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a b s t r a c t

In this paper we study quasilinear elliptic equations driven by the double phase
operator involving a Choquard term of the form

−La
p,q(u) + |u|p−2u + a(x)|u|q−2u =

(∫
RN

F (y, u)
|x − y|µ

dy

)
f(x, u) inRN ,

where La
p,q is the double phase operator given by

La
p,q(u) := div

(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
, u ∈ W 1,H(RN ),

0 < µ < N , 1 < p < N , p < q < p + αp
N

, 0 ≤ a(·) ∈ C0,α(RN ) with α ∈ (0, 1] and
f :RN × R → R is a continuous function that satisfies a subcritical growth. Based
on the Hardy–Littlewood–Sobolev inequality, the Nehari manifold and variational
tools, we prove the existence of ground state solutions of such problems under
different assumptions on the data.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the existence of ground state solutions to the following double phase
Choquard equation

− La
p,q(u) + |u|p−2

u+ a(x)|u|q−2
u =

(∫
RN

F (y, u)
|x− y|µ

dy
)
f(x, u) in RN , (1.1)
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where La
p,q is the so-called double phase operator given by

La
p,q(u) := div

(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
, u ∈ W 1,H(RN ), (1.2)

with W 1,H(RN ) being an appropriate Musielak–Orlicz Sobolev space and F denotes the primitive of the
function f ∈ C(RN × R) satisfying

|f(x, t)| ≤ C(|t|r1−1 + |t|r2−1) for all x ∈ RN and t ∈ R (1.3)

where
p(2N − µ)

2N < r1 ≤ r2 <
p∗

2

(
2 − µ

N

)
, 0 < µ < N, (1.4)

nd p∗ being the critical Sobolev exponent to p. The double phase operator given in (1.2) is related to the
nergy functional

Φ(u) =
∫
Ω

(
|∇u|p + a(x)|∇u|q

)
dx, (1.5)

hich appeared for the first time in a work of Zhikov [1] in order to describe models for strongly anisotropic
aterials in the context of homogenization and elasticity, see also [2,3] by the same author. A first
athematical treatment of double phase integrals like (1.5) has been done by Mingione et al. concerning

egularity results for local minimizers of (1.5). We refer to the works of Baroni–Colombo–Mingione [4–6] and
olombo–Mingione [7,8], see also the recent papers of Aberqi–Bennouna–Benslimane–Ragusa [9], Aberqi–
enslimane–Elmassoudi–Ragusa [10] and De Filippis–Mingione [11] about nonautonomous integrals. Note

hat (1.5) also belongs to the large class of the integral functionals with nonstandard growth condition as
special case of the famous papers of Marcellini [12,13]. Recent works in this direction with u-dependence

an be found in the papers of Cupini–Marcellini–Mascolo [14] and Marcellini [15].
The stationary Choquard equation

− ∆u+ V (x)u =
(∫

RN

|u(y)|p

|x− y|µ
dy
)

|u|p−2
u in RN , (1.6)

ith N ≥ 3 and µ ∈ (0, N) has many physical applications in quantum theory and arises in the theory
f the Bose–Einstein condensation. See Lieb [16] for an approximation to the Hartree–Fock theory of one-
omponent plasma and Pekar [17] for the study of the quantum theory of a polaron at rest. We also mention
he work of Moroz–Penrose–Tod [18] in which (1.6) serves as a model of self-gravitating matter, known in
hat context as the Schrödinger–Newton equation. For more physical models and deeper explanations for
roblems with Choquard type nonlinearities we refer to papers of Alves–Yang [19] and Dalfovo–Giorgini–
itaevskii–Stringari [20], see also the references therein. A useful guide on Choquard type equations has
een published by Moroz–Van Schaftingen [21].

Motivated by these numerous applications, lots of existence results for different type of equations involving
hoquard terms have been published in the last decades. We refer to the famous works of Cingolani–Clapp–
ecchi [22], Lions [23], Ma–Zhao [24] and Moroz–Van Schaftingen [25–27]. The treatment in our paper uses
deas of the papers of Alves–Yang [28] and Alves–Tavares [29]. Indeed, in [28] the authors study a generalized
hoquard equation given by

− εp∆pu+ V (x)|u|p−2
u = εµ−N

(∫
RN

Q(y)F (u(y))
|x− y|µ

dy
)
Q(x)f(u) in RN , (1.7)

and establish a new concentration behavior of solutions of (1.7) by using variational methods. In [29] a new
Hardy–Littlewood–Sobolev inequality for variable exponents has been proved and applied to problems of
the form

− ∆p(x)u+ V (x)|u|p(x)−2
u =

(∫
N

F (y, u(y))
λ(x,y) dy

)
f(x, u(x)) in RN , (1.8)
R |x− y|
2
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in order to get existence of solutions of (1.8). Very recently, Sun–Chang [30] considered least energy nodal
solutions for double phase problems with convolution-type nonlinearities of the form

− div
(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
= (Iµ ∗ |u|r) |u|r−2

u in Ω ,

u = 0 on ∂Ω ,

which becomes the classical nonlinear Choquard equation if p = 2 and a(x) ≡ 0. Further existence
esults on Choquard type problems can be found in the papers of Alves–Gao–Squassina [31], Alves–
ermano [32], Arora–Giacomoni–Mukherjee–Sreenadh [33,34], Biswas–Tiwari [35], de Böer–Miyagaki–
ucci [36], Ghimenti–Van Schaftingen [37], Liang–Pucci–Zhang [38], Mingqi–Rădulescu–Zhang [39], Mukherje
reenadh [40] and Zuo–Fiscella–Bahrouni [41], see also the works of Chen–Fiscella–Pucci–Tang [42] and
iu [43] for ground state solution type results. For double phase problems without Choquard term on the
hole of RN we refer to the recent works of Ge–Pucci [44], Le [45], Liu–Dai [46], Liu–Winkert [47], Pucci–
emperini [48] and Stegliński [49], see also Hou–Ge–Zhang–Wang [50] and Liu-Dai [51] for ground state
olutions for double phase problems on bounded domains.

In the present paper, we combine a double phase problem with a right-hand side of Choquard type
onlinearity and we look for ground state solutions. We consider the following assumptions:

(h1) N ≥ 2, 1 < p < N , p < q < p + αp
N and 0 ≤ a(·) ∈ C0,α(RN ) with α ∈ (0, 1] and p∗ being the critical

Sobolev exponent to p.

(h2) The function f satisfies the classical Ambrosetti–Rabinowitz condition (AR-condition for short), that
is,

0 < θF (x, t) ≤ 2tf(x, t) for all t > 0, x ∈ RN and for some θ ∈ (q, p∗), (1.9)

where F (x, t) =
∫ t

0 f(x, τ) dτ .

(h3) The modulating coefficient a(·) and the function f(·, t) is ZN periodic for all t ∈ R, that is,

a(x+ y) = a(x) for all x ∈ RN and for all y ∈ ZN ,

and
f(x+ y, t) = f(x, t) for all x ∈ RN and for all y ∈ ZN .

(h4) The mapping R ∋ t ↦→ f(x, t)
|t|

q
2 −2

t
is increasing if t > 0 and decreasing if t < 0 for all x ∈ R.

The first existence result of this paper reads as follows.

heorem 1.1. Let hypotheses (h1)-(h3) be satisfied. Then problem (1.1) admits a nontrivial solution
∈ W 1,H(Ω). If in addition (h4) holds, then v is a ground state solution of problem (1.1).

In order to consider a large class of nonlinearities in the Choquard term, we weaken the hypothesis in the
bove result and replace our assumptions (h2) and (h4) by the following assumption:

(h′
2) (i) There exists Θ ≥ 1 such that

ΘF(x, t) ≥ F(x, st) for all t ∈ R and for all s ∈ [0, 1], (1.10)

where F(x, t) = 2f(x, t)t− qF (x, t).
(ii) lim|t|→∞

F (x, t)
q = ∞ uniformly for all x ∈ RN .
|t| 2

3
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The assumption (h′
2)(i) is originally due to Jeanjean [52] in the case p = q = 2. It is important to note

hat the assumptions (h1), (h′
2) and (h3) allow us to consider a bigger class of nonlinearities, in particular

utside the class of functions satisfying Ambrosetti–Rabinowitz condition (1.9). An example of such function
s f(x, t) = g(x)|t|

q
2 −1

t ln(1 + |t|) where g is a ZN periodic bounded function. The Ambrosetti–Rabinowitz
ondition ensures that the corresponding Euler–Lagrange functional has the mountain pass geometry
tructure and the associated Palais–Smale sequence of the functional is bounded. Therefore, relaxing AR-
ondition (1.9) not only includes a larger class of nonlinearities but also requires a careful geometrical analysis
f corresponding Euler–Lagrange functional and compactness results. We make following remarks in light of
ssumptions (h1), (h′

2) and (h3).

emark 1.2. Note that (1.4) can be equivalently written as

p <
2Nr1

2N − µ
≤ 2Nr2

2N − µ
< p∗. (1.11)

emark 1.3. Since f(x, 0) = 0 = F (x, 0), thanks to (1.3), from (1.10), we get F(x, t) ≥ 0, that is,

2sf(x, t) − qF (x, t) ≥ 0 for all t ∈ R. (1.12)

emark 1.4. For t > 0, using (1.12), we have

∂

∂t

F (x, t)
t

q
2

=
t

q
2 f(x, t) − q

2 t
q
2 −1F (x, t)

tq
≥ 0.

oreover, from (1.3), we easily see that limt→0+ F (x, t)t
−q
2 = 0. Combining these facts, we get F (x, t) ≥ 0

or all (x, t) ∈ RN ×R with t ≥ 0. Repeating the same steps as above for t ≤ 0, we obtain F (x, t) ≥ 0 for all
∈ R. Thus, it holds

f(x, t) ≥ 0 for all (x, t) ∈ RN × R with t ≥ 0,
f(x, t) ≤ 0 for all (x, t) ∈ RN × R with t ≤ 0.

Therefore, for all x ∈ RN , we obtain that F (x, ·) is nondecreasing in (0,∞) and nonincreasing in (−∞, 0).

Now we state our second result concerning the existence of ground state solution:

Theorem 1.5. Let hypotheses (h1), (h′
2) and (h3) be satisfied. Then problem (1.1) admits a nontrivial

ground state solution.

Remark 1.6. It is easy to see that (h4) implies (h′
2)(i). Indeed, for 0 < t1 ≤ t2, we have

F(x, t2) − F(x, t1)

= q

[
2
q

(f(x, t2)t2 − f(x, t1)t1) − (F (x, t2) − F (x, t1))
]

= q

[∫ t2

0

f(x, t2)τ
q
2 −1

t
q
2 −1
2

dτ −
∫ t1

0

f(x, t1)τ
q
2 −1

t
q
2 −1
1

dτ −
∫ t2

t1

f(x, τ)τ
q
2 −1

τ
q
2 −1

dτ

]

= q

[∫ t2

t1

(
f(x, t2)

t
q
2 −1
2

− f(x, τ)
τ

q
2 −1

)
τ

q
2 −1 dτ +

∫ t1

0

(
f(x, t2)

t
q
2 −1
2

− f(x, t1)

t
q
2 −1
1

)
τ

q
2 −1 dτ

]
≥ 0,

that is, F is increasing for t ≥ 0. Analogously, F is decreasing for t ≤ 0 and so, (h′ (i)) is satisfied.
2

4
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The proofs of Theorems 1.1 and 1.5 rely on variational tools in combination with the Hardy–Littlewood–
Sobolev inequality and the Nehari manifold. Indeed, let I :W 1,H(RN ) → R be the energy functional of (1.1),
then the Nehari manifold is defined as the set

N =
{
u ∈ W 1,H(RN ) \ {0} : ⟨I ′(u), u⟩H = 0

}
,

where ⟨·, ·⟩H denotes the duality pairing between W 1,H(RN ) and W 1,H(RN )∗. It is clear that the set N is
maller than the whole space W 1,H(RN ), but it contains all critical points of I which are weak solutions of
1.1). We are looking for an element of N which realizes the infimum of infu∈N I(u). Such a function is a
round state solution of (1.1).

The paper is organized as follows. In Section 2 we present the main properties and embedding results
or the Musielak–Orlicz Sobolev space W 1,H(RN ) on the whole of RN and we recall the Hardy–Littlewood–
obolev inequality which is used in our considerations. Section 3 is devoted to the proof of Theorem 1.1
hereby the first part of this theorem is proved in Theorem 3.7. Finally, in Section 4 we give the proof of
heorem 1.5 without assuming the AR-condition.

. Preliminaries

This section is devoted to recall the main preliminaries which are needed in the sequel, for example, the
roperties of the Musielak–Orlicz Sobolev space W 1,H(RN ) and the Hardy–Littlewood–Sobolev inequality.

As usual, we denote by Lr(R) and Lr(RN ) the classical Lebesgue spaces equipped with the norm ∥·∥r and
or subsets Ω ⊂ RN we write ∥ · ∥r,Ω for 1 ≤ r ≤ ∞. Furthermore, W 1,r(RN ) stands for the corresponding
obolev space endowed with the ∥ · ∥r

1,r = ∥∇ · ∥r
r + ∥ · ∥r

r for any 1 < r < ∞. Consider the nonlinear function
:RN × [0,∞) → [0,∞) defined by

H(x, t) = tp + a(x)tq,

here we suppose that hypotheses (h1) holds. Let M(RN ) be the space of all measurable functions u :RN →
. Then, Musielak–Orlicz Lebesgue space LH(RN ) is given by

LH(RN ) =
{
u ∈ M(RN ) : ϱH(u) :=

∫
RN

H(x, |u|) dx < ∞
}

equipped with the Luxemburg norm

∥u∥H = inf
{
τ > 0 : ϱH

(u
τ

)
≤ 1
}
,

here the modular function is given by

ϱH(u) :=
∫
RN

H(x, |u|) dx =
∫
RN

(
|u|p + a(x)|u|q

)
dx.

he corresponding Musielak–Orlicz Sobolev space W 1,H(RN ) is defined by

W 1,H(RN ) =
{
u ∈ LH(RN ) : |∇u| ∈ LH(RN )

}
ndowed with the norm

∥u∥ = ∥∇u∥H + ∥u∥H,

here ∥∇u∥H = ∥ |∇u| ∥H. Furthermore, we introduce the weighted space

Lq
a(RN ) =

{
u ∈ M(RN ) :

∫
a(x)|u|q dx < ∞

}

RN

5
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with the seminorm

∥u∥q,a =
(∫

RN
a(x)|u|q dx

) 1
q

.

We know that LH(RN ) and W 1,H(RN ) are separable reflexive Banach spaces, see Liu–Dai [46, The-
rem 2.7]. Moreover, C∞

c (RN ) is dense in W 1,H(RN ), see Harjulehto–Hästö [53, Proposition 6.4.4] and
Crespo–Blanco–Gasiński–Harjulehto–Winkert [54, Theorems 2.24 and 2.28].

The following relations between the norm ∥ · ∥ and the corresponding modular function can be found in
Liu–Dai [46, Proposition 2.6].

Proposition 2.1. Let (h1) be satisfied, u ∈ W 1,H(RN ), c > 0 and

ρ(u) =
∫
RN

(
|∇u|p + |u|p + a(x)(|∇u|q + |u|q)

)
dx = ∥u∥p

1,p + ∥∇u∥q
q,a + ∥u∥q

q,a.

hen the following hold:

(i) If u ̸= 0, then ∥u∥ = c if and only if ϱ( u
c ) = 1;

(ii) ∥u∥ < 1 (resp. > 1, = 1) if and only if ϱ(u) < 1 (resp. > 1, = 1);
(iii) If ∥u∥ < 1, then ∥u∥q ≤ ϱ(u) ≤ ∥u∥p;
(iv) If ∥u∥ > 1, then ∥u∥p ≤ ϱ(u) ≤ ∥u∥q;
(v) ∥u∥ → 0 if and only if ϱ(u) → 0;
(vi) ∥u∥ → ∞ if and only if ϱ(u) → ∞.

The following embedding result can be found in Liu–Dai [46, Theorem 2.7].

Proposition 2.2. Let (h1) be satisfied. Then the embedding W 1,H(RN ) ↪→ Lr(RN ) is continuous for all
r ∈ [p, p∗].

One main tool in our treatment is the famous Hardy–Littlewood–Sobolev inequality, see, for example,
Lieb–Loss [55, Theorem 4.3].

Proposition 2.3 (Hardy–Littlewood–Sobolev Inequality). Let s, r > 1 and 0 < µ < N with 1
s + µ

N + 1
r = 2

nd let g ∈ Ls(RN ) and h ∈ Lr(RN ). Then there exists a sharp constant C(N,µ, s), independent of g and h,
such that ∫

RN

∫
RN

g(x)h(y)
|x− y|µ

dxdy ≤ C(N,µ, s)∥g∥s∥h∥r. (2.1)

f s = r = 2N
2N−µ , then

C(N,µ, s) = C(N,µ) = π
µ
2
Γ
(

N
2 − µ

2
)

Γ
(
N − µ

2
) {Γ

(
N
2
)

Γ (N)

}−1+ µ
N

.

n this case, we have an equality in (2.1) if and only if g ≡ (constant)h and

h(x) = A
(
γ2 + |x− a|2

)−(2N−µ)
2

or some A ∈ C, 0 ̸= γ ∈ R and a ∈ RN .

Let (X, ∥ · ∥X) be a Banach space, (X∗, ∥ · ∥X∗) its topological dual space and φ ∈ C1(X). We say that
{un}n∈N ⊂ X is a Palais–Smale sequence at level c ∈ R ((PS)c-sequence for short) for φ if

′ ∗
φ(un) → c and φ (un) → 0 in X as n → ∞.

6
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We say that φ satisfies the Palais–Smale condition at level c ∈ R ((PS)c-condition for short) if any (PS)c-
equence {un}n∈N admits a convergent subsequence in X. If this condition holds at every level c ∈ R, then
e say that φ satisfies the Palais–Smale condition (the (PS)-condition for short). Moreover, φ satisfies the
erami-condition at level c ∈ R ((C)c-condition for short), if every sequence {un}n∈N ⊆ X such that

φ(un) → c and (1 + ∥un∥X)φ′(un) → 0 in X∗ as n → ∞,

dmits a strongly convergent subsequence. If this condition holds at every level c ∈ R, then we say that φ
atisfies the Cerami condition (the (C)-condition for short).

. Existence of a ground state solution with AR-condition

In this section we give the proof of Theorem 1.1 under the hypotheses (h1)–(h4). The energy functional
:W 1,H(RN ) → R associated to (1.1) is given by

I(u) =
∥u∥p

1,p

p
+

∥∇u∥q
q,a + ∥u∥q

q,a

q
− 1

2

∫
RN

(∫
RN

F (y, u)
|x− y|µ

dy
)
F (x, u) dx,

which is clearly C1 with derivative

⟨I ′(u), v⟩H =
∫
RN

(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
· ∇v dx+

∫
RN

(
|u|p−2

u+ a(x)|u|q−2
u
)
v dx

−
∫
RN

(∫
RN

F (y, u)
|x− y|µ

dy
)
f(x, u)v dx for all u, v ∈ W 1,H(RN ),

here ⟨·, ·⟩H denotes the duality pairing between W 1,H(RN ) and its dual space W 1,H(RN )∗. Clearly, the
critical points of I correspond to the weak solutions of problem (1.1). In order to establish the existence of
a weak solution, we consider the Mountain pass level

b := inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)), (3.1)

here
Γ =

{
γ ∈ C

(
[0, 1],W 1,H(RN )

)
: γ(0) = 0, I(γ(1)) < 0

}
.

y using Proposition 2.3 we can estimate the Choquard term by∫
RN

(∫
RN

F (y, u)
|x− y|µ

dy
)
F (x, u) dx ≤ C(N,µ)∥F (·, u)∥2

2N
2N−µ

. (3.2)

Lemma 3.1. Let hypotheses (h1)–(h2) be satisfied. It holds b > 0.

Proof. From (1.3) and (3.2), along with Proposition 2.2 and (1.11), we have∫
RN

(∫
RN

F (y, u)
|x− y|µ

dy
)
F (x, u) dx ≤ C1

(∫
RN

(
|u|

2Nr1
2N−µ + |u|

2Nr2
2N−µ

)
dx
) 2N−µ

N

≤ C2(∥u∥2r1
1,p + ∥u∥2r2

1,p )

≤ C3

(
(ρ(u))

2r1
p + (ρ(u))

2r2
p

) (3.3)

ith some C1, C2, C3 > 0. Applying (3.3) we get

I(u) ≥ 1
ρ(u) − 1 ∫ (∫

F (y, u)
µ dy

)
F (x, u) dx ≥ 1

ρ(u) − C3
(

(ρ(u))
2r1

p − (ρ(u))
2r2

p

)
.

q 2 RN RN |x− y| q 2
7
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Since 2r2 ≥ 2r1 > p by (1.4), we may choose δ > 0 such that if ρ(u) ≤ δ then

I(u) ≥ ρ(u)
2q .

n particular, if γ ∈ Γ , then we have ρ(γ(0)) = 0 < δ < ρ(γ(1)) since I(γ(1)) < 0 and ρ(u) ≤ δ implies
I(u) > 0. Therefore, by the intermediate value theorem, there exists τ0 ∈ (0, 1) such that ρ(γ(τ0)) = δ. This
ives us

δ

2q ≤ I(γ(τ0)) ≤ sup
t∈[0,1]

I(γ(t)).

s γ ∈ Γ was arbitrary, we get b ≥ δ
2q > 0. □

emma 3.2. Let hypotheses (h1)–(h2) be satisfied.

(i) There exist ϱ, η > 0 such that I(u) ≥ η for all u ∈ W 1,H(RN ) with ∥u∥ = ϱ.
(ii) There exists e ∈ W 1,H(RN ) with ∥e∥ > ϱ such that I(e) < 0.

Proof. (i) By (3.2) and (h2), we can write

I(u) ≥
∥u∥p

1,p

p
+

∥∇u∥q
q,a + ∥u∥q

q,a

q
− 1

2C(N,µ)∥F (·, u)∥2
2N

2N−µ

≥
∥u∥p

1,p

p
+

∥∇u∥q
q,a + ∥u∥q

q,a

q
− C4

(∫
RN

(
|u|

2Nr1
2N−µ + |u|

2Nr2
2N−µ

)
dx
) 2N−µ

N

,

where C4 > 0 is constant independent of u. Using again Proposition 2.2 and (1.11), we obtain

I(u) ≥ 1
q
ρ(u) − C5(∥u∥2r1

1,p + ∥u∥2r2
1,p ) ≥ 1

q
∥u∥p

1,p − C5(∥u∥2r1
1,p + ∥u∥2r2

1,p )

or some C5 > 0. Since 2r2 ≥ 2r1 > p, we can choose ϱ > 0 sufficiently small such that I(u) ≥ η provided
u∥ = ρ for some η > 0.

(ii) In order to prove the second part, let us fix u0 ∈ W 1,H(RN ) \ {0} with u0 ≥ 0 and define

gx(t) = F

(
x,

tu0

∥u0∥

)
for t > 0 and x ∈ Ω .

rom (h2) it follows that
g′

x(t)
gx(t) ≥ θ

2t for t > 0.

ntegrating this over [1, s∥u0∥] with s > 1
∥u0∥ , we easily get

gx(s∥u0∥) ≥ gx(1)(s∥u0∥) θ
2 ,

hat is,
F (x, su0) ≥ F

(
x,

u0

∥u0∥

)
(s∥u0∥) θ

2 .

sing this, we can write

I(su0) ≤ sp

p
∥u0∥p

1,p + sq

q

(
∥∇u0∥q

q,a + ∥u0∥q
q,a

)
− sθ∥u0∥θ

2

∫
RN

⎛⎝∫
RN

F
(
y, u0

∥u0∥

)
|x− y|µ

dy

⎞⎠F

(
x,

u0

∥u0∥

)
dx

= C6s
p + C7s

q − C7s
θ,

here C6, C7, C8 are positive constants and s > 1
∥u0∥ . Therefore we can choose s > 1

∥u0∥ large enough such
hat e = su with I(e) < 0 and ∥e∥ > ρ since θ > q > p. □
0

8
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By the Mountain Pass theorem without (PS)-condition, see Chabrowski [56, Theorem 5.4.1], there exists
a (PS)b-sequence {un}n∈N ⊂ W 1,H(RN ) of I, that is,

I(un) → b and I ′(un) → 0 in W 1,H(RN )∗, (3.4)

where b is defined in (3.1).

Lemma 3.3. Let hypotheses (h1)–(h2) be satisfied. Then, the (PS)b-sequence {un}n∈N ⊂ W 1,H(RN ) of I
is bounded.

Proof. From (3.4), we get
I(un) − ⟨I ′(un), un⟩H

θ
≤ b+ 1 + ∥un∥, (3.5)

for n ∈ N large enough. By (h2) and Proposition 2.1 we have for ∥un∥ ≥ 1 that

I(un) − ⟨I ′(un), un⟩H

θ
=
(

1
p

− 1
θ

)
∥un∥p

1,p +
(

1
q

− 1
θ

)(
∥∇un∥q

q,a + ∥un∥q
q,a

)
−
∫
RN

(∫
RN

F (y, un)
|x− y|µ

dy
)(

F (x, un)
2 − unf(x, un)

θ

)
dx

≥
(

1
p

− 1
θ

)
∥un∥p

1,p +
(

1
q

− 1
θ

)(
∥∇un∥q

q,a + ∥un∥q
q,a

)
≥
(

1
q

− 1
θ

)
ρ(un) ≥

(
1
q

− 1
θ

)
∥un∥p.

his along with (3.5) gives the boundedness of {un}n∈N in W 1,H(RN ). □

emma 3.4. Let hypotheses (h1)–(h2) be satisfied. Then, there exist r, β > 0 and a sequence {yn}n∈N ⊂ RN

uch that
lim inf
n→∞

∫
Br(yn)

|un(x)|p dx ≥ β.

roof. Suppose the assertion is not true. Then, by Lions’ lemma [57, Lemma I.1], one has

un → 0 in Lα(RN ) for any α ∈ (p, p∗).

rom (3.2) and (h2), we know that∫
RN

(∫
RN

F (y, un)
|x− y|µ

dy
)
F (x, un) dx ≤ C0

(∫
RN

(
|un|

2Nr1
2N−µ + |un|

2Nr2
2N−µ

)
dx
) 2N−µ

N

,

ith a constant C0 > 0. Due to (1.11) it follows that

lim
n→∞

∫
RN

(∫
RN

F (y, un)
|x− y|µ

dy
)
F (x, un) dx = 0 (3.6)

and similarly,
lim

n→∞

∫
RN

(∫
RN

F (y, un)
|x− y|µ

dy
)
unf(x, un) dx = 0. (3.7)

Using (3.7) in limn→∞ I ′(un) = 0, we easily get

lim
n→∞

(
∥un∥p

1,p + ∥∇un∥q
q,a + ∥un∥q

q,a

)
= 0. (3.8)

On the other hand, from (3.6) and (3.8) we get 0 = lim I(u ) = b > 0 which is a contradiction. □
n→∞ n

9
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Now, we define a sequence vn( · ) = un(· + yn). Then ϱH(un) = ϱH(vn), so {vn}n∈N remains bounded in
W 1,H(RN ), see Lemma 3.3. Moreover, by translation invariance of I and I ′ due to (h3), implies

I(vn) → b and I ′(vn) → 0. (3.9)

Thus, up to a subsequence, there exists v ∈ W 1,H(RN ) such that

vn ⇀ v in W 1,H(RN ), vn → v in Ls
loc(RN ) for any s ∈ [1, p∗), (3.10)

and also by Lemma 3.4 ∫
Br(0)

|vn(x)|p dx ≥ β

2 .

rom this, it is clear that v ̸= 0.

roposition 3.5. Let hypotheses (h1)–(h3) be satisfied. For any φ ∈ C∞
c (RN ) we have, up to a subsequence,

lim
n→∞

∫
RN

(∫
RN

F (y, vn)
|x− y|µ

dy
)
φf(x, vn) dx =

∫
RN

(∫
RN

F (y, v)
|x− y|µ

dy
)
φf(x, v) dx.

Proof. By the growth conditions in (1.3) and (1.4) along with the fact that vn is bounded in W 1,H(RN )
gives the boundedness of F (·, vn) in L

2N
2N−µ (RN ). In addition, the pointwise convergence of vn to v and the

ontinuity of F imply that F (x, vn) → F (x, v) pointwise a. e. in R. We define the convolution operator
:L

2N
2N−µ (RN ) → L

2N
µ (RN ) by

K(w)(x) := 1
|x|µ

∗ w(x).

From the Hardy–Littlewood–Sobolev inequality stated in Proposition 2.3, we obtain that K is a linear and
bounded operator. Hence, up to a subsequence, {K(F (·, vn))}n∈N is bounded in L

2N
µ (RN ),

K(F (x, vn)) → K(F (x, v)) a. e. in RN

nd ∫
RN

∫
RN

F (y, vn)
|x− y|µ

ψ(x) dy dx →
∫
RN

∫
RN

F (y, v)
|x− y|µ

ψ(x) dy dx for every ψ ∈ L
2N

2N−µ (RN ).

In particular, for every ϕ ∈ C∞
c (RN ), we have∫

RN

∫
RN

F (y, vn)
|x− y|µ

f(x, v)ϕ(x) dy dx →
∫
RN

∫
RN

F (y, v)
|x− y|µ

f(x, v)ϕ(x) dy dx. (3.11)

Now, we claim that for every ϕ ∈ C∞
c (RN ),∫

RN

(∫
RN

F (y, vn)
|x− y|µ

dy
)

(f(x, vn) − f(x, v))ϕ(x) dx → 0. (3.12)

Since {K(F (·, vn))}n∈N is uniformly bounded in L
2N
µ (RN ), by Hölder’s inequality, it is enough to show that

∥ (f(·, vn) − f(·, v))ϕ∥ 2N
2N−µ ,supp(ϕ) → 0. (3.13)

Using (1.3) and Young’s inequality we get

[f(·, vn)ϕ]
2N

2N−µ ≤ C

(
|vn|

2N(r1−1)
2N−µ + |vn|

2N(r2−1)
2N−µ

)
ϕ

2N
2N−µ

≤ C1

(
|vn|

2Nr1
2N−µ + |vn|

2Nr2
2N−µ

)
+ C2(r1, r2, ∥ϕ∥∞) ∈ L1(supp(ϕ))
10
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for some C1, C2 > 0. Then, from Lebesgue’s dominated convergence theorem, we obtain the required
ssertion in (3.13) and so in (3.12). Finally, combining the estimates in (3.11) and (3.12), it is easy to verify
hat

lim
n→∞

∫
RN

(∫
RN

F (y, vn)
|x− y|µ

dy
)
ϕf(x, vn) dx =

∫
RN

(∫
RN

F (y, v)
|x− y|µ

dy
)
ϕf(x, v) dx. □

Proposition 3.6. Let hypotheses (h1)–(h3) be satisfied. For a subsequence of {vn}n∈N, we have

∇vn → ∇v pointwise a. e. in RN .

onsequently, it holds,

|∇vn|p−2∇vn ⇀ |∇v|p−2∇v in [L
p

p−1 (RN )]N ;

|∇vn|q−2∇vn ⇀ |∇v|q−2∇v in [L
q

q−1
a (RN )]N .

Proof. We know that

vn ⇀ v in W 1,H(RN ), vn → v in Ls
loc(RN ) and vn → v a. e. in RN (3.14)

for s ∈ [1, p∗]. Let ψ ∈ C∞
c (RN ), ψ ≥ 0, ψ = 1 in BR ⊂ supp(ψ) with R > 0. Taking ϕ = (vn − v)ψ as test

function in (3.9) leads to

lim
n→∞

∫
RN

(
|∇vn|p−2∇vn − |∇v|p−2∇v + a(x)

(
|∇vn|q−2∇vn − |∇v|q−2∇v

))
· (∇(vn − v))ψ dx

= − lim
n→∞

∫
RN

(
|∇vn|p−2∇vn − |∇v|p−2∇v

+ a(x)
(

|∇vn|q−2∇vn − |∇v|q−2∇v
) )

·∇ψ (vn − v) dx

− lim
n→∞

∫
RN

(
|∇v|p−2∇v + a(x)|∇v|q−2∇v

)
· ∇(vn − v)ψ dx

− lim
n→∞

∫
RN

(|vn|p + a(x)|vn|q) (vn − v)ψ dx

+ lim
n→∞

∫
RN

(∫
RN

F (y, vn)
|x− y|µ

dy
)
f(x, vn)(vn − v)φdx.

(3.15)

y Hölder’s inequality, we observe that

[LH(RN )]N ∋ h ↦−→
∫
RN

(
|∇v|p−2 + a(x)|∇v|q−2

)
∇v · hdx

nd
LH(RN ) ∋ g ↦−→

∫
RN

(
|∇v|p−2 + a(x)|∇v|q−2

)
v · g dx

re bounded linear functionals. Now, by using (3.14) and ψ ∈ C∞
c (RN ), it is clear that

lim
n→∞

∫
RN

( (
|∇v|p−2∇v + a(x)|∇v|q−2∇v

)
· ∇(vn − v)

+ (|vn|p + a(x)|vn|q)(vn − v)
)
ψ dx = 0,

(3.16)

nd

lim
n→∞

∫
RN

( (
|∇vn|p−2∇vn − |∇v|p−2∇v

)
+ a(x)

(
|∇v |q−2∇v − |∇v|q−2∇v

) )
·∇ψ (v − v) dx = 0.

(3.17)

n n n

11
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N

Following the arguments of Proposition 3.5 and using (3.14) as well as (1.3), we obtain

K(F (x, vn)) :=
∫
RN

F (y, vn)
|x− y|µ

dy is uniformly bounded w. r. t. n ∈ N in L
2N
µ (RN ), (3.18)

and by using Young’s inequality, we have

|K(F (·, vn))f(·, vn)(vn − v)ψ|

≤ C0

(
|K(F (·, vn))|

2N
µ + |f(·, vn)(vn − v)ψ|

2N
2N−µ

)
≤ C1

(
|K(F (·, vn))|

2N
µ +

(
|vn|

2N(r1−1)
2N−µ |(vn − v)ψ|

2N
2N−µ + |vn|

2N(r2−1)
2N−µ |(vn − v)ψ|

2N
2N−µ

))
≤ C2

(
|K(F (·, vn))|

2N
µ + |vn|

2r1N
2N−µ + |vn|

2r2N
2N−µ + |vn − v|

2r1N
2N−µ + |vn − v|

2r2N
2N−µ

)
∈ L1(supp(ψ))

(3.19)

due to (1.11) whereby C0, C1, C2 are positive constants. Combining the above facts and using Lebesgue’s
dominated convergence theorem, we get

lim
n→∞

∫
RN

(∫
RN

F (y, vn)
|x− y|µ

dy
)
f(x, vn)(vn − v)φdx = 0. (3.20)

ow, using the convergence results of (3.16)–(3.20) in (3.15), it follows that

lim
n→∞

∫
RN

[(
|∇vn|p−2∇vn − |∇v|p−2∇v

)
+ a(x)

(
|∇vn|q−2∇vn − |∇v|q−2∇v

)]
· ∇(vn − v) ψ dx = 0.

On the last expression we can apply Simon’s inequalities (see Simon [58, formula (2.2)]) and use the fact
that ψ = 1 in BR. This gives

lim
n→∞

∫
BR

|∇vn − ∇v|p dx = 0,

and since the choice of cut-off function ψ with BR ⊂ supp(ψ), R > 0 is arbitrary,

∇vn → ∇v pointwise a. e. in RN .

However, this says that
|vn|p−2

vn → |v|p−2
v pointwise a. e. in RN .

Since {|vn|p−2
vn}n∈N is bounded in [L

p
p−1 (RN )]N , we conclude that

|∇vn|p−2∇vn ⇀ |∇v|p−2∇v in [L
p

p−1 (RN )]N .

In a similar way, we can establish that

|∇vn|q−2∇vn ⇀ |∇v|q−2∇v in [L
q

q−1
a (RN )]N . □

Now we can prove that problem (1.1) has a nontrivial weak solution which shows the first part of
Theorem 1.1.

Theorem 3.7. Let hypotheses (h1)–(h3) be satisfied. Then the element v ∈ V set in (3.10) is a critical
point of the functional I, and so a weak solution for problem (1.1). Moreover, I(v) ≤ b.

Proof. The proof is provided by showing

lim ⟨I ′(vn), φ⟩ = ⟨I ′(v), φ⟩ for all φ ∈ C∞(RN ). (3.21)

n→∞ H H c

12
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Recall that

⟨I ′(vn), φ⟩H =
∫
RN

(
|∇vn|p−2∇vn + a(x)|∇vn|q−2∇vn

)
· ∇φdx

+
∫
RN

(
|vn|p−2

vn + a(x)|vn|q−2
vn

)
φdx

−
∫
RN

(∫
RN

F (y, vn)
|x− y|µ

dy
)
f(x, vn)φdx.

pplying Propositions 3.5 and 3.6 we easily derive (3.21). Now, using (3.9) and the density of C∞
c (RN ) in

1,H(RN ) given in [53, Proposition 6.4.4], we obtain I ′(v) = 0.
Let us now prove that I(v) ≤ b. From Proposition 3.6, (1.9), Fatou’s lemma and the fact that vn → v in

q(Bη(0)) for any η > 0, we derive

lim inf
n→∞

(
I(vn) − 1

θ
I ′(vn)vn

)
= lim inf

n→∞

(
(θ − p)
pθ

∥vn∥p
1,p + (θ − q)

qθ

(
∥∇vn∥q

q,a + ∥vn∥q
q,a

))
+ lim inf

n→∞

1
2θ

∫
RN

(∫
RN

F (y, vn)
|x− y|µ

dy
)

(2vnf(x, vn) − θF (x, vn)) dx

≥ lim inf
n→∞

(
(θ − p)
pθ

∥vn∥p
1,p + (θ − q)

qθ

(
∥∇vn∥q

q,a + ∥vn∥q
q,a

))
+ lim inf

n→∞

1
2θ

∫
Bη(0)

(∫
Bη(0)

F (y, vn)
|x− y|µ

dy
)

(2vnf(x, vn) − θF (x, vn)) dx

= (θ − p)
pθ

∥v∥p
1,p + (θ − q)

qθ

(
∥∇v∥q

q,a + ∥v∥q
q,a

)
+ 1

2θ

∫
Bη(0)

(∫
Bη(0)

F (y, v)
|x− y|µ

dy
)

(2vf(x, v) − θF (x, v)) dx.

ince the left hand side of above inequality tends to b as n → ∞ and η is arbitrary, we obtain

b ≥ (θ − p)
pθ

∥v∥p
1,p + (θ − q)

qθ

(
∥∇v∥q

q,a + ∥v∥q
q,a

)
+ 1

2θ

∫
RN

(∫
RN

F (y, v)
|x− y|µ

dy
)

(2vf(x, v) − θF (x, v)) dx

= I(v) − 1
θ
I ′(v)v = I(v).

his shows the assertion of the theorem. □

Now we are going to show that problem (1.1) has a ground state solution if we suppose in addition
ypothesis (h4). For this purpose, we introduce the Nehari manifold associated to problem (1.1) given by

N =
{
u ∈ W 1,H(RN ) \ {0} : ⟨I ′(u), u⟩H = 0

}
.

his means that for any u ∈ N , we have

(
∥∇u∥p

p + ∥u∥p
p

)
+
(
∥∇u∥q

q,a + ∥u∥q
q,a

)
=
∫
RN

(∫
RN

F (y, u)
|x− y|µ

dy
)
f(x, u)u(y) dx. (3.22)

Let us define
m := inf

u∈N
I(u)

Now we are ready to prove the existence of a ground state solution under hypotheses (h1)–(h4) which
completes the proof of Theorem 1.1.
13
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Proof of Theorem 1.1. We are going to show that I(v) = m. To this end, for u ∈ N , we consider the
fibering function Φu : (0,∞) → R defined by Φu(t) = I(tu) such that

Φ′
u(t) = ⟨I ′(tu), u⟩H = tp−1∥u∥p

1,p + tq−1 (∥∇u∥q
q,a + ∥u∥q

q,a

)
−
∫
RN

(∫
RN

F (y, tu)
|x− y|µ

dy
)
f(x, tu)udx.

(3.23)

From (3.22) and (3.23), it follows for t > 1 that

Φ′
u(t) ≤ tq−1 (∥∇u∥p

p + ∥u∥p
p + ∥∇u∥q

q,a + ∥u∥q
q,a

)
−
∫
RN

(∫
RN

F (y, tu)
|x− y|µ

dy
)
f(x, tu)udx

= tq−1
∫
RN

(∫
RN

F (y, u)
|x− y|µ

dy
)
f(x, u)udx−

∫
RN

(∫
RN

F (y, tu)
|x− y|µ

dy
)
f(x, tu)udx.

(3.24)

Using (h4) and Remark 1.4 in (3.24), we obtain

Φ′
u(t)
tq−1 ≤

∫
RN

(∫
RN

F (y, u)
|x− y|µ

dy
)
f(x, u)udx−

∫
RN

(∫
RN

F (y, tu)
|x− y|µ

dy
)
f(x, tu)|u|

q
2

t
q
2 |tu|

q
2 −2

tu
dx

≤
∫
RN

(∫
RN

F (y, u)
|x− y|µ

dy
)
f(x, u)udx−

∫
RN

(∫
RN

F (y, tu)t
−q
2

|x− y|µ
dy
)
f(x, u)udx ≤ 0.

Hence, Φ′
u(t) ≤ 0 for t > 1. Arguing similarly as above for t < 1, we obtain Φ′

u(t) ≥ 0 for t < 1. Therefore,
the number 1 is a point of a maximum for the function Φ′

u, that is,

I(u) = Φu(1) = max
t∈[0,∞]

Φu(t) = max
t∈[0,∞]

I(tu).

Now, we define the map γ : [0, 1] → W 1,H(RN ) as γ(t) = (t∗u)t such that I(t∗u) < 0 and t∗ > 1. The
ountain pass geometry of the energy functional I implies that the map γ is well defined and γ ∈ Γ . Hence,

b ≤ max
0≤t≤1

I(γ(t)) ≤ I((t∗u)t−1
∗ ) = I(u),

here the second inequality follows by using the fact that 1 is a point of a maximum of the map t → Φu(t)
or u ∈ N . Since u ∈ N was arbitrary chosen, we deduce

b ≤ m. (3.25)

Let v be the solution of problem (1.1) obtained in Theorem 3.7 such that

I(v) ≤ b and ⟨I ′(v), ϕ⟩H = 0 for all ϕ ∈ W 1,H(RN ), (3.26)

here the mountain pass level b is defined in (3.1). Now, by using the fact that v ∈ N and combining (3.25)
nd (3.26), we obtain the required claim I(v) = m. □

. Existence of ground state solution without AR-condition

In this section, we establish the existence of a ground state solution of problem (1.1) under the
ssumptions (h1), (h′

2) and (h3). We start with the mountain pass geometry.

emma 4.1. Let hypotheses (h1), (h′
2) and (h3) be satisfied.

(i) There exist R, σ > 0 such that I(u) ≥ σ for all u ∈ W 1,H(RN ) with ∥u∥ = R.
1,H N
(ii) There exists e ∈ W (R ) with ∥e∥ > σ such that I(e) < 0.

14
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Proof. (i) The proof works in the same way as the one of Lemma 3.2(i).
(ii) We choose u ∈ W 1,H(RN ) such that u > 0, ∥u∥ = 1 and∫

RN

(∫
RN

|u(x)|
q
2

|x− y|µ
dx
)

|u(y)|
q
2 dy > 0.

or t > 1 large enough we have

I(tu) ≤ tqρ(u)
p

− 1
2

∫
RN

(∫
RN

F (y, tu)
|x− y|µ

dy
)
F (x, tu) dx.

Moreover, by Remark 1.4, we know that for any l > 0 there exists Cl > 0 such that

F (x, tu) > l|tu(x)|
q
2 , when |tu(x)| > Cl

niformly in x ∈ RN . Using this estimate, we obtain

I(tu) ≤ tqρ(u)
p

− l2tq

2

∫
RN

(∫
RN

|u(y)|
q
2

|x− y|µ
dy
)

|u(x)|
q
2 dx

hen |tu| > Cl. Thus, for suitable l, we can find t∗ > 0 sufficiently large such that |t∗u(x)| > Cl uniformly
or x ∈ RN with ∥t∗u∥ > σ and I(t∗u) < 0 for some σ > 0. This proves the assertion of the lemma by fixing
= t∗u. □

A direct consequence of Lemma 4.1 is the following result.

orollary 4.2. Let hypotheses (h1), (h′
2) and (h3) be satisfied. Then there exist r > 0 and w ∈ W 1,H(RN )

uch that ∥w∥ > r and
A := inf

∥u∥=r
I(u) > I(0) = 0 ≥ I(w).

roof. Taking Lemma 4.1 into account, we get

A := inf
∥u∥=σ

I(u) ≥ R > I(0) = 0 > I(e).

he result follows by fixing r = σ and w = e. □

emma 4.3. Let hypotheses (h1), (h′
2) and (h3) be satisfied. Then there exist r0 > 0 and ε > 0 such that

< ∥u∥ < r0 implies
I(u) ≥ ε∥u∥q and ⟨I ′(u), u⟩H ≥ ε∥u∥q.

roof. Similar to the proof of Lemma 3.2 we get

I(u) ≥ ρ(u)
q

− C

(
ρ(u)

2r1
p + ρ(u)

2r2
p

)
.

y using Proposition 2.1(iii), for 0 < ∥u∥ < 1 we have

I(u)
∥u∥q

≥ I(u)
ρ(u) ≥ 1

q
− C

(
(ρ(u))

2r1
p −1 + (ρ(u))

2r2
p −1

)
where 2r2 ≥ 2r1 > p by (1.4). This implies that if we choose r > 0 small enough it follows

I(u)
q

≥ ε if 0 < ∥u∥ < r

∥u∥

15
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for some ε > 0. Similarly, one can establish

⟨I ′(u), u⟩
∥u∥q

≥ ε if 0 < ∥u∥ < r

or some ε > 0. This ends the proof. □

roposition 4.4. Let hypotheses (h1), (h′
2) and (h3) be satisfied. Then any (C)c-sequence of I is bounded

n W 1,H(RN ) for any c ∈ R.

roof. We argue indirectly and suppose {un}n∈N is an unbounded (C)c-sequence of I. Then, up to a
ubsequence, we have

∥un∥ → ∞, I(un) → c and (1 + ∥un∥) I ′(un) → 0.

Let vn = un
∥un∥ , then {vn}n∈N is bounded in W 1,H(RN ). Our claim is

lim
n→∞

sup
y∈RN

∫
B2(y)

|vn|p dx = 0 (4.1)

because if, up to a subsequence,
sup

y∈Rn

∫
B2(y)

|vn|p dx ≥ δ > 0

for some δ > 0, then we can choose a sequence {zn}n∈N ⊂ RN such that∫
B2(zn)

|vn|p dx ≥ δ

2 .

Since ZN ∩B2(zn) can have maximum 4N number of points, we can select yn ∈ ZN ∩B2(zn) such that∫
B2(yn)

|vn|p dx ≥ δ

2 × 4N
:= τ > 0.

Now we set ṽn( · ) = vn(· + yn) and see that ρ(vn) = ρ(ṽn) due to (h3). Hence, {ṽn}n∈N is also bounded
n W 1,H(RN ) which implies, up to a subsequence, that

ṽn ⇀ ṽ in W 1,H(RN ), ṽn → ṽ in Lp
loc(RN ) and ṽn(x) → ṽ(x) a. e. in RN

for some ṽ ∈ W 1,H(RN ). From ∫
B2(0)

|ṽn|p dx =
∫

B2(yn)
|vn|p dx ≥ τ > 0,

e know that ṽ ̸≡ 0. We further set ũn = ṽn∥un∥ and have that |ũn(x)| → ∞ if ṽ(x) ̸= 0. Using (h′
2) (iv),

e get
F (x, ũn(x))|ṽn(x)|q/2

|ũn(x)|q/2 → ∞ for all x ∈ Ω , (4.2)

here Ω = {x ∈ RN : ṽ(x) ̸= 0} has positive measure. Since limn→∞ I(un) = c, we get, for ∥un∥ > 1, that∫
RN

(∫
RN

F (y, un)
|x− y|µ

dy
)
F (x, un) dx = −(c+ o(1)) +

∥un∥p
1,p

p
+

∥∇un∥q
q,a + ∥un∥q

q,a

q

≤ −(c+ o(1)) + ρ(un)
p

≤ −(c+ o(1)) + ∥un∥q

p
.

16
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Changing the variables and applying (4.2) gives

−(c+ o(1))
∥un∥q

+ 1
p

≥
∫
RN

(∫
RN

F (y, ũn)
|x− y|µ

dy
)
F (x, ũn)

∥un∥q
dx

=
∫
RN

(∫
RN

F (y, ũn)|ṽn|
q
2

|x− y|µ|ũn|
q
2

dy
)
F (x, ũn)|ṽn|

q
2

|ũn|
q
2

dx

≥
∫
Ω

(∫
Ω

F (y, ũn)|ṽn|
q
2

|x− y|µ|ũn|
q
2

dy
)
F (x, ũn)|ṽn|

q
2

|ũn|
q
2

dx → ∞.

ut this is impossible and so (4.1) must hold. Then, from (4.1) and Lions’ lemma [57, Lemma I.1] we have

vn → 0 in Ls(RN ) for any s ∈ (p, p∗). (4.3)

y the continuity of the map t ↦→ I(tun) for t ∈ [0, 1] and each fixed n ∈ N, we can find a sequence
tn}n∈N ∈ [0, 1] such that

I(tnun) = max
t∈[0,1]

I(tun). (4.4)

ext we are going to show that
lim

n→∞
I(tnun) = ∞. (4.5)

ince ∥un∥ → ∞, we can choose M > 1 and n ∈ N sufficiently large such that M
∥un∥ ∈ (0, 1). For such n,

sing (4.4), we get

I(tnun) ≥ I

(
Mun

∥un∥

)
= I(Mvn)

≥ min {Mp,Mq}
q

ρ(vn) −
∫
RN

(∫
RN

F (y,Mvn)
|x− y|µ

dy
)
F (x,Mvn) dx

= min {Mp,Mq}
q

−
∫
RN

(∫
RN

F (y,Mvn)
|x− y|µ

dy
)
F (x,Mvn) dx,

(4.6)

since ∥vn∥ = 1 implies ρ(vn) = 1, see Proposition 2.1(ii). Using the estimate as in (3.3) and applying (4.3)
as well as (1.4), one has∫

RN

(∫
RN

F (y,Mvn)
|x− y|µ

dy
)
F (x,Mvn) dx ≤ C1

(∫
RN

(
|Mvn|

2Nr1
2N−µ + |Mvn|

2Nr2
2N−µ

)
dx
) 2N−µ

N

≤ C1M
2r2

(∫
RN

(
|vn|

2Nr1
2N−µ + |vn|

2Nr2
2N−µ

)
dx
) 2N−µ

N

→ 0 as n → ∞.

nserting this in (4.6) yields
I(tnun) ≥ min {Mp,Mq}

q
+ on(1)

hich holds for any M > 1. This proves (4.5).
Now we have I(0) = 0, limn→∞ I(un) = c and ⟨I ′(tnun), tnun⟩H = 0 for tn ∈ (0, 1). Then, from (1.10)

nd Remark 1.4, it follows that

1
Θ
I(tnun) = 1

Θ
I(tnun) − 1

Θ

1
q

⟨I ′(tnun), tnun⟩H

= 1
[
tpn∥un∥p

1,p + tqn (∥∇un∥q
q,a + ∥un∥q

q,a

)
− 1

ρ(tnun)

Θ p q q

17
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w
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+ 1
2q

∫
RN

(∫
RN

F (y, tnun)
|x− y|µ

dy
)

(2f(x, tnun)tnun − qF (x, tnun)) dx
]

= 1
Θ

[
tpn∥un∥p

1,p

p
+ tqn

q

(
∥∇un∥q

q,a + ∥un∥q
q,a

)
− 1
q
ρ(tnun)

]
+ 1

2qΘ

∫
RN

(∫
RN

F (y, tnun)
|x− y|µ

dy
)

F(x, tnun) dx

≤ 1
Θ

[∥un∥p
1,p

p
−

∥un∥p
1,p

q

]
+ 1

2q

∫
RN

(∫
RN

F (y, tnun)
|x− y|µ

dy
)

F(x, un) dx

≤
∥un∥p

1,p

p
−

∥un∥p
1,p

q
+ 1

2q

∫
RN

(∫
RN

F (y, un)
|x− y|µ

dy
)

F(x, un) dx

=
∥un∥p

1,p

p
−

∥un∥p
1,p

q

+ 1
2q

∫
RN

(∫
RN

F (y, un)
|x− y|µ

dy
)

(2f(x, un)un − qF (x, un)) dx

= I(un) − 1
q

⟨I ′(un), un⟩H → c as n → ∞,

hich contradicts (4.5). Therefore, we can conclude that {un}n∈N must be bounded in W 1,H(RN ). □

Now we can give the proof of Theorem 1.5 which says that problem (1.1) has a nontrivial ground state
olution u0 ∈ W 1,H(RN ) under hypotheses (h1), (h′

2) and (h3), that is,

I(u0) = inf {I(u) : u ̸≡ 0 and ⟨I ′(u), u⟩ = 0} .

roof of Theorem 1.5. From Lemma 3.1 we know that the mountain pass level c := b > 0, so there exists
(C)c-sequence {un}n∈N of I at the level c. Moreover, Proposition 4.4 implies the boundedness of {un}n∈N

n W 1,H(RN ). Let us define
δ := lim

n→∞
sup

y∈RN

∫
B2(y)

|un|p dx.

uppose δ = 0. Then, by Lions’ lemma [57, Lemma I.1], we have un → 0 in Ls(RN ) for any s ∈ (p, p∗).
sing the estimates in (3.3), we easily conclude that

lim
n→∞

∫
RN

(∫
RN

F (y, un)
|x− y|µ

dy
)
F (x, un) dx = 0,

lim
n→∞

∫
RN

(∫
RN

F (y, un)
|x− y|µ

dy
)
f(x, un)un dx = 0.

(4.7)

Due to ⟨I ′(un), un⟩H = 0 and the second limit in (4.7) we get

∥∇un∥q
q,a + ∥un∥q

q,a → 0 as n → ∞. (4.8)

Therefore, using the fact {un}n∈N is a (C)c-sequence along with (4.8) we obtain

c = lim
n→∞

(
I(un) − 1

p
⟨I ′(un), un⟩

)
= lim

n→∞

(
p− q

pq
(∥∇un∥q

q,a + ∥un∥q
q,a)

− 1
2p

∫
RN

(∫
RN

F (y, un)
|x− y|µ

dy
)

(2f(x, un)un − pF (x, un)) dx
)

→ 0 as n → ∞,
18
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which is a contradiction to c > 0. Thus δ > 0 and there must be a sequence {yn}n∈N ⊂ ZN and a real
umber κ > 0 such that ∫

B2(0)
|vn|p dx =

∫
B2(yn)

|un|p dx > κ > 0, (4.9)

where vn( · ) = un(·+yn). Since ϱH(un) = ϱH(vn) and (h3) holds, we get {vn}n∈N to be a bounded sequence
n W 1,H(RN ). Hence there exists ṽ ∈ W 1,H(RN ) such that

vn ⇀ ṽ in W 1,H(RN ) and vn → ṽ in Lp
loc(RN ).

rom (4.9) we know that ṽ ̸= 0 a. e. in RN . By (h3), we assert that {vn}n∈N is a (C)c-sequence of I and by
roposition 3.6, we have for any ϕ ∈ C∞

c (RN )

⟨I ′(ṽ), ϕ⟩ = lim
n→∞

⟨I ′(vn), ϕ⟩ = 0,

hich says that ṽ is a nontrivial solution of (1.1). Now let

α = inf {I(u) : u ̸≡ 0 and ⟨I ′(u), u⟩ = 0} .

et u be an arbitrary critical point of I. Then Remark 1.3 helps to get that

I(u) = I(u) − 1
q

⟨I ′(u), u⟩

= q − p

qp
∥u∥p

1,p + 1
2q

∫
RN

(∫
RN

F (y, u)
|x− y|µ

dy
)

F(x, u) dx ≥ 0,

ince q > p. Thus α ≥ 0 and α ≤ I(ṽ) < ∞. We know that there exists sequence {wn}n∈N of nontrivial
ritical points of I such that

I(wn) → α as n → ∞.

ince I ′(wn) = 0, by Lemma 4.3, we can find r0 > 0 such that

∥wn∥ ≥ r0 for all n ∈ N. (4.10)

urthermore, we see that
(1 + ∥wn∥)I ′(wn) → 0 as n → ∞.

his implies that {wn}n∈N is a (C)α-sequence of I at α and Proposition 4.4 says that {wn}n∈N must be
ounded. Let

δ1 = lim
n→∞

sup
y∈RN

∫
B2(y)

|wn|p dx.

hen δ1 = 0 implies
lim

n→∞

∫
RN

(∫
RN

F (y, wn)
|x− y|µ

dy
)
f(x,wn)wn dx = 0

by following the same arguments as for (4.7). This leads to

ρ(wn) = ⟨I ′(wn), wn⟩ +
∫
RN

(∫
RN

F (y, wn)
|x− y|µ

dy
)
f(x,wn)wn dx → 0

ince I ′(wn) = 0. Hence, ∥wn∥ → 0 as n → ∞ by Proposition 2.1, which contradicts (4.10). Therefore
1 > 0. We set w̃n( · ) = wn(· + yn). Similar arguments as used before in Propositions 3.5 and 3.6, for any
∈ C∞

c (RN ) imply that I ′(w̃n) = 0, I ′(wn) = I ′(w̃n) → α and for some w̃ ∈ W 1,H(RN ), we have

w̃ ⇀ w̃ ̸≡ 0 in W 1,H(RN ) and ∇w̃ → ∇w̃ pointwise a. e. in RN .
n n
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Obviously ⟨I ′(w̃n), ϕ⟩ = 0 for all ϕ ∈ C∞
c (RN ), that is w̃ is a critical point of I. Using again the density of

∞
c (RN ) in W 1,H(RN ) given in [53, Proposition 6.4.4], we obtain I ′(w̃) = 0.
It remains to show that w̃ is a ground state solution of problem (1.1), that is I(w̃) = α. Applying Fatou’s

emma, the pointwise convergence of w̃n and ∇w̃n along with Remarks 1.3 and 1.4, it follows that

I(w̃) = I(w̃) − 1
q

⟨I ′(w̃), w̃⟩

= q − p

pq
∥w̃∥p

1,p + 1
2q

∫
RN

(∫
RN

F (y, w̃)
|x− y|µ

dy
)

F(x, w̃) dx

≤ lim inf
n→∞

(
q − p

pq
∥w̃n∥p

1,p + 1
2q

∫
RN

(∫
RN

F (y, w̃n)
|x− y|µ

dy
)

F(x, w̃n) dx
)

= lim inf
n→∞

(
I(w̃n) − 1

q
⟨I ′(w̃n), w̃n⟩

)
= α.

ince I ′(w̃) = 0, we obtain I(w̃) = α which finishes the proof. □
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