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Abstract
In this paperwe study anewkindof coupled elliptic obstacle problemsdrivenbydouble
phase operators and with multivalued right-hand sides depending on the gradients of
the solutions. Based on an abstract existence theorem for generalizedmixed variational
inequalities involving multivalued mappings due to Kenmochi (Hiroshima Math J
4:229–263, 1974), we prove the nonemptiness and compactness of the weak solution
set of the coupled elliptic obstacle system.
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1 Introduction

Given a bounded domain � ⊂ R
N , N ≥ 2, with smooth boundary ∂�, we are

concerned with the study of the following coupled double phase obstacle system

− div
(
a1(u1)|∇u1|p1−2∇u1 + μ1(x)|∇u1|q1−2∇u1

) ∈ f1(x, u1, u2,∇u1,∇u2) in �,

− div
(
a2(u2)|∇u2|p2−2∇u2 + μ2(x)|∇u2|q2−2∇u2

) ∈ f2(x, u1, u2,∇u1,∇u2) in �,

u1(x) ≤ �1(x) and u2(x) ≤ �2(x) on �,

u1 = u2 = 0 on ∂�,

(1.1)

where, for i = 1, 2, �i : � → R are measurable obstacle functions, fi : �×R×R×
R

N × R
N → 2R are multivalued convection functions, ai : L p∗

i (�) → (0,+∞) are
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nonlocal terms (see (H2)-(H4) for the precise assumptions) and the exponents pi , qi
as well as the weight functions μi satisfy the following conditions:

(H1): 1 < pi < N , pi < qi < p∗
i and 0 ≤ μi (·) ∈ L∞(�) for i = 1, 2, where p∗

i is
the critical exponent of pi for i = 1, 2 given by

p∗
i := Npi

N − pi
. (1.2)

The operators involved in problem (1.1) are called nonlocal double phase operators
given by

div
(
ai (ui )|∇ui |pi−2∇ui + μi (x)|∇ui |qi−2∇ui

)
, u ∈ W 1,Hi

0 (�), (1.3)

with W 1,Hi
0 (�) being an appropriate Musielak-Orlicz Sobolev space for i = 1, 2.

Note that if ai ≡ 1 and μi ≡ 0, the operators in (1.1) reduce to the pi -Laplacians for
i = 1, 2. If ai ≡ 1, (1.3) become the usual double phase operators which are related
to the energy functionals

�i (u) =
∫

�

(|∇u|pi + μi (x)|∇u|qi ) dx . (1.4)

Functionals of the form (1.4) appeared for the first time as examples in models in
order to describe strongly anisotropic materials in the context of homogenization and
elasticity, see Zhikov [32], we refer also to applications in the study of duality theory
and of the Lavrentiev gap phenomenon, see Zhikov [33, 34]. A first mathematical
framework for such type of functionals in (1.4) has been done by Baroni-Colombo-
Mingione [2], see also the related works by the same authors in [3, 4] and of De
Filippis-Mingione [9] about nonautonomous integrals.

In this paper, our main goal is to study the nonlocal obstacle system (1.1) involving
multivalued convection in the right-hand sides concerning the nonemptiness and com-
pactness of the weak solution set of (1.1). Note that if �i (x) = +∞ for a. a. x ∈ �,
ai (ui ) = 1 for all ui ∈ W 1,Hi

0 (�), and fi are single-valued operators for i = 1, 2,
then problem (1.1) reduces to the one studied by Marino-Winkert [26]. However, the
main method applied in the present paper is completely different from the one used
in [26]. Indeed, we make use of an abstract existence theorem for generalized mixed
variational inequalities involving multivalued mappings due to Kenmochi [20], but in
[26], the authors applied the main surjectivity theorem for pseudomonotone operators
to obtain the existence of a weak solution.

To the best of our knowledge, this is the first work dealing with nonlocal double
phase systems with multivalued right-hand sides. However, even without nonlocal
terms (that is, ai ≡ 1 for i = 1, 2) and single-valued right-hand sides with con-
vection, besides the work of Marino-Winkert [26] mentioned above, there exists only
another paper recently published byGuarnotta-Livrea-Winkert [17] for nonlinearNeu-
manndouble phase systemswith variable exponents by developing a sub-supersolution
approach. In the case of a nonlocal problem with a single equations we refer to the
current work of Liu-Zeng-Gasiński-Kim [25].
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Finally, we mention some recent results for elliptic systems with convection term
for p-Laplace or (p, q)-Laplace operator. We refer the works of Carl-Motreanu
[5], Guarnotta-Marano [15], Guarnotta-Marano-Moussaoui [16], Guarnotta-Marano-
Moussaoui [18] andFaria-Miyagaki-Pereira [11], see alsoGodoi-Miyagaki-Rodrigues
[10] for Neumann systems without convection. For single equations involving the
double phase operator with different type of right-hand sides we mention the follow-
ing papers by Colasuonno-Squassina [7], Farkas-Winkert [12], Gasiński-Winkert [13,
14], Kim-Kim-Oh-Zeng [21], Liu-Dai [23], Liu-Migórski-Nguyen-Zeng [24], Perera-
Squassina [28], Zeng-Bai-Gasiński-Winkert [29], Zeng-Rădulescu-Winkert [30, 31],
Cen-Khan-Motreanu-Zeng [6] see also the references therein.

The paper is organized as follows. In Sect. 2 we recall some main properties of
Musielak-Orlicz Sobolev spaces, the nonlocal double phase operator as well as the
Dirichlet eigenvalue problem for the r -Laplacian (1 < r < ∞). In Sect. 3 we first
state the hypotheses on the data of problem (1.1), formulate the definition of a weak
solution and prove our main result about the nonemptiness and compactness of the
weak solution set of system (1.1), see Theorem 3.4.

2 Preliminaries

In this section we recall some facts about Musielak-Orlicz Sobolev spaces and the
properties of the double phase operator. To this end, let � ⊂ R

N , N ≥ 2, be a
bounded domain with smooth boundary ∂�. We denote by Lr (�) and Lr (�;RN ) the
usual Lebesgue spaces endowed with the norm ‖ · ‖r ,� for any 1 ≤ r ≤ ∞. Suppose
that condition (H1) holds and let M(�) be the space of all measurable functions
u : � → R, then the Musielak-Orlicz space LHi (�) is defined by

LHi (�) =
{
u ∈ M(�) :

∫

�

(|u|pi + μi (x)|u|qi ) dx < +∞
}

equipped with the Luxemburg norm

‖u‖Hi = inf

{
τ > 0 :

∫

�

(∣∣∣
u

τ

∣∣∣
pi + μi (x)

∣∣∣
u

τ

∣∣∣
qi)

dx ≤ 1

}

for i = 1, 2. The Musielak-Orlicz Sobolev space W 1,Hi (�) is defined by

W 1,Hi (�) =
{
u ∈ LHi (�) : |∇u| ∈ LHi (�)

}

equipped with the norm

‖u‖1,Hi = ‖∇u‖Hi + ‖u‖Hi ,

where ‖∇u‖Hi = ‖ |∇u| ‖Hi and i = 1, 2. Moreover, the completion of C∞
0 (�)

in W 1,Hi (�) is denoted by Vi := W 1,Hi
0 (�) and from Crespo-Blanco-Gasiński-

Harjulehto-Winkert [8, Proposition 2.12] we know that Vi are reflexive Banach spaces
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for i = 1, 2. Due to Proposition 2.18 of Crespo-Blanco-Gasiński-Harjulehto-Winkert
[8] we can equip Vi with the equivalent norm

‖u‖Vi := ‖∇u‖Hi for all u ∈ Vi and i = 1, 2.

Furthermore, we define

Lqi
μi

(�) =
{
u ∈ M(�) :

∫

�

μi (x)|u|qi dx < +∞
}

and endow it with the seminorm

‖u‖qi ,μi ,� =
(∫

�

μi (x)|u|qi dx
) 1

qi

for i = 1, 2.
The following proposition can be found in Crespo-Blanco-Gasiński-Harjulehto-

Winkert [8, Proposition2.13].

Proposition 2.1 Let hypotheses (H1) be satisfied and let

ρHi (u) :=
∫

�

Hi (x, |u|) dx =
∫

�

(|u|pi + μi (x)|u|qi ) dx .

For i = 1, 2 we have the following assertions.

(i) If u �= 0, then ‖u‖Hi = λ if and only if ρHi (
u
λ
) = 1.

(ii) ‖u‖Hi < 1 (resp.> 1, = 1) if and only if ρHi (u) < 1 (resp.> 1, = 1).
(iii) If ‖u‖Hi < 1, then ‖u‖qiHi

≤ ρHi (u) ≤ ‖u‖pi
Hi

.

(iv) If ‖u‖Hi > 1, then ‖u‖pi
Hi

≤ ρHi (u) ≤ ‖u‖qiHi
.

(v) ‖u‖Hi → 0 if and only if ρHi (u) → 0.
(vi) ‖u‖Hi → +∞ if and only if ρHi (u) → +∞.
(vii) ‖u‖Hi → 1 if and only if ρHi (u) → 1.
(viii) If un → u in LHi (�), then ρHi (un) → ρHi (u).

Moreover, fromCrespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.16]
we have the compact embedding

W 1,Hi
0 (�) ↪→ Lri (�) (2.1)

whenever 1 ≤ r1 < p∗
i with p∗

i being the critical Sobolev exponent given in (1.2) for
i = 1, 2.

For i = 1, 2 let Ei : Vi → V ∗
i be defined by

〈Ei (ui ), vi 〉Vi :=
∫

�

(|∇ui |pi−2∇ui + μi (x)|∇ui |qi−2∇ui
) · ∇vi dx (2.2)
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for all ui , vi ∈ Vi , where 〈 · , · 〉Vi is the duality pairing between Vi and its dual space
V ∗
i for i = 1, 2. The operators Ei : Vi → V ∗

i have the following properties, see
Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition3.4] for i = 1, 2.

Proposition 2.2 Let hypotheses (H1) be satisfied. Then, the operators defined in (2.2)
are bounded, continuous, strictly monotone and of type (S+) for i = 1, 2.

Now, let us consider the eigenvalue problem for the r -Laplacian with homogeneous
Dirichlet boundary condition and 1 < r < ∞ defined by

−
r u = λ|u|r−2u in �,

u = 0 on ∂�.
(2.3)

It is known that the first eigenvalue λ1,r of (2.3) is positive, simple, and isolated.
Moreover, it can be variationally characterized through

λ1,r = inf
u∈W 1,r (�)

{∫

�

|∇u|r dx :
∫

�

|u|r dx = 1

}
, (2.4)

see Lê [22]. Hence, we get from (2.4) the inequality

‖u‖rr ,� ≤
(
λ−1
1,r

)
‖∇u‖r ,� for all u ∈ W 1,r

0 (�). (2.5)

3 Main results

In this section we state and prove our main result about the solvability of the system
(1.1). First we are going to formulate our precise assumptions on the nonlocal terms,
the obstacle functions and the right-hand sides of (1.1).

(H2): ai : L p∗
i (�) → (0,+∞) are bounded and continuous such that cai :=

infu∈Vi ai (u) > 0 for i = 1, 2 and �i : � → R are measurable functions
for i = 1, 2.

(H3): For i = 1, 2, the multivalued mappings fi : � × R × R × R
N × R

N → 2R

are such that 0 /∈ fi (x, 0, 0, 0, 0) for a. a. x ∈ �, and fulfill the following
conditions:

(i) for all (s1, s2, η1, η2) ∈ R × R × R
N × R

N and for a. a. x ∈ �, the sets
fi (x, s1, s2, η1, η2) are nonempty, bounded, closed and convex in R;

(ii) for all (s1, s2, η1, η2) ∈ R × R × R
N × R

N , the multivalued functions
x �→ fi (x, s1, s2, η1, η2) are measurable in �, and R × R × R

N × R
N �

(s1, s2, η1, η2) �→ f (x, s1, s2, η1, η2) ⊂ R are u.s.c. for a. a. x ∈ �;
(iii) there exist constants

α1,i , α2,i , α3,i , α4,i , α5,i , α6,i , β1,i , β2,i , β3,i , β4,i , β5,i , β6,i , β7,i , β8,i ≥ 0
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and functions δi ∈ L
ri

ri−1 (�)+ such that

| fi (x, s1, s2, η1, η2)| ≤ α1,i |s1|β1,i + α2,i |s2|β2,i + α3,i |s1|β3,i |s2|β4,i + α4,i |η1|β5,i
+ α5,i |η2|β6,i + α6,i |η1|β7,i |η2|β8,i + δi (x)

for a. a. x ∈ � and for all (s1, s2, η1, η2) ∈ R×R×R
N ×R

N , where 1 < ri <

p∗
i and the following compatibility conditions hold:

(I) β1,1 ≤ r1 − 1, (II) β2,1 ≤ r2
r ′
1
, (III)

β3,1

r1
+ β4,1

r2
≤ 1

r ′
1
,

(IV) β5,1 ≤ p1
r ′
1
, (V) β6,1 ≤ p2

r ′
1
, (VI)

β7,1

p1
+ β8,1

p2
≤ 1

r ′
1
,

(VII) β1,2 ≤ r1
r ′
2
, (VIII) β2,2 ≤ r2 − 1, (IX)

β3,2

r1
+ β4,2

r2
≤ 1

r ′
2
,

(X) β5,2 ≤ p1
r ′
2
, (XI) β6,2 ≤ p2

r ′
2

, (XII)
β7,2

p1
+ β8,2

p2
≤ 1

r ′
2
.

(H4): There exist constants πi ≥ 0 and a function 0 ≤ ω(·) ∈ L1(�) satisfying the
following inequality for a. a. x ∈ � and for all (s1, s2, η1, η2) ∈ R×R×R

N ×
R

N

θ1s1 + θ2s2 ≤ π1
(|η1|p1 + |η2|p2

) + π2
(|s1|p1 + |s2|p2

) + ω(x)

for all θi ∈ fi (x, s1, s2, η1, η2) for i = 1, 2.

Next, we give the definition of a weak solution of the system (1.1).

Definition 3.1 We say that a pair of functions (u1, u2) ∈ K1 × K2 is a weak
solution of problem (1.1), if there exist functions ξi ∈ Lr ′

i (�) with ξi (x) ∈
fi (x, u1, u2, ,∇u1,∇u2) for a. a. x ∈ � such that the following inequalities hold

∫

�

(ai (ui )|∇ui |pi−2∇ui + μi (x)|∇ui |qi−2∇ui ) · ∇(wi − ui ) dx

≥
∫

�

ξi (x)(wi − ui ) dx

for all wi ∈ Ki where Ki are defined by

Ki := {ui ∈ Vi : ui (x) ≤ �i (x) for a. a. x ∈ �}

for i = 1, 2.

Remark 3.2 From the choices of r1, r2 in (H2)(iii) alongwith (2.1)wehave the compact
embedding

(
V1 × V2, ‖ · ‖V1 + ‖ · ‖V2

)
↪→ (

Lr1(�) × Lr2(�), ‖ · ‖r1,� + ‖ · ‖r2,�
)
.
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Remark 3.3 The following functions satisfy hypothesis (H2)

a1(u1) := e‖u1‖V1 , a1(u1) := ca1 + ‖u1‖V1 , a1(u1) := ca1 + ln(1 + ‖u1‖V1)

a2(u2) := ca2 + ‖u2‖2V2
1 + ‖u2‖p2,�

, a2(u2) := ca2 + ‖u2‖p2,�‖u2‖V2 ,

a2(u2) := e‖u2‖V2 + ln(1 + ‖u2‖μ2,q2,�)

for all u1 ∈ V1 and for all u2 ∈ V2 with ca1, ca2 > 0.

The main result of this paper is stated by the next theorem.

Theorem 3.4 Let hypotheses (H1)– (H4) be satisfied. Then the weak solution set of
problem (1.1) is nonempty and compact in V1 × V2 provided one of the following
assertions is satisfied:

(i) a1 and a2 are coercive in V1 and V2, respectively;

(ii) min
{
ca1 − π1 − π2λ

−1
1,p1

, ca2 − π1 − π2λ
−1
1,p2

}
> 0, where λ1,pi is the first eigen-

value of the pi -Laplace problem with homogeneous Dirichlet boundary condition
for i = 1, 2.

Proof From hypotheses (H3)(i), (ii) and the Yankov-von Neumann-Aumann selection
theorem (see Papageorgiou-Winkert [27, Theorem 2.7.25]) it follows that for each
(u1, u2) ∈ V1 × V2 we find measurable selections ξi : � → R such that ξi (x) ∈
fi (x, u1, u2,∇u1,∇u2) for a. a. x ∈ �. From hypotheses (H3) along with Hölder’s
inequality we obtain

‖ξ1‖r
′
1
r ′
1,�

=
∫

�

|ξ1(x)|r ′
1 dx

≤
∫

�

(
α1,1|u1|β1,1 + α2,1|u2|β2,1 + α3,1|u1|β3,1 |u2|β4,1 + α4,1|∇u1|β5,1

+α5,1|∇u2|β6,1 + α6,1|∇u1|β7,1 |∇u2|β8,1 + δ1(x)
)r ′

1 dx

≤ C0

⎛

⎝‖u1‖β1,1r ′
1

β1,1r ′
1,�

+ ‖u2‖β2,1r ′
1

β2,1r ′
1,�

+ ‖u1‖β3,1r ′
1

r1,�
‖u2‖β4,1r ′

1(
r1

β3,1r
′
1

)′
β4,1r ′

1,�

+ ‖∇u1‖β5,1r ′
1

β5,1r ′
1,�

+ ‖∇u2‖β6,1r ′
1

β6,1r ′
1,�

+ ‖δ1‖r
′
1
r ′
1,�

+ ‖∇u1‖β7,1r ′
1

p1,�
‖∇

u2‖β8,1r ′
1(

p1
β7,1r

′
1

)′
β8,1r ′

1,�

⎞

⎠ < ∞ (3.1)

for some C0 > 0. Similarly, we can show that ‖ξ2‖r
′
2
r ′
2,�

< ∞ via using again Hölder’s

inequality and (H3). Therefore, we can introduce the Nemytskii operators Fi : V1 ×
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V2 ⊂ Lr1(�) × Lr2(�) → 2L
r ′i (�) of fi defined by

Fi (u, v) :=
{
ξ ∈ Lr ′

i (�) : ξ(x) ∈ fi (x, u, v,∇u,∇v) for a. a. x ∈ �
}

,

which are well-defined and bounded for i = 1, 2.

We are going to show now that Fi : V1 × V2 ⊂ Lr1(�) × Lr2(�) → 2L
r ′i (�) are

strongly-weakly u.s.c. for i = 1, 2. By symmetry, we only need to prove that F1 is
strongly-weakly. Indeed, if we can prove that the setF−

1 (W ) is closed for each weakly
closed setW ⊂ Lr ′

1(�) such that F−
1 (W ) �= ∅, then we obtain the desired conclusion

via employing Theorem 1.1.1 of Kamenskii-Obukhovskii-Zecca [19].
Assume that W ⊂ Lr ′

1(�) is weakly closed such that F−
1 (W ) �= ∅ and let

{(un, vn)}n∈N ⊂ F−
1 (W ) be a sequence such that (un, vn) → (u, v) in V1 × V2

with (u, v) ∈ V1 × V2. Then, we are able to find a sequence {ξn}n∈N ⊂ Lr ′
1(�) satis-

fying ξn ∈ F1(un, vn) ∩ W . From (3.1) it follows that {ξn}n∈N is bounded in Lr ′
1(�).

Without any loss of generality, we may assume that

ξn
w−→ ξ in Lr ′

1(�) for some ξ ∈ Lr ′
1(�) ∩ W

due to the weak closedness of W . Recall that R × R
N × R × R

N � (u, ξ, v, η) �→
f1(x, u, v, ξ, η) ⊂ R is u.s.c. for a. a. x ∈ �. Hence, we can apply the Aubin-
Cellina convergence theorem (see Aubin-Cellina [1, Theorem1, p.60]) to get that
ξ ∈ F1(u, v). Therefore, we have (u, v) ∈ F−

1 (W ). Using Theorem 1.1.1 of
Kamenskii-Obukhovskii-Zecca [19] proves that F1 is strongly-weakly closed.

Let IK1 and IK2 be the indicator functions of K1 and K2, respectively, and let
ι1 : V1 → Lr1(�) and ι2 : V2 → Lr2(�) be the embedding operators of V1 to Lr1(�)

and of V2 to Lr2(�), respectively. Invoking a standard procedure, it is not difficult to
prove that (u, v) ∈ K1 × K2 solves problem (1.1) if and only if it is a solution to the
following mixed variational inequality: find (u, v) ∈ V1 × V2 and

(u∗, v∗) ∈ U(u, v) := (A1(u) − ι∗1F1(u, v),A2(v) − ι∗2F2(u, v)
)

such that

〈(u∗, v∗), (w, z) − (u, v)〉 + IK1(w) + IK2(z) − IK1(u) − IK2(v)

≥ 0 for all (w, z) ∈ K1 × K2, (3.2)

where 〈(u∗, v∗), (w, z)〉 := 〈u∗, w〉V1+〈v∗, z〉V2 stands for the duality paring between
V1 × V1 and V ∗

1 × V ∗
2 and A1 : Vi → V ∗

i are defined by

〈Ai (ui ), vi 〉Vi :=
∫

�

(
ai (ui )|∇ui |pi−2∇ui + μi (x)|∇ui |qi−2∇ui

) · ∇vi dx

for i = 1, 2.
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Next, we are going to apply Proposition 4.1 of Kenmochi [20] to prove the existence
of a nontrivial weak solution of problem (3.2). From the closedness and convexity of
fi and the definition of the Nemytskii operators F1 for i = 1, 2, it is not hard to prove
that for every (u, v) ∈ V1 × V2, the set U(u, v) is nonempty, bounded, closed and
convex in V ∗

1 × V ∗
2 . Let {(un, vn)}n∈N ⊂ V1 × V2 and {(u∗

n, v
∗
n)}n∈N ⊂ V ∗

1 × V ∗
2 be

sequences such that

(un, vn)
w−→ (u, v) in V1 × V2 and lim sup

n→∞
〈(u∗

n, v
∗
n), (un − u, vn − v)〉 ≤ 0,

(3.3)

and (u∗
n, v

∗
n) ∈ U(un, vn). Then, we can find sequences {ξn}n∈N ⊂ Lr ′

1(�) and
{ηn}n∈N ⊂ Lr ′

2(�) such that

u∗
n = A1(un) − ι∗1ξn and v∗

n = A2(vn) − ι∗2ηn .

Recalling thatF1 andF2 are bounded, we infer that {ξn}n∈N ⊂ Lr ′
1(�) and {ηn}n∈N ⊂

Lr ′
2(�) are bounded as well. So, we may suppose that

ξn
w−→ ξ in Lr ′

1(�) and ηn
w−→ η in Lr ′

2(�)

for some (ξ, η) ∈ Lr ′
1(�) × Lr ′

2(�) due to (2.1) and (H3). The latter combined with
the compactness of the embedding V1 × V2 to Lr ′

1(�) × Lr ′
2(�) (see Remark 3.2)

implies that

〈(ι∗1ξn, ι∗2ηn), (un − u, vn − v)〉 → 0 as n → ∞.

Hence, by (3.3), we have

lim sup
n→∞

〈(A1(un),A2(vn)), (un − u, vn − v)〉 ≤ 0.

However, from the boundedness of a1 and a2, we have

lim sup
n→∞

∫

�

(
a1(un)|∇un|p1−2∇un + μ1(x)|∇un|q1−2∇un

)
· ∇(un − u) dx ≤ 0,

(3.4)

and

lim sup
n→∞

∫

�

(
a2(vn)|∇vn|p2−2∇vn + μ2(x)|∇vn|q2−2∇vn

)
· ∇(vn − v) dx ≤ 0.

(3.5)
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Then, from (3.4), we have

0 ≥ lim sup
n→∞

∫

�

(
a1(un)|∇un|p1−2∇un + μ1(x)|∇un|q1−2∇un

)
· ∇(un − u) dx

≥ lim inf
n→∞

∫

�

(
a1(un) − ca1

2

)
|∇u|p1−2∇u · ∇(un − u) dx

+ lim sup
n→∞

∫

�

(ca1
2

|∇un|p1−2∇un + μ1(x)|∇un|q1−2∇un
)

· ∇(un − u) dx

= lim sup
n→∞

∫

�

(ca1
2

|∇un|p1−2∇un + μ1(x)|∇un|q1−2∇un
)

· ∇(un − u) dx .

From the (S+)-property of differential operator div
(
ca1
2 |∇un|p1−2∇un + μ1(x)

|∇un|q1−2∇un
)
(see Proposition 2.2) we conclude that un → u in V1. Similarly,

by using (3.5), we can show that vn → v in V2. Employing the strongly-weakly upper
semicontinuity of F1 and F2 gives ξ ∈ F1(u, v) and η ∈ F2(u, v). Whereas, we use
the continuity of a1 and a2 to find that

u∗
n = A1(un) − ι∗1ξn

w−→ u∗ = A1(u) − ι∗1ξ in V ∗
1

v∗
n = A2(vn) − ι∗2ηn

w−→ v∗ = A2(v) − ι∗2η in V ∗
2 .

This means that the following equality holds

lim
n→∞〈(u∗

n, v
∗
n), (w, z) − (un, vn)〉 = 〈(u∗, v∗), (w, z) − (u, v)〉

with (u∗, v∗) ∈ U(u, v) for all (w, z) ∈ V1 × V2.
Now we are going to show that U is coercive. To this end, we distinguish between

the cases (i) and (ii).

• Suppose first (i) is satisfied, that is, a1 and a2 are coercive. Then, for any (u, v) ∈
V1 × V2 and (ξ, η) ∈ (F1(u, v),F2(u, v)) with ‖u‖V1 > 1, ‖v‖V2 > 1 and

min
{(

a1(v) − π1 − λ−1
1,p1

π2

)
,
(
a2(v) − π1 − λ−1

1,p2
π2

)}
≥ 1

we have by using (H4), (2.5) for r = p1 and r = p2 as well as Proposition 2.1(iv)

〈(A1(u) − ι∗1ξ,A2(v) − ι∗2η), (u, v)〉
≥ a1(u)‖∇u‖p1p1,� + ‖∇u‖q1μ1,q1,�

+ a2(v)‖∇v‖p2p2,� + ‖∇v‖q2μ2,q2,�

−
∫

�
π1

(|∇u|p1 + |∇v|p2) dx −
∫

�
π2

(|u|p1 + |v|p2) dx −
∫

�
ω(x) dx

≥
(
a1(u) − π1 − λ−1

1,p1
π2

)
‖∇u‖p1p1,� + ‖∇u‖q1μ1,q1,�

+
(
a2(v) − π1 − λ−1

1,p2
π2

)
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‖∇v‖p2p2,� + ‖∇v‖q2μ2,q2,�
− ‖ω‖1,�

≥
(
a1(u) − π1 − λ−1

1,p1
π2

)
‖u‖p1V1 +

(
a2(v) − π1 − λ−1

1,p2
π2

)
‖v‖p2V2 − ‖ω‖1,�

≥ ‖u‖p1V1 + ‖v‖p2V2 − ‖ω‖1,�.

This shows the coercivity in case (i).
• Let us now assume that the inequality

min
{
ca1 − π1 − π2λ

−1
1,p1

, ca2 − π1 − π2λ
−1
1,p2

}
> 0

is satisfied. Then, for any (u, v) ∈ V1 × V2 and (ξ, η) ∈ (F(u, v),G(u, v)) with
‖u‖V1 > 1 and ‖v‖V2 > 1 we have, similar to case (i), by applying (H4), (H2),
(2.5) and Proposition 2.1(iv)

〈(A1(u) − ι∗1ξ,A2(v) − ι∗2η), (u, v)〉
≥

(
ca1 − π1 − λ−1

1,p1
π2

)
‖u‖p1

V1
+

(
ca2 − π1 − λ−1

1,p2
π2

)
‖v‖p2

V2
− ‖ω‖1,�

≥ M0

(
‖u‖p1

V1
+ ‖v‖p2

V2

)
− ‖ω‖1,�,

where M0 > 0 is defined by

M0 := min
{
ca − π1 − λ−1

1,p1
π2, cb − π1 − λ−1

1,p2
π2, 1

}
.

So we have proved the coercivity also in this case, that is,

〈(A1(u) − ι∗1ξ,A2(v) − ι∗2η), (u, v)〉
‖u‖V1 + ‖v‖V2

→ +∞ as ‖u‖V1 + ‖v‖V2 → ∞.

Therefore, all conditions of Proposition 4.1 of Kenmochi [20] are fulfilled which
implies that problem (1.1) has at least one nontrivial weak solution, because of 0 /∈
fi (x, 0, 0, 0, 0) for a. a. x ∈ � and i = 1, 2.
Finally, we are going to prove that the solution set of problem (1.1) is compact.

Assume that {(un, vn)}n∈N is a sequence of solutions of problem (1.1). Hence, we can
find ξn ∈ F1(un, vn) and ηn ∈ F2(un, vn) such that

〈(A1(un) − ι∗1ξn,A2(vn) − ι∗2ηn), (w − un, z − vn)〉 ≥ 0 (3.6)

for all (w, z) ∈ K1×K2. By the coercivity ofU and the boundedness ofAi for i = 1, 2,
we easily obtain that {(un, vn)}n∈N ⊂ V1 × V2 and {(ξn, ηn)}n∈N ⊂ Lr ′

1(�)× Lr ′
2(�)

are bounded. So, there are functions (u, v) ∈ K1 × K2 and (ξ, η) ∈ Lr ′
1(�)× Lr ′

2(�)

such that

(un, vn)
w−→ (u, v) in V1 × V2 and (ξn, ηn)

w−→ (ξ, η) in Lr ′
1(�) × Lr ′

2(�).
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Inserting (u, v) ∈ K1 × K2 into (3.6) and taking the lower upper limit as n → ∞ for
the resulting inequality yields

lim sup
n→∞

〈(A1(un) − ι∗1ξn,A2(vn) − ι∗2ηn), (un − u, vn − v)〉 ≤ 0.

Arguing as before, we can show that un → u in V1 and vn → v in V2. However,
the closedness of F1 and F2 reveals that ξ ∈ F1(u, v) and η ∈ F2(u, v). Passing to
the limit as n → ∞ in (3.6), we deduce that (u, v) ∈ V1 × V2 is a weak solution of
problem (1.1). Consequently, the solution set of problem (1.1) is compact in V1 × V2.
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