Coupled double phase obstacle systems involving nonlocal functions and multivalued convection terms

Yongjian Liu ${ }^{1}$ •Van Thien Nguyen ${ }^{2}$ • Patrick Winkert ${ }^{3}$ © •Shengda Zeng ${ }^{4,5,6}$ ©

Received: 7 October 2022 / Accepted: 16 January 2023 / Published online: 8 February 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Abstract

In this paper we study a new kind of coupled elliptic obstacle problems driven by double phase operators and with multivalued right-hand sides depending on the gradients of the solutions. Based on an abstract existence theorem for generalized mixed variational inequalities involving multivalued mappings due to Kenmochi (Hiroshima Math J 4:229-263, 1974), we prove the nonemptiness and compactness of the weak solution set of the coupled elliptic obstacle system.

Keywords Coupled systems • Double phase operator • Existence and compactness results • Multivalued convection term • Nonlocal terms • Obstacle effect

Mathematics Subject Classification 35J20 • 35J25 • 47J22

1 Introduction

Given a bounded domain $\Omega \subset \mathbb{R}^{N}, N \geq 2$, with smooth boundary $\partial \Omega$, we are concerned with the study of the following coupled double phase obstacle system

$$
\begin{align*}
-\operatorname{div}\left(a_{1}\left(u_{1}\right)\left|\nabla u_{1}\right|^{p_{1}-2} \nabla u_{1}+\mu_{1}(x)\left|\nabla u_{1}\right|^{q_{1}-2} \nabla u_{1}\right) & \in f_{1}\left(x, u_{1}, u_{2}, \nabla u_{1}, \nabla u_{2}\right) & & \text { in } \Omega, \\
-\operatorname{div}\left(a_{2}\left(u_{2}\right)\left|\nabla u_{2}\right|^{p_{2}-2} \nabla u_{2}+\mu_{2}(x)\left|\nabla u_{2}\right|^{q_{2}-2} \nabla u_{2}\right) & \in f_{2}\left(x, u_{1}, u_{2}, \nabla u_{1}, \nabla u_{2}\right) & & \text { in } \Omega, \tag{1.1}\\
u_{1}(x) \leq \Phi_{1}(x) \text { and } u_{2}(x) & \leq \Phi_{2}(x) & & \text { on } \Omega, \\
u_{1}=u_{2} & =0 & & \text { on } \partial \Omega,
\end{align*}
$$

where, for $i=1,2, \Phi_{i}: \Omega \rightarrow \mathbb{R}$ are measurable obstacle functions, $f_{i}: \Omega \times \mathbb{R} \times \mathbb{R} \times$ $\mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow 2^{\mathbb{R}}$ are multivalued convection functions, $a_{i}: L^{p_{i}^{*}}(\Omega) \rightarrow(0,+\infty)$ are

[^0]nonlocal terms (see $\left(\mathrm{H}_{2}\right)-\left(\mathrm{H}_{4}\right)$ for the precise assumptions) and the exponents p_{i}, q_{i} as well as the weight functions μ_{i} satisfy the following conditions:
$\left(\mathrm{H}_{1}\right): 1<p_{i}<N, p_{i}<q_{i}<p_{i}^{*}$ and $0 \leq \mu_{i}(\cdot) \in L^{\infty}(\Omega)$ for $i=1,2$, where p_{i}^{*} is the critical exponent of p_{i} for $i=1,2$ given by
\[

$$
\begin{equation*}
p_{i}^{*}:=\frac{N p_{i}}{N-p_{i}} \tag{1.2}
\end{equation*}
$$

\]

The operators involved in problem (1.1) are called nonlocal double phase operators given by

$$
\begin{equation*}
\operatorname{div}\left(a_{i}\left(u_{i}\right)\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}+\mu_{i}(x)\left|\nabla u_{i}\right|^{q_{i}-2} \nabla u_{i}\right), \quad u \in W_{0}^{1, \mathcal{H}_{i}}(\Omega), \tag{1.3}
\end{equation*}
$$

with $W_{0}^{1, \mathcal{H}_{i}}(\Omega)$ being an appropriate Musielak-Orlicz Sobolev space for $i=1,2$. Note that if $a_{i} \equiv 1$ and $\mu_{i} \equiv 0$, the operators in (1.1) reduce to the p_{i}-Laplacians for $i=1$, 2. If $a_{i} \equiv 1$, (1.3) become the usual double phase operators which are related to the energy functionals

$$
\begin{equation*}
\Psi_{i}(u)=\int_{\Omega}\left(|\nabla u|^{p_{i}}+\mu_{i}(x)|\nabla u|^{q_{i}}\right) \mathrm{d} x . \tag{1.4}
\end{equation*}
$$

Functionals of the form (1.4) appeared for the first time as examples in models in order to describe strongly anisotropic materials in the context of homogenization and elasticity, see Zhikov [32], we refer also to applications in the study of duality theory and of the Lavrentiev gap phenomenon, see Zhikov [33, 34]. A first mathematical framework for such type of functionals in (1.4) has been done by Baroni-ColomboMingione [2], see also the related works by the same authors in [3, 4] and of De Filippis-Mingione [9] about nonautonomous integrals.

In this paper, our main goal is to study the nonlocal obstacle system (1.1) involving multivalued convection in the right-hand sides concerning the nonemptiness and compactness of the weak solution set of (1.1). Note that if $\Phi_{i}(x)=+\infty$ for a. a. $x \in \Omega$, $a_{i}\left(u_{i}\right)=1$ for all $u_{i} \in W_{0}^{1, \mathcal{H}_{i}}(\Omega)$, and f_{i} are single-valued operators for $i=1,2$, then problem (1.1) reduces to the one studied by Marino-Winkert [26]. However, the main method applied in the present paper is completely different from the one used in [26]. Indeed, we make use of an abstract existence theorem for generalized mixed variational inequalities involving multivalued mappings due to Kenmochi [20], but in [26], the authors applied the main surjectivity theorem for pseudomonotone operators to obtain the existence of a weak solution.

To the best of our knowledge, this is the first work dealing with nonlocal double phase systems with multivalued right-hand sides. However, even without nonlocal terms (that is, $a_{i} \equiv 1$ for $i=1,2$) and single-valued right-hand sides with convection, besides the work of Marino-Winkert [26] mentioned above, there exists only another paper recently published by Guarnotta-Livrea-Winkert [17] for nonlinear Neumann double phase systems with variable exponents by developing a sub-supersolution approach. In the case of a nonlocal problem with a single equations we refer to the current work of Liu-Zeng-Gasiński-Kim [25].

Finally, we mention some recent results for elliptic systems with convection term for p-Laplace or (p, q)-Laplace operator. We refer the works of Carl-Motreanu [5], Guarnotta-Marano [15], Guarnotta-Marano-Moussaoui [16], Guarnotta-MaranoMoussaoui [18] and Faria-Miyagaki-Pereira [11], see also Godoi-Miyagaki-Rodrigues [10] for Neumann systems without convection. For single equations involving the double phase operator with different type of right-hand sides we mention the following papers by Colasuonno-Squassina [7], Farkas-Winkert [12], Gasiński-Winkert [13, 14], Kim-Kim-Oh-Zeng [21], Liu-Dai [23], Liu-Migórski-Nguyen-Zeng [24], PereraSquassina [28], Zeng-Bai-Gasiński-Winkert [29], Zeng-Rădulescu-Winkert [30, 31], Cen-Khan-Motreanu-Zeng [6] see also the references therein.

The paper is organized as follows. In Sect. 2 we recall some main properties of Musielak-Orlicz Sobolev spaces, the nonlocal double phase operator as well as the Dirichlet eigenvalue problem for the r-Laplacian $(1<r<\infty)$. In Sect. 3 we first state the hypotheses on the data of problem (1.1), formulate the definition of a weak solution and prove our main result about the nonemptiness and compactness of the weak solution set of system (1.1), see Theorem 3.4.

2 Preliminaries

In this section we recall some facts about Musielak-Orlicz Sobolev spaces and the properties of the double phase operator. To this end, let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a bounded domain with smooth boundary $\partial \Omega$. We denote by $L^{r}(\Omega)$ and $L^{r}\left(\Omega ; \mathbb{R}^{N}\right)$ the usual Lebesgue spaces endowed with the norm $\|\cdot\|_{r, \Omega}$ for any $1 \leq r \leq \infty$. Suppose that condition $\left(\mathrm{H}_{1}\right)$ holds and let $M(\Omega)$ be the space of all measurable functions $u: \Omega \rightarrow \mathbb{R}$, then the Musielak-Orlicz space $L^{\mathcal{H}_{i}}(\Omega)$ is defined by

$$
L^{\mathcal{H}_{i}}(\Omega)=\left\{u \in M(\Omega): \int_{\Omega}\left(|u|^{p_{i}}+\mu_{i}(x)|u|^{q_{i}}\right) \mathrm{d} x<+\infty\right\}
$$

equipped with the Luxemburg norm

$$
\|u\|_{\mathcal{H}_{i}}=\inf \left\{\tau>0: \int_{\Omega}\left(\left|\frac{u}{\tau}\right|^{p_{i}}+\mu_{i}(x)\left|\frac{u}{\tau}\right|^{q_{i}}\right) \mathrm{d} x \leq 1\right\}
$$

for $i=1,2$. The Musielak-Orlicz Sobolev space $W^{1, \mathcal{H}_{i}}(\Omega)$ is defined by

$$
W^{1, \mathcal{H}_{i}}(\Omega)=\left\{u \in L^{\mathcal{H}_{i}}(\Omega):|\nabla u| \in L^{\mathcal{H}_{i}}(\Omega)\right\}
$$

equipped with the norm

$$
\|u\|_{1, \mathcal{H}_{i}}=\|\nabla u\|_{\mathcal{H}_{i}}+\|u\|_{\mathcal{H}_{i}},
$$

where $\|\nabla u\|_{\mathcal{H}_{i}}=\||\nabla u|\|_{\mathcal{H}_{i}}$ and $i=1,2$. Moreover, the completion of $C_{0}^{\infty}(\Omega)$ in $W^{1, \mathcal{H}_{i}}(\Omega)$ is denoted by $V_{i}:=W_{0}^{1, \mathcal{H}_{i}}(\Omega)$ and from Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.12] we know that V_{i} are reflexive Banach spaces
for $i=1,2$. Due to Proposition 2.18 of Crespo-Blanco-Gasiński-Harjulehto-Winkert [8] we can equip V_{i} with the equivalent norm

$$
\|u\|_{V_{i}}:=\|\nabla u\|_{\mathcal{H}_{i}} \quad \text { for all } u \in V_{i} \text { and } i=1,2
$$

Furthermore, we define

$$
L_{\mu_{i}}^{q_{i}}(\Omega)=\left\{u \in M(\Omega): \int_{\Omega} \mu_{i}(x)|u|^{q_{i}} \mathrm{~d} x<+\infty\right\}
$$

and endow it with the seminorm

$$
\|u\|_{q_{i}, \mu_{i}, \Omega}=\left(\int_{\Omega} \mu_{i}(x)|u|^{q_{i}} \mathrm{~d} x\right)^{\frac{1}{q_{i}}}
$$

for $i=1,2$.
The following proposition can be found in Crespo-Blanco-Gasiński-HarjulehtoWinkert [8, Proposition2.13].

Proposition 2.1 Let hypotheses $\left(\mathrm{H}_{1}\right)$ be satisfied and let

$$
\rho_{\mathcal{H}_{i}}(u):=\int_{\Omega} \mathcal{H}_{i}(x,|u|) \mathrm{d} x=\int_{\Omega}\left(|u|^{p_{i}}+\mu_{i}(x)|u|^{q_{i}}\right) \mathrm{d} x .
$$

For $i=1,2$ we have the following assertions.
(i) If $u \neq 0$, then $\|u\|_{\mathcal{H}_{i}}=\lambda$ if and only if $\rho_{\mathcal{H}_{i}}\left(\frac{u}{\lambda}\right)=1$.
(ii) $\|u\|_{\mathcal{H}_{i}}<1$ (resp. >1, =1) if and only if $\rho_{\mathcal{H}_{i}}(u)<1$ (resp. >1, $=1$).
(iii) If $\|u\|_{\mathcal{H}_{i}}<1$, then $\|u\|_{\mathcal{H}_{i}}^{q_{i}} \leq \rho_{\mathcal{H}_{i}}(u) \leq\|u\|_{\mathcal{H}_{i}}^{p_{i}}$.
(iv) If $\|u\|_{\mathcal{H}_{i}}>1$, then $\|u\|_{\mathcal{H}_{i}}^{p_{i}} \leq \rho_{\mathcal{H}_{i}}(u) \leq\|u\|_{\mathcal{H}_{i}}^{q_{i}}$.
(v) $\|u\|_{\mathcal{H}_{i}} \rightarrow 0$ if and only if $\rho_{\mathcal{H}_{i}}(u) \rightarrow 0$.
(vi) $\|u\|_{\mathcal{H}_{i}} \rightarrow+\infty$ if and only if $\rho_{\mathcal{H}_{i}}(u) \rightarrow+\infty$.
(vii) $\|u\|_{\mathcal{H}_{i}} \rightarrow 1$ if and only if $\rho_{\mathcal{H}_{i}}(u) \rightarrow 1$.
(viii) If $u_{n} \rightarrow u$ in $L^{\mathcal{H}_{i}}(\Omega)$, then $\rho_{\mathcal{H}_{i}}\left(u_{n}\right) \rightarrow \rho_{\mathcal{H}_{i}}(u)$.

Moreover, from Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.16] we have the compact embedding

$$
\begin{equation*}
W_{0}^{1, \mathcal{H}_{i}}(\Omega) \hookrightarrow L^{r_{i}}(\Omega) \tag{2.1}
\end{equation*}
$$

whenever $1 \leq r_{1}<p_{i}^{*}$ with p_{i}^{*} being the critical Sobolev exponent given in (1.2) for $i=1,2$.

For $i=1,2$ let $\mathcal{\mathcal { E } _ { i }}: V_{i} \rightarrow V_{i}^{*}$ be defined by

$$
\begin{equation*}
\left\langle\mathcal{E}_{i}\left(u_{i}\right), v_{i}\right\rangle_{V_{i}}:=\int_{\Omega}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}+\mu_{i}(x)\left|\nabla u_{i}\right|^{q_{i}-2} \nabla u_{i}\right) \cdot \nabla v_{i} \mathrm{~d} x \tag{2.2}
\end{equation*}
$$

for all $u_{i}, v_{i} \in V_{i}$, where $\langle\cdot, \cdot\rangle_{V_{i}}$ is the duality pairing between V_{i} and its dual space V_{i}^{*} for $i=1,2$. The operators $\mathcal{E}_{i}: V_{i} \rightarrow V_{i}^{*}$ have the following properties, see Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition3.4] for $i=1,2$.

Proposition 2.2 Let hypotheses $\left(\mathrm{H}_{1}\right)$ be satisfied. Then, the operators defined in (2.2) are bounded, continuous, strictly monotone and of type $\left(\mathrm{S}_{+}\right)$for $i=1,2$.

Now, let us consider the eigenvalue problem for the r-Laplacian with homogeneous Dirichlet boundary condition and $1<r<\infty$ defined by

$$
\begin{align*}
-\Delta_{r} u & =\lambda|u|^{r-2} u & & \text { in } \Omega, \tag{2.3}\\
u & =0 & & \text { on } \partial \Omega .
\end{align*}
$$

It is known that the first eigenvalue $\lambda_{1, r}$ of (2.3) is positive, simple, and isolated. Moreover, it can be variationally characterized through

$$
\begin{equation*}
\lambda_{1, r}=\inf _{u \in W^{1, r}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{r} d x: \int_{\Omega}|u|^{r} d x=1\right\} \tag{2.4}
\end{equation*}
$$

see Lê [22]. Hence, we get from (2.4) the inequality

$$
\begin{equation*}
\|u\|_{r, \Omega}^{r} \leq\left(\lambda_{1, r}^{-1}\right)\|\nabla u\|_{r, \Omega} \quad \text { for all } u \in W_{0}^{1, r}(\Omega) \tag{2.5}
\end{equation*}
$$

3 Main results

In this section we state and prove our main result about the solvability of the system (1.1). First we are going to formulate our precise assumptions on the nonlocal terms, the obstacle functions and the right-hand sides of (1.1).
$\left(\mathrm{H}_{2}\right): a_{i}: L^{p_{i}^{*}}(\Omega) \rightarrow(0,+\infty)$ are bounded and continuous such that $c_{a_{i}}:=$ $\inf _{u \in V_{i}} a_{i}(u)>0$ for $i=1,2$ and $\Phi_{i}: \Omega \rightarrow \mathbb{R}$ are measurable functions for $i=1,2$.
$\left(\mathrm{H}_{3}\right)$: For $i=1$, 2, the multivalued mappings $f_{i}: \Omega \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow 2^{\mathbb{R}}$ are such that $0 \notin f_{i}(x, 0,0,0,0)$ for a.a. $x \in \Omega$, and fulfill the following conditions:
(i) for all $\left(s_{1}, s_{2}, \eta_{1}, \eta_{2}\right) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{N}$ and for a. a. $x \in \Omega$, the sets $f_{i}\left(x, s_{1}, s_{2}, \eta_{1}, \eta_{2}\right)$ are nonempty, bounded, closed and convex in \mathbb{R};
(ii) for all $\left(s_{1}, s_{2}, \eta_{1}, \eta_{2}\right) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{N}$, the multivalued functions $x \mapsto f_{i}\left(x, s_{1}, s_{2}, \eta_{1}, \eta_{2}\right)$ are measurable in Ω, and $\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \ni$ $\left(s_{1}, s_{2}, \eta_{1}, \eta_{2}\right) \mapsto f\left(x, s_{1}, s_{2}, \eta_{1}, \eta_{2}\right) \subset \mathbb{R}$ are u.s.c. for a. a. $x \in \Omega$;
(iii) there exist constants

$$
\alpha_{1, i}, \alpha_{2, i}, \alpha_{3, i}, \alpha_{4, i}, \alpha_{5, i}, \alpha_{6, i}, \beta_{1, i}, \beta_{2, i}, \beta_{3, i}, \beta_{4, i}, \beta_{5, i}, \beta_{6, i}, \beta_{7, i}, \beta_{8, i} \geq 0
$$

and functions $\delta_{i} \in L^{\frac{r_{i}}{r_{i}-1}}(\Omega)_{+}$such that

$$
\begin{aligned}
\left|f_{i}\left(x, s_{1}, s_{2}, \eta_{1}, \eta_{2}\right)\right| \leq & \alpha_{1, i}\left|s_{1}\right|^{\beta_{1, i}}+\alpha_{2, i}\left|s_{2}\right|^{\beta_{2, i}}+\alpha_{3, i}\left|s_{1}\right|^{\beta_{3, i}}\left|s_{2}\right|^{\beta_{4, i}}+\alpha_{4, i}\left|\eta_{1}\right|^{\beta_{5, i}} \\
& +\alpha_{5, i}\left|\eta_{2}\right|^{\beta_{6, i}}+\alpha_{6, i}\left|\eta_{1}\right|^{\beta_{7, i}}\left|\eta_{2}\right|^{\beta_{8, i}}+\delta_{i}(x)
\end{aligned}
$$

for a. a. $x \in \Omega$ and for all $\left(s_{1}, s_{2}, \eta_{1}, \eta_{2}\right) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{N}$, where $1<r_{i}<$ p_{i}^{*} and the following compatibility conditions hold:
(I) $\beta_{1,1} \leq r_{1}-1$,
(II) $\beta_{2,1} \leq \frac{r_{2}}{r_{1}^{\prime}}$,
(III) $\frac{\beta_{3,1}}{r_{1}}+\frac{\beta_{4,1}}{r_{2}} \leq \frac{1}{r_{1}^{\prime}}$,
(IV) $\beta_{5,1} \leq \frac{p_{1}}{r_{1}^{\prime}}$,
(V) $\beta_{6,1} \leq \frac{p_{2}}{r_{1}^{\prime}}$,
(VI) $\frac{\beta_{7,1}}{p_{1}}+\frac{\beta_{8,1}}{p_{2}} \leq \frac{1}{r_{1}^{\prime}}$,
(VII) $\beta_{1,2} \leq \frac{r_{1}}{r_{2}^{\prime}}, \quad$ (VIII) $\quad \beta_{2,2} \leq r_{2}-1$,
(IX) $\frac{\beta_{3,2}}{r_{1}}+\frac{\beta_{4,2}}{r_{2}} \leq \frac{1}{r_{2}^{\prime}}$,
(X) $\beta_{5,2} \leq \frac{p_{1}}{r_{2}^{\prime}}$,
(XI) $\beta_{6,2} \leq \frac{p_{2}}{r_{2}^{\prime}}$,
(XII) $\frac{\beta_{7,2}}{p_{1}}+\frac{\beta_{8,2}}{p_{2}} \leq \frac{1}{r_{2}^{\prime}}$.
$\left(\mathrm{H}_{4}\right)$: There exist constants $\pi_{i} \geq 0$ and a function $0 \leq \omega(\cdot) \in L^{1}(\Omega)$ satisfying the following inequality for a. a. $x \in \Omega$ and for all $\left(s_{1}, s_{2}, \eta_{1}, \eta_{2}\right) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N} \times$ \mathbb{R}^{N}

$$
\theta_{1} s_{1}+\theta_{2} s_{2} \leq \pi_{1}\left(\left|\eta_{1}\right|^{p_{1}}+\left|\eta_{2}\right|^{p_{2}}\right)+\pi_{2}\left(\left|s_{1}\right|^{p_{1}}+\left|s_{2}\right|^{p_{2}}\right)+\omega(x)
$$

for all $\theta_{i} \in f_{i}\left(x, s_{1}, s_{2}, \eta_{1}, \eta_{2}\right)$ for $i=1,2$.
Next, we give the definition of a weak solution of the system (1.1).
Definition 3.1 We say that a pair of functions $\left(u_{1}, u_{2}\right) \in K_{1} \times K_{2}$ is a weak solution of problem (1.1), if there exist functions $\xi_{i} \in L^{r_{i}^{\prime}}(\Omega)$ with $\xi_{i}(x) \in$ $f_{i}\left(x, u_{1}, u_{2},, \nabla u_{1}, \nabla u_{2}\right)$ for a. a. $x \in \Omega$ such that the following inequalities hold

$$
\begin{aligned}
& \int_{\Omega}\left(a_{i}\left(u_{i}\right)\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}+\mu_{i}(x)\left|\nabla u_{i}\right|^{q_{i}-2} \nabla u_{i}\right) \cdot \nabla\left(w_{i}-u_{i}\right) \mathrm{d} x \\
& \quad \geq \int_{\Omega} \xi_{i}(x)\left(w_{i}-u_{i}\right) \mathrm{d} x
\end{aligned}
$$

for all $w_{i} \in K_{i}$ where K_{i} are defined by

$$
K_{i}:=\left\{u_{i} \in V_{i}: u_{i}(x) \leq \Phi_{i}(x) \text { for a. a. } x \in \Omega\right\}
$$

for $i=1,2$.
Remark 3.2 From the choices of r_{1}, r_{2} in $\left(\mathrm{H}_{2}\right)($ iii $)$ along with (2.1) we have the compact embedding

$$
\left(V_{1} \times V_{2},\|\cdot\|_{V_{1}}+\|\cdot\|_{V_{2}}\right) \hookrightarrow\left(L^{r_{1}}(\Omega) \times L^{r_{2}}(\Omega),\|\cdot\|_{r_{1}, \Omega}+\|\cdot\|_{r_{2}, \Omega}\right)
$$

Remark 3.3 The following functions satisfy hypothesis $\left(\mathrm{H}_{2}\right)$

$$
\begin{aligned}
& a_{1}\left(u_{1}\right):=e^{\left\|u_{1}\right\|_{V_{1}}}, \quad a_{1}\left(u_{1}\right):=c_{a_{1}}+\left\|u_{1}\right\|_{V_{1}}, \quad a_{1}\left(u_{1}\right):=c_{a_{1}}+\ln \left(1+\left\|u_{1}\right\|_{V_{1}}\right) \\
& a_{2}\left(u_{2}\right):=c_{a_{2}}+\frac{\left\|u_{2}\right\|_{V_{2}}^{2}}{1+\left\|u_{2}\right\|_{p_{2}, \Omega}}, \quad a_{2}\left(u_{2}\right):=c_{a_{2}}+\left\|u_{2}\right\|_{p_{2}, \Omega}\left\|u_{2}\right\|_{V_{2}}, \\
& a_{2}\left(u_{2}\right):=e^{\left\|u_{2}\right\|_{V_{2}}}+\ln \left(1+\left\|u_{2}\right\|_{\mu_{2}, q_{2}, \Omega}\right)
\end{aligned}
$$

for all $u_{1} \in V_{1}$ and for all $u_{2} \in V_{2}$ with $c_{a_{1}}, c_{a_{2}}>0$.
The main result of this paper is stated by the next theorem.
Theorem 3.4 Let hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ be satisfied. Then the weak solution set of problem (1.1) is nonempty and compact in $V_{1} \times V_{2}$ provided one of the following assertions is satisfied:
(i) a_{1} and a_{2} are coercive in V_{1} and V_{2}, respectively;
(ii) $\min \left\{c_{a_{1}}-\pi_{1}-\pi_{2} \lambda_{1, p_{1}}^{-1}, c_{a_{2}}-\pi_{1}-\pi_{2} \lambda_{1, p_{2}}^{-1}\right\}>0$, where $\lambda_{1, p_{i}}$ is the first eigenvalue of the p_{i}-Laplace problem with homogeneous Dirichlet boundary condition for $i=1,2$.

Proof From hypotheses $\left(\mathrm{H}_{3}\right)$ (i), (ii) and the Yankov-von Neumann-Aumann selection theorem (see Papageorgiou-Winkert [27, Theorem 2.7.25]) it follows that for each $\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}$ we find measurable selections $\xi_{i}: \Omega \rightarrow \mathbb{R}$ such that $\xi_{i}(x) \in$ $f_{i}\left(x, u_{1}, u_{2}, \nabla u_{1}, \nabla u_{2}\right)$ for a. a. $x \in \Omega$. From hypotheses (H_{3}) along with Hölder's inequality we obtain

$$
\begin{align*}
\left\|\xi_{1}\right\|_{r_{1}^{\prime}, \Omega}^{r_{1}^{\prime}}= & \int_{\Omega}\left|\xi_{1}(x)\right|^{r_{1}^{\prime}} \mathrm{d} x \\
\leq & \int_{\Omega}\left(\alpha_{1,1}\left|u_{1}\right|^{\beta_{1,1}}+\alpha_{2,1}\left|u_{2}\right|^{\beta_{2,1}}+\alpha_{3,1}\left|u_{1}\right|^{\beta_{3,1}}\left|u_{2}\right|^{\beta_{4,1}}+\alpha_{4,1}\left|\nabla u_{1}\right|^{\beta_{5,1}}\right. \\
& +\alpha_{5,1}\left|\nabla u_{2}\right|^{\beta_{6,1}}+\alpha_{6,1}\left|\nabla u_{1}\right|^{\left.\beta_{7,1}\left|\nabla u_{2}\right|^{\beta_{8,1}}+\delta_{1}(x)\right)^{r_{1}^{\prime}} \mathrm{d} x} \\
\leq & C_{0}\left(\left\|u_{1}\right\|_{\beta_{1,1} r_{1}^{\prime}, \Omega}^{\beta_{1,1} r_{1}^{\prime}}+\left\|u_{2}\right\|_{\beta_{2,1} r_{1}^{\prime}, \Omega}^{\beta_{2,1 r_{1}^{\prime}}^{\prime}}+\left\|u_{1}\right\|_{r_{1}, \Omega}^{\beta_{3,1} r_{1}^{\prime}}\left\|u_{2}\right\|_{\left(\frac{r_{1}}{\beta_{4,1} r_{1}^{\prime}}\right.}^{\beta_{3,1} r_{1}^{\prime}}\right)^{\beta_{4,1} r_{1}^{\prime}, \Omega} \\
& +\left\|\nabla u_{1}\right\|_{\beta_{5,1} r_{1}^{\prime}, \Omega}^{\beta_{5,1} r_{1}^{\prime}}+\left\|\nabla u_{2}\right\|_{\beta_{6,1} r_{1}^{\prime}, \Omega}^{\beta_{6,1}^{\prime}}+\left\|\delta_{1}\right\|_{r_{1}^{\prime}, \Omega}^{r_{1}^{\prime}}+\left\|\nabla u_{1}\right\|_{p_{1}, \Omega}^{\beta_{7,1}^{\prime}} \| \nabla \\
& \left.u_{2} \|^{\beta_{8,1}^{\prime} r_{1}^{\prime}}\left(\frac{p_{1}}{\beta_{7,1} r_{1}^{\prime}}\right)^{\prime} \beta_{8,1 r_{1}^{\prime}, \Omega}^{\prime}\right)<\infty \tag{3.1}
\end{align*}
$$

for some $C_{0}>0$. Similarly, we can show that $\left\|\xi_{2}\right\|_{r_{2}^{\prime}, \Omega}^{r_{2}^{\prime}}<\infty$ via using again Hölder's inequality and $\left(\mathrm{H}_{3}\right)$. Therefore, we can introduce the Nemytskii operators $\mathcal{F}_{i}: V_{1} \times$
$V_{2} \subset L^{r_{1}}(\Omega) \times L^{r_{2}}(\Omega) \rightarrow 2^{L^{r_{i}^{\prime}}(\Omega)}$ of f_{i} defined by

$$
\mathcal{F}_{i}(u, v):=\left\{\xi \in L^{r_{i}^{\prime}}(\Omega): \xi(x) \in f_{i}(x, u, v, \nabla u, \nabla v) \text { for a. a. } x \in \Omega\right\},
$$

which are well-defined and bounded for $i=1,2$.
We are going to show now that $\mathcal{F}_{i}: V_{1} \times V_{2} \subset L^{r_{1}}(\Omega) \times L^{r_{2}}(\Omega) \rightarrow 2^{L^{r_{i}^{\prime}}(\Omega)}$ are strongly-weakly u.s.c. for $i=1,2$. By symmetry, we only need to prove that \mathcal{F}_{1} is strongly-weakly. Indeed, if we can prove that the set $\mathcal{F}_{1}^{-}(W)$ is closed for each weakly closed set $W \subset L^{r_{1}^{\prime}}(\Omega)$ such that $\mathcal{F}_{1}^{-}(W) \neq \emptyset$, then we obtain the desired conclusion via employing Theorem 1.1.1 of Kamenskii-Obukhovskii-Zecca [19].

Assume that $W \subset L^{r_{1}^{\prime}}(\Omega)$ is weakly closed such that $\mathcal{F}_{1}^{-}(W) \neq \emptyset$ and let $\left\{\left(u_{n}, v_{n}\right)\right\}_{n \in \mathbb{N}} \subset \mathcal{F}_{1}^{-}(W)$ be a sequence such that $\left(u_{n}, v_{n}\right) \rightarrow(u, v)$ in $V_{1} \times V_{2}$ with $(u, v) \in V_{1} \times V_{2}$. Then, we are able to find a sequence $\left\{\xi_{n}\right\}_{n \in \mathbb{N}} \subset L^{r_{1}^{\prime}}(\Omega)$ satisfying $\xi_{n} \in \mathcal{F}_{1}\left(u_{n}, v_{n}\right) \cap W$. From (3.1) it follows that $\left\{\xi_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $L^{r_{1}^{\prime}}(\Omega)$. Without any loss of generality, we may assume that

$$
\xi_{n} \xrightarrow{w} \xi \text { in } L^{r_{1}^{\prime}}(\Omega) \text { for some } \xi \in L^{r_{1}^{\prime}}(\Omega) \cap W
$$

due to the weak closedness of W. Recall that $\mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R}^{N} \ni(u, \xi, v, \eta) \mapsto$ $f_{1}(x, u, v, \xi, \eta) \subset \mathbb{R}$ is u.s.c.for a. a. $x \in \Omega$. Hence, we can apply the AubinCellina convergence theorem (see Aubin-Cellina [1, Theorem1, p.60]) to get that $\xi \in \mathcal{F}_{1}(u, v)$. Therefore, we have $(u, v) \in \mathcal{F}_{1}^{-}(W)$. Using Theorem 1.1.1 of Kamenskii-Obukhovskii-Zecca [19] proves that \mathcal{F}_{1} is strongly-weakly closed.

Let $I_{K_{1}}$ and $I_{K_{2}}$ be the indicator functions of K_{1} and K_{2}, respectively, and let $\iota_{1}: V_{1} \rightarrow L^{r_{1}}(\Omega)$ and $\iota_{2}: V_{2} \rightarrow L^{r_{2}}(\Omega)$ be the embedding operators of V_{1} to $L^{r_{1}}(\Omega)$ and of V_{2} to $L^{r_{2}}(\Omega)$, respectively. Invoking a standard procedure, it is not difficult to prove that $(u, v) \in K_{1} \times K_{2}$ solves problem (1.1) if and only if it is a solution to the following mixed variational inequality: find $(u, v) \in V_{1} \times V_{2}$ and

$$
\left(u^{*}, v^{*}\right) \in \mathcal{U}(u, v):=\left(\mathcal{A}_{1}(u)-\iota_{1}^{*} \mathcal{F}_{1}(u, v), \mathcal{A}_{2}(v)-\iota_{2}^{*} \mathcal{F}_{2}(u, v)\right)
$$

such that

$$
\begin{align*}
&\left\langle\left(u^{*}, v^{*}\right),\right.(w, z)-(u, v)\rangle+I_{K_{1}}(w)+I_{K_{2}}(z)-I_{K_{1}}(u)-I_{K_{2}}(v) \\
& \geq 0 \text { for all }(w, z) \in K_{1} \times K_{2} \tag{3.2}
\end{align*}
$$

where $\left\langle\left(u^{*}, v^{*}\right),(w, z)\right\rangle:=\left\langle u^{*}, w\right\rangle_{V_{1}}+\left\langle v^{*}, z\right\rangle_{V_{2}}$ stands for the duality paring between $V_{1} \times V_{1}$ and $V_{1}^{*} \times V_{2}^{*}$ and $\mathcal{A}_{1}: V_{i} \rightarrow V_{i}^{*}$ are defined by

$$
\left\langle\mathcal{A}_{i}\left(u_{i}\right), v_{i}\right\rangle_{V_{i}}:=\int_{\Omega}\left(a_{i}\left(u_{i}\right)\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}+\mu_{i}(x)\left|\nabla u_{i}\right|^{q_{i}-2} \nabla u_{i}\right) \cdot \nabla v_{i} \mathrm{~d} x
$$

for $i=1,2$.

Next, we are going to apply Proposition 4.1 of Kenmochi [20] to prove the existence of a nontrivial weak solution of problem (3.2). From the closedness and convexity of f_{i} and the definition of the Nemytskii operators \mathcal{F}_{1} for $i=1,2$, it is not hard to prove that for every $(u, v) \in V_{1} \times V_{2}$, the set $\mathcal{U}(u, v)$ is nonempty, bounded, closed and convex in $V_{1}^{*} \times V_{2}^{*}$. Let $\left\{\left(u_{n}, v_{n}\right)\right\}_{n \in \mathbb{N}} \subset V_{1} \times V_{2}$ and $\left\{\left(u_{n}^{*}, v_{n}^{*}\right)\right\}_{n \in \mathbb{N}} \subset V_{1}^{*} \times V_{2}^{*}$ be sequences such that

$$
\begin{equation*}
\left(u_{n}, v_{n}\right) \xrightarrow{w}(u, v) \text { in } V_{1} \times V_{2} \text { and } \limsup _{n \rightarrow \infty}\left\langle\left(u_{n}^{*}, v_{n}^{*}\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle \leq 0, \tag{3.3}
\end{equation*}
$$

and $\left(u_{n}^{*}, v_{n}^{*}\right) \in \mathcal{U}\left(u_{n}, v_{n}\right)$. Then, we can find sequences $\left\{\xi_{n}\right\}_{n \in \mathbb{N}} \subset L^{r_{1}^{\prime}}(\Omega)$ and $\left\{\eta_{n}\right\}_{n \in \mathbb{N}} \subset L^{r_{2}^{\prime}}(\Omega)$ such that

$$
u_{n}^{*}=\mathcal{A}_{1}\left(u_{n}\right)-\iota_{1}^{*} \xi_{n} \text { and } v_{n}^{*}=\mathcal{A}_{2}\left(v_{n}\right)-\iota_{2}^{*} \eta_{n} .
$$

Recalling that \mathcal{F}_{1} and \mathcal{F}_{2} are bounded, we infer that $\left\{\xi_{n}\right\}_{n \in \mathbb{N}} \subset L^{r_{1}^{\prime}}(\Omega)$ and $\left\{\eta_{n}\right\}_{n \in \mathbb{N}} \subset$ $L^{r_{2}^{\prime}}(\Omega)$ are bounded as well. So, we may suppose that

$$
\xi_{n} \xrightarrow{w} \xi \text { in } L^{r_{1}^{\prime}}(\Omega) \text { and } \eta_{n} \xrightarrow{w} \eta \text { in } L^{r_{2}^{\prime}}(\Omega)
$$

for some $(\xi, \eta) \in L^{r_{1}^{\prime}}(\Omega) \times L^{r_{2}^{\prime}}(\Omega)$ due to (2.1) and $\left(\mathrm{H}_{3}\right)$. The latter combined with the compactness of the embedding $V_{1} \times V_{2}$ to $L^{r_{1}^{\prime}}(\Omega) \times L^{r_{2}^{\prime}}(\Omega)$ (see Remark 3.2) implies that

$$
\left\langle\left(\iota_{1}^{*} \xi_{n}, \iota_{2}^{*} \eta_{n}\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Hence, by (3.3), we have

$$
\limsup _{n \rightarrow \infty}\left\langle\left(\mathcal{A}_{1}\left(u_{n}\right), \mathcal{A}_{2}\left(v_{n}\right)\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle \leq 0 .
$$

However, from the boundedness of a_{1} and a_{2}, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\Omega}\left(a_{1}\left(u_{n}\right)\left|\nabla u_{n}\right|^{p_{1}-2} \nabla u_{n}+\mu_{1}(x)\left|\nabla u_{n}\right|^{q_{1}-2} \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \leq 0, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\Omega}\left(a_{2}\left(v_{n}\right)\left|\nabla v_{n}\right|^{p_{2}-2} \nabla v_{n}+\mu_{2}(x)\left|\nabla v_{n}\right|^{q_{2}-2} \nabla v_{n}\right) \cdot \nabla\left(v_{n}-v\right) \mathrm{d} x \leq 0 . \tag{3.5}
\end{equation*}
$$

Then, from (3.4), we have

$$
\begin{aligned}
0 \geq & \limsup _{n \rightarrow \infty} \int_{\Omega}\left(a_{1}\left(u_{n}\right)\left|\nabla u_{n}\right|^{p_{1}-2} \nabla u_{n}+\mu_{1}(x)\left|\nabla u_{n}\right|^{q_{1}-2} \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& \geq \liminf _{n \rightarrow \infty} \int_{\Omega}\left(a_{1}\left(u_{n}\right)-\frac{c_{a_{1}}}{2}\right)|\nabla u|^{p_{1}-2} \nabla u \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& +\limsup _{n \rightarrow \infty} \int_{\Omega}\left(\frac{c_{a_{1}}}{2}\left|\nabla u_{n}\right|^{p_{1}-2} \nabla u_{n}+\mu_{1}(x)\left|\nabla u_{n}\right|^{q_{1}-2} \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& =\limsup _{n \rightarrow \infty} \int_{\Omega}\left(\frac{c_{a_{1}}}{2}\left|\nabla u_{n}\right|^{p_{1}-2} \nabla u_{n}+\mu_{1}(x)\left|\nabla u_{n}\right|^{q_{1}-2} \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x .
\end{aligned}
$$

From the $\left(\mathrm{S}_{+}\right)$-property of differential operator $\operatorname{div}\left(\frac{c_{a_{1}}}{2}\left|\nabla u_{n}\right|^{p_{1}-2} \nabla u_{n}+\mu_{1}(x)\right.$ $\left|\nabla u_{n}\right|^{q_{1}-2} \nabla u_{n}$) (see Proposition 2.2) we conclude that $u_{n} \rightarrow u$ in V_{1}. Similarly, by using (3.5), we can show that $v_{n} \rightarrow v$ in V_{2}. Employing the strongly-weakly upper semicontinuity of \mathcal{F}_{1} and \mathcal{F}_{2} gives $\xi \in \mathcal{F}_{1}(u, v)$ and $\eta \in \mathcal{F}_{2}(u, v)$. Whereas, we use the continuity of a_{1} and a_{2} to find that

$$
\begin{aligned}
u_{n}^{*} & =\mathcal{A}_{1}\left(u_{n}\right)-\iota_{1}^{*} \xi_{n} \xrightarrow{w} u^{*}=\mathcal{A}_{1}(u)-\iota_{1}^{*} \xi
\end{aligned} \quad \text { in } V_{1}^{*} .
$$

This means that the following equality holds

$$
\lim _{n \rightarrow \infty}\left\langle\left(u_{n}^{*}, v_{n}^{*}\right),(w, z)-\left(u_{n}, v_{n}\right)\right\rangle=\left\langle\left(u^{*}, v^{*}\right),(w, z)-(u, v)\right\rangle
$$

with $\left(u^{*}, v^{*}\right) \in \mathcal{U}(u, v)$ for all $(w, z) \in V_{1} \times V_{2}$.
Now we are going to show that \mathcal{U} is coercive. To this end, we distinguish between the cases (i) and (ii).

- Suppose first (i) is satisfied, that is, a_{1} and a_{2} are coercive. Then, for any $(u, v) \in$ $V_{1} \times V_{2}$ and $(\xi, \eta) \in\left(\mathcal{F}_{1}(u, v), \mathcal{F}_{2}(u, v)\right)$ with $\|u\|_{V_{1}}>1,\|v\|_{V_{2}}>1$ and

$$
\min \left\{\left(a_{1}(v)-\pi_{1}-\lambda_{1, p_{1}}^{-1} \pi_{2}\right),\left(a_{2}(v)-\pi_{1}-\lambda_{1, p_{2}}^{-1} \pi_{2}\right)\right\} \geq 1
$$

we have by using $\left(\mathrm{H}_{4}\right)$, (2.5) for $r=p_{1}$ and $r=p_{2}$ as well as Proposition 2.1(iv)

$$
\begin{aligned}
& \left\langle\left(\mathcal{A}_{1}(u)-\iota_{1}^{*} \xi, \mathcal{A}_{2}(v)-\iota_{2}^{*} \eta\right),(u, v)\right\rangle \\
& \quad \geq a_{1}(u)\|\nabla u\|_{p_{1}, \Omega}^{p_{1}}+\|\nabla u\|_{\mu_{1}, q_{1}, \Omega}^{q_{1}}+a_{2}(v)\|\nabla v\|_{p_{2}, \Omega}^{p_{2}}+\|\nabla v\|_{\mu_{2}, q_{2}, \Omega}^{q_{2}} \\
& \quad-\int_{\Omega} \pi_{1}\left(|\nabla u|^{p_{1}}+|\nabla v|^{p_{2}}\right) \mathrm{d} x-\int_{\Omega} \pi_{2}\left(|u|^{p_{1}}+|v|^{p_{2}}\right) \mathrm{d} x-\int_{\Omega} \omega(x) \mathrm{d} x \\
& \quad \geq\left(a_{1}(u)-\pi_{1}-\lambda_{1, p_{1}}^{-1} \pi_{2}\right)\|\nabla u\|_{p_{1}, \Omega}^{p_{1}}+\|\nabla u\|_{\mu_{1}, q_{1}, \Omega}^{q_{1}}+\left(a_{2}(v)-\pi_{1}-\lambda_{1, p_{2}}^{-1} \pi_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \|\nabla v\|_{p_{2}, \Omega}^{p_{2}}+\|\nabla v\|_{\mu_{2}, q_{2}, \Omega}^{q_{2}}-\|\omega\|_{1, \Omega} \\
& \quad \geq\left(a_{1}(u)-\pi_{1}-\lambda_{1, p_{1}}^{-1} \pi_{2}\right)\|u\|_{V_{1}}^{p_{1}}+\left(a_{2}(v)-\pi_{1}-\lambda_{1, p_{2}}^{-1} \pi_{2}\right)\|v\|_{V_{2}}^{p_{2}}-\|\omega\|_{1, \Omega} \\
& \quad \geq\|u\|_{V_{1}}^{p_{1}}+\|v\|_{V_{2}}^{p_{2}}-\|\omega\|_{1, \Omega} .
\end{aligned}
$$

This shows the coercivity in case (i).

- Let us now assume that the inequality

$$
\min \left\{c_{a_{1}}-\pi_{1}-\pi_{2} \lambda_{1, p_{1}}^{-1}, c_{a_{2}}-\pi_{1}-\pi_{2} \lambda_{1, p_{2}}^{-1}\right\}>0
$$

is satisfied. Then, for any $(u, v) \in V_{1} \times V_{2}$ and $(\xi, \eta) \in(\mathcal{F}(u, v), \mathcal{G}(u, v))$ with $\|u\|_{V_{1}}>1$ and $\|v\|_{V_{2}}>1$ we have, similar to case (i), by applying $\left(\mathrm{H}_{4}\right),\left(\mathrm{H}_{2}\right)$, (2.5) and Proposition 2.1(iv)

$$
\begin{aligned}
& \left\langle\left(\mathcal{A}_{1}(u)-\iota_{1}^{*} \xi, \mathcal{A}_{2}(v)-\iota_{2}^{*} \eta\right),(u, v)\right\rangle \\
& \quad \geq\left(c_{a_{1}}-\pi_{1}-\lambda_{1, p_{1}}^{-1} \pi_{2}\right)\|u\|_{V_{1}}^{p_{1}}+\left(c_{a_{2}}-\pi_{1}-\lambda_{1, p_{2}}^{-1} \pi_{2}\right)\|v\|_{V_{2}}^{p_{2}}-\|\omega\|_{1, \Omega} \\
& \quad \geq M_{0}\left(\|u\|_{V_{1}}^{p_{1}}+\|v\|_{V_{2}}^{p_{2}}\right)-\|\omega\|_{1, \Omega}
\end{aligned}
$$

where $M_{0}>0$ is defined by

$$
M_{0}:=\min \left\{c_{a}-\pi_{1}-\lambda_{1, p_{1}}^{-1} \pi_{2}, c_{b}-\pi_{1}-\lambda_{1, p_{2}}^{-1} \pi_{2}, 1\right\} .
$$

So we have proved the coercivity also in this case, that is,

$$
\frac{\left\langle\left(\mathcal{A}_{1}(u)-\iota_{1}^{*} \xi, \mathcal{A}_{2}(v)-\iota_{2}^{*} \eta\right),(u, v)\right\rangle}{\|u\|_{V_{1}}+\|v\|_{V_{2}}} \rightarrow+\infty \quad \text { as }\|u\|_{V_{1}}+\|v\|_{V_{2}} \rightarrow \infty
$$

Therefore, all conditions of Proposition 4.1 of Kenmochi [20] are fulfilled which implies that problem (1.1) has at least one nontrivial weak solution, because of $0 \notin$ $f_{i}(x, 0,0,0,0)$ for a. a. $x \in \Omega$ and $i=1,2$.

Finally, we are going to prove that the solution set of problem (1.1) is compact. Assume that $\left\{\left(u_{n}, v_{n}\right)\right\}_{n \in \mathbb{N}}$ is a sequence of solutions of problem (1.1). Hence, we can find $\xi_{n} \in \mathcal{F}_{1}\left(u_{n}, v_{n}\right)$ and $\eta_{n} \in \mathcal{F}_{2}\left(u_{n}, v_{n}\right)$ such that

$$
\begin{equation*}
\left\langle\left(\mathcal{A}_{1}\left(u_{n}\right)-\iota_{1}^{*} \xi_{n}, \mathcal{A}_{2}\left(v_{n}\right)-\iota_{2}^{*} \eta_{n}\right),\left(w-u_{n}, z-v_{n}\right)\right\rangle \geq 0 \tag{3.6}
\end{equation*}
$$

for all $(w, z) \in K_{1} \times K_{2}$. By the coercivity of \mathcal{U} and the boundedness of \mathcal{A}_{i} for $i=1,2$, we easily obtain that $\left\{\left(u_{n}, v_{n}\right)\right\}_{n \in \mathbb{N}} \subset V_{1} \times V_{2}$ and $\left\{\left(\xi_{n}, \eta_{n}\right)\right\}_{n \in \mathbb{N}} \subset L^{r_{1}^{\prime}}(\Omega) \times L^{r_{2}^{\prime}}(\Omega)$ are bounded. So, there are functions $(u, v) \in K_{1} \times K_{2}$ and $(\xi, \eta) \in L^{r_{1}^{\prime}}(\Omega) \times L^{r_{2}^{\prime}}(\Omega)$ such that
$\left(u_{n}, v_{n}\right) \xrightarrow{w}(u, v)$ in $V_{1} \times V_{2}$ and $\left(\xi_{n}, \eta_{n}\right) \xrightarrow{w}(\xi, \eta)$ in $L^{r_{1}^{\prime}}(\Omega) \times L^{r_{2}^{\prime}}(\Omega)$.

Inserting $(u, v) \in K_{1} \times K_{2}$ into (3.6) and taking the lower upper limit as $n \rightarrow \infty$ for the resulting inequality yields

$$
\limsup _{n \rightarrow \infty}\left\langle\left(\mathcal{A}_{1}\left(u_{n}\right)-\iota_{1}^{*} \xi_{n}, \mathcal{A}_{2}\left(v_{n}\right)-\iota_{2}^{*} \eta_{n}\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle \leq 0 .
$$

Arguing as before, we can show that $u_{n} \rightarrow u$ in V_{1} and $v_{n} \rightarrow v$ in V_{2}. However, the closedness of \mathcal{F}_{1} and \mathcal{F}_{2} reveals that $\xi \in \mathcal{F}_{1}(u, v)$ and $\eta \in \mathcal{F}_{2}(u, v)$. Passing to the limit as $n \rightarrow \infty$ in (3.6), we deduce that $(u, v) \in V_{1} \times V_{2}$ is a weak solution of problem (1.1). Consequently, the solution set of problem (1.1) is compact in $V_{1} \times V_{2}$.

Acknowledgements This project has received funding from the Natural Science Foundation of Guangxi Grant Nos. 2021GXNSFFA196004 and 2022AC21071, the NNSF of China Grant Nos. 12001478, 12026255, 12026256 and 11961074, the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH, National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611, and the Startup Project of Doctor Scientific Research of Yulin Normal University No. G2020ZK07. It is also supported by the Ministry of Science and Higher Education of Republic of Poland under Grants Nos. 4004/GGPJII/H2020/2018/0 and 440328/PnH2/2019.

Data Availibility Statement Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

1. Aubin, J.-P., Cellina, A.: Differential Inclusions. Set-Valued Maps and Viability Theory. Springer, Berlin (1984)
2. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206-222 (2015)
3. Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersburg Math. J. 27, 347-379 (2016)
4. Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57(2), 62 (2018)
5. Carl, S., Motreanu, D.: Extremal solutions for nonvariational quasilinear elliptic systems via expanding trapping regions. Monatsh. Math. 182(4), 801-821 (2017)
6. Cen, J.X., Khan, A.A., Motreanu, D., Zeng, S.D.: Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems. Inverse Probl. 38, 065006 (2022)
7. Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. 195(6), 1917-1959 (2016)
8. Crespo-Blanco, Á., Gasiński, L., Harjulehto, P., Winkert, P.: A new class of double phase variable exponent problems: existence and uniqueness. J. Differ. Equ. 323, 182-228 (2022)
9. De Filippis, C., Mingione, G.: Lipschitz bounds and nonautonomous integrals. Arch. Ration. Mech. Anal. 242, 973-1057 (2021)
10. de Godoi, J.D.B., Miyagaki, O.H., Rodrigues, R.S.: A class of nonlinear elliptic systems with SteklovNeumann nonlinear boundary conditions. Rocky Mountain J. Math. 46(5), 1519-1545 (2016)
11. Faria, L.F.O., Miyagaki, O.H., Pereira, F.R.: Quasilinear elliptic system in exterior domains with dependence on the gradient. Math. Nachr. 287(4), 361-373 (2014)
12. Farkas, C., Winkert, P.: An existence result for singular Finsler double phase problems. J. Differ. Equ. 286, 455-473 (2021)
13. Gasiński, L., Winkert, P.: Existence and uniqueness results for double phase problems with convection term. J. Differ. Equ. 268(8), 4183-4193 (2020)
14. Gasiński, L., Winkert, P.: Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold. J. Differ. Equ. 274, 1037-1066 (2021)
15. Guarnotta, U., Marano, S.A.: Infinitely many solutions to singular convective Neumann systems with arbitrarily growing reactions. J. Differ. Equ. 271, 849-863 (2021)
16. Guarnotta, U., Marano, S.A., Moussaoui, A.: Multiple solutions to quasi-linear elliptic Robin systems. Nonlinear Anal. Real World Appl. 71, 103818 (2023)
17. Guarnotta, U., Livrea, R., Winkert, P.: The sub-supersolution method for variable exponent double phase systems with nonlinear boundary conditions. Preprint arXiv:2208.01108
18. Guarnotta, U., Marano, S.A., Moussaoui, A.: Singular quasilinear convective elliptic systems in \mathbb{R}^{N}. Adv. Nonlinear Anal. 11(1), 741-756 (2022)
19. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter \& Co., Berlin (2001)
20. Kenmochi, N.: Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations. Hiroshima Math. J. 4, 229-263 (1974)
21. Kim, I.H., Kim, Y.-H., Oh, M.W., Zeng, S.: Existence and multiplicity of solutions to concave-convextype double-phase problems with variable exponent. Nonlinear Anal. Real World Appl. 67, 103627 (2022)
22. Lê, A.: Eigenvalue problems for the p-Laplacian. Nonlinear Anal. 64(5), 1057-1099 (2006)
23. Liu, W., Dai, G.: Existence and multiplicity results for double phase problem. J. Differ. Equ. 265(9), 4311-4334 (2018)
24. Liu, Y.J., Migórski, S., Nguyen, V.T., Zeng, S.D.: Existence and convergence results for elastic frictional contact problem with nonmonotone subdifferential boundary condtions. Acta Math. Sci. 41, 1-18 (2021)
25. Liu, Z., Zeng, S., Gasiński, L., Kim, Y.-H.: Nonlocal double phase complementarity systems with convection term and mixed boundary conditions. J. Geom. Anal. 32(9), 241 (2022)
26. Marino, G., Winkert, P.: Existence and uniqueness of elliptic systems with double phase operators and convection terms. J. Math. Anal. Appl. 492(1), 124423 (2020)
27. Papageorgiou, N.S., Winkert, P.: Applied Nonlinear Functional Analysis. An Introduction. De Gruyter, Berlin (2018)
28. Perera, K., Squassina, M.: Existence results for double-phase problems via Morse theory. Commun. Contemp. Math. 20(2), 14 (2018). (1750023)
29. Zeng, S., Bai, Y., Gasiński, L., Winkert, P.: Existence results for double phase implicit obstacle problems involving multivalued operators. Calc. Var. Partial Differ. Equ. 59(5), 176 (2020)
30. Zeng, S., Rădulescu, V.D., Winkert, P.: Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions. SIAM J. Math. Anal. 54, 1898-1926 (2022)
31. Zeng, S., Rădulescu, V.D., Winkert, P.: Double phase obstacle problems with variable exponent. Adv. Differ. Equ. 27(9-10), 611-645 (2022)
32. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50(4), 675-710 (1986)
33. Zhikov, V.V.: On Lavrentiev's phenomenon. Russ. J. Math. Phys. 3(2), 249-269 (1995)
34. Zhikov, V.V.: On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. 173(5), 463-570 (2011)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Yongjian Liu ${ }^{1} \cdot$ Van Thien Nguyen ${ }^{2}$ • Patrick Winkert ${ }^{3}$ © . Shengda Zeng ${ }^{4,5,6}$ ©

Yongjian Liu
liuyongjianmaths@126.com
Van Thien Nguyen
Thiennv15@fe.edu.vn
Patrick Winkert
winkert@math.tu-berlin.de
1 Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, Guangxi, People's Republic of China
2 Department of Mathematics, FPT University, Education Zone, Hoa Lac High Tech Park, Km29 Thang Long Highway, Thach That Ward, Hanoi, Vietnam
3 Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
4 Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu, People's Republic of China

5 Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, ul. Lojasiewicza 6, 30-348 Kraków, Poland
6 Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, Guangxi, People's Republic of China

[^0]: Communicated by Michael Kunzinger.

 Shengda Zeng
 zengshengda@163.com
 Extended author information available on the last page of the article

