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 A B S T R A C T

We consider a system of coupled Schrödinger equations involving critical exponent given by
⎧

⎪

⎨

⎪

⎩

− 𝛥𝑢 + 𝜆1𝑢 = 𝜇|𝑢|𝑞−2𝑢 + 2𝛼
𝛼 + 𝛽

|𝑢|𝛼−2𝑢|𝑣|𝛽 in R𝑁 ,

− 𝛥𝑣 + 𝜆2𝑣 = 𝜇|𝑣|𝑞−2𝑣 +
2𝛽
𝛼 + 𝛽

|𝑢|𝛼 |𝑣|𝛽−2𝑣 in R𝑁 .

We study the existence of positive ground state solutions having prescribed mass

∫R𝑁
|𝑢|2 d𝑥 = 𝑎21 and ∫R𝑁

|𝑣|2 d𝑥 = 𝑎22,

where 𝑁 = 3, 4, 𝑎1, 𝑎2 > 0, 𝑞 ∈ (2, 2∗), 𝛼, 𝛽 > 1 with 𝛼 + 𝛽 = 2∗ = 2𝑁
𝑁−2

, the Sobolev critical 
exponent, 𝜆1, 𝜆2 ∈ R are parameters to be specified and will appear as Lagrange multipliers, and 
𝜇 > 0 is a parameter. Under some 𝐿2-subcritical, 𝐿2-critical and 𝐿2-supercritical perturbations 
𝜇|𝑢|𝑞−2𝑢 and 𝜇|𝑣|𝑞−2𝑣, respectively, we prove several existence results by using variational 
methods, which can be considered as a counterpart of the Brézis-Nirenberg problem in the 
context of normalized solutions for coupled Schrödinger equations. Our results extend and 
improve the existing literature in several directions.

. Introduction and main results

This paper is concerned with the existence of solutions (𝜆1, 𝜆2, 𝑢, 𝑣) ∈ R2 ×𝐻1(R𝑁 ,R2) to the following Schrödinger system with 
ritical growth 

⎧

⎪

⎨

⎪

⎩

−𝛥𝑢 + 𝜆1𝑢 = 𝜇|𝑢|𝑞−2𝑢 + 2𝛼
𝛼 + 𝛽

|𝑢|𝛼−2𝑢|𝑣|𝛽 in R𝑁 ,

−𝛥𝑣 + 𝜆2𝑣 = 𝜇|𝑣|𝑞−2𝑣 +
2𝛽
𝛼 + 𝛽

|𝑢|𝛼|𝑣|𝛽−2𝑣 in R𝑁 ,
(1.1)

ith the prescribed 𝐿2-norm 

∫R𝑁
|𝑢|2 d𝑥 = 𝑎21 and ∫R𝑁

|𝑣|2 d𝑥 = 𝑎22, (1.2)
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where 𝑁 = 3, 4, 𝜇, 𝑎1, 𝑎2 > 0 are positive constants, 𝛼, 𝛽 > 1 satisfy 𝛼+ 𝛽 = 2∗ with 2∗ = 2𝑁
𝑁−2  being the Sobolev critical exponent. We 

refer to this type of solutions as to normalized solutions, since (1.2) imposes a normalization on the 𝐿2-masses of 𝑢 and 𝑣. Under 
this circumstance, 𝜆1 and 𝜆2 cannot be determined a priori, but are part of the unknowns. The problem to be investigated comes 
from the research of solitary waves for the system of coupled Schrödinger equations 

⎧

⎪

⎨

⎪

⎩

−𝑖
𝜕𝛹1
𝜕𝑡

= 𝛥𝛹1 + 𝜇|𝛹1|
𝑞−2𝛹1 +

2𝛼
𝛼 + 𝛽

|𝛹1|
𝛼−2𝛹1|𝛹2|

𝛽 in R𝑁 ,

−𝑖
𝜕𝛹2
𝜕𝑡

= 𝛥𝛹2 + 𝜇|𝛹2|
𝑞−2𝛹2 +

2𝛽
𝛼 + 𝛽

|𝛹1|
𝛼
|𝛹2|

𝛽−2𝛹2 in R𝑁 ,
(1.3)

where 𝛹𝑗 = 𝛹𝑗 (𝑥, 𝑡) ∈ C, (𝑥, 𝑡) ∈ R𝑁 × R and 𝑗 = 1, 2. System (1.3) can be used to model various physical phenomena, such as 
binary mixtures of Bose–Einstein condensates or the propagation of mutually incoherent wave packets in nonlinear optics, see, for 
example, Esry–Greene–Burke–Bohn [1], Frantzeskakis [2] and Timmermans [3] for more applied backgrounds. An important and 
of course well-known feature of (1.3) is the conservation of three quantities: the energy

𝐽C(𝛹1, 𝛹2) =
1
2 ∫R𝑁

|∇𝛹1|
2 + |∇𝛹2|

2 d𝑥 −
𝜇
𝑞 ∫R𝑁

|

|

𝛹1
|

|

𝑞 + |

|

𝛹2
|

|

𝑞 d𝑥

− 2
𝛼 + 𝛽 ∫R𝑁

|𝛹1|
𝛼
|𝛹2|

𝛽 d𝑥,

and the masses

∫R𝑁
|

|

𝛹1
|

|

2 d𝑥 and ∫R𝑁
|

|

𝛹2
|

|

2 d𝑥.

The 𝐿2-norms |𝛹1(⋅, 𝑡)|2, |𝛹2(⋅, 𝑡)|2 of solutions are independent of 𝑡 ∈ R and have a clear physical meaning. In the contexts mentioned 
above, they represent the number of particles of each component in Bose–Einstein condensates or the energy power supply in the 
context of nonlinear optics.

A solitary wave of (1.3) is a solution having the form
𝛹1(𝑥, 𝑡) = 𝑒𝑖𝜆1𝑡𝑢(𝑥) and 𝛹2(𝑥, 𝑡) = 𝑒𝑖𝜆2𝑡𝑣(𝑥),

where 𝜆1, 𝜆2 ∈ R and 𝑢, 𝑣 ∈ 𝐻1(R𝑁 ) are time independent real-valued functions solving (1.1). There are two different approaches to 
finding for solutions to (1.1): On the one hand, one can consider the frequencies of 𝜆1 ∈ R and 𝜆2 ∈ R as fixed, on the other hand, 
one can include them in the unknown and prescribe the masses. In the latter case, 𝜆1, 𝜆2 ∈ R are unknown quantities that appear 
as Lagrange multipliers with respect to the mass constraint.

We note that if 𝛼 = 𝛽 = 2, 𝑞 = 4 and 𝑁 = 3, the system (1.1) is related to the following coupled system of Schrödinger equations 

{

−𝛥𝑢 + 𝜆1𝑢 = 𝜇1𝑢3 + 𝛽𝑢𝑣2  in R3,
−𝛥𝑣 + 𝜆2𝑣 = 𝜇2𝑣3 + 𝛽𝑢2𝑣  in R3.

(1.4)

The problem (1.4) with fixed 𝜆1, 𝜆2 has been studied by many authors in the last two decades. In this case, we refer the 
interested reader to the papers of Ambrosetti-Colorado [4], Bartsch-Dancer-Wang [5], Bartsch-Wang [6], Bartsch-Wang-Wei [7], 
Chen-Zou [8,9], Gou-Jeanjean [10], Lin-Wei [11], Sirakov [12] and related references therein. In contrast, there are not many 
papers that investigate the existence of normalized solutions for (1.2)–(1.4). In [13], Bartsch-Jeanjean-Soave proved the existence 
of positive normalized solutions for different ranges of the coupling parameter 𝛽 > 0, without any assumption on the masses 
𝑎1, 𝑎2. Bartsch-Soave [14] showed the existence of normalized solutions to (1.2)–(1.4) for any given 𝜇1, 𝜇2, 𝑎1, 𝑎2 > 0 and 𝛽 < 0. 
They also investigated the phenomenon of phase separation for the solutions as 𝛽 → −∞. In [15], Bartsch-Soave proved the 
existence of infinitely many normalized solutions of (1.2)–(1.4) with 𝑎1 = 𝑎2 = 𝑎 and 𝜇1 = 𝜇2 = 𝜇 by using the Krasnoselskii 
genus approach for the constrained functional. In [16], Bartsch-Zhong-Zou studied the existence and non-existence of normalized 
solutions to (1.2)–(1.4) by an approach based on the fixed point index in cones, bifurcation theory, and the continuation method. 
Gou-Jeanjean [17] considered the existence of multiple positive solutions of (1.1)–(1.2) with 2 < 𝛼 + 𝛽 < 2∗, one solution is a 
local minimizer, the other one is obtained through a constrained mountain-pass and a constrained linking, respectively. Recently, 
Bartsch-Li-Zou [18] proved the existence and asymptotic properties of normalized ground states of (1.1)–(1.2) with critical exponent 
𝑞 = 2∗ with 𝑁 ∈ {3, 4}, 2 < 𝛼 + 𝛽 < 2∗. Jeanjean-Zhang-Zhong [19] obtained the normalized ground states for (1.1)–(1.2) with mass 
super-critical growth 2+ 4

𝑁 < 𝑞, 𝛼+ 𝛽 < 2∗, and 𝑁 ∈ {1, 2, 3, 4}. Recently, Mederski-Schino [20] studied the existence of least energy 
solutions to a cooperative systems of coupled Schrödinger equations with general nonlinearities of the form 

⎧

⎪

⎨

⎪

⎩

−𝛥𝑢𝑖 + 𝜆𝑖𝑢𝑖 = 𝜕𝑖𝐺(𝑢) in R𝑁 ,
𝑢𝑖 ∈ 𝐻1(R𝑁 ), 𝑖 ∈ {1, 2,… , 𝐾},
∫R𝑁 |𝑢𝑖|

2 d𝑥 ≤ 𝜌2𝑖 ,

(1.5)

with 𝐺 ≥ 0, where 𝜌𝑖 > 0 is prescribed and (𝜆𝑖, 𝑢𝑖) ∈ R ×𝐻1(R𝑁 ) is to be determined, 𝑖 ∈ {1,… , 𝐾}. The authors established several 
existence results of normalized solutions for problem (1.5). The main innovation of [20] is based on the minimization of the energy 
functional over a linear combination of the Nehari and Pohozaev constraints intersected with the product of closed balls in 𝐿2(R𝑁 )
of radii 𝜌 , which allows to provide general growth assumptions about 𝐺 and to know in advance the sign of the corresponding 
𝑖

2 
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Lagrange multipliers. For existence results of normalized solutions to Schrödinger equations or systems in bounded domains, we 
refer to the works of Noris-Tavares-Verzini [21,22] and Pierotti-Verzini [23], see also the references therein.

If 𝑢 = 𝑣 and 𝜆1 = 𝜆2, the system (1.1)–(1.2) reduces to the following problem 
{

−𝛥𝑢 = 𝜆𝑢 + 𝑔(𝑢), 𝑥 ∈ R𝑁 ,
∫R𝑁 |𝑢|2 d𝑥 = 𝑎2, 𝑢 ∈ 𝐻1(R𝑁 ),

(1.6)

where 𝑔 is the nonlinearity. In the outstanding paper [24], Jeanjean studied the existence of solutions of (1.6) with nonlinearity 
of the type 𝑔(𝑠) =

∑𝑚
𝑖=1 𝑎𝑖|𝑠|

𝜎𝑖𝑠 with 𝑎𝑖 > 0, 0 < 𝜎𝑖 <
𝑁
𝑁−2  for 𝑁 ≥ 3 and 𝜎𝑖 > 0 if 𝑁 = 1, 2 and 𝑖 = 1,… , 𝑚 with 𝑚 ∈ N. The 

occurrence of the 𝐿2-constraint renders several methods developed to deal with variational problems without constraints useless, 
and the 𝐿2-constraint induces a new critical exponent, the 𝐿2-critical exponent given by

𝑞 ∶= 2 + 4
𝑁
,

and the number 𝑞 can keep the mass invariant by the law of conservation of mass. Precisely for this reason, 2 + 4
𝑁  is called 𝐿2-

critical exponent or mass critical exponent, which is the threshold exponent for many dynamical properties such as global existence, 
blow-up, stability or instability of ground states. In particular, it strongly influences the geometrical structure of the corresponding 
functional. In 2020, Soave [25,26] started the research of the existence and properties of ground states for problem (1.6) with 
combined power type nonlinearities 𝑔(𝑢) = 𝜇|𝑢|𝑞−2𝑢 + |𝑢|𝑝−2𝑢 with 2 < 𝑞 < 𝑝 ≤ 2∗. He presented a complete classification on 
the existence and nonexistence of normalized solutions that let 𝑞 be 𝐿2-subcritical, 𝐿2-critical and 𝐿2-supercritical. Since then, the 
existence and properties of these normalized solutions for Schrödinger equations or systems have attracted the attention of more and 
more researchers in recent years. For further studies on this aspect, we refer to Bartsch-de Valeriola [27], Bartsch-Molle-Rizzi-Verzini 
[28], Hirata-Tanaka [29], Jeanjean-Le [30], Jeanjean-Lu [31], Wei-Wu [32] and the references therein.

The purpose of this paper is to study the existence of normalized solutions of problem (1.1)–(1.2). We present several existence 
results in the following three cases:

(i) 𝐿2-subcritical case: 2 < 𝑞 < 𝑞;
(ii) 𝐿2-supercritical case: 𝑞 < 𝑞 < 2∗;
(iii) 𝐿2-critical case: 𝑞 = 𝑞

This study is a new contribution regarding existence of normalized ground states for the Sobolev critical nonlinear Schrödinger 
system in the whole space R𝑁 , which improves and complements the studies of Alves-de Morais Filho-Souto [33], Han [34] and 
Hsu-Lin [35], which are concerned with the existence of solutions of (1.1) in bounded domains 𝛺 ⊂ R𝑁  without prescribed 𝐿2-
norm, while in this paper we are concerned with the existence of normalized solutions. By studying the geometrical structure of 
the corresponding Pohozaev manifold, we have obtained a constrained Palais–Smale sequence with additional properties, and show 
the compactness of this special constrained Palais–Smale sequence at some energy level. As far as we know, normalized solutions 
to (1.1)–(1.2) with critical exponent have not yet been considered in the literature.

In order to search solutions to (1.1)–(1.2), we introduce the corresponding energy functional given by

𝐼𝜇(𝑢, 𝑣) =
1
2 ∫R𝑁

(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 −
𝜇
𝑞 ∫R𝑁

(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥 − 2
2∗ ∫R𝑁

|𝑢|𝛼|𝑣|𝛽 d𝑥,

under the constraint 𝑆𝑎1 × 𝑆𝑎2 , where

𝑆𝑎 =
{

𝑢 ∈ 𝐻1(R𝑁 )∶ ∫R𝑁
|𝑢|2 d𝑥 = 𝑎2

}

.

It is standard to check that 𝐼𝜇 is of class 𝐶1 in 𝐻1(R𝑁 ) ×𝐻1(R𝑁 ), and any critical point (𝑢, 𝑣) of 𝐼𝜇|𝑆𝑎1×𝑆𝑎2  corresponds to a solution 
to (1.1) satisfying (1.2). Here the parameters 𝜆1, 𝜆2 ∈ R arise as Lagrangian multipliers. In particular, we are interested in ground 
state solutions which are defined in the following way:
Definition 1.1.  We say that (𝑢0, 𝑣0) is a normalized ground state of system (1.1)–(1.2), if it is a solution to (1.1)–(1.2) having 
minimal energy among all the normalized solutions. Namely,

𝐼𝜇(𝑢0, 𝑣0) = inf{𝐼𝜇(𝑢, 𝑣)∶ (𝑢, 𝑣) solves (1.1)–(1.2) for some (𝜆1, 𝜆2) ∈ R2}.

This definition seems particularly suitable in our context, since 𝐼𝜇 is unbounded from below on 𝑆𝑎1 ×𝑆𝑎2  and therefore no global 
minima exist.

Now, we formulate the main results of this paper. First, we have the following result in the 𝐿2-subcritical case 2 < 𝑞 < 𝑞 ∶= 2+ 4
𝑁 .

Theorem 1.1.  Let 𝑁 = 3, 4, 𝑎1, 𝑎2 > 0, 𝛼, 𝛽 > 1 such that 𝛼 + 𝛽 = 2∗ and 𝑞 ∈ (2, 2+ 4
𝑁 ). Then, 𝐼𝜇|𝑆𝑎1×𝑆𝑎2  has a ground state (𝑢, 𝑣) which 

is a positive, radially symmetric function and solves problem (1.1)–(1.2) for some 𝜆1, 𝜆2 > 0, provided 0 < 𝜇 < min{𝜇1, 𝜇2}, where 𝜇1, 𝜇2
are explicitly defined in (3.1)–(3.2) below. Furthermore, the normalized ground state is a local minimizer of 𝐼𝜇(𝑢, 𝑣) on 𝑆𝑎1 × 𝑆𝑎2 .

The next two theorems are concerned with the 𝐿2-supercritical/critical cases 2 + 4
𝑁 ≤ 𝑞 < 2∗ by constructing the mountain-pass 

type ground states, if the parameter 𝜇 > 0 sufficiently small.
3 
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Theorem 1.2.  Let 𝑁 = 3, 4, 𝑎1, 𝑎2 > 0, 𝛼, 𝛽 > 1 such that 𝛼+ 𝛽 = 2∗ and 𝑞 ∈ (2+ 4
𝑁 , 2

∗). Then 𝐼𝜇|𝑆𝑎1×𝑆𝑎2  has a ground state (𝑢, 𝑣) which 

is a positive, radially symmetric function and solves problem (1.1)–(1.2) for some 𝜆1, 𝜆2 > 0. Moreover, 0 < 𝑚𝜇(𝑎1, 𝑎2) <
2
𝑁

( 𝑆𝛼,𝛽
2

)
𝑁
2 , 

where 𝑚𝜇(𝑎1, 𝑎2) is given in (2.8), and (𝑢, 𝑣) is a mountain-pass type solution.

Theorem 1.3.  Let 𝑁 = 3, 4, 𝑎1, 𝑎2 > 0, 𝛼, 𝛽 > 1 such that 𝛼 + 𝛽 = 2∗ and 𝑞 = 2 + 4
𝑁 . Then 𝐼𝜇|𝑆𝑎1×𝑆𝑎2  has a ground state (𝑢, 𝑣) which 

is a positive, radially symmetric function and solves problem (1.1)–(1.2) for some 𝜆1, 𝜆2 > 0, provided 0 < 𝜇 < 𝜇3, where 𝜇3 is explicitly 
defined in (5.1) below. Moreover, 0 < 𝑚𝜇(𝑎1, 𝑎2) < 2

𝑁

( 𝑆𝛼,𝛽
2

)
𝑁
2  and (𝑢, 𝑣) is a mountain-pass type solution.

Finally, we present another existence result for (1.1)–(1.2) in the 𝐿2-supercritical case 2 + 4
𝑁 < 𝑞 < 2∗ when 𝜇 > 0 is sufficiently 

large.

Theorem 1.4.  Let 𝑁 = 3, 4, 𝑎1, 𝑎2 > 0, 𝛼, 𝛽 > 1 such that 𝛼 + 𝛽 = 2∗ and 𝑞 ∈ (2 + 4
𝑁 , 2

∗). Then there exists 𝜇∗ = 𝜇∗(𝑎1, 𝑎2) > 0 such that 
for any 𝜇 ≥ 𝜇∗, problem (1.1)–(1.2) possesses a positive, radially symmetric solution (𝑢, 𝑣) for some 𝜆1, 𝜆2 > 0.

Remark 1.5.  Note that in the paper by Mederski-Schino [20] the nonlinearity 𝐺 can be assumed to have at least 𝐿2-critical growth 
at 0 and to be Sobolev critical growth. In particular, in the Sobolev critical growth, the nonlinearity 𝐺 takes the form

𝐺(𝑢) = 𝐺(𝑢) + 1
2∗

𝐾
∑

𝑗=1
𝜃𝑗 |𝑢𝑗 |

2∗ ,

where 𝐺(⋅) is a subcritical perturbation. The energy of the minimizer in the constrained set of (1.5) is strictly less than the number 
1
𝑁 𝑆

𝑁∕2 ∑𝐾
𝑗=1 𝜃

1−𝑁∕2
𝑗 . But in our paper, the nonlinearity appears differently from (1.5) as the entangled mixed item

𝐺(𝑢) = 2
2∗

|𝑢|𝛼|𝑣|𝛽 , 𝛼 + 𝛽 = 2∗.

Moreover, the energy functional 𝐼𝜇(𝑢, 𝑣) of (1.1) and (1.2) satisfies the Palais–Smale compactness condition below the minimum 
threshold value 2

𝑁

( 𝑆𝛼,𝛽
2

)
𝑁
2 . So, our paper and the one by Mederski-Schino [20] have their own characteristics and interests in 

theoretical methods, independently of each other.
When searching for normalized solutions for (1.1)–(1.2), one of the main difficulties is the lack of compactness of the constrained 

Palais–Smale sequences. Indeed, since the embeddings 𝐻1(R𝑁 ) ↪ 𝐿2(R𝑁 ) and 𝐻1
rad(R

𝑁 ) ↪ 𝐿2(R𝑁 ) are not compact, it is hard to 
verify whether the weak limits of the constrained Palais–Smale sequence lie in the constraint 𝑆𝑎1 ×𝑆𝑎2 . To overcome this difficulty, 
we adopt the idea of Jeanjean [24] by showing that the mountain-pass geometry of 𝐼𝜇|𝑆𝑎1×𝑆𝑎2  allows to construct a Palais–Smale 
sequence of functions satisfying the Pohozaev identity, which yields boundedness and is useful to prove the strong 𝐻1-convergence. 
Another difficulty, as naturally expected, is the presence of the critical Sobolev term in (1.1), which further complicates the study 
of convergence of constrained Palais–Smale sequences. To overcome such a difficulty, we will perform a careful analysis of the 
behavior of the constrained Palais–Smale sequences to analyze the possible reason of lack of compactness and to find out the 
regions of the energy levels where the Palais–Smale condition is satisfied and compactness can be restored. For this purpose, the 
concentration-compactness principle (see Alves-de Morais Filho-Souto [33] and Han [34]) and the mountain-pass theorem (see, 
for example, Willem [36]) are involved to obtain both ground state solutions to (1.1)–(1.2) by minimizing the functional on the 
associated Pohozaev manifold and mountain-pass solutions.

The paper is organized as follows. In Section 2, we start with some preliminary results which will be frequently used in the rest 
of the paper while Section 3 presents the proof of Theorem  1.1, which is about the 𝐿2-subcritical case. Section 4 is devoted to the 
proof of Theorem  1.2 with the 𝐿2-supercritical perturbation and in Section 5, we prove Theorem  1.3 for the 𝐿2-critical case. Finally, 
by using the concentration-compactness principle, we give the proof of Theorem  1.4 in Section 6.

2. Preliminaries

In this section we recall the main notations and tools that will be needed in the sequel. For 1 < 𝑠 < ∞ we denote by 𝐿𝑠(R𝑁 ) the 
usual Lebesgue spaces with norm

‖𝑢‖𝑠 ∶=
(

∫R𝑁
|𝑢|𝑠 d𝑥

)
1
𝑠

and 𝐻1 = 𝐻1(R𝑁 ) is the standard Hilbert space equipped with norm and inner product given by

‖𝑢‖2
𝐻1 = ⟨𝑢, 𝑢⟩ and ⟨𝑢, 𝑣⟩ = ∫R𝑁

(∇𝑢∇𝑣 + 𝑢𝑣) d𝑥.

Further, let 𝐻 = 𝐻1(R𝑁 ) ×𝐻1(R𝑁 ) and 𝐻1
𝑟  denotes the subspace of functions in 𝐻1 which are radial symmetric with respect to 0, 

and 𝐻𝑟 = 𝐻1
𝑟 ×𝐻

1
𝑟  as well as 𝑆𝑎,𝑟 = 𝑆𝑎 ∩𝐻1

𝑟 . By 𝐵𝑅(𝑦) we denote the ball centered at 𝑦 with radius 𝑅, 𝐵𝑅 ∶= 𝐵𝑅(0) and ‖ ⋅ ‖ denotes 
the norm in 𝐻1 or 𝐻 . Moreover, 𝑢∗ is a rearrangement of |𝑢|. We recall that

‖∇𝑢∗‖2 ≤ ‖∇𝑢‖2, ‖𝑢∗‖𝑠 = ‖𝑢‖𝑠 and |𝑢∗|𝑝|𝑣∗|𝑞 d𝑥 ≥ |𝑢|𝑝|𝑣|𝑞 d𝑥,
∫R𝑁 ∫R𝑁

4 
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see, for example, Lieb-Loss [37].
Positive constants whose exact values are not important in the relevant arguments, and that may vary from line to line, are 

generally denoted by 𝐶 or 𝐶𝑖, where 𝑖 ∈ N. For 𝑁 ≥ 3, 𝑞 ∈ (2, 2∗], we recall the following Gagliardo–Nirenberg inequality, see 
Nirenberg [38]: 

‖𝑢‖𝑞𝑞 ≤ 𝐶𝑁,𝑞‖∇𝑢‖
𝑞𝛾𝑞
2 ‖𝑢‖

𝑞(1−𝛾𝑞 )
2 for all 𝑢 ∈ 𝐻1(R𝑁 ), (2.1)

where the optimal constant 𝐶𝑁,𝑞 depends on 𝑁, 𝑞, and the number 

𝛾𝑞 ∶=
𝑁(𝑞 − 2)

2𝑞
for all 𝑞 ∈ (2, 2∗]. (2.2)

Particularly, if 𝑞 = 2∗, then we denote by 𝑆 be the best Sobolev constant defined by 

𝑆 ∶= inf
𝑢∈𝐷1,2(R𝑁 )⧵{0}

‖∇𝑢‖22
‖𝑢‖22∗

, (2.3)

where the Sobolev space 𝐷1,2(R𝑁 ) is defined as the completion of the space 𝐶∞
𝑐 (R𝑁 ) with respect to the norm ‖𝑢‖𝐷1,2(R𝑁 ) ∶= ‖∇𝑢‖2. 

Using (2.2), it is easy to see that

𝑞𝛾𝑞

⎧

⎪

⎨

⎪

⎩

< 2, if 2 < 𝑞 < 𝑞,
= 2, if 𝑞 = 𝑞 and 𝛾2∗ = 1,
> 2, if 𝑞 < 𝑞 < 2∗.

When studying Schrödinger systems, we need a vector-valued version of the Gagliardo–Nirenberg inequality. For 𝛼, 𝛽 > 1, 
2 < 𝛼 + 𝛽 ≤ 2∗, we define

𝑄(𝑢, 𝑣) ∶=

(

‖𝑢‖22 + ‖𝑣‖22
)

(

𝛼+𝛽−(𝛼+𝛽)𝛾𝛼+𝛽
)

∕2 (
‖∇𝑢‖22 + ‖∇𝑣‖22

)(𝛼+𝛽)𝛾𝛼+𝛽∕2

‖

‖

‖

|𝑢|𝛼|𝑣|𝛽‖‖
‖1

and by Correia [39], we have 
(𝑁, 𝛼, 𝛽)−1 ∶= inf

𝑢,𝑣∈𝐻1(R𝑁
)

⧵{0}
𝑄(𝑢, 𝑣) > 0. (2.4)

From (2.4), we get the vector-valued Gagliardo–Nirenberg inequality in the form
‖|𝑢|𝛼|𝑣|𝛽‖1

≤ (𝑁, 𝛼, 𝛽)
(

‖𝑢‖22 + ‖𝑣‖22
)

(

𝛼+𝛽−(𝛼+𝛽)𝛾𝛼+𝛽
)

∕2 (
‖∇𝑢‖22 + ‖∇𝑣‖22

)(𝛼+𝛽)𝛾𝛼+𝛽∕2 ,

which holds for 𝑢, 𝑣 ∈ 𝐻1(R𝑁 ). The vector-valued Gagliardo–Nirenberg inequality has been investigated by many authors. We refer 
to the papers of Correia [39] and Ma-Zhao [40] and the references therein. Particularly, if 𝛼 + 𝛽 = 2∗, we define 

𝑆𝛼,𝛽 = inf
𝑢,𝑣∈𝐷1,2(R𝑁 )⧵{0}

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥

(

∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥

)2∕2∗
. (2.5)

From Alves-de Morais Filho-Souto [33, Theorem 5], we have that 

𝑆𝛼,𝛽 =

(

(

𝛼
𝛽

)𝛽∕2∗

+
(

𝛽
𝛼

)𝛼∕2∗
)

𝑆, (2.6)

where 𝑆 is the best constant defined by (2.3).
Let

𝑎1 ,𝑎2 = {(𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 ∶𝑃 (𝑢, 𝑣) = 0},

where 

𝑃 (𝑢, 𝑣) = ∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 − 𝜇𝛾𝑞 ∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥

− 2∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥.

(2.7)

As proved by Bartsch-Jeanjean-Soave [13, Lemma 4.6], any solution of (1.4) belongs to 𝑎1 ,𝑎2 . The equation 𝑃 (𝑢, 𝑣) = 0 being the 
Pohozaev identity for (1.1) and the Pohozaev manifold 𝑎1 ,𝑎2  will play an important role in our proofs. Therefore, if (𝑢, 𝑣) solves 
system (1.1) for some 𝜆1, 𝜆2 and (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2  is a minimizer of the constraint minimization 

𝑚𝜇(𝑎1, 𝑎2) = inf 𝐼𝜇(𝑢, 𝑣), (2.8)

(𝑢,𝑣)∈𝑎1 ,𝑎2

5 
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then (𝑢, 𝑣) has least energy among all the solutions of (1.1) and (1.2). Namely, (𝑢, 𝑣) is a normalized ground state solution to (1.1) 
and (1.2).

For 𝑢 ∈ 𝑆𝑎 and 𝑠 ∈ R, we define the function

(𝑠 ⋆ 𝑢)(𝑥) ∶= 𝑒
𝑁𝑠
2 𝑢(𝑒𝑠𝑥) for all 𝑥 ∈ R𝑁 .

It is straightforward to check that if 𝑢 ∈ 𝑆𝑎, then 𝑠 ⋆ 𝑢 ∈ 𝑆𝑎 for every 𝑠 ∈ R. We define 𝑠 ⋆ (𝑢, 𝑣) = (𝑠 ⋆ 𝑢, 𝑠 ⋆ 𝑣) and the fiber map as
𝛷(𝑢,𝑣)(𝑠) ∶= 𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣))

= 𝑒2𝑠

2 ∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 −
𝜇𝑒𝑞𝛾𝑞𝑠

𝑞 ∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥

− 2𝑒2∗𝑠
2∗ ∫R𝑁

|𝑢|𝛼|𝑣|𝛽 d𝑥.

An easy computation shows that 𝛷′
(𝑢,𝑣)(𝑠) = 𝑃 (𝑠 ⋆ (𝑢, 𝑣)) and

𝑎1 ,𝑎2 = {(𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 ∶𝛷
′
(𝑢,𝑣)(0) = 0}.

In this spirit, we split the manifold 𝑎1 ,𝑎2  into the disjoint union
𝑎1 ,𝑎2 = +

𝑎1 ,𝑎2
∪ 0

𝑎1 ,𝑎2
∪ −

𝑎1 ,𝑎2
,

where 
+
𝑎1 ,𝑎2

∶=
{

(𝑢, 𝑣) ∈ 𝑎1 ,𝑎2 ∶𝛷
′′
(𝑢,𝑣)(0) > 0

}

,

0
𝑎1 ,𝑎2

∶=
{

(𝑢, 𝑣) ∈ 𝑎1 ,𝑎2 ∶𝛷
′′
(𝑢,𝑣)(0) = 0

}

,

−
𝑎1 ,𝑎2

∶=
{

(𝑢, 𝑣) ∈ 𝑎1 ,𝑎2 ∶𝛷
′′
(𝑢,𝑣)(0) < 0

}

,

(2.9)

and

𝛷′′
(𝑢,𝑣)(0) = 2∫R𝑁

|∇𝑢|2 + |∇𝑣|2 d𝑥 − 𝜇𝑞𝛾2𝑞 ∫R𝑁
|𝑢|𝑞 + |𝑣|𝑞 d𝑥

− 22∗ ∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥.

In order to prove our results, we need the monotonicity and convexity of 𝛷(𝑢,𝑣)(𝑠), which will strongly affect the structure of 
𝑎1 ,𝑎2  and thus have a strong effect on the minimization problem (2.8). The following lemma can be found in Strauss [41].

Lemma 2.1.  Let 𝑁 ≥ 3. Then the embedding 𝐻1
𝑟 (R

𝑁 ) ↪ 𝐿𝑡(R𝑁 ) is compact for any 2 < 𝑡 < 2∗.

Now, we recall the following version of the Brézis-Lieb lemma, see Chen-Zou [9, Lemma 2.3].

Lemma 2.2.  Let 𝑁 ≥ 3, 𝛼, 𝛽 > 1 and 2 ≤ 𝛼 + 𝛽 ≤ 2∗. If (𝑢𝑛, 𝑣𝑛)𝑛∈N ⊆ 𝐻 is a sequence such that (𝑢𝑛, 𝑣𝑛) ⇀ (𝑢, 𝑣) in 𝐻 , then (up to a 
subsequence if necessary)

lim
𝑛→∞∫R𝑁

(

|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 − |𝑢|𝛼|𝑣|𝛽 − |

|

𝑢𝑛 − 𝑢||
𝛼
|

|

𝑣𝑛 − 𝑣||
𝛽
)

d𝑥 = 0.

Furthermore, we need to generalize the concentration-compactness principle to the case of systems, see Han [34] and 
Long-Yang [42].

Lemma 2.3.  Let {(𝑢𝑛, 𝑣𝑛)}𝑛∈N ⊆ 𝐷1,2(R𝑁 )×𝐷1,2(R𝑁 ) be a sequence such that 𝑢𝑛 ⇀ 𝑢, 𝑣𝑛 ⇀ 𝑣 ∈ 𝐷1,2(R𝑁 ). Assume that |∇𝑢𝑛|2+|∇𝑣𝑛|2 ⇀ 𝜔
and |𝑢𝑛|𝛼|𝑣𝑛|𝛽 ⇀ 𝜈 weakly in the sense of measures. Then, there exist some at most countable set 𝐽 , a family of points {𝑥𝑗}𝑗∈𝐽 ⊂ R𝑁  and 
families of positive numbers {𝜈𝑗}𝑗∈𝐽  and {𝜔𝑗}𝑗∈𝐽  such that

𝜈 ∗ = |𝑢|𝛼|𝑣|𝛽 +
∑

𝑗∈𝐽
𝜈𝑗𝛿𝑥𝑗 ,

𝜔 ≥ |∇𝑢|2 + |∇𝑣|2 +
∑

𝑗∈𝐽
𝜔𝑗𝛿𝑥𝑗 ,

𝜔𝑗 ≥ 𝑆𝛼,𝛽𝜈
2
𝛼+𝛽
𝑗 ,

where 𝛿𝑥 is the Dirac-mass of mass 1 concentrated at 𝑥 ∈ R𝑁 .

Lemma 2.4.  Let {(𝑢𝑛, 𝑣𝑛)}𝑛∈N ⊆ 𝐷1,2(R𝑁 ) ×𝐷1,2(R𝑁 ) be a sequence as in Lemma  2.3 and define

𝜔∞ ∶= lim lim sup
(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥,

𝑅→∞ 𝑛→∞ ∫

|𝑥|≥𝑅

6 



Y. Meng et al. Nonlinear Analysis 260 (2025) 113845 
𝜈∞ ∶= lim
𝑅→∞

lim sup
𝑛→∞ ∫

|𝑥|≥𝑅
|𝑢𝑛|

𝛼
|𝑣𝑛|

𝛽 d𝑥.

Then it follows that

𝜔∞ ≥ 𝑆𝛼,𝛽𝜈
2
𝛼+𝛽
∞ ,

lim sup
𝑛→∞ ∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥 = ∫R𝑁
𝑑𝜔 + 𝜔∞,

lim sup
𝑛→∞ ∫R𝑁

|𝑢𝑛|
𝛼
|𝑣𝑛|

𝛽 d𝑥 = ∫R𝑁
𝑑𝜈 + 𝜈∞.

Fix 𝜇 > 0, the following compactness lemma will play a crucial role in the sequel. 

Lemma 2.5.  Assume that 
𝑚𝜇(𝑎1, 𝑎2) ≤ 𝑚𝜇

(

𝑏1, 𝑏2
)

for any 0 < 𝑏1 ≤ 𝑎1, 0 < 𝑏2 ≤ 𝑎2. (2.10)

Let {(𝑢𝑛, 𝑣𝑛)}𝑛∈N ⊆ 𝑆𝑎1 × 𝑆𝑎2  be a sequence consisting of radially symmetric functions such that, as 𝑛→ +∞, 

𝐼 ′𝜇
(

𝑢𝑛, 𝑣𝑛
)

+ 𝜆1,𝑛𝑢𝑛 + 𝜆2,𝑛𝑣𝑛 → 0  for some 𝜆1,𝑛, 𝜆2,𝑛 ∈ R, (2.11)

𝐼𝜇
(

𝑢𝑛, 𝑣𝑛
)

→ 𝑐, 𝑃
(

𝑢𝑛, 𝑣𝑛
)

→ 0, (2.12)

and 
𝑢−𝑛 , 𝑣

−
𝑛 → 0 a.e. in R𝑁 . (2.13)

If 

𝑐 ≠ 0 and 𝑐 < 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ min{0, 𝑚𝜇(𝑎1, 0), 𝑚𝜇(0, 𝑎2), 𝑚𝜇(𝑎1, 𝑎2)}, (2.14)

then there exists (𝑢, 𝑣) ∈ 𝐻𝑟 with 𝑢, 𝑣 > 0 and 𝜆1, 𝜆2 > 0 such that, up to a subsequence, (𝑢𝑛, 𝑣𝑛
)

→ (𝑢, 𝑣) in 𝐻 and (𝜆1,𝑛, 𝜆2,𝑛
)

→
(

𝜆1, 𝜆2
)

in R2.

Proof.  We divide the proof in three steps.
Step 1. We show that {(𝑢𝑛, 𝑣𝑛

)}

𝑛∈N is bounded in 𝐻 and 𝜆1,𝑛, 𝜆2,𝑛 are bounded in R.
If 𝑞 ∈ (2, 2 + 4

𝑁 ), then 𝑞𝛾𝑞 < 2. Combining this with (2.1), and 𝑃 (

𝑢𝑛, 𝑣𝑛
)

→ 0, for 𝑛 large enough, we have

𝑐 + 1 ≥ 𝐼𝜇
(

𝑢𝑛, 𝑣𝑛
)

− 1
2∗
𝑃
(

𝑢𝑛, 𝑣𝑛
)

= 1
𝑁

(

‖

‖

∇𝑢𝑛‖‖
2
2 + ‖

‖

∇𝑣𝑛‖‖
2
2

)

+ 𝜇
( 𝛾𝑞
2∗

− 1
𝑞

)

∫R𝑁
(

|𝑢𝑛|
𝑞 + |𝑣𝑛|

𝑞) d𝑥

≥ 1
𝑁

(

‖

‖

∇𝑢𝑛‖‖
2
2 + ‖

‖

∇𝑣𝑛‖‖
2
2

)

− 𝐶
(

‖

‖

∇𝑢𝑛‖‖
2
2 + ‖

‖

∇𝑣𝑛‖‖
2
2

)

𝑞𝛾𝑞
2

for some 𝐶 > 0, which implies that {(𝑢𝑛, 𝑣𝑛
)}

𝑛∈N is bounded in 𝐻 . If 𝑞 ∈ [2 + 4
𝑁 , 2

∗), we have 𝑞𝛾𝑞 ≥ 2, and using 𝑃 (

𝑢𝑛, 𝑣𝑛
)

→ 0, we 
obtain for 𝑛 large enough,

𝑐 + 1 ≥ 𝐼𝜇
(

𝑢𝑛, 𝑣𝑛
)

− 1
2
𝑃
(

𝑢𝑛, 𝑣𝑛
)

= 𝜇
( 𝛾𝑞

2
− 1
𝑞

)

∫R𝑁
|𝑢𝑛|

𝑞 + |𝑣𝑛|
𝑞 d𝑥 + 2

𝑁 ∫R𝑁
|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥

≥ 𝐶(‖
‖

∇𝑢𝑛‖‖
2
2 + ‖

‖

∇𝑣𝑛‖‖
2
2) + 𝑜𝑛(1)

for some 𝐶 > 0. This implies that {(𝑢𝑛, 𝑣𝑛
)}

𝑛∈N is bounded in 𝐻 . Moreover, by (2.11), we get that

𝜆1,𝑛 = − 1
𝑎21
𝐼 ′𝜇

(

𝑢𝑛, 𝑣𝑛
) [(

𝑢𝑛, 0
)]

+ 𝑜𝑛(1),

𝜆2,𝑛 = − 1
𝑎22
𝐼 ′𝜇

(

𝑢𝑛, 𝑣𝑛
) [(

0, 𝑣𝑛
)]

+ 𝑜𝑛(1).

Thus, 𝜆1,𝑛, 𝜆2,𝑛 are bounded in R. Hence, up to a subsequence, there exist (𝑢, 𝑣) ∈ 𝐻𝑟, 𝜆1, 𝜆2 ∈ R such that
⎧

⎪

⎪

⎨

⎪

⎪

(

𝑢𝑛, 𝑣𝑛
)

⇀ (𝑢, 𝑣) in 𝐻𝑟, 𝐿2∗ (R𝑁
)

× 𝐿2∗ (R𝑁
)

,
(

𝑢𝑛, 𝑣𝑛
)

→ (𝑢, 𝑣) in 𝐿𝑞 (R𝑁)

× 𝐿𝑞
(

R𝑁
)  for 𝑞 ∈ (2, 2∗),

(

𝑢𝑛, 𝑣𝑛
)

→ (𝑢, 𝑣) a.e. in R𝑁 ,
( ) ( ) 2
⎩

𝜆1,𝑛, 𝜆2,𝑛 → 𝜆1, 𝜆2 in R .

7 
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Furthermore, by (2.11) and (2.13), we infer that 
{

𝐼 ′𝜇(𝑢, 𝑣) + 𝜆1𝑢 + 𝜆2𝑣 = 0,
𝑢 ≥ 0, 𝑣 ≥ 0,

(2.15)

and so, 𝑃 (𝑢, 𝑣) = 0.
Step 2. We prove that the weak limit satisfies 𝑢 ≠ 0 and 𝑣 ≠ 0, and so 𝑢 > 0, 𝑣 > 0 by the maximum principle. Arguing by 

contradiction, since there may be 𝑢 = 0 or 𝑣 = 0, we shall consider the following three cases.
Case 1. 𝑢 = 0, 𝑣 = 0.

Since (𝑢𝑛, 𝑣𝑛
)

→ (0, 0) in 𝐿𝑞 (R𝑁)

× 𝐿𝑞
(

R𝑁
)

, we have 
0 = 𝑃

(

𝑢𝑛, 𝑣𝑛
)

+ 𝑜𝑛(1)

= ∫R𝑁
(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥 − 2∫R𝑁
|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥 + 𝑜𝑛(1).

(2.16)

Without loss of generality, we may assume that

ℎ𝑛 = ∫R𝑁
(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥→ ℎ and 𝑤𝑛 = 2∫R𝑁
|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥 → 𝑤,

as 𝑛→ ∞. Passing to the limit in (2.16) as 𝑛→ ∞, using (2.5), we obtain

ℎ = 𝑤 ≤ 2𝑆
− 2∗

2
𝛼,𝛽 ℎ

2∗
2 .

Therefore, either ℎ = 0 or ℎ ≥ 2
( 𝑆𝛼,𝛽

2

)
𝑁
2 . If ℎ = 0, then this gives a contradiction to the fact that 𝑐 ≠ 0. So, 

ℎ ≥ 2
(𝑆𝛼,𝛽

2

)

𝑁
2
. (2.17)

Moreover, by (2.16) and (2.17), we derive
𝑐 = lim

𝑛→∞
𝐼𝜇

(

𝑢𝑛, 𝑣𝑛
)

= lim
𝑛→∞

(

1
2 ∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥 − 2
2∗ ∫R𝑁

|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥

)

≥ 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
,

which contradicts (2.14).
Case 2. 𝑢 ≠ 0, 𝑣 = 0.

In this case, we have 𝑢 > 0 by the maximum principle and by (2.15), we have 
{

−𝛥𝑢 + 𝜆1𝑢 = 𝜇𝑢𝑞−1, in R𝑁 ,
∫R𝑁 |𝑢|2 d𝑥 = 𝑎2, 𝑢 > 0.

(2.18)

By using the papers of Li-Zou [43, Lemma 2.1] and Weinstein [44], we deduce that (2.18) has a unique positive solution with 
𝑎 = ‖𝑢‖2 ≤ 𝑎1. Thus, 

𝑚𝜇(𝑎1, 0) ≤ 𝑚𝜇(‖𝑢‖2, 0) = 𝐼𝜇(𝑢, 0). (2.19)

Let 𝑢𝑛 = 𝑢𝑛 − 𝑢. Then by the Brézis-Lieb lemma [45] and Lemma  2.2, we have 
0 =𝑃

(

𝑢𝑛, 𝑣𝑛
)

+ 𝑜𝑛(1) = 𝑃
(

𝑢𝑛, 𝑣𝑛
)

+ 𝑃 (𝑢, 0) + 𝑜𝑛(1)

=∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2
)

d𝑥 − 2∫R𝑁
|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥 + 𝑜𝑛(1).

(2.20)

Without loss of generality, we may assume that 

𝓁𝑛 = ∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2
)

d𝑥→ 𝓁 and 𝑏𝑛 = 2∫R𝑁
|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥 → 𝑏, (2.21)

as 𝑛→ ∞. By (2.20), passing to the limit as 𝑛→ ∞, and (2.5), it follows that

𝓁 = 𝑏 ≤ 2𝑆
− 2∗

2
𝛼,𝛽 𝓁

2∗
2 .

Therefore, either 𝓁 = 0 or 𝓁 ≥ 2
( 𝑆𝛼,𝛽

2

)
𝑁
2 . If 𝓁 = 0, then it contradicts to the fact that 𝑐 ≠ 0. So, 

𝓁 ≥ 2
(𝑆𝛼,𝛽

)

𝑁
2
. (2.22)
2

8 
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Moreover, by virtue of (2.19)–(2.22), we derive
𝑐 = lim

𝑛→∞
𝐼𝜇

(

𝑢𝑛, 𝑣𝑛
)

= lim
𝑛→∞

𝐼𝜇
(

𝑢𝑛, 𝑣𝑛
)

+ 𝐼𝜇 (𝑢, 0)

≥ lim
𝑛→∞

(

1
2 ∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2
)

d𝑥 − 2
2∗ ∫R𝑁

|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥

)

+ 𝑚𝜇(𝑎1, 0)

≥ 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ 𝑚𝜇(𝑎1, 0),

which is a contradiction to (2.14).
Case 3. 𝑢 = 0, 𝑣 ≠ 0.

Analogous to the proof in Case 2, we have

𝑐 ≥ 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ 𝑚𝜇(0, 𝑎2),

which is a contradiction to (2.14).
Step 3. (𝑢𝑛, 𝑣𝑛

)

→ (𝑢, 𝑣) in 𝐻 .
Let (𝑢𝑛, 𝑣𝑛) = (𝑢𝑛 − 𝑢, 𝑣𝑛 − 𝑣). Then by the Brézis-Lieb lemma [45] and Lemma  2.2, we deduce that 

0 = 𝑃
(

𝑢𝑛, 𝑣𝑛
)

+ 𝑜𝑛(1) = 𝑃
(

𝑢𝑛, 𝑣𝑛
)

+ 𝑃 (𝑢, 𝑣) + 𝑜𝑛(1)

= ∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2
)

d𝑥 − 2∫R𝑁
|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥 + 𝑜𝑛(1).

(2.23)

Without loss of generality, we may assume

𝓁′
𝑛 = ∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2
)

d𝑥→ 𝓁′ and 𝑏′𝑛 = 2∫R𝑁
|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥→ 𝑏′,

as 𝑛→ ∞. By using (2.23) and passing to the limit as 𝑛→ ∞ along with (2.5), we derive that

𝓁′ = 𝑏′ ≤ 2𝑆
− 2∗

2
𝛼,𝛽 𝓁′ 2

∗
2 .

Thus, either 𝓁′ = 0 or 𝓁′ ≥ 2
( 𝑆𝛼,𝛽

2

)
𝑁
2 . If 𝓁′ ≥ 2

( 𝑆𝛼,𝛽
2

)
𝑁
2  holds, then we deduce

𝑐 = lim
𝑛→∞

𝐼𝜇
(

𝑢𝑛, 𝑣𝑛
)

= lim
𝑛→∞

𝐼𝜇
(

𝑢𝑛, 𝑣𝑛
)

+ 𝐼𝜇 (𝑢, 𝑣)

≥ lim
𝑛→∞

(

1
2 ∫R𝑁

|

(

∇𝑢𝑛|2 + |∇𝑣𝑛|2
)

d𝑥 − 2
2∗ ∫R𝑁

|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥

)

+ 𝑚𝜇(‖𝑢‖2, ‖𝑣‖2)

≥ lim
𝑛→∞

(

1
2 ∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2
)

d𝑥 − 2
2∗ ∫R𝑁

|

|

𝑢𝑛||
𝛼
|

|

𝑣𝑛||
𝛽 d𝑥

)

+ 𝑚𝜇(𝑎1, 𝑎2)

≥ 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ 𝑚𝜇(𝑎1, 𝑎2),

which is in contradiction to (2.14), where we have used 0 < ‖𝑢‖2 ≤ 𝑎1 and 0 < ‖𝑣‖2 ≤ 𝑎2 and assumption (2.10). Therefore, we 
must have

lim
𝑛→∞∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2
)

d𝑥 = 0.

Next, we claim that 𝜆1, 𝜆2 > 0. Indeed, if 𝜆1 ≤ 0, then

−𝛥𝑢 = |𝜆1|𝑢 + 𝜇𝑢𝑞−1 +
2𝛼
𝛼 + 𝛽

𝑢𝛼−1𝑣𝛽 ≥ 0 in R𝑁 .

Then we can apply Lemma A.2 of Ikoma [46] deducing that 𝑢 = 0 which is also a contradiction. Consequently, 𝜆1 > 0, and 
analogously 𝜆2 > 0, as claimed. Combining (2.11), (2.12), (2.15) and 𝑃 (𝑢, 𝑣) = 0, one has

𝜆1𝑎
2
1 + 𝜆2𝑎

2
2 = 𝜆1‖𝑢‖

2
2 + 𝜆2‖𝑣‖

2
2.

It follows that ‖𝑢‖2 = 𝑎1, ‖𝑣‖2 = 𝑎2 and hence 
(

𝑢𝑛, 𝑣𝑛
)

→ (𝑢, 𝑣) in 𝐻 . □

3. Proof of Theorem  1.1

In the 𝐿2-subcritical case 2 < 𝑞 < 𝑞 ∶= 2 + 4
𝑁 , we have 0 < 𝑞𝛾𝑞 < 2. To begin our argument, we first introduce the following two 

positive constants 

𝜇1 ∶=
2

2𝑞𝛾𝑞−2−2∗

2∗−2 (2∗ − 2)
(

2∗ − 𝑞𝛾𝑞
)

𝑞𝛾𝑞−2∗

2∗−2 𝑞
(

2∗𝑆
2∗
2
𝛼,𝛽 (2 − 𝑞𝛾𝑞)

)

2−𝑞𝛾𝑞
2∗−2

𝑞(1−𝛾𝑞 ) 𝑞(1−𝛾𝑞 )
,

(3.1)
𝐶𝑁,𝑞(𝑎1 + 𝑎2 )

9 
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and 

𝜇2 ∶=
(2∗ − 2)

(

(2 − 𝑞𝛾𝑞)𝑆
2∗
2
𝛼,𝛽

)

2−𝑞𝛾𝑞
2∗−2

𝛾𝑞𝐶𝑁,𝑞(𝑎
𝑞(1−𝛾𝑞 )
1 + 𝑎

𝑞(1−𝛾𝑞 )
2 )

(

2∗ − 𝑞𝛾𝑞
)

2∗−𝑞𝛾𝑞
2∗−2 2

2−𝑞𝛾𝑞
2∗−2

. (3.2)

We consider the constrained functional 𝐼𝜇|𝑆𝑎1×𝑆𝑎2 . For any (𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 , by account of (2.1) and (2.5), we have that 

𝐼𝜇(𝑢, 𝑣) ≥
1
2

(

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥
)

−
2𝑆

− 2∗
2

𝛼,𝛽

2∗

(

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥
)

2∗
2

−
𝜇
𝑞
𝐶𝑁,𝑞𝑎

𝑞(1−𝛾𝑞 )
1 ‖∇𝑢‖

𝑞𝛾𝑞
2 −

𝜇
𝑞
𝐶𝑁,𝑞𝑎

𝑞(1−𝛾𝑞 )
2 ‖∇𝑣‖

𝑞𝛾𝑞
2

≥ ℎ
(

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥
)

1
2
,

(3.3)

where the function ℎ∶R+ → R is defined by

ℎ(𝑡) = 1
2
𝑡2 −

2𝑆
− 2∗

2
𝛼,𝛽

2∗
𝑡2

∗
−
𝜇
𝑞
𝐶𝑁,𝑞(𝑎

𝑞(1−𝛾𝑞 )
1 + 𝑎

𝑞(1−𝛾𝑞 )
2 )𝑡𝑞𝛾𝑞 .

From 𝑞𝛾𝑞 < 2, we get that ℎ(0+) = 0− and ℎ(+∞) = −∞.

Lemma 3.1.  Assume that 0 < 𝜇 < 𝜇1. Then the function ℎ(⋅) has exactly two critical points, one is a local strict minimum at negative 
level, the other one is a global maximum at positive level. Furthermore, there exist 0 < 𝑅0 < 𝑅1, such that ℎ(𝑅0) = ℎ(𝑅1) = 0 and ℎ(𝑡) > 0
if and only if 𝑡 ∈ (𝑅0, 𝑅1).

Proof.  For 𝑡 > 0, we have ℎ(𝑡) > 0 if and only if

𝜑(𝑡) >
𝜇
𝑞
𝐶𝑁,𝑞

(

𝑎
𝑞(1−𝛾𝑞 )
1 + 𝑎

𝑞(1−𝛾𝑞 )
2

)

with 𝜑(𝑡) = 1
2
𝑡2−𝑞𝛾𝑞 −

2𝑆
− 2∗

2
𝛼,𝛽

2∗
𝑡2

∗−𝑞𝛾𝑞 .

In view of

𝜑′(𝑡) =
2 − 𝑞𝛾𝑞

2
𝑡1−𝑞𝛾𝑞 −

2𝑆
− 2∗

2
𝛼,𝛽

2∗
(2∗ − 𝑞𝛾𝑞)𝑡

2∗−𝑞𝛾𝑞−1,

it is not difficult to check that 𝜑(⋅) has a unique critical point at 

𝑡 =
(2∗(2 − 𝑞𝛾𝑞)
4(2∗ − 𝑞𝛾𝑞)

𝑆
2∗
2
𝛼,𝛽

)

1
2∗−2

, (3.4)

and 𝜑(⋅) is increasing on (0, 𝑡) and decreasing on (𝑡,+∞). Moreover, the maximum level is

𝜑(𝑡) = 2
2𝑞𝛾𝑞−2−2∗

2∗−2 (2∗ − 2)
(

2∗ − 𝑞𝛾𝑞
)

𝑞𝛾𝑞−2∗

2∗−2

(

2∗𝑆
2∗
2
𝛼,𝛽 (2 − 𝑞𝛾𝑞)

)

2−𝑞𝛾𝑞
2∗−2

.

Thus, there exist 0 < 𝑅0 < 𝑅1 such that ℎ(𝑅0) = ℎ(𝑅1) = 0 and ℎ(𝑡) > 0 if and only if 𝑡 ∈ (𝑅0, 𝑅1). Moreover, ℎ is positive on an open 
interval (𝑅0, 𝑅1) if and only if 𝜑(𝑡) > 𝜇

𝑞 𝐶𝑁,𝑞(𝑎
𝑞(1−𝛾𝑞 )
1 + 𝑎

𝑞(1−𝛾𝑞 )
2 ), that is, 𝜇 < 𝜇1 holds. Since ℎ(0+) = 0−, ℎ(+∞) = −∞ and ℎ is positive 

on an open interval (𝑅0, 𝑅1), it is easy to see that ℎ has a global maximum at positive level in (𝑅0, 𝑅1) as well as a local minimum 
point at negative level in (0, 𝑅0). Note that

ℎ′(𝑡) = 𝑡𝑞𝛾𝑞−1
[

𝑡2−𝑞𝛾𝑞 − 2𝑆
− 2∗

2
𝛼,𝛽 𝑡2

∗−𝑞𝛾𝑞 − 𝜇𝛾𝑞𝐶𝑁,𝑞(𝑎
𝑞(1−𝛾𝑞 )
1 + 𝑎

𝑞(1−𝛾𝑞 )
2 )

]

= 0

if and only if

𝜓(𝑡) = 𝜇𝛾𝑞𝐶𝑁,𝑞
(

𝑎
𝑞(1−𝛾𝑞 )
1 + 𝑎

𝑞(1−𝛾𝑞 )
2

)

with 𝜓(𝑡) = 𝑡2−𝑞𝛾𝑞 − 2𝑆
− 2∗

2
𝛼,𝛽 𝑡2

∗−𝑞𝛾𝑞 .

Clearly, 𝜓(⋅) has only one critical point ̂𝑡, which is a strict maximum. Therefore, the above equation has at most two solutions, which 
implies that ℎ only has a local strict minimum at negative level and a global strict maximum at positive level and no other critical 
points. Thus, ℎ(⋅) has exactly two critical points 0 < 𝑡1 < 𝑡 < 𝑡2 with

ℎ(𝑡1) = min
̂
ℎ(𝑡) < 0 and ℎ(𝑡2) = max

𝑡>0
ℎ(𝑡) > 0. □
0<𝑡<𝑡

10 
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Lemma 3.2.  Assume that 0 < 𝜇 < 𝜇2. Then 0
𝑎1 ,𝑎2

= ∅ and 𝑎1 ,𝑎2  is a smooth manifold of codimension 3 in 𝐻 .

Proof.  We first prove that 0
𝑎1 ,𝑎2

= ∅ implies that 𝑎1 ,𝑎2  is a smooth manifold of codimension 3 in 𝐻 . We note that 𝑎1 ,𝑎2  is defined 
by 𝑃 (𝑢, 𝑣) = 0, 𝐺(𝑢) = 0, 𝐹 (𝑣) = 0, where

𝐺(𝑢) = 𝑎21 − ∫R𝑁
𝑢2 d𝑥, 𝐹 (𝑣) = 𝑎22 − ∫R𝑁

𝑣2 d𝑥.

It suffices to show that the differential

𝑑(𝑃 ,𝐺, 𝐹 )∶𝐻 → R3

is surjective. Assuming that it is not true, there must be that 𝑑𝑃 (𝑢, 𝑣) is a linear combination of 𝑑𝐺(𝑢) and 𝑑𝐹 (𝑣) according to the 
independence of 𝑑𝐺(𝑢) and 𝑑𝐹 (𝑣). That is, there exist 𝜈1, 𝜈2 ∈ R such that (𝑢, 𝑣) is a weak solution of the system 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝛥𝑢 + 𝜈1𝑢 =
𝑞𝛾𝑞
2
𝜇|𝑢|𝑞−2𝑢 + 𝛼|𝑢|𝛼−2𝑢|𝑣|𝛽 in R𝑁 ,

−𝛥𝑣 + 𝜈2𝑣 =
𝑞𝛾𝑞
2
𝜇|𝑣|𝑞−2𝑣 + 𝛽|𝑢|𝛼|𝑣|𝛽−2𝑣 in R𝑁 ,

∫R𝑁
|𝑢|2 d𝑥 = 𝑎21, ∫R𝑁

|𝑣|2 d𝑥 = 𝑎22.

(3.5)

However, by the Pohozaev identity for (3.5), we have

2∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 = 𝜇𝑞𝛾2𝑞 ∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥 + 22∗ ∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥,

which implies that (𝑢, 𝑣) ∈ 0
𝑎1 ,𝑎2

, a contradiction.
Now, we prove that 0

𝑎1 ,𝑎2
= ∅. Arguing by contradiction, there exists (𝑢, 𝑣) ∈ 0

𝑎1 ,𝑎2
. Let 𝜌 = (

∫R𝑁 (|∇𝑢|
2 + |∇𝑣|2) d𝑥

)

1
2  and let

𝑊 (𝑡) ∶ = 𝑡𝛷′
(𝑢,𝑣)(0) −𝛷

′′
(𝑢,𝑣)(0)

= (𝑡 − 2)∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 − 𝜇
(

𝑡 − 𝑞𝛾𝑞
)

𝛾𝑞 ∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥

− 2
(

𝑡 − 2∗
)

∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥

= 0.

In view of 𝑊 (𝑞𝛾𝑞) = 0 and (2.5), we obtain

(2 − 𝑞𝛾𝑞)𝜌2 = 2
(

2∗ − 𝑞𝛾𝑞
)

∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥 ≤ 2

(

2∗ − 𝑞𝛾𝑞
)

𝑆
− 2∗

2
𝛼,𝛽 𝜌2

∗
.

It follows from 𝑞𝛾𝑞 < 2 that 

𝜌 ≥

(

2 − 𝑞𝛾𝑞
2
(

2∗ − 𝑞𝛾𝑞
)𝑆

2∗
2
𝛼,𝛽

)
1

2∗−2

. (3.6)

Moreover, combining (3.6) with 𝑊 (2∗) = 0, we infer to

(2∗ − 2) =
(

2∗ − 𝑞𝛾𝑞
)

𝛾𝑞𝜇𝜌
−2

∫R𝑁
|𝑢|𝑞 + |𝑣|𝑞 d𝑥

≤
(

2∗ − 𝑞𝛾𝑞
)

𝛾𝑞𝜇𝐶𝑁,𝑞(𝑎
𝑞(1−𝛾𝑞 )
1 + 𝑎

𝑞(1−𝛾𝑞 )
2 )𝜌𝑞𝛾𝑞−2

≤ 𝛾𝑞𝜇𝐶𝑁,𝑞(𝑎
𝑞(1−𝛾𝑞 )
1 + 𝑎

𝑞(1−𝛾𝑞 )
2 )

(

2∗ − 𝑞𝛾𝑞
)

2∗−𝑞𝛾𝑞
2∗−2

⎛

⎜

⎜

⎜

⎝

2𝑆
− 2∗

2
𝛼,𝛽

2 − 𝑞𝛾𝑞

⎞

⎟

⎟

⎟

⎠

2−𝑞𝛾𝑞
2∗−2

,

that is

𝜇 ≥ 𝜇2 ∶=
(2∗ − 2)

(

(2 − 𝑞𝛾𝑞)𝑆
2∗
2
𝛼,𝛽

)

2−𝑞𝛾𝑞
2∗−2

𝛾𝑞𝐶𝑁,𝑞(𝑎
𝑞(1−𝛾𝑞 )
1 + 𝑎

𝑞(1−𝛾𝑞 )
2 )

(

2∗ − 𝑞𝛾𝑞
)

2∗−𝑞𝛾𝑞
2∗−2 2

2−𝑞𝛾𝑞
2∗−2

,

which leads to a contradiction to our assumptions. Hence, 0
𝑎1 ,𝑎2

= ∅. □

By using Lemmas  3.1 and 3.2, we can describe the geometry of 𝑎1 ,𝑎2 . The manifold 𝑎1 ,𝑎2  is then divided into its two components 
+  and −  having disjoint closure.
𝑎1 ,𝑎2 𝑎1 ,𝑎2
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Lemma 3.3.  For every (𝑢, 𝑣) ∈ 𝑆𝑎1 ×𝑆𝑎2 , the function 𝛷(𝑢,𝑣)(⋅) has exactly two critical points 𝑠(𝑢,𝑣) < 𝑡(𝑢,𝑣) and two zero points 𝑐(𝑢,𝑣) < 𝑑(𝑢,𝑣)
with 𝑠(𝑢,𝑣) < 𝑐(𝑢,𝑣) < 𝑡(𝑢,𝑣) < 𝑑(𝑢,𝑣). Moreover, it holds:

(i) 𝑠 ⋆ (𝑢, 𝑣) ∈ +
𝑎1 ,𝑎2

 if and only if 𝑠 = 𝑠(𝑢,𝑣);
𝑠 ⋆ (𝑢, 𝑣) ∈ −

𝑎1 ,𝑎2
 if and only if 𝑠 = 𝑡(𝑢,𝑣);

(ii) (‖∇(𝑠 ⋆ 𝑢)‖22 + ‖∇(𝑠 ⋆ 𝑣)‖22)
1∕2 ≤ 𝑅0 for each 𝑠 ≤ 𝑐(𝑢,𝑣) and

𝐼𝜇(𝑠(𝑢,𝑣) ⋆ (𝑢, 𝑣))

= min{𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣))∶ 𝑠 ∈ R and (‖∇(𝑠 ⋆ 𝑢)‖22 + ‖∇(𝑠 ⋆ 𝑣)‖22)
1∕2 ≤ 𝑅0} < 0;

(iii) 𝐼𝜇(𝑡(𝑢,𝑣) ⋆ (𝑢, 𝑣)) = max𝑠∈R 𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)) > 0 and 𝛷(𝑢,𝑣)(𝑠) is strictly decreasing on (𝑡(𝑢,𝑣),+∞);
(iv) The maps (𝑢, 𝑣) ↦ 𝑠(𝑢,𝑣) ∈ R and (𝑢, 𝑣) ↦ 𝑡(𝑢,𝑣) ∈ R are of class 𝐶1.

Proof.  Let (𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 . First, we show that 𝛷(𝑢,𝑣)(⋅) has at least two critical points. We recall that by (3.3), we obtain
𝛷(𝑢,𝑣)(𝑠) = 𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)) ≥ ℎ

(

𝑒𝑠(‖∇𝑢‖22 + ‖∇𝑣‖22)
1∕2) ,

and so

𝛷(𝑢,𝑣)(𝑠) > 0 for all 𝑠 ∈
(

log
𝑅0

(‖∇𝑢‖22 + ‖∇𝑣‖22)
1∕2

, log
𝑅1

(‖∇𝑢‖22 + ‖∇𝑣‖22)
1∕2

)

.

Clearly, 𝛷(𝑢,𝑣)(−∞) = 0− and 𝛷(𝑢,𝑣)(+∞) = −∞. It is proved that 𝛷(𝑢,𝑣)(⋅) has at least two critical points 𝑠(𝑢,𝑣) < 𝑡(𝑢,𝑣), where 𝑡(𝑢,𝑣) is the 
global maximum point at the positive level, and 𝑠(𝑢,𝑣) is the local minimum point on

(

−∞, log
𝑅0

(‖∇𝑢‖22 + ‖∇𝑣‖22)
1∕2

)

at the negative level. Now we claim that 𝛷(𝑢,𝑣)(⋅) has no other critical points. In fact, as 𝛷′
(𝑢,𝑣)(𝑠) = 0, we get

𝑔(𝑠) = 𝛾𝑞𝜇 ∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥

with

𝑔(𝑠) ∶= 𝑒(2−𝑞𝛾𝑞 )𝑠 ∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 − 2𝑒(2
∗−𝑞𝛾𝑞 )𝑠

∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥.

It can be seen that 𝑔(⋅) has a unique maximum point, so the above equation has at most two solutions.
On account of 𝛷′

(𝑢,𝑣)(𝑠) = 𝑃 (𝑠 ⋆ (𝑢, 𝑣)), it gives 𝑠 ⋆ (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2  implying that 𝑠 = 𝑠(𝑢,𝑣) or 𝑡(𝑢,𝑣). By combining that 𝑠(𝑢,𝑣) is a 
local minimum point of 𝛷(𝑢,𝑣)(𝑠) and 0

𝑎1 ,𝑎2
= ∅, we immediately infer that 𝛷′′

(𝑢,𝑣)(𝑠(𝑢,𝑣)) > 0, which implies that 𝑠(𝑢,𝑣) ⋆ (𝑢, 𝑣) ∈ +
𝑎1 ,𝑎2

. 
Similarly, we have that 𝑡(𝑢,𝑣) ⋆ (𝑢, 𝑣) ∈ −

𝑎1 ,𝑎2
.

By the monotonicity and recalling the behavior at infinity of 𝛷(𝑢,𝑣)(⋅), we see that 𝛷(𝑢,𝑣)(⋅) has exactly two zero points 𝑐(𝑢,𝑣) and 
𝑑(𝑢,𝑣) with 𝑠(𝑢,𝑣) < 𝑐(𝑢,𝑣) < 𝑡(𝑢,𝑣) < 𝑑(𝑢,𝑣). Particularly, 𝛷(𝑢,𝑣)(⋅) is strictly decreasing on (𝑡𝑢,+∞).

Finally, we show that (𝑢, 𝑣) ↦ 𝑠(𝑢,𝑣) ∈ R and (𝑢, 𝑣) ↦ 𝑡(𝑢,𝑣) ∈ R are of class 𝐶1. Indeed, we can apply the implicit function theorem 
on 𝛹 (𝑠, 𝑢, 𝑣) ∶= 𝛷′

(𝑢,𝑣)(𝑠). Then we have

𝛹 (𝑠(𝑢,𝑣), 𝑢, 𝑣) = 𝛹 (𝑡(𝑢,𝑣), 𝑢, 𝑣) = 0,

𝜕𝑠𝛹 (𝑠(𝑢,𝑣), 𝑢, 𝑣) = 𝛷′′
(𝑢,𝑣)(𝑠(𝑢,𝑣)) > 0,

𝜕𝑠𝛹 (𝑡(𝑢,𝑣), 𝑢, 𝑣) = 𝛷′′
(𝑢,𝑣)(𝑡(𝑢,𝑣)) < 0

and 0
𝑎1 ,𝑎2

= ∅ imply that it is not possible to pass with continuity from +
𝑎1 ,𝑎2

 to −
𝑎1 ,𝑎2

. Thus, we know that (𝑢, 𝑣) ↦ 𝑠(𝑢,𝑣) ∈ R and 
(𝑢, 𝑣) ↦ 𝑡(𝑢,𝑣) ∈ R are of class 𝐶1. □

By using Lemma 2.1 of Li-Zou [43], if 𝑞 ∈ (2, 2 + 4
𝑁 ), it holds 

𝑚𝜇(𝑎1, 0) < 0 and 𝑚𝜇(0, 𝑎2) < 0. (3.7)

For 𝑘 > 0, we define

𝐴𝑘 =

{

(𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 ∶
(

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥
)1∕2

< 𝑘

}

.

Lemma 3.4.  If 0 < 𝜇 < min{𝜇1, 𝜇2}, then the following statements hold.
(i) 𝑚𝜇(𝑎1, 𝑎2) = inf𝐴𝑅0 𝐼𝜇(𝑢, 𝑣) < 0;

(ii) 𝑚 (𝑎 , 𝑎 ) ≤ 𝑚
(

𝑏 , 𝑏
)  for any 0 < 𝑏 ≤ 𝑎 , 0 < 𝑏 ≤ 𝑎 .
𝜇 1 2 𝜇 1 2 1 1 2 2

12 



Y. Meng et al. Nonlinear Analysis 260 (2025) 113845 
Proof.  (i) By Lemma  3.3, we have
+
𝑎1 ,𝑎2

= {𝑠(𝑢,𝑣) ⋆ (𝑢, 𝑣)∶ (𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2} ⊂ 𝐴𝑅0

and

𝑚𝜇(𝑎1, 𝑎2) = inf
𝑎1 ,𝑎2

𝐼𝜇(𝑢, 𝑣) = inf
+
𝑎1 ,𝑎2

𝐼𝜇(𝑢, 𝑣) < 0.

Clearly, 𝑚𝜇(𝑎1, 𝑎2) ≥ inf𝐴𝑅0 𝐼𝜇(𝑢, 𝑣). On the other hand, for any (𝑢, 𝑣) ∈ 𝐴𝑅0
, we get

𝑚𝜇(𝑎1, 𝑎2) ≤ 𝐼𝜇(𝑠(𝑢,𝑣) ⋆ (𝑢, 𝑣)) ≤ 𝐼𝜇(𝑢, 𝑣),

which implies that 𝑚𝜇(𝑎1, 𝑎2) ≤ inf𝐴𝑅0 𝐼𝜇(𝑢, 𝑣). Thus, it holds 𝑚𝜇(𝑎1, 𝑎2) = inf𝐴𝑅0 𝐼𝜇(𝑢, 𝑣).
(ii) This can be proved by following the strategy by Jeanjean-Lu [31, Lemma 3.2], where a scalar equation is considered, with 

minor modifications. By the definition of 𝑡 in (3.4), we have as in (i), that
𝑚𝜇(𝑎1, 𝑎2) = inf

𝐴𝑡
𝐼𝜇(𝑢, 𝑣).

For arbitrary 𝜀 > 0, we prove that 𝑚𝜇(𝑎1, 𝑎2) ≤ 𝑚𝜇
(

𝑏1, 𝑏2
)

+ 𝜀. Let (𝑢, 𝑣) ∈ 𝐴𝑡 be such that 

𝐼𝜇(𝑢, 𝑣) ≤ 𝑚𝜇
(

𝑏1, 𝑏2
)

+ 𝜀
2
, (3.8)

and let 𝜙 ∈ 𝐶∞
0 (R𝑁 ) be a cut-off function with 𝜙 ∈ [0, 1], 𝜙 ≡ 1 on 𝐵1(0) and 𝜙 ≡ 0 on R3 ⧵ 𝐵2(0). For 𝛿 > 0, we consider 

𝑢𝛿(𝑥) ∶= 𝑢(𝑥)𝜙(𝛿𝑥) and 𝑣𝛿(𝑥) ∶= 𝑣(𝑥)𝜙(𝛿𝑥). Obviously, (𝑢𝛿 , 𝑣𝛿) → (𝑢, 𝑣) in 𝐻 as 𝛿 → 0. As a consequence, for 𝜂 > 0 small enough, there 
exists 𝛿 > 0 small enough such that

𝐼𝜇(𝑢𝛿 , 𝑣𝛿) ≤ 𝐼𝜇(𝑢, 𝑣) +
𝜀
4

and
(

∫R𝑁
(

|∇𝑢𝛿|
2 + |∇𝑣𝛿|

2) d𝑥
)1∕2

< 𝑡 − 𝜂.

Now, we take 𝜑 ∈ 𝐶∞
0 (R𝑁 ) such that supp(𝜑) ⊂ 𝐵(0, 1 + 4

𝛿 ) ⧵ 𝐵(0,
4
𝛿 ). Define

𝑤𝑎 =

√

𝑎21 −
‖

‖

𝑢𝛿‖‖
2
2

‖𝜑‖2
× 𝜑 and 𝑤𝑏 =

√

𝑎22 −
‖

‖

𝑣𝛿‖‖
2
2

‖𝜑‖2
× 𝜑,

then
(

supp
(

𝑢𝛿
)

∪ supp
(

𝑣𝛿
))

∩
(

supp
(

𝑠 ⋆ 𝑤𝑎
)

∪ supp
(

𝑠 ⋆ 𝑤𝑏
))

= ∅,

for 𝑠 < 0. Hence (𝑢𝛿 + 𝑠 ⋆ 𝑤𝑎, 𝑣𝛿 + 𝑠 ⋆ 𝑤𝑏
)

∈ 𝑆𝑎1 × 𝑆𝑎2 . Note that

𝐼𝜇
(

𝑠 ⋆
(

𝑤𝑎, 𝑤𝑏
))

→ 0 and
(

∫R𝑁
(

|∇(𝑠 ⋆ 𝑤𝑎)|
2 + |∇(𝑠 ⋆ 𝑤𝑏)|

2) d𝑥
)1∕2

→ 0

as 𝑠 → −∞, thus we obtain 
𝐼𝜇

(

𝑠 ⋆
(

𝑤𝑎, 𝑤𝑏
))

≤ 𝜀
4
,

(

∫R𝑁
(

|∇(𝑠 ⋆ 𝑤𝑎)|
2 + |∇(𝑠 ⋆ 𝑤𝑏)|

2) d𝑥
)1∕2

≤ 𝜂
2

(3.9)

for 𝑠 < 0 sufficiently close to −∞. Consequently,
(

∫R𝑁
(

|∇(𝑢𝛿 + 𝑠 ⋆ 𝑤𝑎)|
2 + |∇(𝑣𝛿 + 𝑠 ⋆ 𝑤𝑏)|

2) d𝑥
)1∕2

< 𝑡,

and combining (3.8)–(3.9), we have
𝑚𝜇(𝑎1, 𝑎2) ≤ 𝐼𝜇

(

𝑢𝛿 + 𝑠 ⋆ 𝑤𝑎, 𝑣𝛿 + 𝑠 ⋆ 𝑤𝑏
)

= 𝐼𝜇
(

𝑢𝛿 , 𝑣𝛿
)

+ 𝐼𝜇
(

𝑠 ⋆ 𝑤𝑎, 𝑠 ⋆ 𝑤𝑏
)

≤ 𝑚𝜇
(

𝑏1, 𝑏2
)

+ 𝜀,

which completes the proof. □

Proof of Theorem  1.1.  By choosing 0 < 𝜇 < min{𝜇1, 𝜇2}, then combining (3.7), Lemmas  2.5 and 3.4, it is sufficient to show that at 
the 𝑚𝜇(𝑎1, 𝑎2) level, there exists a radially symmetric Palais–Smale sequence for 𝐼𝜇|𝑆𝑎1×𝑆𝑎2  such that 𝑃

(

𝑢𝑛, 𝑣𝑛
)

→ 0 and 𝑢−𝑛 , 𝑣−𝑛 → 0
a.e. in R𝑁 .

Let 𝑚𝑟(𝑎1, 𝑎2) = inf𝐴𝑅0∩𝐻𝑟
𝐼𝜇(𝑢, 𝑣). By the symmetric decreasing rearrangement, it is easy to verify that 𝑚𝜇(𝑎1, 𝑎2) = 𝑚𝑟(𝑎1, 𝑎2). 

Taking a minimizing sequence {(𝑢̃𝑛, 𝑣̃𝑛)}𝑛∈N for 𝑚𝜇(𝑎1, 𝑎2) = inf𝐴𝑅0∩𝐻𝑟
𝐼𝜇(𝑢, 𝑣), after passing to (|𝑢̃𝑛|, |𝑣̃𝑛|) we may assume that (𝑢̃𝑛, 𝑣̃𝑛)

are nonnegative. Furthermore, by using 𝐼𝜇(𝑠(𝑢̃𝑛 ,𝑣̃𝑛) ⋆ (𝑢̃𝑛, 𝑣̃𝑛)) ≤ 𝐼𝜇(𝑢̃𝑛, 𝑣̃𝑛), and replacing (𝑢̃𝑛, 𝑣̃𝑛) by (𝑢̂𝑛, 𝑣𝑛) ∶= 𝑠(𝑢̃𝑛 ,𝑣̃𝑛) ⋆ (𝑢̃𝑛, 𝑣̃𝑛), 
we get a minimizing sequence (𝑢̂ , 𝑣 ) ∈ + . Thus, by Ekeland’s variational principle (see, for example, Willem [36]), there 
𝑛 𝑛 𝑎1 ,𝑎2 ,𝑟

13 
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exists a radially symmetric Palais–Smale sequence (𝑢𝑛, 𝑣𝑛
) for 𝐼𝜇|𝑆𝑎1 ,𝑟×𝑆𝑎2 ,𝑟  (hence a Palais–Smale sequence for 𝐼𝜇|𝑆𝑎1×𝑆𝑎2 ) satisfying 

‖(𝑢𝑛, 𝑣𝑛) − (𝑢̂𝑛, 𝑣𝑛)‖ → 0 as 𝑛→ ∞, which indicates that
𝑃
(

𝑢𝑛, 𝑣𝑛
)

= 𝑃
(

𝑢̂𝑛, 𝑣𝑛
)

+ 𝑜𝑛(1) → 0 and 𝑢−𝑛 , 𝑣
−
𝑛 → 0 a.e. in R𝑁 .

Then Lemma  2.5 with 𝑐 = 𝑚𝑟(𝑎1, 𝑎2) implies that there exists a (𝑢, 𝑣) ∈ 𝐻𝑟, 𝑢, 𝑣 > 0 and 𝜆1, 𝜆2 > 0 such that, up to a subsequence 
if necessary, (𝑢𝑛, 𝑣𝑛

)

→ (𝑢, 𝑣) in 𝐻𝑟 and 
(

𝜆1,𝑛, 𝜆2,𝑛
)

→
(

𝜆1, 𝜆2
) in (R+)2. From the strong convergence, (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2  is a solution of 

(1.1)–(1.2) and thus a normalized ground state. □

4. Proof of Theorem  1.2

In this section, we deal with the 𝐿2-supercritical case 𝑞 ∶= 2+ 4
𝑁 < 𝑞 < 2∗. We consider once again the Pohozaev manifold 𝑎1 ,𝑎2 , 

which can be decomposed as
𝑎1 ,𝑎2 = +

𝑎1 ,𝑎2
∪ 0

𝑎1 ,𝑎2
∪ −

𝑎1 ,𝑎2
.

If there exists (𝑢, 𝑣) ∈ 0
𝑎1 ,𝑎2

, then we have that

(𝑞𝛾𝑞 − 2)𝜇𝛾𝑞 ∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥 + 2(2∗ − 2)∫R𝑁
|𝑢|𝛼 |𝑣|𝛽 d𝑥 = 0.

Since 𝑞𝛾𝑞 > 2, there must be (𝑢, 𝑣) = (0, 0), which contradicts the fact that (𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 . This implies that 0
𝑎1 ,𝑎2

= ∅ and then, 
as in Lemma  3.2, we can prove that 𝑎1 ,𝑎2  is a smooth manifold of codimension 3 in 𝐻 . However, we know that the geometry of 
𝑎1 ,𝑎2  will be different from the one in Lemma  3.3.

Lemma 4.1.  For each (𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 , there exists a unique 𝑡(𝑢,𝑣) ∈ R such that 𝑡(𝑢,𝑣) ⋆ (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2 , where 𝑡(𝑢,𝑣) is the unique critical 
point of the function of 𝛷(𝑢,𝑣) and it is a strict maximum point at positive level. Moreover, it holds:

(i) 𝑎1 ,𝑎2 = −
𝑎1 ,𝑎2

;
(ii) 𝛷(𝑢,𝑣)(𝑠) is strictly increasing on (−∞, 𝑡(𝑢,𝑣)) and

𝛷(𝑢,𝑣)(𝑡(𝑢,𝑣)) = max
𝑠∈R

𝛷(𝑢,𝑣)(𝑠) > 0;

(iii) The map (𝑢, 𝑣) ↦ 𝑡(𝑢,𝑣) ∈ R is of class 𝐶1;
(iv) 𝑃 (𝑢, 𝑣) < 0 if and only if 𝑡(𝑢,𝑣) < 0.

Proof.  In view of
𝛷(𝑢,𝑣)(𝑠) = 𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣))

= 𝑒2𝑠

2 ∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 −
𝜇𝑒𝑞𝛾𝑞𝑠

𝑞 ∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥

− 2𝑒2∗𝑠
2∗ ∫R𝑁

|𝑢|𝛼|𝑣|𝛽 d𝑥,

we have
𝛷′

(𝑢,𝑣)(𝑠) = 𝑒2𝑠 ∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 − 𝜇𝛾𝑞𝑒
𝑞𝛾𝑞𝑠

∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥

− 2𝑒2
∗𝑠
∫R𝑁

|𝑢|𝛼|𝑣|𝛽 d𝑥.

It is easy to see that 𝛷′
(𝑢,𝑣)(𝑠) = 0 if and only if

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 = 𝜇𝛾𝑞𝑒
(𝑞𝛾𝑞−2)𝑠

∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥

+ 2𝑒(2
∗−2)𝑠

∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥 ≜ 𝑔(𝑠).

Clearly, 𝑔(⋅) is positive, continuous and monotone increasing, and 𝑔(𝑠) → 0+ as 𝑠 → −∞ and 𝑔(𝑠) → +∞ as 𝑠 → +∞. Therefore, there 
exists a unique point 𝑡(𝑢,𝑣) such that 𝑡(𝑢,𝑣)⋆ (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2 , where 𝑡(𝑢,𝑣) is the unique critical point of 𝛷(𝑢,𝑣)(⋅) and it is a strict maximum 
point at positive level. By maximality, we have that 𝛷′′

(𝑢,𝑣)(𝑡(𝑢,𝑣)) ≤ 0 and since 0
𝑎1 ,𝑎2

= ∅, we conclude that 𝑡(𝑢,𝑣) ⋆ (𝑢, 𝑣) ∈ −
𝑎1 ,𝑎2

 and 
𝑎1 ,𝑎2 = −

𝑎1 ,𝑎2
 since 𝛷(𝑢,𝑣)(⋅) has exactly one inflection point. In order to show that the map (𝑢, 𝑣) ↦ 𝑡(𝑢,𝑣) ∈ R is of class 𝐶1, we can 

apply the implicit function theorem as in Lemma  3.3. Finally, since 𝛷′
(𝑢,𝑣)(𝑠) < 0 if and only if 𝑠 > 𝑡(𝑢,𝑣), so 𝑃 (𝑢, 𝑣) = 𝛷′

(𝑢,𝑣)(0) < 0 if 
and only if 𝑡(𝑢,𝑣) < 0. □

Lemma 4.2.  The minimum 𝑚𝜇(𝑎1, 𝑎2) has a the following minimax representation
𝑚𝜇(𝑎1, 𝑎2) = inf

𝑆 ×𝑆
max
𝑠∈R

𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)).

𝑎1 𝑎2

14 
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Proof.  For (𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 , by Lemma  4.1, we have
max
𝑠∈R

𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)) = 𝐼𝜇(𝑡(𝑢,𝑣) ⋆ (𝑢, 𝑣)) ≥ 𝑚𝜇(𝑎1, 𝑎2).

Hence

𝑚𝜇(𝑎1, 𝑎2) ≤ inf
𝑆𝑎1×𝑆𝑎2

max
𝑠∈R

𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)).

On the other hand, by using Lemma  4.1, we also obtain
𝐼𝜇(𝑢, 𝑣) = max

𝑠∈R
𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)) ≥ inf

𝑆𝑎1×𝑆𝑎2
max
𝑠∈R

𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)) if (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2 ,

and thus we conclude that
𝑚𝜇(𝑎1, 𝑎2) = inf

𝑆𝑎1×𝑆𝑎2
max
𝑠∈R

𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)). □

We recall the following useful lemma, which is needed in proving Lemma  4.4 below, see the paper of Bartsch-Soave [14].

Lemma 4.3.  The map (𝑠, 𝑢) ∈ R ×𝐻1(R𝑁 ) → 𝑠 ⋆ 𝑢 ∈ 𝐻1(R𝑁 ) is continuous.
Now, we give a way to find the required Palais–Smale sequence in Lemma  2.5.

Lemma 4.4.  There exists a radial Palais–Smale sequence for 𝐼𝜇|𝑆𝑎1×𝑆𝑎2  at level 𝑚𝜇(𝑎1, 𝑎2) with 𝑃
(

𝑢𝑛, 𝑣𝑛
)

→ 0 and 𝑢−𝑛 , 𝑣−𝑛 → 0 a.e. in 
R𝑁 .

Proof.  We use the strategy firstly introduced in Jeanjean [24] and consider the functional 𝐼𝜇 ∶R ×𝐻1(R𝑁 ) ×𝐻1(R𝑁 ) → R defined 
by

𝐼𝜇(𝑠, 𝑢, 𝑣) ∶= 𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣))

on the constraint R × 𝑆𝑎1 ,𝑟 × 𝑆𝑎2 ,𝑟. It is straightforward to check that 𝐼𝜇 is of class 𝐶1. Let
𝐼𝑐𝜇 ∶= {(𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 ∶ 𝐼𝜇(𝑢, 𝑣) ≤ 𝑐}.

Note that, for any (𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 , we have

𝐼𝜇(𝑢, 𝑣) ≥
1
2 ∫R𝑁

(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 −
2𝑆

− 2∗
2

𝛼,𝛽

2∗

(

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥
)

2∗
2

−
𝜇
𝑞
𝐶𝑁,𝑞𝑎

𝑞(1−𝛾𝑞 )
1 ‖∇𝑢‖

𝑞𝛾𝑞
2 −

𝜇
𝑞
𝐶𝑁,𝑞𝑎

𝑞(1−𝛾𝑞 )
2 ‖∇𝑣‖

𝑞𝛾𝑞
2 > 0

and

𝑃 (𝑢, 𝑣) ≥ ∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 − 2𝑆
− 2∗

2
𝛼,𝛽

(

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥
)

2∗
2

− 𝜇𝛾𝑞𝐶𝑁,𝑞𝑎
𝑞(1−𝛾𝑞 )
1 ‖∇𝑢‖

𝑞𝛾𝑞
2 − 𝜇𝛾𝑞𝐶𝑁,𝑞𝑎

𝑞(1−𝛾𝑞 )
2 ‖∇𝑣‖

𝑞𝛾𝑞
2 > 0,

if (𝑢, 𝑣) ∈ 𝐴𝑘 with 𝑘 small enough. By Lemma  4.1, we know that 𝑚𝜇(𝑎1, 𝑎2) > 0, thus if necessary replacing 𝑘 by a smaller quantity, 
we also have

𝐼𝜇(𝑢, 𝑣) ≤
1
2 ∫R𝑁

(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 < 𝑚𝜇(𝑎1, 𝑎2).

We consider now the following minimax level
𝜎 ∶= inf

𝛾∈𝛤
max
𝑡∈[0,1]

𝐼𝜇(𝛾(𝑡))

with

𝛤 =
{

𝛾 =
(

𝛼, 𝜑1, 𝜑2
)

∈ 𝐶
(

[0, 1],R × 𝑆𝑎1 ,𝑟 × 𝑆𝑎2 ,𝑟
)

∶

𝛾(0) ∈ {0} × 𝐴𝑘, 𝛾(1) ∈ {0} × 𝐼0𝜇
}

.

Next, we shall show that 𝜎 = 𝑚𝜇(𝑎1, 𝑎2). On the one hand, we note that for any (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2 , there are (𝑢∗, 𝑣∗) ∈ 𝑆𝑎1 ,𝑟 × 𝑆𝑎2 ,𝑟 and 
𝑃 (𝑢∗, 𝑣∗) ≤ 𝑃 (𝑢, 𝑣) = 0, which implies 𝑡∗ = 𝑡(𝑢∗ ,𝑣∗) ≤ 0. It follows that

𝐼𝜇(𝑢, 𝑣) ≥ 𝐼𝜇(𝑡∗ ⋆ (𝑢, 𝑣)) ≥ 𝐼𝜇(𝑡∗ ⋆ (𝑢∗, 𝑣∗)) = max
𝑠∈R

𝐼𝜇(𝑠 ⋆ (𝑢∗, 𝑣∗)).

Clearly,

‖∇𝑠 ⋆ 𝑢∗‖2 + ‖∇𝑠 ⋆ 𝑣∗‖2 → 0+  as 𝑠 → −∞,
2 2
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𝐼𝜇
(

𝑠 ⋆
(

𝑢∗, 𝑣∗
))

→ −∞  as 𝑠 → ∞.

So, there exist 𝑠0 ≪ −1 and 𝑠1 ≫ 1, such that 𝑠0 ⋆ (𝑢∗, 𝑣∗) ∈ 𝐴𝑘 and 𝑠1 ⋆ (𝑢∗, 𝑣∗) ∈ 𝐼0𝜇 . We define

𝛾∗ ∶ 𝑡 ∈ [0, 1] ↦
(

0,
[

(1 − 𝑡)𝑠0 + 𝑡𝑠1
]

⋆ (𝑢∗, 𝑣∗)
)

∈ R × 𝑆𝑎1 ,𝑟 × 𝑆𝑎2 ,𝑟.

By Lemma  4.3, one has 𝛾∗ ∈ 𝛤 . Thus,
𝜎 ≤ max

𝑡∈[0,1]
𝐼𝜇(𝛾∗(𝑡)) ≤ max

𝑠∈R
𝐼𝜇(𝑠 ⋆ (𝑢∗, 𝑣∗)) ≤ 𝐼𝜇(𝑢, 𝑣),

implying that 𝜎 ≤ 𝑚𝜇(𝑎1, 𝑎2). On the other hand, for any path 𝛾 = (𝛼, 𝜑1, 𝜑2) ∈ 𝛤 , we consider the function
𝑃𝛾 ∶ 𝑡 ∈ [0, 1] ↦ 𝑃

(

𝛼(𝑡) ⋆ (𝜑1(𝑡), 𝜑2(𝑡))
)

∈ R.

One easily verify that 𝑃𝛾 (0) > 0 and 𝑃𝛾 is continuous. We claim that 𝑃𝛾 (1) < 0. Indeed, from Lemma  4.1, if 𝑃𝛾 (1) ≥ 0, we get 
𝑡(𝜑1(1),𝜑2(1)) ≥ 0, and then

𝐼𝜇(𝜑1(1), 𝜑2(1)) = 𝛷(𝜑1(1),𝜑2(1))(0) > 𝛷(𝜑1(1),𝜑2(1))(−∞) = 0+,

which is a contradiction. Hence, we deduce that there exists 𝑡𝛾 ∈ (0, 1) such that 𝑃𝛾 (𝑡𝛾 ) = 0, namely that, 𝛼(𝑡𝛾 )⋆(𝜑1(𝑡𝛾 ), 𝜑2(𝑡𝛾 )) ∈ 𝑎1 ,𝑎2 , 
and so

max
𝑡∈[0,1]

𝐼𝜇(𝛾(𝑡)) ≥ 𝐼𝜇
(

𝛾
(

𝑡𝛾
))

= 𝐼𝜇
(

𝛼
(

𝑡𝛾
)

⋆
(

𝜑1
(

𝑡𝛾
)

, 𝜑2
(

𝑡𝛾
)))

≥ 𝑚𝜇
(

𝑎1, 𝑎2
)

,

which implies that 𝜎 ≥ 𝑚𝜇(𝑎1, 𝑎2). Therefore, 𝜎 = 𝑚𝜇(𝑎1, 𝑎2).
Let  = {𝛾([0, 1])∶ 𝛾 ∈ 𝛤 }. According to the notation of Theorem 3.2 by Ghoussoub [47], this means that  is a homotopy 

stable family of compact subsets of R × 𝑆𝑎1 ,𝑟 × 𝑆𝑎2 ,𝑟 with extended closed boundary ({0} × 𝐴𝑘) ∪ ({0} × 𝐼0𝜇), and that the superlevel 
set {𝐼𝜇 ≥ 𝜎} is a dual set for  , which means that the assumptions by Ghoussoub [47, Theorem 3.2] are satisfied. Therefore, 
by using [47, Theorem 3.2], we can take any minimizing sequence {𝛾𝑛([0, 1]), 𝛾𝑛 = (𝛼𝑛, 𝜑1,𝑛, 𝜑2,𝑛)}𝑛∈N for 𝜎 with the property that 
𝛼(𝑡) = 0, 𝜑1,𝑛(𝑡) ≥ 0, 𝜑2,𝑛(𝑡) ≥ 0 for every 𝑡 ∈ [0, 1]. Indeed, replacing 𝛾𝑛 by 𝛾̃𝑛 = (0, 𝛼𝑛 ⋆ (|𝜑1,𝑛|, |𝜑2,𝑛|)), there exists a Palais–Smale 
sequence {(𝑠𝑛, 𝑢𝑛, 𝑣𝑛)}𝑛∈N ⊆ R × 𝑆𝑎1 ,𝑟 × 𝑆𝑎2 ,𝑟, such that 𝐼𝜇(𝑠𝑛, 𝑢𝑛, 𝑣𝑛) → 𝜎, 

𝜕𝑠𝐼𝜇
(

𝑠𝑛, 𝑢𝑛, 𝑣𝑛
)

→ 0 and ‖

‖

‖

𝜕(𝑢,𝑣)𝐼𝜇
(

𝑠𝑛, 𝑢𝑛, 𝑣𝑛
)

‖

‖

‖(𝑇𝑢𝑛𝑆𝑎1 ,𝑟×𝑇𝑣𝑛𝑆𝑎2 ,𝑟)
∗ → 0, (4.1)

as 𝑛→ +∞, with the property that 
|

|

𝑠𝑛|| + dist
((

𝑢𝑛, 𝑣𝑛
)

,
(

𝜑1,𝑛([0, 1]), 𝜑2,𝑛([0, 1])
))

→ 0. (4.2)

Let (𝑢𝑛, 𝑣𝑛) = 𝑠𝑛 ⋆ (𝑢𝑛, 𝑣𝑛) ∈ 𝑆𝑎1 ,𝑟 ×𝑆𝑎2 ,𝑟. By the definition of 𝐼𝜇(𝑠𝑛, 𝑢𝑛, 𝑣𝑛) and the first condition in (4.1), we obtain 𝑃 (𝑢𝑛, 𝑣𝑛) → 0. The 
second condition in (4.1) reveals that for any (𝜙,𝜓) ∈ 𝑇𝑢𝑛𝑆𝑎1 ,𝑟 × 𝑇𝑣𝑛𝑆𝑎2 ,𝑟, we have

𝐼 ′𝜇
(

𝑢𝑛, 𝑣𝑛
)

[𝜙,𝜓] = 𝜕(𝑢,𝑣)𝐼𝜇
(

𝑠𝑛, 𝑢𝑛, 𝑣𝑛
) [(

−𝑠𝑛
)

⋆ (𝜙,𝜓)
]

= 𝑜𝑛(1)
‖

‖

‖

(

−𝑠𝑛
)

⋆ (𝜙,𝜓)‖‖
‖𝐻

= 𝑜𝑛(1)‖(𝜙,𝜓)‖𝐻 as 𝑛→ +∞.

From (4.2), we infer that {𝑠𝑛}𝑛∈N is bounded and 𝑢−𝑛 , 𝑣−𝑛 → 0 a.e. in R𝑁 . To sum up, {(𝑢𝑛, 𝑣𝑛)}𝑛∈N is a Palais–Smale sequence for 
𝐼𝜇|𝑆𝑎1 ,𝑟×𝑆𝑎2 ,𝑟  and hence a radial symmetric Palais–Smale sequence for 𝐼𝜇|𝑆𝑎1×𝑆𝑎2  at level 𝜎 = 𝑚𝜇(𝑎1, 𝑎2) with 𝑃 (𝑢𝑛, 𝑣𝑛) → 0. □

We fix 𝑎1, 𝑎2 > 0. Then, using Lemma 2.1 by Li-Zou [43, Lemma 2.1.], if 𝑞 ∈ (2 + 4
𝑁 , 2

∗), we have 

𝑚𝜇(𝑎1, 0) > 0 and 𝑚𝜇(0, 𝑎2) > 0. (4.3)

Lemma 4.5.  For fixed 𝑎1, 𝑎2 > 0, the following statements hold:
(i) 𝑚𝜇(𝑎1, 𝑎2) ≤ 𝑚𝜇

(

𝑏1, 𝑏2
)  for any 0 < 𝑏1 ≤ 𝑎1, 0 < 𝑏2 ≤ 𝑎2;

(ii) 𝑚𝜇(𝑎1, 𝑎2) is nonincreasing with respect to 𝜇 ∈ (0,+∞);
(iii) lim𝜇→∞ 𝑚𝜇(𝑎1, 𝑎2) = 0+.

Proof.  (i) The statements can be shown by Lemma  3.4 (ii). (ii) For any 𝜇 ≥ 𝜇′ > 0, one has
𝑚𝜇(𝑎1, 𝑎2) = inf

𝑆𝑎1×𝑆𝑎2
max
𝑠∈R

𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)) ≤ inf
𝑆𝑎1×𝑆𝑎2

max
𝑠∈R

𝐼𝜇′ (𝑠 ⋆ (𝑢, 𝑣)) = 𝑚𝜇′ (𝑎1, 𝑎2),

from which the conclusion follows. (iii) We first prove that 𝑚𝜇(𝑎1, 𝑎2) > 0 for any 𝜇 > 0. Indeed, for any (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2 , we have
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 = 𝜇𝛾𝑞
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥 + 2 |𝑢|𝛼|𝑣|𝛽 d𝑥
∫R𝑁 ∫R𝑁 ∫R𝑁

16 
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≤ 𝐶1

(

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥
)

𝑞𝛾𝑞
2

+ 𝐶2

(

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥
)

2∗
2
,

which implies

inf
𝑎1 ,𝑎2 ∫R𝑁

(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 > 0.

Therefore, we deduce from this that

𝑚𝜇(𝑎1, 𝑎2) = inf
𝑎1 ,𝑎2

𝐼𝜇(𝑢, 𝑣) −
1
2
𝑃 (𝑢, 𝑣)

= inf
𝑎1 ,𝑎2

(

𝜇
𝑞𝛾𝑞 − 2
2𝑞 ∫R𝑁

(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥 + (1 − 2
2∗

)∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥

)

≥ 𝐶 inf
𝑎1 ,𝑎2 ∫R𝑁

(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 > 0.

Now (iii) holds if we can prove that for any 𝜀 > 0, there exists 𝜇 > 0 such that 
𝑚𝜇(𝑎1, 𝑎2) < 𝜀 for any 𝜇 ≥ 𝜇. (4.4)

Choosing 𝜙 ∈ 𝐶∞
0 (R𝑁 ) with ‖𝜙‖2 ≤ min{𝑎1, 𝑎2} and noting that 

𝑚𝜇(𝑎1, 𝑎2) ≤ 𝑚𝜇
(

‖𝜙‖2, ‖𝜙‖2
)

≤ max
𝑠∈R

𝐼𝜇(𝑠 ⋆ 𝜙, 𝑠 ⋆ 𝜙)

= max
𝑠∈R

2
(

𝐸(𝑠 ⋆ 𝜙) −
𝜇𝑒𝑞𝛾𝑞𝑠

𝑞
‖𝜙‖𝑞𝑞

)

,
(4.5)

where 𝐸(𝑢) is defined by

𝐸(𝑢) = 1
2 ∫R𝑁

|∇𝑢|2 d𝑥 − 1
2∗ ∫R𝑁

|𝑢|2
∗
d𝑥.

Since 𝐸(𝑠 ⋆ 𝜙) − 𝜇𝑒𝑞𝛾𝑞 𝑠

𝑞 ‖𝜙‖𝑞𝑞 → 0+ as 𝑠 → −∞, there exists 𝑠0 > 0 such that 𝐸(𝑠 ⋆ 𝜙) − 𝜇𝑒𝑞𝛾𝑞 𝑠

𝑞 ‖𝜙‖𝑞𝑞 < 𝜀 for any 𝑠 < −𝑠0. On the other 
hand, there exists 𝜇 > 0 such that

max
𝑠≥−𝑠0

2
(

𝐸(𝑠 ⋆ 𝜙) −
𝜇𝑒𝑞𝛾𝑞𝑠

𝑞
‖𝜙‖𝑞𝑞

)

≤ 2

(

‖∇𝜙‖𝑁2
𝑁‖𝜙‖𝑁2∗

−
𝜇𝑒−𝑞𝛾𝑞𝑠0

𝑞
‖𝜙‖𝑞𝑞

)

< 𝜀 for 𝜇 ≥ 𝜇.

and so max𝑠∈R 2
(

𝐸(𝑠 ⋆ 𝜙) − 𝜇𝑒𝑞𝛾𝑞 𝑠

𝑞 ‖𝜙‖𝑞𝑞
)

< 𝜀 when 𝜇 ≥ 𝜇. Therefore, by combining this with (4.5), we obtain (4.4), and the conclusion 
follows. □

Recall that the minimizer for 𝑆 in (2.3) is achieved by the function

𝑈𝜀(𝑥) ∶= (𝑁(𝑁 − 2))
𝑁−2
4

(

𝜀
𝜀2 + |𝑥|2

)
𝑁−2
2
,

where 𝜀 > 0 is a parameter. We define the test functions 𝜂𝜀(𝑥) ∶= 𝜙(𝑥)𝑈𝜀(𝑥), where 𝜙(𝑥) ∈ 𝐶∞
0 (R𝑁 ) is a radial cut-off function with 

𝜙 ∈ [0, 1], 𝜙 ≡ 1 on 𝐵1(0) and 𝜙 ≡ 0 on R𝑁 ⧵ 𝐵2(0). By Jeanjean-Le [30] or Soave [26], we can derive the following well-known 
asymptotic estimations.

Lemma 4.6.  We have for 𝜀→ 0+

‖∇𝜂𝜀‖22 = 𝑆
𝑁
2 + 𝑂(𝜀𝑁−2),

‖𝜂𝜀‖
2∗
2∗ = 𝑆

𝑁
2 + 𝑂(𝜀𝑁 ),

‖𝜂𝜀‖
2
2 =

⎧

⎪

⎨

⎪

⎩

𝑂(𝜀2), if 𝑁 ≥ 5,
𝑂(𝜀2| ln 𝜀|), if 𝑁 = 4,
𝑂(𝜀), if 𝑁 = 3,

and

‖𝜂𝜀‖
𝑞
𝑞 =

⎧

⎪

⎨

⎪

𝑂(𝜀𝑁−(𝑁−2)𝑞∕2), if 𝑁 ≥ 4 and 𝑞 ∈ (2, 2∗) or if 𝑁 = 3 and 𝑞 ∈ (3, 6),
𝑂(𝜀𝑞∕2), if 𝑁 = 3 and 𝑞 ∈ (2, 3),

3∕2

⎩

𝑂(𝜀 | ln 𝜀|), if 𝑁 = 3 and 𝑞 = 3.
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Lemma 4.7.  Fix 𝑎1, 𝑎2 > 0, then

𝑚𝜇(𝑎1, 𝑎2) <
2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
 for all 𝜇 > 0.

Proof.  We define

𝑢𝜀 =
𝑎1

‖𝜂𝜀‖2
𝜂𝜀 and 𝑣𝜀 =

𝑎2
‖𝜂𝜀‖2

𝜂𝜀,

Let 𝑡𝜀 ∶= 𝑡(𝑢𝜀 ,𝑣𝜀) be given by Lemma  4.1. Then by (2.6) and 𝑡𝜀 ⋆ (𝑢𝜀, 𝑣𝜀) ∈ 𝑎1 ,𝑎2 , for 𝜀 > 0 sufficiently small, we have 

𝑚𝜇(𝑎1, 𝑎2)

≤ 𝐼𝜇(𝑡𝜀 ⋆ (𝑢𝜀, 𝑣𝜀))

= 𝑒2𝑡𝜀
2 ∫R𝑁

(

|∇𝑢𝜀|
2 + |∇𝑣𝜀|

2) d𝑥 −
𝜇𝑒𝑞𝛾𝑞 𝑡𝜀
𝑞 ∫R𝑁

(

|

|

𝑢𝜀||
𝑞 + |

|

𝑣𝜀||
𝑞) d𝑥

− 2𝑒2∗𝑡𝜀
2∗ ∫R𝑁

|𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥

≤ sup
𝑠>0

(

𝑠2

2 ∫R𝑁
(

|∇𝑢𝜀|
2 + |∇𝑣𝜀|

2) d𝑥 − 2𝑠2∗

2∗ ∫R𝑁
|𝑢𝜀|

𝛼
|𝑣𝜀|

𝛽 d𝑥
)

− 𝐶𝑒𝑞𝛾𝑞 𝑡𝜀
‖𝜂𝜀‖

𝑞
𝑞

‖𝜂𝜀‖
𝑞
2

= 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ 𝑂(𝜀𝑁−2) − 𝐶𝑒𝑞𝛾𝑞 𝑡𝜀

‖𝜂𝜀‖
𝑞
𝑞

‖𝜂𝜀‖
𝑞
2

,

(4.6)

where we have used that

sup
𝑠>0

(

𝑠2

2
𝐴 − 2𝑠2∗

2∗
𝐵
)

= 1
𝑁

(

𝐴
(2𝐵)2∕2∗

)𝑁∕2
with 𝐴,𝐵 > 0.

According to 𝑃 (𝑡𝜀 ⋆ (𝑢𝜀, 𝑣𝜀)) = 0, we have that

2𝑒(2
∗−2)𝑡𝜀

∫R𝑁
|𝑢𝜀|

𝛼
|𝑣𝜀|

𝛽 d𝑥 ≤ ∫R𝑁
(

|∇𝑢𝜀|
2 + |∇𝑣𝜀|

2) d𝑥.

Hence it follows that 

𝑒𝑡𝜀 ≤

(

∫R𝑁
(

|∇𝑢𝜀|
2 + |∇𝑣𝜀|

2) d𝑥

2 ∫R𝑁 |𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥

)
1

2∗−2

. (4.7)

From (4.7), 𝑃 (𝑡𝜀 ⋆ (𝑢𝜀, 𝑣𝜀)) = 0 and the fact 𝑞𝛾𝑞 > 2, we infer that

𝑒(2
∗−2)𝑡𝜀

=
∫R𝑁 |∇𝑢𝜀|

2 + |∇𝑣𝜀|
2 d𝑥

2 ∫R𝑁 |𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥
− 𝜇𝛾𝑞𝑒

(𝑞𝛾𝑞−2)𝑡𝜀
∫R𝑁 |

|

𝑢𝜀||
𝑞 + |

|

𝑣𝜀||
𝑞 d𝑥

2 ∫R𝑁 |𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥

≥
∫R𝑁 |∇𝑢𝜀|

2 + |∇𝑣𝜀|
2 d𝑥

2 ∫R𝑁 |𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥

− 𝜇𝛾𝑞
∫R𝑁 |

|

𝑢𝜀||
𝑞 + |

|

𝑣𝜀||
𝑞 d𝑥

2 ∫R𝑁 |𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥

(

∫R𝑁 |∇𝑢𝜀|
2 + |∇𝑣𝜀|

2 d𝑥

2 ∫R𝑁 |𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥

)

𝑞𝛾𝑞−2
2∗−2

=
‖∇𝜂𝜀‖22‖𝜂𝜀‖

2∗−2
2

‖𝜂𝜀‖2
∗
2∗

(

𝐶1 − 𝐶2‖∇𝜂𝜀‖
−

2(2∗−𝑞𝛾𝑞 )
2∗−2

2 ‖𝜂𝜀‖
−

2∗(𝑞𝛾𝑞−2)
2∗−2

2∗
‖𝜂𝜀‖

𝑞
𝑞

‖𝜂𝜀‖
𝑞−𝑞𝛾𝑞
2

)

.

On account of Lemma  4.6, by using ‖∇𝜂𝜀‖22 → 𝑆
𝑁
2 , ‖𝜂𝜀‖2

∗

2∗ → 𝑆
𝑁
2  and

‖𝜂𝜀‖
𝑞
𝑞

‖𝜂𝜀‖
𝑞−𝑞𝛾𝑞
2

=

⎧

⎪

⎨

⎪

⎩

𝑂(𝜀
6−𝑞
4 ), if 𝑁 = 3,

𝑂(| ln 𝜀|−
𝑞(1−𝛾𝑞 )

2 ), if 𝑁 = 4,

as 𝜀 → 0, for some constant 𝐶 > 0, we can obtain

𝑒𝑡𝜀 ≥ 𝐶‖𝜂𝜀‖2.
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Consequently, by using (4.6), for all sufficiently small 𝜀 > 0, we infer to

𝑚𝜇(𝑎1, 𝑎2) ≤
2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ 𝑂(𝜀𝑁−2) − 𝐶

‖𝜂𝜀‖
𝑞
𝑞

‖𝜂𝜀‖
𝑞−𝑞𝛾𝑞
2

≤ 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ 𝑂(𝜀𝑁−2) −

⎧

⎪

⎨

⎪

⎩

𝑂(𝜀
6−𝑞
4 ), if 𝑁 = 3,

𝑂(| ln 𝜀|−
𝑞(1−𝛾𝑞 )

2 ), if 𝑁 = 4,

< 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
,

from which the statement of the lemma follows. □

Proof of Theorem  1.2.  Combining (4.3) along with Lemmas  2.5, 4.4, 4.5 and 4.7, the proof is complete. □

5. Proof of Theorem  1.3

In this section, we deal with the 𝐿2-critical case 𝑞 = 𝑞 ∶= 2+ 4
𝑁 < 2∗. Note that 𝑞𝛾𝑞 = 2. We first introduce the following constant 

𝜇3 ∶=
𝑞
2
𝐶−1
𝑁,𝑞

(

𝑎𝑞−21 + 𝑎𝑞−22

)−1
. (5.1)

Lemma 5.1.  For 𝜇 > 0, we have

𝜇(𝑎1, 𝑎2) ∶=
{

(𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 ∶ ‖∇𝑢‖
2
2 + ‖∇𝑣‖22 >

2𝜇
𝑞
(‖𝑢‖𝑞𝑞 + ‖𝑣‖𝑞𝑞)

}

≠ ∅.

If 0 < 𝜇 < 𝜇3, then 𝜇(𝑎1, 𝑎2) = 𝑆𝑎1 × 𝑆𝑎2 .

Proof.  If 0 < 𝜇 < 𝜇3, for (𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 , we get
2𝜇
𝑞
(‖𝑢‖𝑞𝑞 + ‖𝑣‖𝑞𝑞) ≤

2𝜇
𝑞
𝐶𝑁,𝑞(𝑎

𝑞−2
1 + 𝑎𝑞−22 )(‖∇𝑢‖22 + ‖∇𝑣‖22) < (‖∇𝑢‖22 + ‖∇𝑣‖22),

hence 𝑆𝑎1 × 𝑆𝑎2 = 𝜇(𝑎1, 𝑎2). If 𝜇 ≥ 𝜇3, we claim that 

sup
(𝑢,𝑣)∈𝑆𝑎1×𝑆𝑎2

‖∇𝑢‖22 + ‖∇𝑣‖22
‖𝑢‖𝑞𝑞 + ‖𝑣‖𝑞𝑞

= +∞, (5.2)

from which 𝜇(𝑎1, 𝑎2) ≠ ∅ follows. For this purpose, we consider the function

𝜙𝑛(𝑥) ∶=

{

sin 𝑛|𝑥|, if |𝑥| ≤ 𝜋,
0, if |𝑥| > 𝜋,

and define 𝑢𝑛 ∶= 𝑎1
‖𝜙𝑛‖2

𝜙𝑛, 𝑣𝑛 ∶=
𝑎2

‖𝜙𝑛‖2
𝜙𝑛. Clearly, (𝑢𝑛, 𝑣𝑛) ∈ 𝑆𝑎1 × 𝑆𝑎2 . Since ‖∇𝜙𝑛‖22 = 𝑂(𝑛2), ‖𝜙𝑛‖22 = 𝑂(1) and ‖𝜙𝑛‖𝑞𝑞 = 𝑂(1), one has

‖∇𝑢𝑛‖22 + ‖∇𝑣𝑛‖22
‖𝑢𝑛‖

𝑞
𝑞 + ‖𝑣𝑛‖

𝑞
𝑞

=
𝑎21 + 𝑎

2
2

𝑎𝑞1 + 𝑎
𝑞
2

‖𝜙𝑛‖
𝑞−2
2 ‖∇𝜙𝑛‖22
‖𝜙𝑛‖

𝑞
𝑞

→ +∞ as 𝑛→ +∞,

and (5.2) follows. □

Recall the decomposition
𝑎1 ,𝑎2 = +

𝑎1 ,𝑎2
∪ 0

𝑎1 ,𝑎2
∪ −

𝑎1 ,𝑎2
,

introduced in (2.9). Then, we have the following conclusions, by analogous arguments as in Section 4.

Lemma 5.2.  For each (𝑢, 𝑣) ∈ 𝜇(𝑎1, 𝑎2), there exists a unique 𝑡(𝑢,𝑣) ∈ R such that 𝑡(𝑢,𝑣) ⋆ (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2 , where 𝑡(𝑢,𝑣) is the unique critical 
point of the function of 𝛷(𝑢,𝑣). Moreover, it holds:

(i) 𝑎1 ,𝑎2 = −
𝑎1 ,𝑎2

 and 𝑎1 ,𝑎2  is a submanifold of 𝐻 ;
(ii) 𝑠 ⋆ (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2  if and only if 𝑠 = 𝑡(𝑢,𝑣);
(iii) 𝛷(𝑢,𝑣)(𝑠) is strictly decreasing on (𝑡(𝑢,𝑣),+∞) and

𝛷 (𝑡 ) = max𝛷 (𝑠) > 0;
(𝑢,𝑣) (𝑢,𝑣) 𝑠∈R (𝑢,𝑣)
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(iv) The map (𝑢, 𝑣) ↦ 𝑡(𝑢,𝑣) ∈ R is of class 𝐶1.

Lemma 5.3. 𝑚𝜇(𝑎1, 𝑎2) has a minimax representation of the form

𝑚𝜇(𝑎1, 𝑎2) = inf
𝜇 (𝑎1 ,𝑎2)

max
𝑠∈R

𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)).

From Soave [25], we know that for fixed 𝜆, 𝜇 > 0, 

𝑚𝜇(𝑎1, 0) > 0 and 𝑚𝜇(0, 𝑎2) > 0. (5.3)

Lemma 5.4.  If 0 < 𝜇 < 𝜇3, then there exists a radial Palais–Smale sequence for 𝐼𝜇|𝜇 (𝑎1 ,𝑎2) at level 𝑚𝜇(𝑎1, 𝑎2) with 𝑃
(

𝑢𝑛, 𝑣𝑛
)

→ 0 and 
𝑢−𝑛 , 𝑣

−
𝑛 → 0 a.e. in R𝑁 .

The proofs of Lemmas  5.2, 5.3 and 5.4 can be carried out analogously as it was done in the proofs of Lemmas  4.1, 4.2 and 4.4, 
respectively. So we omit it here.

Lemma 5.5.  Let 0 < 𝜇 < 𝜇3 and fix 𝑎1, 𝑎2 > 0. Then the following statements hold:
(i) 𝑚𝜇(𝑎1, 𝑎2) ≤ 𝑚𝜇

(

𝑏1, 𝑏2
)  for any 0 < 𝑏1 ≤ 𝑎1, 0 < 𝑏2 ≤ 𝑎2;

(ii) 𝑚𝜇(𝑎1, 𝑎2) is nonincreasing with respect to 𝜇 ∈ (0, 𝜇3).

Proof.  (i) Since 0 < 𝜇 < 𝜇3 implies 𝜇(𝑎1, 𝑎2) = 𝑆𝑎1 × 𝑆𝑎2 , the statement can be proved as in Lemma  3.4 (ii).
(ii) For any 𝜇3 > 𝜇 ≥ 𝜇′ > 0, one has

𝑚𝜇(𝑎1, 𝑎2) = inf
𝑆𝑎1×𝑆𝑎2

max
𝑠∈R

𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)) ≤ inf
𝑆𝑎1×𝑆𝑎2

max
𝑠∈R

𝐼𝜇′ (𝑠 ⋆ (𝑢, 𝑣)) = 𝑚𝜇′ (𝑎1, 𝑎2),

from which the assertion follows. □

As in the previous section, the following estimate will play a crucial role in the proof of the existence of a ground state.

Lemma 5.6.  Let 0 < 𝜇 < 𝜇3 and fix 𝑎1, 𝑎2 > 0. Then it holds

𝑚𝜇(𝑎1, 𝑎2) <
2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
.

Proof.  We first prove that 𝑚𝜇(𝑎1, 𝑎2) > 0 for 0 < 𝜇 < 𝜇3. Indeed, for any (𝑢, 𝑣) ∈ 𝑎1 ,𝑎2 , by (2.7) and (5.1), we have

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 =
2𝜇
𝑞 ∫R𝑁

(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥 + 2∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥

≤ 𝜇
𝜇3

(

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥
)

+ 𝐶
(

∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥
)

2∗
2
,

which implies

inf
(𝑢,𝑣)∈𝑎1 ,𝑎2 ∫R𝑁

|∇𝑢|2 + |∇𝑣|2 d𝑥 > 0.

Therefore, we deduce that

𝑚𝜇(𝑎1, 𝑎2) = inf
𝑎1 ,𝑎2

𝐼𝜇(𝑢, 𝑣) −
1
2
𝑃 (𝑢, 𝑣) = 2

𝑁
inf

𝑎1 ,𝑎2 ∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥 > 0.

Recall the test functions 𝜂𝜀(𝑥) ∶= 𝜙(𝑥)𝑈𝜀(𝑥) and the definitions

𝑢𝜀 =
𝑎1 𝜂𝜀 and 𝑣𝜀 =

𝑎2 𝜂𝜀

‖𝜂𝜀‖2 ‖𝜂𝜀‖2
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from Section 4. Let 𝑡𝜀 ∶= 𝑡(𝑢𝜀 ,𝑣𝜀) be given by Lemma  5.2. Then by (2.6) and 𝑡𝜀 ⋆ (𝑢𝜀, 𝑣𝜀) ∈ 𝑎1 ,𝑎2 , for 𝜀 > 0 sufficiently small, we have 
𝑚𝜇(𝑎1, 𝑎2) ≤ 𝐼𝜇(𝑡𝜀 ⋆ (𝑢𝜀, 𝑣𝜀))

= 𝑒2𝑡𝜀
2 ∫R𝑁

(

|∇𝑢𝜀|
2 + |∇𝑣𝜀|

2) d𝑥 −
𝜇𝑒2𝑡𝜀
𝑞 ∫R𝑁

(

|

|

𝑢𝜀||
𝑞 + |

|

𝑣𝜀||
𝑞
)

d𝑥

− 2𝑒2∗𝑡𝜀
2∗ ∫R𝑁

|𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥

≤ sup
𝑠>0

(

𝑠2

2 ∫R𝑁
(

|∇𝑢𝜀|
2 + |∇𝑣𝜀|

2) d𝑥 − 2𝑠2∗

2∗ ∫R𝑁
|𝑢𝜀|

𝛼
|𝑣𝜀|

𝛽 d𝑥
)

− 𝐶𝑒2𝑡𝜀
‖𝜂𝜀‖

𝑞
𝑞

‖𝜂𝜀‖
𝑞
2

= 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ 𝑂(𝜀𝑁−2) − 𝐶𝑒2𝑡𝜀

‖𝜂𝜀‖
𝑞
𝑞

‖𝜂𝜀‖
𝑞
2

,

(5.4)

where we have used again the fact that

sup
𝑠>0

(

𝑠2

2
𝐴 − 2𝑠2∗

2∗
𝐵
)

= 1
𝑁

(

𝐴
(2𝐵)2∕2∗

)𝑁∕2
with 𝐴,𝐵 > 0.

According to 𝑃 (𝑡𝜀 ⋆ (𝑢𝜀, 𝑣𝜀)) = 0 and the fact 𝑞𝛾𝑞 = 2, for some constant 𝐶 > 0, we infer that

𝑒(2
∗−2)𝑡𝜀 =

∫R𝑁
(

|∇𝑢𝜀|
2 + |∇𝑣𝜀|

2) d𝑥

2 ∫R𝑁 |𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥
− 𝜇𝛾𝑞

∫R𝑁
(

|

|

𝑢𝜀||
𝑞 + |

|

𝑣𝜀||
𝑞
)

d𝑥

2 ∫R𝑁 |𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥

≥
(

1 − 𝜇𝛾𝑞𝐶𝑁,𝑞(𝑎
𝑞−2
1 + 𝑎𝑞−22 )

) ∫R𝑁
(

|∇𝑢𝜀|
2 + |∇𝑣𝜀|

2) d𝑥

2 ∫R𝑁 |𝑢𝜀|
𝛼
|𝑣𝜀|

𝛽 d𝑥

= 𝐶
‖∇𝜂𝜀‖22‖𝜂𝜀‖

2∗−2
2

‖𝜂𝜀‖2
∗
2∗

,

where we used 0 < 𝜇 < 𝜇3. Furthermore, on account of Lemma  4.6, by using ‖∇𝜂𝜀‖22 → 𝑆
𝑁
2  and ‖𝜂𝜀‖2

∗

2∗ → 𝑆
𝑁
2  as 𝜀 → 0, for some 

constant 𝐶 > 0, we have 
𝑒𝑡𝜀 ≥ 𝐶‖𝜂𝜀‖2. (5.5)

Thus, in conjunction with (5.4) and (5.5), for 𝜀 > 0 sufficiently small, yields

𝑚𝜇(𝑎1, 𝑎2) ≤
2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ 𝑂(𝜀𝑁−2) − 𝐶

‖𝜂𝜀‖
𝑞
𝑞

‖𝜂𝜀‖
𝑞−2
2

≤ 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ 𝑂(𝜀𝑁−2) −

⎧

⎪

⎨

⎪

⎩

𝑂(𝜀
6−𝑞
4 ), if 𝑁 = 3,

𝑂(| ln 𝜀|−
𝑞(1−𝛾𝑞 )

2 ), if 𝑁 = 4,

≤ 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
+ 𝑂(𝜀𝑁−2) −

⎧

⎪

⎨

⎪

⎩

𝑂(𝜀
2
3 ), if 𝑁 = 3,

𝑂(| ln 𝜀|−
1
2 ), if 𝑁 = 4,

< 2
𝑁

(𝑆𝛼,𝛽
2

)

𝑁
2
.

This proves the assertion of the lemma. □

Proof of Theorem  1.3.  The proof follows by combining (5.3) with Lemmas  2.5, 5.4, 5.5 and 5.6. □

6. Proof of Theorem  1.4

In this section, we deal with the 𝐿2-supercritical case 2 + 4
𝑁 < 𝑞 < 2∗ when 𝜇 > 0 is large enough. Recalling the strategy 

introduced by Jeanjean [24] and consider the auxiliary functional
𝐼𝜇 ∶R × 𝑆𝑎1 × 𝑆𝑎2 → R, (𝑠, 𝑢, 𝑣) ↦ 𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)),

where

𝑠 ⋆ (𝑢, 𝑣)(𝑥) = (𝑠 ⋆ 𝑢, 𝑠 ⋆ 𝑣)(𝑥) =
(

𝑒
𝑁𝑠
2 𝑢(𝑒𝑠𝑥), 𝑒

𝑁𝑠
2 𝑣(𝑒𝑠𝑥)

)

.
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By a direct calculation, we have

∫R𝑁
|∇(𝑠 ⋆ (𝑢, 𝑣))|2 d𝑥 = 𝑒2𝑠 ∫R𝑁

(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥,

∫R𝑁
|𝑠 ⋆ (𝑢, 𝑣)|𝑞 d𝑥 = 𝑒

𝑁(𝑞−2)
2 𝑠

∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥 for all 𝑞 ∈ [2, 2∗],

and

∫R𝑁
|𝑠 ⋆ 𝑢|𝛼|𝑠 ⋆ 𝑣|𝛽 d𝑥 = 𝑒2

∗𝑠
∫R𝑁

|𝑢|𝛼|𝑣|𝛽 d𝑥.

Then, it follows that

𝐼𝜇(𝑠, 𝑢, 𝑣) = 𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)) = 𝐼𝜇
(

𝑒
𝑁𝑠
2 𝑢(𝑒𝑠𝑥), 𝑒

𝑁𝑠
2 𝑣(𝑒𝑠𝑥)

)

= 𝑒2𝑠

2 ∫R𝑁
(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 −
𝜇𝑒𝑞𝛾𝑞𝑠

𝑞 ∫R𝑁
(

|𝑢|𝑞 + |𝑣|𝑞
)

d𝑥

− 2𝑒2∗𝑠
2∗ ∫R𝑁

|𝑢|𝛼|𝑣|𝛽 d𝑥.

Summarizing the above expressions, we have the following result.

Lemma 6.1.  For any fixed (𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 , there hold

(i) ∫R𝑁
|∇(𝑠 ⋆ (𝑢, 𝑣))|2 d𝑥→ 0 and 𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)) → 0 as 𝑠 → −∞;

(ii) ∫R𝑁
|∇(𝑠 ⋆ (𝑢, 𝑣))|2 d𝑥→ +∞ and 𝐼𝜇(𝑠 ⋆ (𝑢, 𝑣)) → −∞ as 𝑠→ +∞.

Lemma 6.2.  There exists 𝐾(𝑎1, 𝑎2) > 0 sufficiently small such that
𝐼𝜇(𝑢, 𝑣) > 0 for 𝑢 ∈ 𝐾1 and 0 < sup

(𝑢,𝑣)∈𝐾1

𝐼𝜇(𝑢, 𝑣) < inf
(𝑢,𝑣)∈𝐾2

𝐼𝜇(𝑢, 𝑣),

where 

𝐾1 =
{

(𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 ∶ ∫R𝑁
|∇𝑢|2 + |∇𝑣|2 d𝑥 ≤ 𝐾(𝑎1, 𝑎2)

}

,

𝐾2 =
{

(𝑢, 𝑣) ∈ 𝑆𝑎1 × 𝑆𝑎2 ∶ ∫R𝑁
|∇𝑢|2 + |∇𝑣|2 d𝑥 = 2𝐾(𝑎1, 𝑎2)

}

.
(6.1)

Proof.  Let 𝐾 > 0 be arbitrary but fixed and suppose (𝑢1, 𝑣1) ∈ 𝑆𝑎1 × 𝑆𝑎2  and (𝑢2, 𝑣2) ∈ 𝑆𝑎1 × 𝑆𝑎2  satisfying

∫R𝑁
(

|∇𝑢1|
2 + |∇𝑣1|

2) d𝑥 ≤ 𝐾 and ∫R𝑁
(

|∇𝑢2|
2 + |∇𝑣2|

2) d𝑥 = 2𝐾.

Then, for sufficiently small 𝐾 > 0, by (2.1) and (2.5), it follows that
𝐼𝜇(𝑢2, 𝑣2) − 𝐼𝜇(𝑢1, 𝑣1)

= 1
2 ∫R𝑁

(|∇𝑢2|
2 + |∇𝑣2|

2) d𝑥 −
𝜇
𝑞 ∫R𝑁

(|
|

𝑢2||
𝑞 + |

|

𝑣2||
𝑞) d𝑥 − 2

2∗ ∫R𝑁
|𝑢2|

𝛼
|𝑣2|

𝛽 d𝑥

− 1
2 ∫R𝑁

(|∇𝑢1|
2 + |∇𝑣1|

2) d𝑥 +
𝜇
𝑞 ∫R𝑁

(|
|

𝑢1||
𝑞 + |

|

𝑣1||
𝑞) d𝑥 + 2

2∗ ∫R𝑁
|𝑢1|

𝛼
|𝑣1|

𝛽 d𝑥

≥ 1
2 ∫R𝑁

(|∇𝑢2|
2 + |∇𝑣2|

2) d𝑥 −
𝜇
𝑞 ∫R𝑁

(|
|

𝑢2||
𝑞 + |

|

𝑣2||
𝑞) d𝑥 − 2

2∗ ∫R𝑁
|𝑢2|

𝛼
|𝑣2|

𝛽 d𝑥

− 1
2 ∫R𝑁

(|∇𝑢1|
2 + |∇𝑣1|

2) d𝑥

≥ 𝐾
2

− 𝐶1𝐾
2∗
2 − 𝐶2𝐾

𝑁(𝑞−2)
4 ≥ 𝐾

4
,

where we used that 2∗ > 2 and 𝑁(𝑞−2)
4 > 1. On the other hand, for 𝐾 > 0 small enough, for any (𝑢1, 𝑣1) ∈ 𝑆𝑎1 × 𝑆𝑎2  satisfying 

∫R𝑁 |∇𝑢1|
2 + |∇𝑣1|

2 d𝑥 ≤ 𝐾, from (2.1) and (2.5) again, we infer to

𝐼𝜇(𝑢1, 𝑣1) =
1
2 ∫R𝑁

(

|∇𝑢1|
2 + |∇𝑣1|

2) d𝑥 −
𝜇
𝑞 ∫R𝑁

(

|

|

𝑢1||
𝑞 + |

|

𝑣1||
𝑞) d𝑥

− 2
2∗ ∫R𝑁

|𝑢1|
𝛼
|𝑣1|

𝛽 d𝑥

≥ 1 (

|∇𝑢1|
2 + |∇𝑣1|

2) d𝑥 − 𝐶3

(

(

|∇𝑢1|
2 + |∇𝑣1|

2) d𝑥
)

2∗
2

2 ∫R𝑁 ∫R𝑁
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− 𝐶4

(

∫R𝑁
(

|∇𝑢1|
2 + |∇𝑣1|

2) d𝑥
)

𝑁(𝑞−2)
4

.

Hence, we can choose a sufficiently small constant 𝐾(𝑎1, 𝑎2) > 0 in (6.1) such that

𝐼𝜇(𝑢, 𝑣) > 0 for 𝑢 ∈ 𝐾1 and 0 < sup
(𝑢,𝑣)∈𝐾1

𝐼𝜇(𝑢, 𝑣) < inf
(𝑢,𝑣)∈𝐾2

𝐼𝜇(𝑢, 𝑣),

where 𝐾1 and 𝐾2 are given by (6.1). □

On account of Lemmas  6.1 and 6.2, for fixed (𝑢0, 𝑣0) ∈ 𝑆𝑎1 × 𝑆𝑎2 , there exist two constants 𝑠1, 𝑠2 satisfying 𝑠1 ≪ −1 < 0 < 1≪ 𝑠2
such that

∫R𝑁
(

|∇𝑢1|
2 + |∇𝑣1|

2) d𝑥 <
𝐾(𝑎1, 𝑎2)

2
, ∫R𝑁

(

|∇𝑢2|
2 + |∇𝑣2|

2) d𝑥 > 2𝐾(𝑎1, 𝑎2)

and

𝐼𝜇(𝑢1, 𝑣1) > 0, 𝐼𝜇(𝑢2, 𝑣2) < 0,

where (𝑢1, 𝑣1) ∶= 𝑠1 ⋆ (𝑢0, 𝑣0) ∈ 𝑆𝑎1 × 𝑆𝑎2  and (𝑢2, 𝑣2) ∶= 𝑠2 ⋆ (𝑢0, 𝑣0) ∈ 𝑆𝑎1 × 𝑆𝑎2 . Based on this, we now define a minimax level

𝛾𝜇(𝑎1, 𝑎2) ∶= inf
𝑔∈𝛤

max
𝑡∈[0,1]

𝐼𝜇(𝑔(𝑡)),

where

𝛤 ∶=
{

𝑔 ∈ 𝐶([0, 1], 𝑆𝑎1 × 𝑆𝑎2 )∶ 𝑔(0) = (𝑢1, 𝑣1), 𝑔(1) = (𝑢2, 𝑣2)
}

.

Then for any 𝑔 ∈ 𝛤  there holds

max
𝑡∈[0,1]

𝐼𝜇(𝑔(𝑡)) > max{𝐼𝜇(𝑢1, 𝑣1), 𝐼𝜇(𝑢2, 𝑣2)},

which implies 𝛾𝜇(𝑎1, 𝑎2) > 0.

Lemma 6.3.  It holds lim𝜇→+∞ 𝛾𝜇(𝑎1, 𝑎2) = 0.

Proof.  For any fixed (𝑢0, 𝑣0) ∈ 𝑆𝑎1 × 𝑆𝑎2 , we set 𝑔0(𝑡) ∶= [(1 − 𝑡)𝑠1 + 𝑡𝑠2] ⋆ (𝑢0, 𝑣0) ∈ 𝛤 . Therefore, we can obtain

0 < 𝛾𝜇(𝑎1, 𝑎2) ≤ max
𝑡∈[0,1]

𝐼𝜇(𝑔0(𝑡)) = max
𝑡∈[0,1]

𝐼𝜇
(

[(1 − 𝑡)𝑠1 + 𝑡𝑠2] ⋆ (𝑢0, 𝑣0)
)

= max
𝑡∈[0,1]

{

1
2
𝑒2[(1−𝑡)𝑠1+𝑡𝑠2] ∫R𝑁

(

|∇𝑢0|
2 + |∇𝑣0|

2) d𝑥

−
𝜇
𝑞
𝑒
𝑞−2
2 𝑁[(1−𝑡)𝑠1+𝑡𝑠2]

∫R𝑁
(

|𝑢0|
𝑞 + |𝑣0|

𝑞) d𝑥

− 2
2∗
𝑒2

∗[(1−𝑡)𝑠1+𝑡𝑠2]
∫R𝑁

|𝑢0|
𝛼
|𝑣0|

𝛽 d𝑥
}

≤ max
𝑟≥0

{

1
2
𝑟2 ∫R𝑁

(

|∇𝑢0|
2 + |∇𝑣0|

2) d𝑥 −
𝜇
𝑞
𝑟
𝑁(𝑞−2)

2
∫R𝑁

(

|𝑢0|
𝑞 + |𝑣0|

𝑞) d𝑥
}

≤ 𝐶𝜇−
4

𝑁(𝑞−2)−4 → 0, as 𝜇 → +∞,

since 2 + 4
𝑁 < 𝑞 < 2∗. □

For convenience, we set 𝑓 (𝑡1, 𝑡2) = 𝜇|𝑡1|
𝑞−2𝑡1 + 𝜇|𝑡2|

𝑞−2𝑡2 for any 𝑡1, 𝑡2 ∈ R. Utilizing the same argument as Proposition 2.2 by 
Jeanjean [24], there exist a Palais–Smale sequence {(𝑢𝑛, 𝑣𝑛)}𝑛∈N ⊆ 𝑆𝑎1 × 𝑆𝑎2  associated with the level 𝛾𝜇(𝑎1, 𝑎2) such that 

𝐼𝜇(𝑢𝑛, 𝑣𝑛) → 𝛾𝜇(𝑎1, 𝑎2), ‖𝐼 ′𝜇|𝑆𝑎1×𝑆𝑎2 (𝑢𝑛, 𝑣𝑛)‖ → 0 and 𝑃 (𝑢𝑛, 𝑣𝑛) → 0, (6.2)

as 𝑛→ ∞, where 

𝑃 (𝑢𝑛, 𝑣𝑛) = ∫R𝑁
(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥 − 2∫R𝑁
|𝑢𝑛|

𝛼
|𝑣𝑛|

𝛽 d𝑥

+𝑁 ∫R𝑁
𝐹 (𝑢𝑛, 𝑣𝑛) d𝑥 −

𝑁
2 ∫R𝑁

𝑓 (𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) d𝑥,
(6.3)

with 𝑓 (𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) ∶= 𝜇(|𝑢𝑛|
𝑞+|𝑣𝑛|

𝑞). According to Proposition 5.12 by Willem [36], there exists a sequence {(𝜆1,𝑛, 𝜆2,𝑛)}𝑛∈N ⊆ R×R
such that 

𝐼 ′𝜇
(

𝑢𝑛, 𝑣𝑛
)

+ 𝜆1,𝑛(𝑢𝑛, 0) + 𝜆2,𝑛(0, 𝑣𝑛) → 0 as 𝑛→ ∞. (6.4)
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Lemma 6.4.  There exists a constant 𝐶 = 𝐶(𝑁, 𝑞) > 0 such that

lim sup
𝑛→∞ ∫R𝑁

𝐹 (𝑢𝑛, 𝑣𝑛) d𝑥 ≤ 𝐶𝛾𝜇(𝑎1, 𝑎2),

lim sup
𝑛→∞ ∫R𝑁

𝑓 (𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) d𝑥 ≤ 𝐶𝛾𝜇(𝑎1, 𝑎2),

lim sup
𝑛→∞ ∫R𝑁

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2 d𝑥 ≤ 𝐶𝛾𝜇(𝑎1, 𝑎2).

Proof.  From 𝐼𝜇(𝑢𝑛, 𝑣𝑛) → 𝛾𝜇(𝑎1, 𝑎2) and 𝑃 (𝑢𝑛, 𝑣𝑛) → 0 as 𝑛→ ∞, we have
𝑁𝛾𝜇(𝑎1, 𝑎2) + 𝑜𝑛(1)

= 𝑁𝐼𝜇(𝑢𝑛, 𝑣𝑛) + 𝑃 (𝑢𝑛, 𝑣𝑛)

= 𝑁 + 2
2 ∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥 − 2𝑁 + 22∗
2∗ ∫R𝑁

|𝑢𝑛|
𝛼
|𝑣𝑛|

𝛽 d𝑥

− 𝑁
2 ∫R𝑁

𝑓 (𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) d𝑥

≤ (𝑁 + 2)∫R𝑁

( 1
2
(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) − 2
2∗

|𝑢𝑛|
𝛼
|𝑣𝑛|

𝛽
)

d𝑥

− 𝑁
2 ∫R𝑁

𝑓 (𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) d𝑥

= (𝑁 + 2)[𝛾𝜇(𝑎1, 𝑎2) + ∫R𝑁
𝐹 (𝑢𝑛, 𝑣𝑛) d𝑥 + 𝑜𝑛(1)]

− 𝑁
2 ∫R𝑁

𝑓 (𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) d𝑥,

which leads to
2𝛾𝜇(𝑎1, 𝑎2) + 𝑜𝑛(1) ≥

𝑁
2 ∫R𝑁

𝑓 (𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) d𝑥 − (𝑁 + 2)∫R𝑁
𝐹 (𝑢𝑛, 𝑣𝑛) d𝑥

=
𝑁𝑞
2 ∫R𝑁

𝐹 (𝑢𝑛, 𝑣𝑛) d𝑥 − (𝑁 + 2)∫R𝑁
𝐹 (𝑢𝑛, 𝑣𝑛) d𝑥

=
𝑁𝑞 − 2(𝑁 + 2)

2 ∫R𝑁
𝐹 (𝑢𝑛, 𝑣𝑛) d𝑥.

That is, 

lim sup
𝑛→∞ ∫R𝑁

𝐹 (𝑢𝑛, 𝑣𝑛) d𝑥 ≤ 4
𝑁𝑞 − 2(𝑁 + 2)

𝛾𝜇(𝑎1, 𝑎2), (6.5)

and thus 
lim sup
𝑛→∞ ∫R𝑁

𝑓 (𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) d𝑥 ≤ 𝐶𝛾𝜇(𝑎1, 𝑎2). (6.6)

Again by (6.2) and (6.3), we infer that 

𝛾𝜇(𝑎1, 𝑎2) + 𝑜𝑛(1) = 𝐼𝜇(𝑢𝑛, 𝑣𝑛) −
1
2∗
𝑃 (𝑢𝑛, 𝑣𝑛)

=
( 1
2
− 1

2∗
)

∫R𝑁
(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥

−
(

1 + 𝑁
2∗

)

∫R𝑁
𝐹 (𝑢𝑛, 𝑣𝑛) d𝑥

+ 𝑁
22∗ ∫R𝑁

𝑓 (𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) d𝑥.

(6.7)

Consequently, by combining (6.5), (6.6) and (6.7), we immediately obtain

lim sup
𝑛→∞ ∫R𝑁

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥 ≤ 𝐶𝛾𝜇(𝑎1, 𝑎2). □

In view of the boundedness of {(𝑢𝑛, 𝑣𝑛)}𝑛∈N in 𝐻𝑟 and Lemma  2.1, up to a subsequence, there exists (𝑢, 𝑣) ∈ 𝑆𝑎1 ,𝑟 ×𝑆𝑎2 ,𝑟 such that 

⎧

⎪

⎨

⎪

⎩

(𝑢𝑛, 𝑣𝑛) ⇀ (𝑢, 𝑣), in 𝐻𝑟,
(𝑢𝑛, 𝑣𝑛) → (𝑢, 𝑣), in 𝐿𝑡 (R𝑁)

× 𝐿𝑡
(

R𝑁
)  for 𝑡 ∈ (2, 2∗),

(𝑢𝑛, 𝑣𝑛) → (𝑢, 𝑣), a.e. in R𝑁 ,
(6.8)

as 𝑛→ ∞. Using 2 + 4
𝑁 < 𝑞 < 2∗, we obtain

lim |𝑢𝑛|
𝑞 d𝑥 = |𝑢|𝑞 d𝑥 and lim |𝑣𝑛|

𝑞 d𝑥 = |𝑣|𝑞 d𝑥.

𝑛→∞∫R𝑁 ∫R𝑁 𝑛→∞∫R𝑁 ∫R𝑁
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Now, take (𝑢𝑛, 0) and (0, 𝑣𝑛) as test functions in (6.4), we see that {(𝜆1,𝑛, 𝜆2,𝑛)}𝑛∈N is bounded in R×R. Thus, there exists (𝜆1, 𝜆2) ∈ R×R
such that, up to a subsequence, (𝜆1,𝑛, 𝜆2,𝑛) → (𝜆1, 𝜆2) as 𝑛→ ∞.

By using the concentration-compactness principle, we obtain the following result.

Lemma 6.5.  There exists 𝜇∗ > 0 large enough such that for any 𝜇 > 𝜇∗, one has

∫R𝑁
|𝑢𝑛|

𝛼
|𝑣𝑛|

𝛽 d𝑥→ ∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥 as 𝑛→ ∞.

Proof.  By Lemmas  2.3 and 2.4, we divide the proof into three steps.
Step 1. We show that 𝜔𝑗 = 2𝜈𝑗 , where 𝜔𝑗 and 𝜈𝑗 are given in Lemma  2.3.
Let 𝜑 ∈ 𝐶∞

0 (R3) be a cut-off function with 𝜑 ∈ [0, 1], 𝜑 ≡ 1 in 𝐵 1
2
(0) and 𝜑 ≡ 0 in R𝑁 ⧵ 𝐵1(0). For any 𝜌 > 0, we set

𝜑𝜌(𝑥) = 𝜑
(𝑥 − 𝑥𝑗

𝜌

)

=

{

1, if |𝑥 − 𝑥𝑗 | ≤ 1
2𝜌,

0, if |𝑥 − 𝑥𝑗 | ≥ 𝜌.

By Lemma  6.4, we know that {𝜑𝜌𝑢𝑛}𝑛∈N and {𝜑𝜌𝑣𝑛}𝑛∈N are bounded in 𝐻1(R𝑁 ). Then, we choose (𝜑𝜌𝑢𝑛, 𝜑𝜌𝑣𝑛) as a test function in 
(6.4) and let 𝜌→ 0. This gives 

lim
𝜌→0

lim
𝑛→∞

⟨𝐼 ′𝜇
(

𝑢𝑛, 𝑣𝑛
)

+ 𝜆1,𝑛(𝑢𝑛, 0) + 𝜆2,𝑛(0, 𝑣𝑛), (𝜑𝜌𝑢𝑛, 𝜑𝜌𝑣𝑛)⟩ = 0. (6.9)

From (6.8), the definition of 𝜑𝜌 and the absolute continuity of the Lebesgue integral, it follows that 

lim
𝜌→0

lim
𝑛→∞∫R𝑁

𝜑𝜌|𝑢𝑛|
𝑞 d𝑥 = lim

𝜌→0∫R𝑁
𝜑𝜌|𝑢|

𝑞 d𝑥

= lim
𝜌→0∫

|𝑥−𝑥𝑗 |≤𝜌
𝜑𝜌|𝑢|

𝑞 d𝑥 = 0,
(6.10)

lim
𝜌→0

lim
𝑛→∞∫R𝑁

𝜑𝜌|𝑣𝑛|
𝑞 d𝑥 = lim

𝜌→0∫R𝑁
𝜑𝜌|𝑣|

𝑞 d𝑥

= lim
𝜌→0∫

|𝑥−𝑥𝑗 |≤𝜌
𝜑𝜌|𝑣|

𝑞 d𝑥 = 0,
(6.11)

lim
𝜌→0

lim
𝑛→∞∫R𝑁

𝜆1,𝑛𝜑𝜌𝑢
2
𝑛 d𝑥 = 0, (6.12)

and 

lim
𝜌→0

lim
𝑛→∞∫R𝑁

𝜆2,𝑛𝜑𝜌𝑣
2
𝑛 d𝑥 = 0. (6.13)

Using Lemma  2.3 leads to 

lim
𝜌→0

lim
𝑛→∞∫R𝑁

𝜑𝜌
(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥

= lim
𝜌→0∫R𝑁

𝜑𝜌𝑑𝜔 = 𝜔({𝑥𝑗}) = 𝜔𝑗 ,
(6.14)

and 

lim
𝜌→0

lim
𝑛→∞∫R𝑁

𝜑𝜌|𝑢𝑛|
𝛼
|𝑣𝑛|

𝛽 d𝑥 = lim
𝜌→0∫R𝑁

𝜑𝜌𝑑𝜈 = 𝜈({𝑥𝑗}) = 𝜈𝑗 , (6.15)

Summing up, from (6.9)–(6.15), taking the limit as 𝑛→ ∞, and then the limit as 𝜌→ 0, we infer that
𝜔𝑗 = 2𝜈𝑗 .

Step 2. We show that 𝜔∞ = 2𝜈∞, where 𝜔∞ and 𝜈∞ are given in Lemma  2.4. Let 𝜓 ∈ 𝐶∞
0 (R3) be a cut-off function with 𝜓 ∈ [0, 1], 

𝜓 ≡ 0 in 𝐵1∕2(0) and 𝜓 ≡ 1 in R3 ⧵ 𝐵1(0). For any 𝑅 > 0, we set

𝜓𝑅(𝑥) ∶= 𝜓
( 𝑥
𝑅

)

=

{

0, |𝑥| ≤ 1
2𝑅,

1, |𝑥| ≥ 𝑅.

By Lemma  6.4, we know that {𝜓𝑅𝑢𝑛}𝑛∈N and {𝜓𝑅𝑣𝑛}𝑛∈N are bounded in 𝐻1(R𝑁 ). Then, we choose (𝜓𝑅𝑢𝑛, 𝜓𝑅𝑣𝑛) as a test function 
in (6.4). Furthermore, let 𝑅 → ∞, we can easily obtain that

lim
𝑅→∞

lim
𝑛→∞

⟨𝐼 ′𝜇
(

𝑢𝑛, 𝑣𝑛
)

+ 𝜆1,𝑛(𝑢𝑛, 0) + 𝜆2,𝑛(0, 𝑣𝑛), (𝜓𝑅𝑢𝑛, 𝜓𝑅𝑣𝑛)⟩ = 0.

By the definition of 𝜓𝑅, we have
(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥 ≤ 𝜓𝑅
(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥
∫{𝑥∈R𝑁 ∶ |𝑥|>𝑅} ∫R𝑁
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≤ ∫{𝑥∈R𝑁 ∶ |𝑥|> 1
2𝑅}

(

|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥.

Thus, by virtue of Lemma  2.4, we get 

lim
𝑅→∞

lim
𝑛→∞∫R𝑁

𝜓𝑅(|∇𝑢𝑛|
2 + |∇𝑣𝑛|

2) d𝑥 = 𝜔∞, (6.16)

Similarly, we can deduce the following limits: 

lim
𝑅→∞

lim
𝑛→∞∫R𝑁

𝜓𝑅|𝑢𝑛|
𝛼
|𝑣𝑛|

𝛽 d𝑥 = lim
𝑅→∞∫R𝑁

𝜓𝑅𝑑𝜈 = 𝜈∞, (6.17)

lim
𝑅→∞

lim
𝑛→∞∫R𝑁

𝜓𝑅|𝑢𝑛|
𝑞 d𝑥 = lim

𝑅→∞∫R𝑁
𝜓𝑅|𝑢|

𝑞 d𝑥

= lim
𝑅→∞∫

|𝑥|> 1
2𝑅
𝜓𝑅|𝑢|

𝑞 d𝑥 = 0,
(6.18)

lim
𝑅→∞

lim
𝑛→∞∫R𝑁

𝜓𝑅|𝑣𝑛|
𝑞 d𝑥 = lim

𝑅→∞∫R𝑁
𝜓𝑅|𝑣|

𝑞 d𝑥

= lim
𝑅→∞∫

|𝑥|> 1
2𝑅
𝜓𝑅|𝑣|

𝑞 d𝑥 = 0.
(6.19)

lim
𝑅→∞

lim
𝑛→∞∫R𝑁

𝜆1,𝑛𝜓𝑅𝑢
2
𝑛 d𝑥 = 0, (6.20)

and 

lim
𝑅→∞

lim
𝑛→∞∫R𝑁

𝜆2,𝑛𝜓𝑅𝑣
2
𝑛 d𝑥 = 0. (6.21)

Then, from (6.16)–(6.21), taking the limit as 𝑛→ ∞, and then the limit as 𝑅 → ∞, we conclude that

𝜔∞ = 2𝜈∞.

Step 3. We prove that 𝜈𝑗 = 0 for any 𝑗 ∈ 𝐽 and 𝜈∞ = 0. Suppose by contradiction that there exists 𝑗0 ∈ 𝐽 such that 𝜈𝑗0 > 0 or 
𝜈∞ > 0. Steps 1 and 2 along with Lemmas  2.3 and 2.4 imply that 

𝜈𝑗0 ≤ (𝑆−1
𝛼,𝛽𝜔𝑗0 )

𝛼+𝛽
2 = 𝑆

− 𝛼+𝛽
2

𝛼,𝛽 (2𝜈𝑗0 )
𝛼+𝛽
2 , (6.22)

or 

𝜈∞ ≤ (𝑆−1
𝛼,𝛽𝜔∞)

𝛼+𝛽
2 = 𝑆

− 𝛼+𝛽
2

𝛼,𝛽 (2𝜈∞)
𝛼+𝛽
2 . (6.23)

from which we find either 𝜈𝑗0 ≥ ( 𝑆𝛼,𝛽2 )
𝑁
2  or 𝜈∞ ≥ ( 𝑆𝛼,𝛽2 )

𝑁
2 . We first consider the case that (6.22) holds. It follows from Lemma  6.3 

that there exists a positive constant 𝜇∗ large enough, such that

𝛾𝜇(𝑎1, 𝑎2) < 2
(

1
𝑞𝛾𝑞

− 1
2∗

)(𝑆𝛼,𝛽
2

)

𝑁
2

for any 𝜇 ≥ 𝜇∗. Recalling 𝐼𝜇(𝑢𝑛, 𝑣𝑛) → 𝛾𝜇(𝑎1, 𝑎2) and 𝑃 (𝑢𝑛, 𝑣𝑛) = 0, we have

𝛾𝜇(𝑎1, 𝑎2) = lim
𝑛→∞

(

𝐼𝜇(𝑢𝑛, 𝑣𝑛) −
1
𝑞𝛾𝑞

𝑃 (𝑢𝑛, 𝑣𝑛)
)

≥ 2
(

1
𝑞𝛾𝑞

− 1
2∗

)

lim sup
𝑛→∞ ∫R𝑁

𝜑𝜌|𝑢𝑛|
𝛼
|𝑣𝑛|

𝛽 d𝑥

≥ 2
(

1
𝑞𝛾𝑞

− 1
2∗

)

∫R𝑁
𝜑𝜌𝑑𝜈

≥ 2
(

1
𝑞𝛾𝑞

− 1
2∗

)

𝜈𝑗0

≥ 2
(

1
𝑞𝛾𝑞

− 1
2∗

)(𝑆𝛼,𝛽
2

)

𝑁
2
,

in contradiction to the fact that

𝛾𝜇(𝑎1, 𝑎2) < 2
(

1
𝑞𝛾𝑞

− 1
2∗

)(𝑆𝛼,𝛽
2

)

𝑁
2
.

If (6.23) holds, the proof is similar to the above statement and we get a contradiction. Therefore, we have proved that 𝜈𝑗 = 0 for 
any 𝑗 ∈ 𝐽 and 𝜈 = 0.
∞

26 
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Moreover, by combining this with Lemmas  2.3 and 2.4, we have

∫R𝑁
|𝑢𝑛|

𝛼
|𝑣𝑛|

𝛽 d𝑥→ ∫R𝑁
|𝑢|𝛼|𝑣|𝛽 d𝑥, as 𝑛→ ∞,

which completes the proof. □

Proof of Theorem  1.4.  We note that all calculations above can be repeated similarly, replacing 𝐼𝜇 by the functional 

𝐼+𝜇 (𝑢, 𝑣) =
1
2 ∫R𝑁

(

|∇𝑢|2 + |∇𝑣|2
)

d𝑥 −
𝜇
𝑞 ∫R𝑁

(

|

|

𝑢+|
|

𝑞 + |

|

𝑣+|
|

𝑞) d𝑥

− 2
2∗ ∫R𝑁

|𝑢+|𝛼|𝑣+|𝛽 d𝑥.
(6.24)

Using (𝑢−, 0) and (0, 𝑣−) as test functions in (6.24), in view of (𝐼+𝜇 )′(𝑢, 𝑣)(𝑢−, 0) = 0 and (𝐼+𝜇 )′(𝑢, 𝑣)(0, 𝑣−) = 0, where 𝑤− ∶= min{𝑤, 0}, 
we get 𝑢− = 0, 𝑣− = 0, and so, 𝑢 ≥ 0, 𝑣 ≥ 0. Therefore, we have that 𝑢−𝑛 → 0, 𝑣−𝑛 → 0 a.e. in R𝑁 , as 𝑛 → ∞. Then it follows from 
Lemma  2.5 and Lemmas  6.4, 6.5 that the proof of Theorem  1.4 is finished. □
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