (1.6), we exploit a suitable convergence 
analysis of gradients, inspired by Boccardo-Murat [6].

To the best of our knowledge there are only three works dealing with a double phase operator along with 
critical growth. In Farkas-Winkert [18] the authors study the singular double phase problem

− div(A(u)) = up∗−1 + λ
(
uγ−1 + g(x, u)

)
in Ω,

u = 0 on ∂Ω,
(1.8)

with

div(A(u)) := div
(
F p−1(∇u)∇F (∇u) + μ(x)F q−1(∇u)∇F (∇u)

)
being the Finsler double phase operator and (RN , F ) stands for a Minkowski space; see also the correspond-
ing nonhomogeneous Neumann case by the authors [17]. In [18] and [17], the existence of at least one solution 
of (1.8) is shown by a local analysis on a suitable closed convex subset of W 1,H

0 (Ω). In order to provide a 
multiplicity result for (1.6), in the current paper we need to work globally in the whole space W 1,H

0 (Ω). 
Very recently, Crespo-Blanco-Papageorgiou-Winkert [15] have been considered a nonhomogeneous singular 
Neumann double phase problem with critical growth on the boundary given by

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
+ α(x)up−1 = ζ(x)u−κ + λuq1−1 in Ω,(

|∇u|p−2∇u + μ(x)|∇u|q−2∇u
)
· ν = −β(x)up∗−1 on ∂Ω.

Based on the fibering method introduced by Drábek-Pohozaev [16] along with the Nehari manifold approach, 
the existence of at least two solutions is obtained.

Finally, we mention recent papers on the existence of solutions for double phase problems with ho-
mogeneous Dirichlet boundary condition treated by different methods in case of smooth or nonsmooth 
right-hand sides. We refer to Colasuonno-Squassina [10] for corresponding eigenvalue problems, Fiscella [20]
involving Hardy potentials, Fiscella-Pinamonti [21] for Kirchhoff type problems, Gasiński-Papageorgiou [24]
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for locally Lipschitz continuous right-hand sides, Gasiński-Winkert [25–27] for convection and superlinear 
problems, Liu-Dai [31] for superlinear problems, Perera-Squassina [36] for a Morse theoretical treatment, 
Zeng-Bai-Gasiński-Winkert [43,44] for multivalued obstacle problems and the references therein.

2. Preliminaries

In this section we will recall the main properties of Musielak-Orlicz spaces LH(Ω), W 1,H
0 (Ω) and the 

topological tools which are needed in our treatment. First, we denote by Lr(Ω) and Lr(Ω; RN ) the usual 
Lebesgue spaces with the norm ‖ · ‖r and by W 1,r(Ω) the corresponding Sobolev spaces with norm ‖ · ‖1,r
for 1 ≤ r ≤ ∞.

Let H : Ω × [0, ∞) → [0, ∞) be the nonlinear map defined by

H(x, t) := tp + μ(x)tq,

where we suppose (1.7) and let M(Ω) be the space of all measurable functions u : Ω → R. The Musielak-
Orlicz Lebesgue space LH(Ω) is given by

LH(Ω) = {u ∈ M(Ω) : �H(u) < ∞}

equipped with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : �H

(u
τ

)
≤ 1
}
,

where the modular function is given by

�H(u) :=
∫
Ω

H(x, |u|) dx =
∫
Ω

(
|u|p + μ(x)|u|q

)
dx. (2.1)

The norm ‖ · ‖H and the modular function �H are related as follows, see Liu-Dai [31, Proposition 2.1] or 
Crespo-Blanco-Gasiński-Harjulehto-Winkert [14, Proposition 2.14].

Proposition 2.1. Let (1.7) be satisfied, y ∈ LH(Ω), ζ > 0 and �H be defined by (2.1). Then the following 
hold:

(i) If y �= 0, then ‖y‖H = ζ if and only if �H(yζ ) = 1;
(ii) ‖y‖H < 1 (resp. > 1, = 1) if and only if �H(y) < 1 (resp. > 1, = 1);
(iii) If ‖y‖H < 1, then ‖y‖qH ≤ �H(y) ≤ ‖y‖pH;
(iv) If ‖y‖H > 1, then ‖y‖pH ≤ �H(y) ≤ ‖y‖qH;
(v) ‖y‖H → 0 if and only if �H(y) → 0;
(vi) ‖y‖H → ∞ if and only if �H(y) → ∞.

Furthermore, we define the weighted space

Lq
μ(Ω) =

⎧⎨⎩u ∈ M(Ω) :
∫
Ω

μ(x)|u|q dx < ∞

⎫⎬⎭
endowed with the seminorm
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‖u‖q,μ =

⎛⎝∫
Ω

μ(x)|u|q dx

⎞⎠
1
q

.

While, the corresponding Musielak-Orlicz Sobolev space W 1,H(Ω) is set as

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. We denote by W 1,H
0 (Ω) the completion of C∞

0 (Ω) in W 1,H(Ω). By using (1.7), 
we know that we can endow the space W 1,H

0 (Ω) with the equivalent norm given by

‖u‖1,H,0 = ‖∇u‖H,

see Proposition 2.18(ii) of Crespo-Blanco-Gasiński-Harjulehto-Winkert [14]. Also, we have that the spaces 
LH(Ω), W 1,H(Ω) and W 1,H

0 (Ω) are uniformly convex and so reflexive Banach spaces, see Colasuonno-
Squassina [10, Proposition 2.14] or Harjulehto-Hästö [28, Theorem 6.1.4].

Now, we recall the following embeddings for the spaces LH(Ω) and W 1,H
0 (Ω), see Colasuonno-Squassina 

[10, Proposition 2.15] or Crespo-Blanco-Gasiński-Harjulehto-Winkert [14, Proposition 2.16].

Proposition 2.2. Let (1.7) be satisfied and let p∗ be the critical exponent to p. Then the following embeddings 
hold:

(i) LH(Ω) ↪→ Lr(Ω) and W 1,H
0 (Ω) ↪→ W 1,r

0 (Ω) are continuous for any r ∈ [1, p];
(ii) W 1,H

0 (Ω) ↪→ Lr(Ω) is continuous for any r ∈ [1, p∗] and compact for any r ∈ [1, p∗);
(iii) LH(Ω) ↪→ Lq

μ(Ω) is continuous;
(iv) Lq(Ω) ↪→ LH(Ω) is continuous.

Remark 2.3. Note that Proposition 2.2(ii) holds for r = q < p∗ by (1.7). Thus, W 1,H
0 (Ω) ↪→ Lq(Ω) is 

compact.

Remark 2.4. Throughout the paper, for any r ∈ [1, p∗] we denote with Cr > 0 the constant given by 
Proposition 2.2(ii), such that

‖u‖rr ≤ Cr‖u‖r1,H,0

for any u ∈ W 1,H
0 (Ω).

In order to prove Theorem 1.1 we are going to use some topological results introduced by Krasnosel’skii 
[29]. To this end, let X be a Banach space and let Σ be the class of all closed subsets A ⊂ X \ {0} that are 
symmetric with respect to the origin, that is, u ∈ A implies −u ∈ A.

Definition 2.5. Let A ∈ Σ. The Krasnosel’skii’s genus γ(A) of A is defined as being the least positive integer 
n such that there is an odd mapping φ ∈ C(A, Rn) such that φ(x) �= 0 for any x ∈ A. If n does not exist, 
we set γ(A) = ∞. Furthermore, we set γ(∅) = 0.



6 C. Farkas et al. / J. Math. Anal. Appl. 515 (2022) 126420
The following proposition states the main properties on Krasnosel’skii’s genus which we need later, see 
Rabinowitz [37].

Proposition 2.6. Let A, B ∈ Σ. Then the following hold:

(i) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B);
(ii) If there is an odd homeomorphism from A to B, then γ(A) = γ(B);
(iii) If γ(B) < ∞, then γ(A \B) ≥ γ(A) − γ(B);
(iv) The n-dimensional sphere Sn has a genus of n + 1 by the Borsuk-Ulam Theorem;
(v) If A is compact, then γ(A) < ∞ and there exists δ > 0 such that Nδ(A) ⊂ Σ and γ(Nδ(A)) = γ(A), 

with Nδ(A) = {x ∈ X : dist(x,A) ≤ δ}.

3. Proof of the main result

In this section we are going to prove Theorem 1.1. First, we note that the energy functional 
Jλ : W 1,H

0 (Ω) → R related to problem (1.6) is given by

Jλ(u) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq,μ − λ

ϑ
‖u‖ϑϑ − 1

p∗
‖u‖p

∗

p∗ .

It is clear that Jλ ∈ C1(W 1,H
0 (Ω)) and that the weak solutions of (1.6) are exactly the critical points of 

Jλ : W 1,H
0 (Ω) → R.

Now, we discuss the compactness property for the functional Jλ, given by the Palais–Smale condition. 
We say that {un}n∈N ⊂ W 1,H

0 (Ω) is a Palais-Smale sequence for Jλ at level c ∈ R if

Jλ(un) → c and J ′
λ(un) → 0 in

(
W 1,H

0 (Ω)
)∗

as n → ∞. (3.1)

We say that Jλ satisfies the Palais-Smale condition at level c ((PS)c for short) if any Palais-Smale sequence 
{un}n∈N at level c admits a convergent subsequence in W 1,H

0 (Ω).

Lemma 3.1. Let (1.7) be satisfied and let {un}n∈N ⊂ W 1,H
0 (Ω) be a bounded (PS)c sequence with c ∈ R. 

Then, up to a subsequence, ∇un(x) → ∇u(x) a.e. in Ω as n → ∞.

Proof. Since {un}n∈N is bounded in W 1,H
0 (Ω), by Proposition 2.2(ii) and Brézis [7, Theorem 4.9] along 

with the reflexivity of W 1,H
0 (Ω), there exists a subsequence, still denoted by {un}n∈N , and u ∈ W 1,H

0 (Ω)
such that

un ⇀ u in W 1,H
0 (Ω), ∇un ⇀ ∇u in

[
LH(Ω)

]N
,

un → u in Lr(Ω), un(x) → u(x) a.e. in Ω,

|un(x)| ≤ h(x) a.e. in Ω,

(3.2)

as n → ∞ with r ∈ [1, p∗) and h ∈ Lq(Ω).
For any k ∈ N, let Tk : R → R be the truncation function defined by

Tk(t) :=

⎧⎪⎨⎪⎩
t if |t| ≤ k,

k
t

|t| if |t| > k.

Let k ∈ N be fixed. Then, since {un}n∈N is a (PS)c sequence for Jλ, we have
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o(1) = 〈J ′
λ(un), Tk(un − u)〉

=
∫
Ω

(
|∇un|p−2∇un + μ(x)|∇un|q−2∇un

)
· ∇Tk(un − u) dx

− λ

∫
Ω

|un|ϑ−2unTk(un − u) dx−
∫
Ω

|un|p
∗−2unTk(un − u) dx,

(3.3)

as n → ∞, because {Tk(un − u)}n∈N is bounded in W 1,H
0 (Ω). By Hölder’s inequality, we see that the 

functional

G : g ∈
[
LH(Ω)

]N �→
∫
Ω

(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
· g dx

is linear and bounded. From (3.2) we see that ∇Tk(un − u) ⇀ 0 in 
[
LH(Ω)

]N , so we can get

lim
n→∞

∫
Ω

(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
· ∇Tk(un − u) dx = 0. (3.4)

By the boundedness of {un}n∈N and by Proposition 2.2(ii), we also observe that for any n ∈ N∣∣∣∣∣∣
∫
Ω

|un|p
∗−2unTk(un − u) dx

∣∣∣∣∣∣ ≤ k

∫
Ω

|un|p
∗−1 dx ≤ Ck (3.5)

with a constant C > 0 independent of n and k. Thus, by using (3.2), (3.3) and (3.4), we get

lim sup
n→∞

[∫
Ω

[
|∇un|p−2∇un − |∇u|p−2∇u

]
· ∇Tk(un − u) dx

+
∫
Ω

μ(x)
[
|∇un|q−2∇un − |∇u|q−2∇u

]
· ∇Tk(un − u) dx

]

= lim sup
n→∞

∫
Ω

|un|p
∗−2unTk(un − u) dx.

(3.6)

From Simon [38, formula (2.2)] we have the well-known inequalities

(|ξ|r−2ξ − |η|r−2η) · (ξ − η) ≥

⎧⎪⎪⎨⎪⎪⎩
κr|ξ − η|r if r ≥ 2,

κr
|ξ − η|2

(|ξ|r + |η|r)
2−r
r

if 1 < r < 2,
(3.7)

for any ξ, η ∈ RN with a constant κr > 0. Thus, by (3.5), (3.6) and (3.7), we obtain

lim sup
n→∞

∫
Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇Tk(un − u) dx

≤ lim sup
n→∞

∫
Ω

|un|p
∗−2unTk(un − u) dx

≤ Ck.

(3.8)



8 C. Farkas et al. / J. Math. Anal. Appl. 515 (2022) 126420
We set

en(x) :=
(
|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x)

)
· ∇(un(x) − u(x)).

Thanks to (3.7) we see that en(x) ≥ 0 a.e. in Ω. We split Ω by

Sk
n = {x ∈ Ω : |un(x) − u(x)| ≤ k} and Gk

n = {x ∈ Ω : |un(x) − u(x)| > k} ,

where n, k ∈ N are fixed. Taking θ ∈ (0, 1) and using Hölder’s inequality as well as the boundedness of 
{en}n∈N in L1(Ω) along with (3.8) gives

∫
Ω

eθn dx ≤

⎛⎜⎝∫
Sk
n

en dx

⎞⎟⎠
θ

|Sk
n|1−θ +

⎛⎜⎝∫
Gk

n

en dx

⎞⎟⎠
θ

|Gk
n|1−θ

≤ (kC)θ|Sk
n|1−θ + C̃θ|Gk

n|1−θ.

From this, noticing that |Gk
n| → 0 as n → ∞, we get

0 ≤ lim sup
n→∞

∫
Ω

eθn dx ≤ (kC)θ|Ω|1−θ.

Letting k → 0+, we obtain that eθn → 0 in L1(Ω) as n → ∞. Thus, we may assume that en(x) → 0 a.e. in 
Ω. Applying (3.7) proves the assertion of the lemma. �
Lemma 3.2. Let (1.7) be satisfied and let c < 0. Then, there exists λ0 > 0 such that for any λ ∈ (0, λ0), the 
functional Jλ satisfies the (PS)c condition.

Proof. Let λ0 > 0 be sufficiently small such that

|Ω|
(

1
q
− 1

p∗

) −p∗
p∗−ϑ

[
λ0

(
1
ϑ
− 1

q

)] p∗
p∗−ϑ

< S
p∗

p∗−p , (3.9)

where S is the best constant of the Sobolev embedding W 1,p
0 (Ω) ↪→ Lp∗(Ω), namely

S := inf
u∈W 1,p

0 (Ω)\{0}

‖∇u‖pp
‖u‖pp∗

. (3.10)

Let λ ∈ (0, λ0) and let {un}n∈N be a (PS)c sequence in W 1,H
0 (Ω). We first show that {un}n∈N is bounded 

in W 1,H
0 (Ω). Arguing by contradiction, going to a subsequence still denoted by {un}n∈N , we may suppose 

that lim
n→∞

‖un‖1,H,0 = ∞ and ‖un‖1,H,0 ≥ 1 for any n ≥ k with k ∈ N sufficiently large. Thus, according to 

Proposition 2.2(ii), we get

Jλ(un) − 1
p∗

〈J ′
λ(un), un〉

=
(

1
p
− 1

p∗

)
‖∇un‖pp +

(
1
q
− 1

p∗

)
‖∇un‖qq,μ − λ

(
1
ϑ
− 1

p∗

)
‖un‖ϑϑ

≥
(

1
q
− 1

p∗

)
�H(∇un) − λCϑ‖un‖ϑ1,H,0.
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Thus, by (3.1) and Proposition 2.1(iv) there exist c1, c2 > 0 such that as n → ∞,

c1 + c2‖un‖1,H,0 + o(1) ≥
(

1
q
− 1

p∗

)
‖un‖p1,H,0 − λCϑ‖un‖ϑ1,H,0,

which is a contradiction since p∗ > q > p > ϑ > 1.
Hence, {un}n∈N is bounded in W 1,H

0 (Ω). By Proposition 2.2(ii), Lemma 3.1, Brézis [7, Theorem 4.9] and 
the reflexivity of W 1,H

0 (Ω), there exists a subsequence, still denoted by {un}n∈N , and u ∈ W 1,H
0 (Ω) such 

that

un ⇀ u in W 1,H
0 (Ω), ∇un ⇀ ∇u in

[
LH(Ω)

]N
,

∇un(x) → ∇u(x) a.e. in Ω, un → u in Lr(Ω),

un(x) → u(x) a.e. in Ω, ‖un − u‖p∗ → �,

(3.11)

as n → ∞ with r ∈ [1, p∗). Let A be the nodal set of the weight function μ(·) given by

A = {x ∈ Ω : μ(x) = 0} .

As μ(·) is a Lipschitz continuous function by (1.7), we know that Ω \A is an open subset of RN .
Since the sequence {|∇un|p−2∇un}n∈N is bounded in Lp′(Ω), by (3.11) we get

lim
n→∞

∫
Ω

|∇un|p−2∇un · ∇u dx = ‖∇u‖pp. (3.12)

Because of the boundedness of {|∇un|q−2∇un}n∈N in Lq′(Ω \A, μ(x) dx), by using (3.11) and Autuori-Pucci 
[1, Proposition A.8] we conclude that

lim
n→∞

∫
Ω

μ(x)|∇un|q−2∇un · ∇u dx

= lim
n→∞

∫
Ω\A

μ(x)|∇un|q−2∇un · ∇u dx = ‖∇u‖qq,μ.
(3.13)

Furthermore, using (3.2) and the Lemma of Brézis-Lieb in Papageorgiou-Winkert [35], we obtain

‖∇uj‖pp − ‖∇uj −∇u‖pp = ‖∇u‖pp + o(1),

‖∇uj‖qq,μ − ‖∇uj −∇u‖qq,μ = ‖∇u‖qq,μ + o(1),

‖uj‖p
∗

p∗ − ‖uj − u‖p
∗

p∗ = ‖u‖p
∗

p∗ + o(1),

(3.14)

as n → ∞. Thus, by (3.11), (3.12) and (3.13), we get

o(1) = 〈J ′
λ(un), un − u〉

=
∫
Ω

(
|∇un|p−2∇un + μ(x)|∇un|q−2∇un

)
· (∇un −∇u) dx

− λ

∫
Ω

|un|r−2(un − u) dx−
∫
Ω

|un|p
∗−2(un − u) dx

= ‖∇un‖pp − ‖∇u‖pp + ‖∇un‖pq,μ − ‖∇u‖pq,μ − ‖un‖p
∗

p∗ − ‖u‖p
∗

p∗ + o(1)
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as n → ∞. Hence, by (3.11) and (3.14) it follows that

‖∇un −∇u‖pp + ‖∇un −∇u‖qq,μ = ‖un − u‖p
∗

p∗ + o(1) = �p
∗

+ o(1) (3.15)

as n → ∞.
Now, assume for contradiction that � > 0. By Proposition 2.2(i), (3.10) and (3.15), we see that �p∗ ≥ S�p

which implies

� ≥ S
1

p∗−p . (3.16)

For any n ∈ N we have

Jλ(un) − 1
q
〈J ′

λ(un), un〉

=
(

1
p
− 1

q

)
‖∇un‖pp − λ

(
1
ϑ
− 1

q

)
‖un‖ϑϑ +

(
1
q
− 1

p∗

)
‖un‖p

∗

p∗ .

From this, as n → ∞, by (3.1), (3.11), (3.14), Hölder’s and Young’s inequality, we obtain

c ≥
(

1
q
− 1

p∗

)(
�p

∗
+ ‖u‖p

∗

p∗

)
− λ

(
1
ϑ
− 1

q

)
‖u‖ϑϑ

≥
(

1
q
− 1

p∗

)(
�p

∗
+ ‖u‖p

∗

p∗

)
− λ

(
1
ϑ
− 1

q

)
|Ω|

p∗−ϑ
p∗ ‖u‖ϑp∗

≥
(

1
q
− 1

p∗

)(
�p

∗
+ ‖u‖p

∗

p∗

)
−
(

1
q
− 1

p∗

)
‖u‖p

∗

p∗

− |Ω|
(

1
q
− 1

p∗

)− ϑ
p∗−ϑ

[
λ

(
1
ϑ
− 1

q

)] p∗
p∗−ϑ

.

Finally, by (3.16) we get

0 > c ≥
(

1
q
− 1

p∗

)
S

p∗
p∗−p − |Ω|

(
1
q
− 1

p∗

)− ϑ
p∗−ϑ

[
λ

(
1
ϑ
− 1

q

)] p∗
p∗−ϑ

> 0,

where the last inequality follows from (3.9). This gives a contradiction and shows that � = 0. Hence, by 
(3.15) and Proposition 2.1(v), the result follows. �

Note that the energy functional Jλ : W 1,H
0 (Ω) → R is not bounded from below. For this, we will use the 

treatment of García Azorero-Peral Alonso [23] following ideas from Figueiredo-Santos Júnior-Suárez [19]
and Zhang-Fiscella-Liang [45] in order to obtain a lower bound for a special truncated functional related to 
Jλ. Let us define βλ : [0, ∞) → R by

βλ(t) := 1
q
tq − λ

ϑ
Cϑt

ϑ − 1
p∗

Cp∗tp
∗
,

where Cϑ and Cp∗ are the constants mentioned in Remark 2.4. Since ϑ < q we see that βλ(t) < 0 for t near 
zero and due to 1 < ϑ < p < q < p∗ there exists λ1 > 0 such that βλ attains its positive maximum for any 
λ ∈ (0, λ1). Let R0(λ) and R1(λ) be the unique roots of βλ such that 0 < R0(λ) < R1(λ).

Then, we have the following claim.
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Claim. R0(λ) → 0 as λ → 0.

From βλ(R0(λ)) = 0 and β′
λ(R0(λ)) > 0 we have

1
q
R0(λ)q = λ

ϑ
CϑR0(λ)ϑ + 1

p∗
Cp∗R0(λ)p

∗
(3.17)

and

R0(λ)q−1 > λCϑR0(λ)ϑ−1 + Cp∗R0(λ)p
∗−1 (3.18)

for any λ ∈ (0, λ1). From (3.17) we know that R0(λ) is bounded since ϑ < q < p∗. Suppose that R0(λ) →
R > 0 as λ → 0. Then we obtain from (3.17) and (3.18)

1
q
Rq = 1

p∗
Cp∗Rp∗

and Rq−1 ≥ Cp∗Rp∗−1,

which is a contradiction since q < p∗. This proves the Claim.
From the Claim, there exists λ2 > 0 such that R0(λ) < 1 for any λ ∈ (0, λ2). This implies that R0(λ) <

min{R1(λ), 1}. Thus, for any λ ∈ (0, min{λ1, λ2}) we choose a C∞-function τ : [0, ∞) → [0, 1] such that

τ(t) :=
{

1 if t ∈ [0, R0(λ)],
0 if t ∈ [min{R1(λ), 1},∞).

(3.19)

Then, we can introduce following truncated energy functional

Ĵλ(u) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq,μ − λ

ϑ
‖u‖ϑϑ − 1

p∗
‖u‖p

∗

p∗τ(‖u‖1,H,0).

It is clear that Ĵλ ∈ C1(W 1,H
0 (Ω), R) is coercive and bounded from below. Also, note that if ‖u‖1,H,0 ≤

R0(λ) < min{R1(λ), 1}, then Ĵλ(u) = Jλ(u).
Thus, we have the following technical result.

Lemma 3.3. Let (1.7) be satisfied. Then there exists λ∗ > 0 such that for any λ ∈ (0, λ∗) the following hold:

(i) If Ĵλ(u) < 0, then ‖u‖1,H,0 < R0(λ) and Jλ(v) = Ĵλ(v) for any v in a sufficiently small neighborhood 
of u;

(ii) Ĵλ fulfills a local (PS)c condition for c < 0.

Proof. Let λ∗ ≤ min{λ0, λ1, λ2, λ3}, where λ0 is given in Lemma 3.2, λ1 and λ2 are chosen for the definition 
of τ in (3.19), while λ3 := ϑ

Cϑq
with Cϑ mentioned in Remark 2.4. Let λ ∈ (0, λ∗).

(i) Let Ĵλ(u) < 0. We distinguish two different cases.
Case 1: ‖u‖1,H,0 ≥ 1.
This case cannot occur. Indeed, by the definition of τ in (3.19) we know that τ(‖u‖1,H,0) = 0. Therefore, 

by Propositions 2.1(iv) and 2.2(ii) we get that

Ĵλ(u) = 1
p
‖∇u‖pp + 1

q
‖∇u‖qq,μ − λ

ϑ
‖u‖ϑϑ − 1

p∗
‖u‖p

∗

p∗τ(‖u‖1,H,0)

≥ 1
q
‖u‖p1,H,0 −

λ

ϑ
Cϑ‖u‖ϑ1,H,0

= φλ(‖u‖1,H,0),

(3.20)
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where φλ : [1, ∞) → R is given by

φλ(t) := 1
q
tp − λ

ϑ
Cϑt

ϑ.

It is clear that φλ has a global minimum point at

t0 =
(
λ
Cϑq

p

) 1
p−ϑ

with

φλ(t0) = 1
q

(
λ
Cϑq

p

) p
p−ϑ (

1 − p

ϑ

)
< 0,

since ϑ < p.

We point out that φλ(t) ≥ 0 if and only if t ≥
(
λCϑq

ϑ

) 1
p−ϑ . Hence, choosing λ ≤ λ3 = ϑ

Cϑq
we have 

min
t∈[1,∞]

φλ(t) ≥ 0 which yields, joint with (3.20), that Ĵλ(u) ≥ 0 for any ‖u‖1,H,0 ≥ 1. This gives the desired 

contradiction.
Case 2: ‖u‖1,H,0 < 1.
By Propositions 2.1(iii) and 2.2(ii) we get

Ĵλ(u) ≥ 1
q
‖u‖q1,H,0 −

λ

ϑ
Cϑ‖u‖ϑ1,H,0 −

1
p∗

Cp∗‖u‖p
∗

1,H,0τ(‖u‖1,H,0)

= β̂λ(‖u‖1,H,0),

where

β̂λ(t) := 1
q
tq − λ

ϑ
Cϑt

ϑ − 1
p∗

Cp∗tp
∗
τ(t).

Since 0 ≤ τ ≤ 1, we note that

β̂λ(t) ≥ βλ(t) ≥ 0 for any t ∈ [R0(λ),min{R1(λ), 1}], (3.21)

where the last inequality follows by the construction of the roots R0(λ) and R1(λ) for βλ.
Hence, if min{R1(λ), 1} = 1, then from Ĵλ(u) < 0 and (3.21) we obtain that ‖u‖1,H,0 < R0(λ).
While, if min{R1(λ), 1} = R1(λ), considering R1(λ) < ‖u‖1,H,0 < 1 and arguing similarly to (3.20) we 

get

Ĵλ(u) ≥ φ̂λ(‖u‖1,H,0) with φ̂λ(t) := 1
q
tq − λ

ϑ
Cϑt

ϑ,

from which we can proceed exactly as in Case 1 to get a contradiction. Considering R0(λ) < ‖u‖1,H,0 ≤
R1(λ), from Ĵλ(u) < 0 and (3.21) we get another contradiction. Hence, we obtain again ‖u‖1,H,0 < R0(λ), 
completing the first part of (i).

Moreover, we observe that Ĵλ(v) = Jλ(v) for any ‖v − u‖1,H,0 < R0(λ) − ‖u‖1,H,0, concluding the proof 
of (i).
(ii) Note that any Palais-Smale sequence for Ĵλ is bounded since Ĵλ is coercive. Applying Lemma 3.2 shows 
that we have a local Palais-Smale condition for Jλ ≡ Ĵλ at any level c < 0. �
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Now, we are going to construct an appropriate mini-max sequence of negative critical values for the 
functional Ĵλ.

Lemma 3.4. Let (1.7) be satisfied and let λ ∈ (0, λ2), where λ2 is chosen for the definition of τ in (3.19). 
For any n ∈ N there exists ε = ε(λ, n) > 0 such that

γ
(
Ĵ−ε
λ

)
≥ n,

where Ĵ−ε
λ =

{
u ∈ W 1,H

0 (Ω) : Ĵλ(u) ≤ −ε
}
.

Proof. Let λ ∈ (0, λ2) and n ∈ N be fixed and let Yn be an n-dimensional subspace of W 1,H
0 (Ω). By 

Proposition 2.2(ii) we have that Yn ↪→ Lϑ(Ω) is continuously embedded. Hence, the norms of W 1,H
0 (Ω) and 

Lϑ(Ω) are equivalent on Yn. In particular, there exists a positive constant C(n) which depends only on n
such that

−C(n)‖u‖ϑ1,H,0 ≥ −‖u‖ϑϑ for any u ∈ Yn. (3.22)

Therefore, using (3.22) and Proposition 2.1(iii), for any u ∈ Yn with ‖u‖1,H,0 ≤ R0(λ) < 1 we have

Ĵλ(u) ≤ 1
p
‖u‖p1,H,0 −

λ

ϑ
C(n)‖u‖ϑ1,H,0. (3.23)

Now, let r and R be two positive constants such that

r < R < min
{
R0(λ),

(
λC(n)p

ϑ

) 1
p−ϑ

}
(3.24)

and let

Sn = {u ∈ Yn : ‖u‖1,H,0 = r} .

It is clear that Sn is homeomorphic to the (n − 1)-dimensional sphere Sn−1. Thus, from Proposition 2.6(iv) 
we know that γ(Sn) = n. Furthermore, from (3.23) and (3.24) we obtain

Ĵλ(u) ≤ rϑ
(

1
p
rp−ϑ − λ

ϑ
C(n)

)
≤ Rϑ

(
1
p
Rp−ϑ − λ

ϑ
C(n)

)
< 0.

Hence, we find a constant ε > 0 such that Ĵλ(u) < −ε for any u ∈ Sn, that is, Sn ⊂ Ĵ−ε
λ and so, by 

Proposition 2.6(i),

γ
(
Ĵ−ε
λ

)
≥ γ(Sn) = n. �

Next we define for any n ∈ N the sets

Σn =
{
A ⊂ W 1,H

0 (Ω) \ {0} : A is closed, A = −A and γ(A) ≥ n
}
,

Kc =
{
u ∈ W 1,H

0 (Ω) : Ĵ ′
λ(u) = 0 and Ĵλ(u) = c

}
and the number
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cn = inf
A∈Σn

sup
u∈A

Ĵλ(u).

Clearly, cn ≤ cn+1 for any n ∈ N.

Lemma 3.5. Let (1.7) be satisfied and let λ ∈ (0, λ2), where λ2 is chosen for the definition of τ in (3.19). 
For any n ∈ N, the number cn is negative.

Proof. Let λ ∈ (0, λ2) and n ∈ N be fixed. From Lemma 3.4 we know there exists ε > 0 such that 
γ
(
Ĵ−ε
λ

)
≥ n. Also, since Ĵλ is even and continuous, we know that Ĵ−ε

λ ∈ Σn. From Ĵλ(0) = 0 we have 

0 /∈ Ĵ−ε
λ . Since supu∈Ĵ−ε

λ
Ĵλ(u) ≤ −ε and Ĵλ is bounded from below, we obtain

−∞ < cn = inf
A∈Σn

sup
u∈A

Ĵλ(u) ≤ sup
u∈Ĵ−ε

λ

Ĵλ(u) ≤ −ε < 0. �

Next we have the following lemma. Note that in García Azorero-Peral Alonso [23] a similar lemma was 
proved. In fact, the proof of Lemma 3.6 works similarly. For sake of clarity we give here the proof.

Lemma 3.6. Let (1.7) be satisfied, let λ ∈ (0, λ∗), where λ∗ > 0 is as in Lemma 3.3, and let n ∈ N. If 
c = cn = cn+1 = . . . = cn+l for some l ∈ N, then

γ(Kc) ≥ l + 1.

Proof. Let λ ∈ (0, λ∗). Since from Lemma 3.5 we have that c = cn = cn+1 = . . . = cn+l is negative, then by 
Lemma 3.3(ii) it easily follows that Kc is compact.

Let us assume by contradiction that γ(Kc) ≤ l. Then, by Proposition 2.6(v) there exists δ > 0 such that 
γ(Nδ(Kc)) = γ(Kc) ≤ l, where

Nδ(Kc) =
{
u ∈ W 1,H

0 (Ω) : dist(u,Kc) ≤ δ
}
.

By the deformation theorem, see for example Benci [4, Theorem 3.4], there exist ε ∈ (0, −c) and an odd 
homeomorphism η : W 1,H

0 (Ω) → W 1,H
0 (Ω) such that

η
(
Ĵc+ε
λ \Nδ(Kc)

)
⊂ Ĵc−ε

λ . (3.25)

While, by the definition of c = cn+l there exists A ∈ Σn+l such that supu∈A Ĵλ(u) < c +ε, that is A ⊂ Ĵc+ε
λ , 

and so by (3.25)

η (A \Nδ(Kc)) ⊂ η
(
Ĵc+ε
λ \Nδ(Kc)

)
⊂ Ĵc−ε

λ . (3.26)

On the other hand, from Proposition 2.6(i) and (iii) we have

γ(η(A \Nδ(Kc))) ≥ γ(A \Nδ(Kc)) ≥ γ(A) − γ(Nδ(Kc)) ≥ n.

Hence, we conclude that η(A \Nδ(Kc)) ∈ Σn and so

sup
u∈η(A\Nδ(Kc))

Ĵλ(u) ≥ cn = c,

which contradicts (3.26). �
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Proof of Theorem 1.1. Let λ ∈ (0, λ∗), where λ∗ > 0 is as in Lemma 3.3. By Lemma 3.5 we have cn < 0. 
Hence, from Lemma 3.3(ii) we know that the functional Ĵλ satisfies the Palais-Smale condition at level 
cn < 0. Thus, cn is a critical value of Ĵλ for any n ∈ N, see for example Rabinowitz [37].

We consider two situations. If −∞ < c1 < c2 < . . . < cn < cn+1 < . . ., then Ĵλ admits infinitely many 
critical values. If there exist n, l ∈ N such that cn = cn+1 = . . . = cn+l = c, then γ(Kc) ≥ l + 1 ≥ 2
by Lemma 3.6. Thus, the set Kc has infinitely many points, see Rabinowitz [37, Remark 7.3], which are 
infinitely many critical values for Ĵλ by Lemma 3.3(ii).

Then, by Lemma 3.3(i) we get infinitely many negative critical values for Jλ = Ĵλ and so problem (1.6)
has infinitely many weak solutions. �
Acknowledgments

C. Farkas was supported by the National Research, Development and Innovation Fund of Hungary, 
financed under the K_18 funding scheme, Project No. 127926.

A. Fiscella is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Appli-
cazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica “G. Severi” (INdAM). A. Fiscella realized 
the manuscript within the auspices of the INdAM-GNAMPA project titled “Equazioni alle derivate parziali: 
problemi e modelli” (Prot_20191219-143223-545), of the FAPESP Project titled “Operators with non stan-
dard growth” (2019/23917-3) and of the FAPESP Thematic Project titled “Systems and partial differential 
equations” (2019/02512-5).

References

[1] G. Autuori, P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differ. 
Equ. Appl. 20 (3) (2013) 977–1009.

[2] P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015) 
206–222.

[3] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ. 
57 (2) (2018) 62.

[4] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Am. Math. Soc. 274 (2) 
(1982) 533–572.

[5] V. Benci, D. Fortunato, Bifurcation from the essential spectrum for odd variational operators, Conf. Sem. Mat. Univ. Bari 
178 (1981), 26 pp.

[6] L. Boccardo, F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, 
Nonlinear Anal. 19 (6) (1992) 581–597.

[7] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
[8] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. 

Pure Appl. Math. 36 (4) (1983) 437–477.
[9] P. Candito, S.A. Marano, K. Perera, On a class of critical (p, q)-Laplacian problems, NoDEA Nonlinear Differ. Equ. Appl. 

22 (6) (2015) 1959–1972.
[10] F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl. (4) 195 (6) (2016) 

1917–1959.
[11] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (1) 

(2015) 219–273.
[12] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2) (2015) 

443–496.
[13] F.J.S.A. Corrêa, A.C.d.R. Costa, On a p(x)-Kirchhoff equation with critical exponent and an additional nonlocal term via 

truncation argument, Math. Nachr. 288 (11–12) (2015) 1226–1240.
[14] Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: 

existence and uniqueness, J. Differ. Equ. 323 (2022) 182–228.
[15] Á. Crespo-Blanco, N.S. Papageorgiou, P. Winkert, Parametric superlinear double phase problems with singular term and 

critical growth on the boundary, Math. Methods Appl. Sci. 45 (4) (2022) 2276–2298.
[16] P. Drábek, S.I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. R. Soc. Edinb. 

A 127 (4) (1997) 703–726.
[17] C. Farkas, A. Fiscella, P. Winkert, Singular Finsler double phase problems with nonlinear boundary condition, Adv. 

Nonlinear Stud. 21 (4) (2021) 809–825.
[18] C. Farkas, P. Winkert, An existence result for singular Finsler double phase problems, J. Differ. Equ. 286 (2021) 455–473.
[19] G. Figueiredo, J.R. Santos Júnior, A. Suárez, Multiplicity results for an anisotropic equation with subcritical or critical 

growth, Adv. Nonlinear Stud. 15 (2) (2015) 377–394.

http://refhub.elsevier.com/S0022-247X(22)00434-6/bib3D8396C88DB922288ABBA36B827B3F71s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib3D8396C88DB922288ABBA36B827B3F71s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib8B1C3E8D71D67FEBEFF684812E2710F3s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib8B1C3E8D71D67FEBEFF684812E2710F3s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibB24C49D8440ED993BC2B4769467DD68Es1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibB24C49D8440ED993BC2B4769467DD68Es1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib96A8ACBD1993F335B655CF989DC83A25s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib96A8ACBD1993F335B655CF989DC83A25s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibA260BF63D63F41F6F42A04A07DB5CB05s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibA260BF63D63F41F6F42A04A07DB5CB05s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib29977BBAE8F3D8857E96A61CD99F7C3Es1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib29977BBAE8F3D8857E96A61CD99F7C3Es1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib2339ACF340B6F95EEF71805B8A81D2E6s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib22EC7CA64A094395643A4FA3A4B66C70s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib22EC7CA64A094395643A4FA3A4B66C70s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib3D1E421B4A941DFE74A9F51F5DCEFEEDs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib3D1E421B4A941DFE74A9F51F5DCEFEEDs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib39ADCCE93F1637A6293526A0A3FE859As1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib39ADCCE93F1637A6293526A0A3FE859As1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibF5AB333105B1BECCF369EE202DB65297s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibF5AB333105B1BECCF369EE202DB65297s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibF3818D8141B6F543EE00D360DD1CFC58s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibF3818D8141B6F543EE00D360DD1CFC58s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibECC514FD17CDB916CF7F8550D30499C7s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibECC514FD17CDB916CF7F8550D30499C7s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib4BBE42091ED55FD52DEA1CCCE1D2B936s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib4BBE42091ED55FD52DEA1CCCE1D2B936s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib188DC14C244B3BBB52D2F030A0381706s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib188DC14C244B3BBB52D2F030A0381706s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib5E656808F13AA3AFD2BF8C7B8E2965FFs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib5E656808F13AA3AFD2BF8C7B8E2965FFs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib6B4D0A2C20AF47FA8C3D1C8F98E929B3s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib6B4D0A2C20AF47FA8C3D1C8F98E929B3s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibA10D5F9EDB973900BEDC8FF825FC40ECs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibBDD63A5E4883BC877A47AAF3C97ADA94s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibBDD63A5E4883BC877A47AAF3C97ADA94s1


16 C. Farkas et al. / J. Math. Anal. Appl. 515 (2022) 126420
[20] A. Fiscella, A double phase problem involving Hardy potentials, Appl. Math. Optim. 85 (3) (2022) 45.
[21] A. Fiscella, A. Pinamonti, Existence and multiplicity results for Kirchhoff type problems on a double phase setting, 

preprint, arXiv :2008 .00114, 2020.
[22] J. García Azorero, I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues, Commun. 

Partial Differ. Equ. 12 (12) (1987) 1389–1430.
[23] J. García Azorero, I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsym-

metric term, Trans. Am. Math. Soc. 323 (2) (1991) 877–895.
[24] L. Gasiński, N.S. Papageorgiou, Constant sign and nodal solutions for superlinear double phase problems, Adv. Calc. Var. 

14 (4) (2021) 613–626.
[25] L. Gasiński, P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal. 

195 (2020) 111739.
[26] L. Gasiński, P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differ. Equ. 

268 (8) (2020) 4183–4193.
[27] L. Gasiński, P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the 

Nehari manifold, J. Differ. Equ. 274 (2021) 1037–1066.
[28] P. Harjulehto, P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Springer, Cham, 2019.
[29] M.A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations, The Macmillan Co., New York, 

1964.
[30] G. Li, G. Zhang, Multiple solutions for the p&q-Laplacian problem with critical exponent, Acta Math. Sci. Ser. B Engl. 

Ed. 29 (4) (2009) 903–918.
[31] W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equ. 265 (9) (2018) 4311–4334.
[32] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differ. Equ. 90 (1) 

(1991) 1–30.
[33] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. 

Ration. Mech. Anal. 105 (3) (1989) 267–284.
[34] G. Mingione, V.D. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. 

Math. Anal. Appl. 501 (1) (2021) 125197.
[35] N.S. Papageorgiou, P. Winkert, Applied Nonlinear Functional Analysis. An Introduction, De Gruyter, Berlin, 2018.
[36] K. Perera, M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math. 20 (2) 

(2018) 1750023.
[37] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional 

Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986.
[38] J. Simon, Régularité de la solution d’une équation non linéaire dans RN , in: Journées d’Analyse Non Linéaire, vol. 665, 

Proc. Conf. Besançon, 1977, Springer, Berlin, 1978, pp. 205–227.
[39] C.H. Taubes, The existence of a nonminimal solution to the SU(2) Yang-Mills-Higgs equations on R3. II, Commun. Math. 

Phys. 86 (3) (1982) 299–320.
[40] C.H. Taubes, The existence of a nonminimal solution to the SU(2) Yang-Mills-Higgs equations on R3. I, Commun. Math. 

Phys. 86 (2) (1982) 257–298.
[41] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960) 21–37.
[42] H. Yin, Z. Yang, Multiplicity of positive solutions to a p − q-Laplacian equation involving critical nonlinearity, Nonlinear 

Anal. 75 (6) (2012) 3021–3035.
[43] S. Zeng, Y. Bai, L. Gasiński, P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued 

operators, Calc. Var. Partial Differ. Equ. 59 (5) (2020) 176.
[44] S. Zeng, L. Gasiński, P. Winkert, Y. Bai, Existence of solutions for double phase obstacle problems with multivalued 

convection term, J. Math. Anal. Appl. 501 (1) (2021) 123997.
[45] B. Zhang, A. Fiscella, S. Liang, Infinitely many solutions for critical degenerate Kirchhoff type equations involving the 

fractional p-Laplacian, Appl. Math. Optim. 80 (1) (2019) 63–80.
[46] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR, Ser. Mat. 

50 (4) (1986) 675–710.

http://refhub.elsevier.com/S0022-247X(22)00434-6/bib56BC3FA0CFFC51BA2EDDB735004D5D52s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib77BC34B098DA027A987F0EF1AB1F2357s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib77BC34B098DA027A987F0EF1AB1F2357s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibE9EA6C7F863179FE88E4EAD8B1D0F4BFs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibE9EA6C7F863179FE88E4EAD8B1D0F4BFs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib6A42F76886C5742C837BD834F14B428Es1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib6A42F76886C5742C837BD834F14B428Es1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib4CD3F980CB8069DA06D9E97E2995537Cs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib4CD3F980CB8069DA06D9E97E2995537Cs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib754C982463FADCD2E58BDE6D76C2F6F4s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib754C982463FADCD2E58BDE6D76C2F6F4s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibE049B05C7F917C86F6B0170FFB127F39s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibE049B05C7F917C86F6B0170FFB127F39s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib8ED66C7CB62BC93428DADF80EBD1F433s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib8ED66C7CB62BC93428DADF80EBD1F433s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibA02BC58A3CD97A52285914AE4BAC67FFs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib26B56CC419352BE9823BE921FCC9C48As1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib26B56CC419352BE9823BE921FCC9C48As1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib33B69A21A4CAD7CB969B379B8276E0C9s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib33B69A21A4CAD7CB969B379B8276E0C9s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibB61C2838707CF19588F49A350475076Fs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib620DCCFBC15E31D4ABEC002E9BA9B683s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib620DCCFBC15E31D4ABEC002E9BA9B683s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib8E656B91D3CFC7069EDFA34189B3C974s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib8E656B91D3CFC7069EDFA34189B3C974s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibA65DF3799713157DDFB1BB7A7F1245A3s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibA65DF3799713157DDFB1BB7A7F1245A3s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibE7592120B146B445567C25E998B59E37s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib1422B3B8722ED96AE21DBF0189150D17s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib1422B3B8722ED96AE21DBF0189150D17s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib77F338B65A5E4A510D4D1CB9E309980Fs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib77F338B65A5E4A510D4D1CB9E309980Fs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib925290040FED92FEDC748C8C34392574s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib925290040FED92FEDC748C8C34392574s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib670486E9F9519E4D8A5D064833550403s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib670486E9F9519E4D8A5D064833550403s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibBBB077C2E4F2AFCEDD760DAB7F824656s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibBBB077C2E4F2AFCEDD760DAB7F824656s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibA97B697754FC44F661A0B0E32EB56DD2s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib26139DD88F10FD4AF889BE6AA7A29D6Bs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib26139DD88F10FD4AF889BE6AA7A29D6Bs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib661153CC083D8A3C22FE5F54E0F059F9s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib661153CC083D8A3C22FE5F54E0F059F9s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib419CC0B87E3DC2A7DD0D61D37EA77C5Fs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib419CC0B87E3DC2A7DD0D61D37EA77C5Fs1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib2CA692D272290D99E7AF6AD521A8B7D5s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bib2CA692D272290D99E7AF6AD521A8B7D5s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibC90D9D81F9A1AA0650FA248A314A2A44s1
http://refhub.elsevier.com/S0022-247X(22)00434-6/bibC90D9D81F9A1AA0650FA248A314A2A44s1

	On a class of critical double phase problems
	1 Introduction
	2 Preliminaries
	3 Proof of the main result
	Acknowledgments
	References


