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VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH
NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

DUMITRU MOTREANU - PATRICK WINKERT

The aim of this paper is the study of variational-hemivariational in-
equalities with nonhomogeneous Neumann boundary condition. Suffi-
cient conditions for the existence of a whole sequence of solutions which
is either unbounded or converges to zero are proved. For homogeneous
Neumann boundary condition, results of this type have been obtained
in Marano and Motreanu [3]. Our approach is based on abstract nons-
mooth critical point results given in [3]. The applicability of our results is
demonstrated by providing two verifiable criteria which address problems
with nonsmooth potential and nonzero Neumann boundary condition.

1. Introduction

The present paper is devoted to the study of variational-hemivariational inequal-
ities involving boundary integral terms. Specifically, given a bounded domain Ω

in RN with a C1-boundary ∂Ω and p ∈]N,+∞[, we consider the problem: Find
u ∈ K such that, for all v ∈ K,∫

Ω

|∇u|p−2
∇u∇(v−u)dx+

∫
Ω

a|u|p−2u(v−u)dx

+
∫

Ω

αFo(u;v−u)dx+
∫

∂Ω

θHo(γu;γv− γu)dσ ≥ 0,
(1.1)
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where K is a closed convex subset of W 1,p(Ω) containing the constant functions.
The data in (1.1) are supposed to satisfy: a ∈ L∞(Ω) with ess infx∈Ω a(x) > 0,
α ∈ L1(Ω) and θ ∈ L1(∂Ω) fulfilling

α(x)≥ 0, for a.a. x ∈Ω, θ(x)≥ 0, for a.a. x ∈ ∂Ω, (1.2)

Fo and Ho stand for Clarke’s generalized directional derivatives of locally Lip-
schitz functions F,H : R→ R given by

F(ξ ) :=
∫

ξ

0
f (t)dt, H(ξ ) :=

∫
ξ

0
h(t)dt,

where f ,h :R→R are locally essentially bounded functions, and γ :W 1,p(Ω)→
Lp(∂Ω) denotes the trace operator. We endow the space W 1,p(Ω) with the norm

‖u‖W 1,p(Ω) :=
(∫

Ω

(|∇u|p +a|u|p)dx
)1/p

,

which is equivalent to the usual one. Since p > N, there is the compact embed-
ding W 1,p(Ω) ↪→C0(Ω). For a later use, let

c := sup{‖u‖−1
W 1,p(Ω)

‖u‖C0(Ω) : u ∈W 1,p(Ω),u 6≡ 0}< ∞, (1.3)

be the best embedding constant, where ‖u‖C0(Ω) = supx∈Ω
|u(x)|. The expres-

sion of c implies that

cp‖a‖L1(Ω) ≥ 1.

Problem (1.1) differs from the corresponding problem studied in Marano
and Motreanu [3] by the fact that the integral term∫

Ω

βGo(u;v−u)dx

in [3], with a locally Lipschitz function G : R→ R and some β ∈ L1(Ω), is
replaced in our formulation with the boundary term∫

∂Ω

θHo(γu;γv− γu)dσ .

Actually, this expresses the passage in the Neumann boundary condition from
the homogeneous situation (i.e., ∂u

∂n = 0 on ∂Ω) to the possibly nonhomoge-
neous case in (1.1). A prototype of (1.1), taking for simplicity K =W 1,p(Ω), is
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the following boundary value problem with nonsmooth potential and nonhomo-
geneous, nonsmooth Neumann boundary condition:

∆pu−a(x)|u|p−2u ∈ α(x)∂F(u) in Ω,

|∇u|p−2 ∂u
∂n
∈ −θ(x)∂H(γu) on ∂Ω,

where n(x) is the outward unit normal at x ∈ ∂Ω, ∂u
∂n denotes the correspond-

ing normal derivative of u on ∂Ω, while ∂F and ∂H represent the generalized
gradients of F and H, respectively.

Our main results are Theorems 3.1 and 3.2 providing sufficient conditions
that problem (1.1) admit a whole sequence of solutions which is either un-
bounded or converges to zero. Theorems 3.1 and 3.2 correspond to Theorems
2.1 and 2.2 in [3] which hold for the homogeneous Neumann boundary condi-
tion. However, Theorems 3.1 and 3.2 are not extensions of Theorems 2.1 and
2.2 in [3] due to the presence therein of a term involving a locally Lipschitz
function G : R→ R that cannot be incorporated in the locally Lipschitz func-
tion F : R→ R in view of the imposed assumptions on F and G. We illustrate
the applicability of Theorems 3.1 and 3.2 by two results stated as Theorems 4.1
and 4.2, which give verifiable criteria to fulfill the hypotheses of Theorems 3.1
and 3.2 in the case where the function H describing the generalized Neumann
boundary condition is not trivial. Our approach is variational relying on a non-
smooth critical point theorem that guarantees the existence of infinitely many
critical points in our nonsmooth setting with suitable convergence properties
(see [3]).

The rest of the paper is organized as follows. Section 2 presents some no-
tions and results in the nonsmooth critical point theory which are needed in
the sequel. Section 3 contains our main results, while Section 4 sets forth our
applications.

2. Preliminaries

In this section, we give a brief overview on some prerequisites of nonsmooth
analysis which are needed in the sequel. Let X be a real normed space with the
norm || · ||. Given a locally Lipschitz function j : X → R on a Banach space
X , we denote by jo(u;v) the generalized directional derivative of j at the point
u ∈ X in direction v ∈ X , which is defined by

jo(u;v) = limsup
x→u,t↓0

j(x+ tv)− j(x)
t

,
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(see [2, Chapter 2]). If j1, j2 : X→R are locally Lipschitz functions, there holds

( j1 + j1)o(u;v)≤ jo
1(u;v)+ jo

2(u;v), ∀u,v ∈ X .

Now we consider a function Φ : X→R which satisfies the structure hypoth-
esis:

(S) Φ= j+I, with j : X→R locally Lipschitz and I : X→R∪{+∞} convex,
proper (i.e., I 6≡+∞), and lower semicontinuous.

A point u ∈ X is called a critical point of Φ if the following inequality is valid

jo(u;v−u)+ I(v)− I(u)≥ 0, ∀v ∈ X

(see [5, Chapter 3]). In the case where j is continuously differentiable, this
definition reduces to the one of Szulkin in [7] and in the case where I ≡ 0 it
coincides with the notion of critical point introduced by Chang (cf. [1]). By [4,
Proposition 2.1], we know that each local minimum of Φ is a critical point.

Let (X ,‖ · ‖) and X̃ be real Banach spaces such that X is compactly embed-
ded in X̃ . Further, let j1 : X̃ → R and j2 : X → R be locally Lipschitz, and let
I : X → R∪{+∞} be convex, proper, and lower semicontinuous. By D(I) we
denote the effective domain of I, that is D(I) = {u ∈ X : I(u)<+∞}. Set

Φ(u) = j1(u)+ I(u), Ψ(u) = j2(u) for all u ∈ X .

We note that Φ and Ψ satisfy the structure condition (S). We assume that

Ψ
−1(]−∞,ρ[)∩D(I) 6= /0, ∀ρ > inf

X
Ψ, (2.1)

and define for every ρ > infX Ψ the nonnegative number

ϕ(ρ) := inf
u∈Ψ−1(]−∞,ρ[)

Φ(u)− inf
v∈(Ψ−1(]−∞,ρ[))w

Φ(v)

ρ−Ψ(u)
, (2.2)

where (Ψ−1(]−∞,ρ[))w denotes the weak closure of Ψ−1(]−∞,ρ[). Finally,
we introduce

δ1 := liminf
ρ→+∞

ϕ(ρ), δ2 := liminf
ρ→(infX Ψ)+

ϕ(ρ).

Keeping the notation above, we state the following nonsmooth version of a crit-
ical point result due to Ricceri [6, Theorem 2.5], which was established in [3,
Theorem 1.1].
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Theorem 2.1. Assume that X is a reflexive Banach space and that the function Ψ

is weakly sequentially lower semicontinuous, coercive and satisfies (2.1). Then
the following properties hold:

(a) For every ρ > infX Ψ and every λ > ϕ(ρ), the function Φ+ λΨ has a
critical point (local minimum) lying in Ψ−1(]−∞,ρ[).

(b) If δ1 <+∞, then for every λ > δ1, either

(b1) Φ+λΨ possesses a global minimum, or

(b2) there is a sequence (un) of critical points (local minima) of Φ+λΨ

such that limn→+∞ Ψ(un) = +∞.

(c) If δ2 <+∞, then for every λ > δ2, either

(c1) Φ+λΨ has a local minimum, which is also a global minimum of
Ψ, or

(c2) there exists a sequence (un) of pairwise distinct critical points (local
minima) of Φ+λΨ, with limn→+∞ Ψ(un) = infX Ψ, weakly converg-
ing to a global minimum of Ψ.

3. Main Results

Our first main result reads as follows.

Theorem 3.1. Assume that

inf
ξ∈R

H(ξ )≥ 0 (3.1)

and there exist two sequences (rn)⊂ R+ and (ξn)⊂ R such that

lim
n→+∞

rn =+∞, (3.2)

F(ξn) = inf
|ξ |≤c(prn)1/p

F(ξ ), ∀n ∈ N, (3.3)

1
p
‖a‖L1(Ω)|ξn|p +H(ξn)‖θ‖L1(∂Ω) < rn, ∀n ∈ N, (3.4)

liminf
|ξ |→+∞

F(ξ )‖α‖L1(Ω)+H(ξ )‖θ‖L1(∂Ω)

|ξ |p
<−1

p
‖a‖L1(Ω). (3.5)

Then problem (1.1) possesses an unbounded sequence of solutions.
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Proof. In order to apply Theorem 2.1, we set X := W 1,p(Ω) and X̃ = C0(Ω),
which guarantees that X is compactly embedded in X̃ due to p > N. Let the
functions j1 : X̃ → R and j2 : X → R be defined by

j1(u) :=
∫

Ω

αF(u)dx, j2(u) :=
1
p
‖u‖p

X +
∫

∂Ω

θH(γu)dσ .

They are locally Lipschitz since f ,h ∈ L∞
loc(R). Let I : X → R∪{+∞} be the

indicator function of the set K, that is

I(u) =

{
0, if u ∈ K,

+∞, otherwise,

which is convex, proper, and lower semicontinuous. Next, we introduce

Φ(u) = j1(u)+ I(u), Ψ(u) = j2(u), for all u ∈ X .

Hypotheses (1.2) and (3.1) imply the estimate

Ψ(u) =
1
p
‖u‖p

X +
∫

∂Ω

θH(γu)dσ ≥ 1
p
‖u‖p

X , ∀u ∈ X , (3.6)

which proves the coercivity of Ψ and that infX Ψ = Ψ(0) = 0. Recalling that K
contains the constant functions, it follows that 0 ∈ K = D(I), thereby

0 ∈Ψ
−1(]−∞,ρ[)∩D(I), ∀ρ > inf

X
Ψ.

Using the compactness of the trace operator γ , we can show that Ψ is weakly
sequentially lower semicontinuous on X .
Taking into account (3.6), we get for each v ∈ (Ψ−1(]−∞,ρ[))w the estimate
‖v‖X ≤ (pρ)1/p. Then, in view of (2.2), we infer that

0≤ ϕ(ρ)≤ inf
u∈Ψ−1(]−∞,ρ[)

Φ(u)− inf
‖v‖X≤(pρ)1/p

Φ(v)

ρ−Ψ(u)
, ∀ρ > inf

X
Ψ = 0. (3.7)

Let n ∈ N be fixed. The definition of the embedding constant c in (1.3) ensures
that for each v ∈ X satisfying ‖v‖X ≤ (prn)

1/p we have |v(x)| ≤ c(prn)
1/p for

all x ∈Ω. From (1.2) and (3.3), we obtain

Φ(ξn)≤ inf
‖v‖X≤(prn)1/p

Φ(v). (3.8)

Applying (3.4) yields

Ψ(ξn) =
1
p
‖ξn‖p

X +
∫

∂Ω

θH(ξn)dσ =
1
p
‖a‖L1(Ω)|ξn|p +H(ξn)‖θ‖L1(∂Ω) < rn,



VARIATIONAL-HEMIVARIATIONAL INEQUALITIES 115

which proves that ξn ∈Ψ−1(]−∞,rn[). By virtue of (3.2), we may insert ρ = rn

in (3.7) provided n is sufficiently large. Combining with (3.8) it results in

0≤ ϕ(rn)≤ inf
u∈Ψ−1(]−∞,rn[)

Φ(u)−Φ(ξn)

rn−Ψ(u)
≤ Φ(ξn)−Φ(ξn)

rn−Ψ(ξn)
= 0. (3.9)

It turns out from (3.2) and (3.9) that liminfρ→+∞ ϕ(ρ) = 0 meaning δ1 = 0. We
are thus allowed to apply part (b) of Theorem 2.1 with λ = 1.

We claim that the function Φ+Ψ is unbounded from below. According to
(3.5), we can choose η > 0 such that

η ∈
]

1
p
‖a‖L1(Ω),− liminf

|ξ |→+∞

F(ξ )‖α‖L1(Ω)+H(ξ )‖θ‖L1(∂Ω)

|ξ |p

[
.

This allows us to select a sequence (σn)⊂ R satisfying

lim
n→+∞

|σn|=+∞, F(σn)‖α‖L1(Ω)+H(σn)‖θ‖L1(∂Ω) <−η |σn|p, ∀n ∈ N.

Then we derive

Φ(σn)+Ψ(σn) = F(σn)‖α‖L1(Ω)+
1
p
‖a‖L1(Ω)|σn|p +H(σn)‖θ‖L1(∂Ω)

< (
1
p
‖a‖L1(Ω)−η)|σn|p, n ∈ N.

Hence, by the choice of η , limn→+∞(Φ(σn)+Ψ(σn))→ −∞, which justifies
our claim. Therefore, assertion (b2) in Theorem 2.1 yields a sequence (un)⊂ X
of critical points of Φ+Ψ satisfying limn→+∞ Ψ(un) = +∞. As Ψ is bounded
on bounded sets, we deduce that the sequence (un) is unbounded in X . The fact
that un is a critical point of Φ+Ψ means that

( j1 + j2)o(un;v−un)+ I(v)− I(un)≥ 0, ∀v ∈ X . (3.10)

Then (3.10) entails that un ∈ K and

jo
1(un;v−un)+ jo

2(un;v−un)≥ 0, ∀v ∈ K. (3.11)

A basic result on the generalized directional derivative of an integral functional
(see [2, p. 77]) shows that

jo
1(un;v−un)≤

∫
Ω

α(x)Fo(un;v−un)dx, ∀v ∈ K, (3.12)
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and, for all v ∈ K,

jo
2(un;v−un)≤

∫
Ω

|∇un|p−2
∇un∇(v−un)dx+

∫
Ω

a|un|p−2un(v−un)dx

+
∫

∂Ω

θHo(γun;γv− γun)dσ .

(3.13)

Combining (3.11), (3.12), and (3.13) leads to∫
Ω

|∇un|p−2
∇un∇(v−un)dx+

∫
Ω

a|un|p−2un(v−un)dx

+
∫

Ω

αFo(un;v−un)dx+
∫

∂Ω

θHo(γun;γv− γun)dσ ≥ 0,

for all v ∈ K, which completes the proof.

Our second main result is the following theorem. Since its proof can be
carried out along the same lines as for Theorem 3.1, we omit it.

Theorem 3.2. Assume that

inf
ξ∈R

H(ξ )≥ 0

and there exist two sequences (rn)⊂ R+ and (ξn)⊂ R such that

lim
n→+∞

rn = 0,

F(ξn) = inf
|ξ |≤c(prn)1/p

F(ξ ), ∀n ∈ N,

1
p
‖a‖L1(Ω)|ξn|p +H(ξn)‖θ‖L1(∂Ω) < rn, ∀n ∈ N,

liminf
ξ→0

F(ξ )‖α‖L1(Ω)+H(ξ )‖θ‖L1(∂Ω)

|ξ |p
<−1

p
‖a‖L1(Ω).

Then problem (1.1) admits a sequence of nontrivial solutions converging to zero.

4. Applications

First, we present an application of Theorem 3.1 with a function H which is not
zero.

Theorem 4.1. Assume that α 6≡ 0 in (1.2). Let (ξn) ⊂ R be a sequence with
limn→+∞ ξn = +∞ and let F : R→ R and H : R→ R+ be locally Lipschitz
functions such that for n sufficiently large the following conditions hold:

ξ
2
n−1 < ξn; (4.1)
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F |[−ξ 2
n ,−ξ 2

n−1]∪[ξ 2
n−1, ξ 2

n ]
≥ F(ξn) =−

ξ
2p
n

p‖α‖L1(Ω)cp ; (4.2)

‖θ‖L1(∂Ω)H(ξn)<
1
p

(
1
cp ξ

2p
n −‖a‖L1(Ω)(1+ ε)|ξn|p

)
(4.3)

with a constant ε > 0. Then problem (1.1) possesses an unbounded sequence of
solutions.

Proof. Let us check that Theorem 3.1 applies. Set

rn =
1

pcp ξ
2p
n . (4.4)

By (4.4) we see that hypothesis (3.2) is fulfilled. Notice that c(prn)
1
p = ξ 2

n .
Then, by (4.1) and (4.2), we have

inf
|ξ |≤c(prn)

1
p

F(ξ ) = inf
|ξ |≤ξ 2

n

F(ξ ) = inf
ξ∈[−ξ 2

n ,−ξ 2
n−1]∪[ξ 2

n−1, ξ 2
n ]

F(ξ ) = F(ξn).

This shows that hypothesis (3.3) is satisfied. Using (4.3) and (4.4), it follows
readily that the inequality required in hypothesis (3.4) is true. Finally, we note
that hypothesis (3.5) is also verified because through (4.3) and (4.2) we arrive at

liminf
|ξ |→+∞

F(ξ )‖α‖L1(Ω)+H(ξ )‖θ‖L1(∂Ω)

|ξ |p

≤ liminf
n→+∞

F(ξn)‖α‖L1(Ω)+H(ξn)‖θ‖L1(∂Ω)

|ξn|p

≤ liminf
n→+∞

F(ξn)‖α‖L1(Ω)+
1
p

(
1
cp ξ

2p
n −‖a‖L1(Ω)(1+ ε)|ξn|p

)
|ξn|p

=−
‖a‖L1(Ω)(1+ ε)

p
.

Applying Theorem 3.1 we achieve the desired conclusion.

Now we present an application of Theorem 3.2 involving a function H which
is not zero.

Theorem 4.2. Assume that α 6≡ 0 in (1.2). Let (ξn) be a sequence of positive
real numbers with ξn ↓ 0 and let F : R→R and H : R→R+ be locally Lipschitz
functions such that for n sufficiently large the following conditions hold:√

ξn < ξn−1; (4.5)
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F |
[−
√

ξn,−
√

ξn+1]∪[
√

ξn+1,
√

ξn]
≥ F(ξn) =−

ξ

p
2

n

p‖α‖L1(Ω)cp ; (4.6)

‖θ‖L1(∂Ω)H(ξn)<
1
p

(
1
cp ξ

p
2

n −‖a‖L1(Ω)(1+ ε)ξ p
n

)
(4.7)

with a constant ε > 0. Then problem (1.1) possesses a sequence of solutions
converging to zero.

Proof. The proof proceeds in the same way as for Theorem 4.1, this time ap-
plying Theorem 3.2. To this end, we set

rn =
1

pcp ξ

p
2

n .

By (4.5) and (4.6), we have

inf
|ξ |≤c(prn)

1
p

F(ξ ) = inf
[−
√

ξn,−
√

ξn+1]∪[
√

ξn+1,
√

ξn]

F(ξ ) = F(ξn).

Using (4.7) and (4.6) we see that

liminf
ξ→0

F(ξ )‖α‖L1(Ω)+H(ξ )‖θ‖L1(∂Ω)

|ξ |p

≤ liminf
n→+∞

F(ξn)‖α‖L1(Ω)+H(ξn)‖θ‖L1(∂Ω)

|ξn|p

≤ liminf
n→+∞

F(ξn)‖α‖L1(Ω)+
1
p

(
1
cp ξ

p
2

n −‖a‖L1(Ω)(1+ ε)|ξn|p
)

|ξn|p

=−
‖a‖L1(Ω)(1+ ε)

p
.

We may apply Theorem 3.2, which completes the proof.
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Linéaire 3 (2) (1986), 77–109.

DUMITRU MOTREANU
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