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Abstract. In this paper, we consider a mixed boundary value problem with a nonhomogeneous,
nonlinear differential operator (called double phase operator), a nonlinear convection term (a reaction
term depending on the gradient), three multivalued terms, and an implicit obstacle constraint. Under
very general assumptions on the data, we prove that the solution set of such an implicit obstacle
problem is nonempty (so there is at least one solution) and weakly compact. The proof of our main
result uses the Kakutani—-Ky Fan fixed point theorem for multivalued operators along with the theory
of nonsmooth analysis and variational methods for pseudomonotone operators.
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1. Introduction. This paper is concerned with the investigation of an elliptic
inclusion problem with a nonlinear and nonhomogeneous partial differential operator
(called a double phase differential operator), a nonlinear convection term (a reaction
term depending on the gradient), an implicit obstacle constraint, three multivalued
terms where two of them are appearing on the boundary and the other one is for-
mulated in the domain, and three nonlocal operators in which two of them are de-
scribed in the domain and the other one is appearing on the boundary. Assume that
Q C RY is a bounded domain with Lipschitz boundary I' such that I is divided into
four disjoint measurable parts I'1, I's, I's, and T'y, with Iy having positive measure,
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p: Q—[0,400), and 1 < p < g. Also, we introduce the nonlinear and nonlocal partial
differential operator Dy, given by

Dyyu:=div (M (u)|Vul[P7>Vu + p(z)|Vul|!">Vu) for all ue WHH(Q)

and
ou

v, =

(M (u)|VulP?Vu+ p(z)|Vul|T*Vu) - v,

with v being the unit normal vector on I'. More precisely, we consider the following
nonlocal double phase implicit obstacle problem:

—Dagu+ |[ulP~?u + p(z) |Ju|T?u € Uy (z,u) + N(u)(z) + f(2,u, Vu) in Q,

u=0 on I'y,
O U () r
al/a 2T, u on Lo,
1.1 0
(L.1) —a—li € 0cp(x,u) on I's,
)
- a;i = G(u)() on Ty,
L(u) < J(u),

where Uy : QxR—2% and Uy : ToxR— 2R are two multivalued mappings, M : LP" () —
(0,400), N: LS (Q) — L4 (Q), and G: L%(I'y) — L% (Ty) are three continuous func-
tions, d.¢(z,u) is the convex subdifferential of s+ ¢(x,s), and L,J: WHH(Q) - R
are given functions defined on the Musielak-Orlicz Sobolev space W7 ((Q); see sec-
tion 2 for its precise definition.

Such a class of problems includes different interesting special cases which have not
been studied largely in the literature. Initially, the treatment of obstacle problems goes
back to the groundbreaking work by Stefan [46] in which the temperature distribution
in a homogeneous medium undergoing a phase change, typically a body of ice at zero
degrees centigrade submerged in water, was studied. We also mention the pioneering
work of Lions [27], who studied the equilibrium position of an elastic membrane which
lies above a given obstacle and which turns out as the unique minimizer of the Dirichlet
energy functional.

It should be mentioned that if M(u) =1, N(u) = 0 for all u € WH(Q), and
I'y = 0, then problem (1.1) reduces to the following double phase implicit obstacle
inclusion problem:

—Dyu+ [ulP2u+ p(@)u|*u € Uy (z,u) + f(z,u, Vu) in Q,

u=0 on I'y,
9 Uy () onT
(12) aVﬂ 2(T, U nlo,
ou
o, € 0cp(x,u) on I's,
L(u) < J(u),

where D, is the well-known double phase differential operator

(1.3) Dyu:=div (|VulP2Vu+ p(z)|Vu|??Vu) for all ue WH(Q)
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and

Ou = (|VulP72Vu + p(z)|Vu|!*Vu) - v.

v,
In fact, this problem has been considered and studied by Zeng, Radulescu, and
Winkert [52], and they used the Kakutani-Ky Fan fixed point theorem in a mul-
tivalued version for examining the existence of a solution to problem (1.2) under the
condition

(1'4) (f(x787§)_f<x7t’§)>(s_t)Sef‘s_ﬂp

for a.a. 2 €, for all s,t € R, and for all £ € RN. Moreover, when p =2, it is not hard
to see that the function f: Q x RY — R defined by

N
Fl@,5,6) =D G+ r1s? +w(z)

i=1

for all 2 € €, for all s € R, and for all £ € R does not satisfy inequality (1.4), where
weL*(Q), k1 >0,and ¢ = ((1,...,¢n) €RY is a given vector. However, in the present
paper, on the one hand, we remove the assumption (1.4) in order to extend the scope
of applications to the theoretical results concerning the existence of weak solutions to
double phase implicit obstacle problems; on the other hand, we develop a generalized
framework to explore the existence of weak solutions as well as the compactness of
the solution set to the nonlocal double phase implicit obstacle problem (1.1).

Note that the double phase operator defined in (1.3) is related to the energy
functional

(1.5) wr—>/Q(|Vw|p+u(x)|Vw|q) dz.

Functionals of type (1.5) have first been studied by Zhikov [53] in order to provide
models for strongly anisotropic materials. The main characteristic of the functional
defined in (1.5) is the change of ellipticity on the set where the weight function is zero,
that is, on the set {z € Q: u(x) =0}. To be more precise, the energy density of (1.5)
exhibits ellipticity in the gradient of order ¢ on the points x where p(z) is positive
and of order p on the points 2 where p(z) vanishes. Further results on regularity of
minimizers of (1.5) can be found in the papers of Baroni, Colombo, and Mingione
[3, 4], Colombo and Mingione [9, 10], De Filippis and Mingione (see [14, 15, 12, 13]),
Marcellini [32, 31], and Ragusa and Tachikawa [44]. We also mention the overview
articles of Radulescu [43] about isotropic and anisotropic problems and of Mingione
and Réadulescu [37] about recent developments for problems with nonstandard growth
and nonuniform ellipticity.

The main objective of the paper is the development of a general framework for
determining the existence of a weak solution to the nonlinear nonlocal implicit obstacle
problems (1.1) via Tychonoff’s fixed point theorem for multivalued operators, the
theory of nonsmooth analysis, and variational methods for pseudomonotone operators.
As far as we know, this is the first work for nonlocal implicit obstacle problems in the
double phase setting with mixed boundary conditions.

It should be mentioned that the combination of an implicit obstacle effect with
mixed boundary conditions along with multivalued mappings occurs in several engi-
neering and economic models, such as Nash equilibrium problems with shared con-
straints and transport route optimization with feedback control. For more models
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related to nonsmooth mechanical problems, we refer the reader to the books of Pana-
giotopoulos [41, 40] and Naniewicz and Panagiotopoulos [39].

In the content of (implicit) obstacle effects involving Clarke’s generalized gradient
or general multivalued mappings but without nonlocal terms, there are several papers
using different methods. We refer the reader to the works of Alleche and Radulescu
[1], Aussel, Sultana, and Vetrivel [2], Bonanno, Motreanu, and Winkert [5], Carl, Le,
and Winkert [8], Tannizzotto and Papageorgiou [24], Zeng et al. [48, 49], Migérski,
Khan, and Zeng [35, 34], and Zeng, Radulescu, and Winkert [51, 50]; see also the
recent monograph of Carl and Le [7] about multivalued variational inequalities and
inclusions. In the single-valued case with gradient dependent right-hand sides (the
so-called convection term), we mention the papers of Faraci, Motreanu, and Puglisi
[16], Faraci and Puglisi [17], Figueiredo and Madeira [18], Gasiiiski and Papageorgiou
[19], Gasinski and Winkert [20], Liu, Motreanu, and Zeng [29], Marano and Winkert
[30], and Papageorgiou, Radulescu, and Repovs [42]; see also the references therein.

The paper is organized as follows. Section 2 presents a detailed overview about
Musielak—Orlicz Lebesgue and Musielak—Orlicz Sobolev spaces, and the p-Laplacian
eigenvalue problem with a Steklov boundary condition, and we state some results from
nonsmooth analysis, the properties of Clarke’s generalized gradient, and Tychonoff’s
fixed point theorem for multivalued operators which will be used in the next sections to
establish the existence theorems to various nonlocal double phase obstacle problems.
In section 3, in order to establish the solvability of the nonlocal double phase implicit
obstacle problem (1.1), we first introduce an auxiliary problem defined in (3.1), a
variational mapping S driven by problem (3.1), and two multivalued mappings U
and Us which are exactly the Nemitskij operators of U; and Us, respectively. After
that, we prove the complete continuity of S and upper semicontinuity of i, and Us,
respectively. Finally, via employing Tychonoff’s fixed point theorem for multivalued
operators along with the theory of nonsmooth analysis, we establish the nonemptiness
and compactness of the solution set of problem (1.1). However, in section 4, we move
our attention to studying several special and interesting cases of our problem (1.1), and
we deliver the corresponding existence results to these special cases. Also, we make
further discussion to some particular problems of (1.1) and obtain several generalized
existence theorems for various nonlocal double phase obstacle problems.

2. Mathematical background. In this section, we give some necessary nota-
tions and preliminary materials which will be used in the next sections from several
places.

Throughout this paper, we suppose that © C RY is a bounded domain with
Lipschitz boundary I' := 002 such that I' is separated by four disjoint measurable
parts I'y, I's, ' and T'y, with I'; having positive Lebesgue measure. Let 1 <r < +o0,
and let D C Q be a nonempty set. In what follows, we denote by L"(D) := L"(D;R)
the usual Lebesgue space equipped with the norm || - ||, p defined by

1
lwllrp == (/ |u|rdx> for all w e L" (D).
D
Also, we introduce the set L"(D)4 := {u € L"(D) : u(xz) > 0 for a.a.z € D}. By

WL (Q) we define the corresponding Sobolev space endowed with the norm | - [|1 .0
defined by

lwllira = lullra+ |Vull.q for all ue WhH(Q).
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The conjugate of r > 1 is denoted by 7’/ > 1, i.e., % + % =1. Additionally, the critical

exponents of 7 > 1 in the domain and on the boundary, denoted by r* and r,, are
defined by

21 r*_{ﬁv’} ifr<N, T_{“JVV—?T if r <N,

+o0o0  ifr>N +o00 if r>N,

respectively. For the sake of convenience, in the entire paper, the symbols “ ——” and
“—” stand for the weak and the strong convergences, respectively, to various function
spaces. Recalling that the measure of I'; is positive, it follows from Korn’s inequality
that there exists a constant A > 0 such that

(22) lullp o < AVl g
for all w € W, where W is the subspace of W1P(Q) given by
Wi={ueW"(Q):u=0fora.azecl}.

For any r > 2 fixed, from Simon [45, formula (2.2)], we are able to find a constant
k(r) > 0 such that the following inequality holds:

(2.3) (Jo[" 2z —y["?y) - (z —y) > k(r)|z —y|"

for all z,3y € RY. Furthermore, we consider the eigenvalue problem of the r-Laplacian
(r>1) with a Steklov boundary condition formulated by

—Ayu=—|ul""u in £,
r—2

(2.4)

lu|""?u - v = Au|""2u onT.

From Lé [26], we know that the eigenvalue problem (2.4) has a smallest eigenvalue
/\137,. > 0 which is isolated and simple. Also, it is easy to prove that the following
variational identity holds:

Vul||l o + [|ul|];
(2.5) )‘ir: in IVull7.0 : lully o
ueWbr(Q)\{0} ||u||rF

In the whole paper, we suppose that the following hypothesis holds.
H(1): 1<p<N,p<qg<p*, and 0<pu(-) € L=(R).
Under the above assumption, let us introduce the nonlinear function H: € x
[0,00) — [0,00) described by the exponents p,q and weight-function u defined by
H(x,t) =tP + p(x)t? for all (z,t) € Q x [0,00).

We are now in a position to recall the well-known Musielak—Orlicz Lebesgue space
L*(Q) given by

LH(Q) = {u: Q=R is measurable | py (u) < +o0},

where the modular function py : L7 (Q) — [0, +00) is formulated by

pw(u) ::/Q’H(a:, |ul) dz :/Q (Jul” + p()|u|?) dz  for all u e LH(Q).
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It follows from Liu and Dai [28] that Musielak-Orlicz Lebesgue space L* () equipped
with the Luxemburg norm
Hu||q.[:inf{7>0 | pu (E) gl} for all u € L*(Q)
T
becomes a reflexive Banach space, because it is uniformly convex. Moreover, we
consider the seminormed space L{ (€2):

Li(Q) = {u: Q — R measurable | / p(x)|u|?de < —i—oo}
Q

endowed with the seminorm

1

ullg,n = (/Qu(x)u|qu> " forallue Lg(€).

Because problem (1.1) has mixed boundary conditions, the basic function space
in the present paper is considered by

V= {ué WhH(Q) | u=0 on I‘l},
where W1(Q) is the well-known Musielak—Orlicz Sobolev space defined by
WLH(Q) = {u e L™(Q) | [Vu| € LH(Q)}.
It is not difficult to prove that V' endowed with the norm || - ||y
[ullv :=Vullg + lulls - for all u eV

is a reflexive Banach space, where ||Vully = || |[Vu|||%-
Let us recall some embedding results for the spaces L*(Q) and WH7(Q); see
Gasiniski and Winkert [21] or Liu and Dai [28].

PROPOSITION 2.1. Let H(1) be satisfied, and denote by p*, p. the critical expo-
nents to p as given in (2.1) for s=p. Then we have the following:

(i) L7(2) = L™ () and WHH(Q) — WLT(Q) are continuous for all v € [1,p];

(ii) WEH(Q) — L"(Q) is continuous for all r € [1,p*] and compact for all r €
[1,p%);

(iii) WHH(Q) — L7 (0Q) is continuous for all v € [1,p.] and compact for all
r€[1,ps);

(iv) L*(Q) — LL(Q) is continuous;

(v) L1(Q) — LM™(Q) is continuous.

It should be mentioned that when the space W1 *(Q) is replaced by V' in Propo-
sition 2.1, then the embeddings (ii) and (iii) remain valid.
The following proposition is due to Liu and Dai [28, Proposition 2.1].

PROPOSITION 2.2. Let H(1) be satisfied, and let y € L™(Q). Then the following
hold:
1) if y#0, then ||lylli = A if and only if py (%) =1;
(ii) |lyllx <1 (resp., >1 and =1) if and only if py(y) <1 (resp., >1 and =1);
(ifi) if lyllae <1, then |lyll3, < pr(y) < llyl5:
(iv) if lyllae > 1, then |[yll5, < pac(y) < llyll3;
(v) llyllze = 0 if and only if py(y) — 0;
(vi) |lyll = o0 if and only if py(y) — +oo.
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Let w € V be fixed, and let M: V — (0,+00). Next, we introduce the nonlinear
operator H,,: V — V* given by

(Huw(u),v) ::/ (M (w)|VulP~2Vu + p(z)|Vu|!2Vu) - Voda
(2.6) @

ulP~2u z)|u|? %) vde
+ [ (a2t w@left20) va

for u,v € V, with (-,-) being the duality pairing between V and its dual space V*.
The following proposition states the main properties of H,,: V — V*. We refer the
reader to Crespo-Blanco et al. [11].

PROPOSITION 2.3. Let the hypotheses H(1) be satisfied. Then, for eachw €V, the
operator H,, defined by (2.6) is bounded, continuous, and monotone (hence maximal
monotone) and of type (S4), that is,

Up — u in V. and limsup (M, u, — u) <0
n— oo

mmply uyp, —u in V.

In the last part of this section, we are going to recall some results from nonsmooth
analysis and multivalued analysis. In the following, let £ be real Banach space with
norm |- ||g. A function ¢: E — R := RU {+oc} is said to be proper, convex, and
lower semicontinuous if the following conditions are fulfilled:

e D(p):={ucE: p(u)<+oo}#0;
e forany u,v € Fandt € (0,1), it holds that p(tu+(1—t)v) <tp(u)+(1—t)e(v);
e liminf, o ¢(u,) > ¢(u), where the sequence {u,}neny C E is such that
Uy, —uin F as n — oo for some u € E.
Let ¢ be a convex mapping. An element z* € E* is said to be a subgradient of ¢ at
ue kR if

(2.7) (2%, 0 —u) <p(v) = p(u)

holds for all v € E. The set of all elements z* € E* which satisfies (2.7) is called the
convex subdifferential of ¢ at u and is denoted by d.¢(u).

Moreover, a function j: ' — R is said to be locally Lipschitz at x € F if there are
a neighborhood O(z) of z and a constant L, > 0 such that

(W) =i ()| < Lelly —2|lp  for all y,z € O(x).
We denote by

)
j°(x;y) := limsup =+ My) = j(z)
z—x, A0 A

the generalized directional derivative of j at the point z in the direction y, and
dj: E—2F" given by

0j(x):={E€E": j°(x;y) > (§,y)pxp forallye E} forallzeFE

is the generalized gradient of j at x in the sense of Clarke.

The next proposition summarizes the properties of generalized gradients and gen-
eralized directional derivatives of a locally Lipschitz function. We refer the reader to
Migérski, Ochal, and Sofonea [36, Proposition 3.23] for its proof.
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PROPOSITION 2.4. Let j: E — R be locally Lipschitz with Lipschitz constant
L, >0 at x € E. Then we have the following:
(i) The function y— j°(x;y) is positively homogeneous and subadditive and sat-
isfies

17°(z; )| < Lellylle - for ally € E.

(ii) The function (x,y)— j°(x;y) is upper semicontinuous.

(iii) For each x € E, 9j(x) is a nonempty, convex, and weak® compact subset of
E* with ||€||g> < L, for all £ € 0j(x).

(iv) j°(x;y) = max {(&,y) p-xx |£ € Dj(x)} for ally € E.

(v) The multivalued function E > xw— 0j(x) C E* is upper semicontinuous from
FE into the subsets of E* with weak® topology.

We end this section to recall Tychonoff’s fixed point theorem for multivalued
operators; its proof can be found in Granas and Dugundji [22, Theorem 8.6].

THEOREM 2.5. Let D be a bounded, closed, and convex subset of a reflexive Ba-
nach space E, and let A: D — 2P be a multivalued map such that the following hold:
(i) A has bounded, closed, and convex values;
(ii) A is weakly-weakly upper semicontinuous.
Then A has a fixed point in D.

3. Existence and compactness. This section is devoted to exploring the
nonemptiness and compactness of the solution set to problem (1.1). As mentioned
before, our method is based on the theory of multivalued analysis, Tychonoft’s fixed
point principle, and variational methods.

In order to state the existence and compactness results for problem (1.1), we first
impose the following assumptions on the data of problem (1.1).

We assume that the nonlocal functions M: LP™(Q) — (0,+00), N: LS (Q) —
LS(Q), and G: L¢2(Ty) — L% (Iy) satisfy the following conditions:

H(M): M: LP (Q) — (0,+00) is such that M is weakly continuous in V; namely, for
any sequence {u, yneny CV C LP (Q) and u € V such that u, — uin V as
n — o0, we have
M(u) = lim M(uy),

n—oo

and there exists a constant c¢p; > 0 such that
M(u)>ep forallueV,

where p* is the critical exponent p* of p in the domain  given in (2.1) with

r=p.
H(N): The function N: L& (Q) — L%1(Q) is continuous such that there exist con-
stants ay,by >0 and 0 < k1 <p — 1 satisfying

[N(w)ll¢ 0 <anv +on[lwlle) g forallwe LS (Q),

where 1 < (1 <p*.
H(G): The function G: L%2(T'y) — L%(T4) is continuous such that there exist con-
stants ag,bg >0 and 0 < ko < p — 1 satisfying

1G(w)ll¢yr, <ac+ bg||w|\g2"‘7r4 for all w € LS2(Ty),

where 1 < (5 < p, and p, is the critical exponent of p on the boundary T’
given in (2.1) with r =p.
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For the convection term f, we suppose the following conditions:
H(f): f: QxR x RY - R is a Carathéodory function such that the following hold:
(1) there exist two constants ay,by >0 and a function ay € LP ()4 satisfying

[f(z,5,)] < apl€lP! +bslslP ! + ap (@)

for a.a. x €9, for all s € R, and for all £ € RY;
(ii) there exists a constant ey > 0 such that

f(z,8,&) — flz,8,6)| <ef|é — &P

for a.a. € Q, for all s €R, and for all £;,& € RV,
The multivalued mappings U;: 2 x R — 2R and Usy: Ty x R — 2R are assumed to
satisfy the following conditions:
H(U;): The multivalued function Uy : Q x R — 2% is such that the following hold:
(i) Ui(x,s) is a nonempty, bounded, closed, and convex set in R a. a. x €
and all s € R;
(ii) @+ Uy(z,s) is measurable in © for all s € R;
(iii) s+ Ui(x,s) is upper semicontinuous for a.a. x € €;
(iv) there exist a function ag, € L' (Q)4 and a constant ag, > 0 such that

|77\ < ay, (SC) +ay, |S|p_1

for all n € Uy (x, s), for a.a. z €, and for all s €R.
H(Us): The multivalued function Us: I'y x R — 2% is such that the following hold:
(i) Us(z,s) is a nonempty, bounded, closed, and convex set in R a. a. z € 'y
and all s eR;
(ii) x> Us(z,s) is measurable on I'y for all s € R;
(iil) s+ Us(x,s) is upper semicontinuous for a.a. x € I'y;
(iv) there exist a function ay, € LP (Iy)4 and a constant ag, >0 such that

€| < ap, (@) + au, |s[P

for all £ € Uy(z,s), for a.a. © € T'9, and for all s € R.
On the boundary I's, the function ¢: I's x R — R fulfills the following assumptions:
H(¢): The function ¢: I's x R — R is such that the following hold:
(i) x> ¢(x,r) is measurable on I'z for all r € R;
(ii) 7+ ¢(x,r) is convex and lower semicontinuous for a.a. x € I's;
(iii) for each function w € LP~(T'3), the function = — ¢(z,u(x)) belongs to
LY(T3).
With respect to the nonlocal functions L: V' — R and J: V — (0,400), we
suppose the following:
H(L): L: V — R is positively homogeneous and subadditive such that
L(u) <limsup L(uy,)
n—oo
whenever {uy}neny CV is such that wy, s win V for some ue V.
H(J): J: V — (0,+00) is weakly continuous; that is, for any sequence {uy tney CV
such that u, — u for some u € V, we have

J(uy) = J(u).

Moreover, we state the following compatibility conditions:
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H(2): The inequalities

NS

0<k(p)em —ey

P
0 <min{ear —apAv, 1} = (ap, +bs) o ()P — aycy(T2)P
hold, where k(p) and A > 0 are given in (2.3) and (2.2), and cp(©2) > 0 and
cp(I'2) > 0 are the smallest constants satisfying the following inequalities
(because of the continuity of the embeddings of V' to LP(Q) and of V to
LP(T9)):

[ullpo < cp(@lully and jullyr, <ep(T2)uflv for allueV.

Remark 3.1. The compatibility inequalities in H(2) are usually called smallness
conditions, which have been applied in much of the literature; see, for example, [23, 33]
(nonsmooth contact mechanics problems) and [52, 35] (nonlinear partial differential
equations). Essentially speaking, the compatibility inequalities in H(2) will play a
critical role in guaranteeing that the variational selection S is a self-map on a bounded
closed set (see (3.19) below), and revealing that the problem (1.1) has a coercive
framework. The following functions fulfill assumptions H(M):

o M(u) = cp + ri(J|ullr,,q) for all uw € V, where r1: [0,4+00) — [0,400) is a
continuous function, ¢y >0, and 1 <7 < p*;

o M(u) = an + ro(||ullr,,r) for all u € V, where ro: [0,4+00) — [0,400) is a
continuous function, cp; >0, and 1 < o < py.

It is not difficult to see that the following functions N: LS (Q) — L$1() and
G: L% (Ty) — L% (Ty) satisfy the conditions H(N) and H(G), respectively:

p—1
2

N(u)(z):= </Q w1 (x)|u(x)] dx) +wa(x) for all x € Q and all u € L (Q)

and

Gw)(x):= | ws(@)|w(z)| 'de+ws(z) forall z €Ty and w € L= (Ty),
Iy

where w; € L<1(9)+, o € LP(Q), and w3,y € L2(Ty).
Let p=2, and let f: Q x RN — R be defined by

N
fla,5,) = (& — r1s+w(x)
i=1

for all z € Q, for all s € R, and for all £ € RN, where w € L?(Q), x; > 0, and
¢=((1,-..,¢n) €ERY is a given vector. Then f satisfies hypothesis H(f).
Let ay € LP () and ay € LP (I'y). Then the multivalued functions defined by

Up(x,8) =[-1,1]as(x) +sP~! for all z € Q and all s€R,
Uz(x,8) =[0,2]sP~1 + ay(x) for all z €Ty and all s€ R

satisfy hypotheses H(U;) and H(Us), respectively.
Let ws € LP (I'3)4+. Then the function defined by

o(z,s) :=ws(x)|s| for all x €T3 and s€R

satisfies hypothesis H(¢).
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It is obvious that the functions L(u) = ||lu||y and J(u) = e**I“lp.2 for all u € V
fulfill hypotheses H(L) and H(J), respectively.

Let us consider the multivalued mapping K: V — 2V defined by
Ku)={veV | Lv)<J(u)} forallueV.

Under the hypotheses H(L) and H(J), we have the following important auxiliary re-
sult, which delivers several significant properties for the multivalued mapping K: V —
2V, More precisely, this lemma reveals an essential characteristic that K is Mosco
continuous (see Mosco [38]), i.e., K is sequentially weakly-weakly closed and sequen-
tially weakly-strongly lower semicontinuous. The detailed proof of this lemma can be
found in Lemma 3.3 of Zeng, Rédulescu, and Winkert [52].

LEMMA 3.2. Let J: V — (0,400) and L: V — R be two functions such that H(L)

and H(J) are satisfied. Then the following statements hold:

(i) For each u eV, K(u) is closed and convez in V such that 0 € K (u).

(ii) The graph Gr(K) of K is sequentially closed in V,, X Vy,; that is, K is se-
quentially closed from V with the weak topology into the subsets of V' with the
weak topology.

(iil) If {untnen CV is a sequence such that

w .
Up, — u nV

for some u €V, then for each v € K(u) there exists a sequence {v,}neny CV
such that

vn € K(up) and v, —v inV.

We are now in a position to give the definition of weak solutions to problem (1.1)
as follows.

DEFINITION 3.3. We say that a function u € V is a weak solution of problem
(1.1) if u € K(u) and there exist functions n € LP (), £ € LP (T'3) such that n(z) €
Ui(z,u(x)) for a.a. x €Q, &(x) € Uz(x,u(x)) for a.a. x €T, and the inequality

M(u)/ﬂ|Vu|p72Vu~V(vfu)dx+/9u(w)|Vu|q*2Vu~V(vfu)d:v

+ [ (P2 pa)lup =)o =) do+ | M@)o ) ds

+ | o(z,0)dl = | S(x,w)dT+ | G(u)(z)(v—u)dl
I's Iy r,

Z/S)n(:v)(v—u)dx—i- f(x)(v—u)dl“—i—/ﬂf(x,u,Vu)(v—u)dm

I

holds for all v e K (u).

For the convenience of the reader, in what follows, we use the following notion:

X=ILPQ), Y=LPTy), X*=LV(Q), and Y*=LF(Ty).
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For any (w,n,&) € V x X* x Y* fixed, let us consider the following auxiliary problem:
~Dsuwyu+ [ulP~?u 4 p(a) ul T ?u=n(x) + N(w)(@) + f(z,0,Vu)  inQ,

u=0 on I'y,
% =¢(2) on Iy,
(3.1) _% € 0cp(x,u) on I's,
o = Gu)(2) on T,
L(u) < J(w),

where the differential operator Dy (., is defined by
Dirguyu = div (M (w)|VulP*Vu+ p(z)|Vu|?*Vu) for all ue WHH(Q),

stands for
du -2 -2
= (M (w)|VulP~*Vu + p(z)|[Vu|T*Vu) - v.

From Definition 3.3 we can see that u € V' is a weak solution of problem (3.1) if
u € K(w) and the following inequality is satisfied:

and gy(x)

M(w)/Q\vuv’*‘lvu-V(v—u)dz+/gﬂ(z)|vu|q*2vu-V(v_u)dx

+ [ P w200 = wde + [ V)= wds

+ ¢(z,v)dl — oz, uv)dl'+ | G(w)(z)(v —u)dl

Ty s T4
> [ @) - wds+
Q

for all v € K(w).
The following lemma shows that problem (3.1) is uniquely solvable.

PROPOSITION 3.4. Let p > 2. Assume that H(1), H(¢), H(f), H(L), and H(J)
hold. If M(w) > cpr for eachw eV, N(w) € LS (Q) with 1 < (, < p*, G(w) € L2 (Ty)
with 1 < {3 < ps, and the inequality 0 < k(p)ep — efS\% holds, then problem (3.1)
admits a unique solution.

(x)(v—u) dl"—i—/Qf(x,w,Vu)(v —u)dx

T

_ Proof. First we introduce the following nonlinear mappings Gy, : V= V*, ¢: V —
R, and F,,: V C LP(Q2) — LP (Q) C V* defined by

(G (u),v) = M(w)/g|Vu|p*2Vu~Vvd:v+/ﬂ,u(x)|Vu|q*2Vu~Vvdx
—l—/ﬂ(|u|p_ u—+ px)|u|?” u)vdx—&—/ﬂN(w)(m)vdx

+ [ Gw)@wdr - /

nx)vde — | &(x)vdl
Iy Q I

for all u,v eV,
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for all u € V, and

<-7:wuaU>Lp’(Q)XLp(Q) ::/Qf(x,w,Vu)vdx

for all w € V and v € LP(Q2). Using the notations above, it is not difficult to prove that
inequality (3.2) can be equivalently rewritten by the following nonlinear variational
inequality with constraint

(Guu, v —u) + @(v) — p(u) > (i* Fyu,v — u)

for all v € K(w), where i: V — LP(Q) is the embedding operator of V into LP(Q)
and i*: L (Q) — V* is the dual operator of i. Arguing as in the proof of Theorem
3.4 of Zeng, Bai, and Gasinski [47], we can show that problem (3.1) has at least one
solution.

Next, we are going to prove the uniqueness of problem (3.1). Let uj,us € V be
two weak solutions of problem (3.1). So, for every i = 1,2, it holds that u; € K(w)
and

M (w) /Q |V [P~2Vu, - V(v — u;) da + /Q ()| V| T2V, - V(v — ;) do
[ =2+ )0 = w) o+ [ N(w)(a)(o—w)do

+ [ olx,v)dl — | ¢(x,u;)dl + / G(w)(z)(v —u;)dT

I's I's Ty

Z/Qn(z)(v—u,;)der f(az)(vfui)dF+/Qf(z,w,Vui)(v—ui)dx

>

for all v € K (w). Putting v =us and v = u; into the above inequalities with ¢ =1 and
1 = 2, respectively, we use the resulting inequalities to get

M(w)/@ (\VU1|p_2VU1 — |Vu2|p_2Vu2) -V(ug —ug)dw
—|—/Qu(x) (IVur|7*Vuy — [Vuo|"*Vug) - V(uy — ug) da

+/Q (Jur [P~y — [ualP?ug) (ur — ug) da

|

() (|U1|q72’u1 - |U2|q72u2) (u1 —ug)de

2

g/ﬂ(f(%w,Vul) — f(x,w, Vug))(u1 — usz)da.

The latter combined with (2.3), hypothesis H(f)(ii), and Hélder’s inequality implies
that

k(p) (cMHVm - Vu2||£79 + lug — UQHZQ)

S/ ef|Vuy — Vo P~ ug — ug|da
Q

<efl|Vur — V[P lur — us|

< e A7 | Vuy — Vus|? g

P2
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This means that
AL
(k)eas = eg A% ) V1 = Vuzllf g + k(p) ur = us 5 <0.

Employing the inequality efj\% < cprk(p), we infer that uy = us.
Consequently, for every (w,n,£) € V x X* x Y* fixed, problem (3.1) is uniquely
solvable. O

Proposition 3.4 allows us to introduce the solution mapping S: Vx X*xY* -V
of problem (3.1) formulated by

S(w,n,&) =tyye forall (w,n,€) eV x X" xY",

where ¢ is the unique solution of problem (3.1) associated with (w,n,&) € V' x
X* x Y™,

The following lemma says that S: V x X* x Y* — V is a completely continuous
operator.

LEMMA 3.5. Let p > 2. Assume that H(1), H(2), H(M), H(N), H(G), H(¢),
H(f), H(L), and H(J) are fulfilled. Then the solution map S: V x X* xY* =V of

problem (3.1) is completely continuous.

Proof. Assume that {(wn, M, &n) tnen CV X X* xY* and (w,n,8) eV x X* xY*
satisfy

(wn,nnafn) i> (’U/,n,f) ianX* XY*.
Let uy, :=S(wp, N, &) for each n € N. So, for each n € N, we have u,, € K(w,,) and

(3.3)
M(wn)/ |V, |P~2Vu, - V(v —u,)de + / ()| Vun |72V, - V(v —u,) dz
Q Q

" / (Tt P21t + () |7 210) (0 — ) d + / N (wn)(@) (v — ) de

+ [ éz,v)dr - ¢(m,un)dF+/F Gwn) (@) (v — ) dT

s I's

2/ () (v — up) dz + En(@)(v—un)dl + [ f(z,wp, Vuy)(v —u,)de
Q T Q

for all v € K (wy,). Using hypothesis H(f)(i) gives
/ fz,wn, Vg )uy (x) dz
Q

Gy = [ @V b @P o) (o] ds

—1 —1
S afl[Vunllp g lunllp.o + ofllwnlly o llunllp.e + logllp ollunllp.o

/\l _1
SapAr||Vunlly o +0fllwnlly o l[unllp.e + leslly ollunlp.o.

From Brezis [6, Proposition 1.10] and Hoélder’s inequality, we can find two constants
0y, B, > 0 such that

(3.5) o(v) > —ay|vllv — B, forallveV
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and

[ ol e < il
Q

En(@)u, dl' < ||§n||p’,l“2 [|un, |p,F27
Iy

< (an +bwlwalltt o) lunllc, 0.

/Q N(wn)(@)up dz

< (ac + bollwall 2, ) llualca.ra:

/ G(wy)(x)uy dz
Iy
Letting v =0 in (3.3) and using the estimates (3.4), (3.5), and (3.6), it yields
~1 1
apAv|[Vunlly o +bsllwnllp o l[unllp. + loslly ellunllp.o + 0l ollunllyo

+ . ¢(x,0)dL + [|€n [lpr,rs [t llp,rs + (aN +bN||wn||gll,Q> [unlle,,0
3

+ (ag + ballwnl g, ) llunlle .

2—/QN(wn)(x)undx+ . ¢(x,0)dl" — s G(wn)(x)undl"—i—/ﬂnn(x)undx

[ ta@undr [ fown, Vu)undo
I's Q

> [ M) Vual? + p(a) Tl + a4 p(@)a 7+ [ 6L, T
Q s
> e[| Vually o + IVunllg o+ llunlly o + lunllg . — apllunllv — B,
Then, from Proposition 2.2, we have

A1 —1
02> (earr = apA?)[Vunlly o + [IVunllg . + llunlly o + llunllg . = ofllwnllp o l1unllp.e

o2 = €1l lttn s — B — / 6(x,0)dl
3

- ||af||p”Q||un||p,Q - ||77n||p’,ﬂ |,

— (an +onllwallEt o) lunlicio = (a6 +ballwnll 2y, ) lunlce.rs = ol

. NS . —1
>min{ey — agAv, ymin{|Jun|f, [[unlly} = bpllwnllf o lunllp.e = gl ollunllpo

~ [l 21t 2 = &Il ltnllprs = (o +bxlwnllE ) unlcs
- (ac +ballwalZe, ) lunllcor, = apllunlly = 8, — [ o@0)ar.
s

The latter combined with the boundedness of {wy}neny C V, {Mn}neny € X*, and
{&: }nen C Y™ implies that solution sequence {u, }nen is uniformly bounded in V.
Passing to a subsequence if necessary, we may find a function u € V' satisfying

w .
U, — u in V asn— oo.

We assert that u = S(w,n,§), i.e., u is the unique solution of problem (3.1) corre-
sponding to (w,n,£) €V x X* x Y*.

Recalling that w,, — win V and u, — wu in V, we are now in a position to
invoke Lemma 3.2(ii) to get that u € K (w). However, it follows from Lemma 3.2(iii)
that there exists a sequence {v, }neny C V satisfying
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vp € K(w,) foreveryneN and v,—u inV.
Letting v =w,, in (3.3), one has
)/ |V, P2V, - V (v, — uy) de

/ )| Vun T2V, - V (v, — uy) do

Q

(3.7) §
. o(x,v,)dl — g é(x,uy,)dl
; G(wy)(2) (v — un)dl

> / N () (Vn, — up) dz + &n(@) (v — up)dl
Q Iy
—i—/Qf(x,wn,Vun)(Un—un)da:.

From the boundedness of {N(wy)}nen, {G(wn) tnen, {Mntnen, and {&,}nen, it can
directly be obtained that

lim [ N(wp)(z)(v, —uy)de=0,

lim G(wp) () (vy, — uy)dl =0,

n—roo F4

(3.8)
lim [ n,(x)(v, —up)dz =0,

n—oQ O

lim &n(z) (v —uy)dl =0,

n—oQ s

where we have used the compactness of the embeddings of V into L (Q), of V into
L%2(Ty), of V into LP(T3), and of V into LP(Q). By hypothesis H(f)(i), we can see
that sequence {f(-,wn, Vi) }nen is bounded in LP (). Hence, it holds that

(3.9) lim [ f(z,wy, Vuy)(vy, —uy)dz=0.
From hypothesis H(¢), it admits that V 3 u— p(u fF (z,u)dT is continuous and

convex, and so it is weakly lower semicontinuous, because of V CintD(¢p). Therefore,
we have

lim sup [ o(z,v,)dl — (b(x,un)dF]
T3

n—00 I's

(3.10)
< lim d(x,v,)dl — hmlnf/ ¢(x,uy)dl =0.

n—)OO n— 00
I's
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Recalling that M is weakly continuous in V' (see hypothesis H(M)), it yields

lim sup [/ (M (wy,)|Vun P2V, + p(2) |V, |92 Vu,) - V(u, —v,) da
0

n—o0

+/Q<|”n|p_2“n + p(@) [un |72 ) (g — ) dx]

> lim sup [/ (M (w)|Vun [P?Vuy, + ()| V|7 *Vuy,) - V(u, —u)dz
n—o0o Q
[ nl 24 il 0) 0~ )
Q

(3.11)
— limsup | M (wy,) — M (w)] ‘/ |Vt |P 2V, - V(u, —v,)ds
Q

n— oo

— lim sup
n—oo

/ () |V |92V, - V(u —v,) dz
Q

> limsup(Hoy (u), wn — ) = limsup | M (w,) = M (w)| |[un|} g [[un = vallp

n—oo n— oo

— limsup ||Un||?171,1 v —vnllg,u
n— o0

= lim sup(H, (w), up, — ).

n—oo

Passing to the upper limit as n — co to inequality (3.7) and using (3.8), (3.9), (3.10),
(3.11), and (3.15), one has

lim sup(H., (u), wy, — u) <O0.

n—roo
The latter combined with Proposition 2.3 (i.e., H,, is of type (S )) implies that u,, — u
in V.

Let z € K(w) be arbitrary. By Lemma 3.2(iii), we are able to choose a sequence
{2zn}tnen CV such that z, € K(w,) for any n € N and z, — z in V. Inserting v = z,
into (3.3) and passing to the upper limit as n — oo for the resulting inequality, we
obtain

M(w)/ﬂ|Vu|p_2Vu~V(z—u)dx—l—/gu(w)|Vu|q_2Vu~V(z—u)dx
—|—/Q(|u|p72u+u(x)|u|q72u)(z—u)dx—F/QN(w)(x)(z—u)dx

+ | ¢(z,2)dT — | o(x,u)dl + / G(w)(z)(z —u)dl
I's T4

I's

> lim sup {M(wn)/ |V, |P 2V, - V(z, —up)dz+ [ ¢(x,2,)dT
Q

n—00 s

— | ¢(x,u,)dl + / ()| Vun |92V, - V(2 — uy) dz

s Q

+/Wﬁ*w+%ﬂwW%M%ﬂww+/NWM@%—wa
Q Q

+/F4 G(wp)(z)(zn — un) dl“]
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n—oo

> limsup |:/ N () (20 — up) dz + En(@)(2n — upn)dl
Q s
+/Qf(x,wn,Vun)(zn —un)dx}

:/n(z)(z—u)dx—k f(cc)(z—u)dr+/f(x,w,Vu)(z—u)dx,
Q Q

>

where we have applied the continuity of M, N, and G. Because z € K (w) is arbitrary,
we conclude that v € K(w) is the unique solution of problem (3.1) corresponding to
(w,n,€) €V x X* x Y* namely, u=S8(w,n,§).

Since every convergent subsequence of {u,}nen converges strongly to the same
limit v =S8 (w, n,£), this implies that the whole sequence {u,, }nen converges strongly
to u. Thus,

S(wn;nnzgn) = Up _>u:S<’U),’I7’€)

Therefore, we have proved that the solution map S: V x X* x Y* — V of problem
(3.1) is completely continuous. O

With a view to hypotheses H(U;) and H(Us), it is now natural to introduce the
following multivalued mappings U : X — 2X" and Uy: Y — 2" given by

Ur(u):={neX*:n(z) €Ui(z,u(z)) a.a. in Q},
Us(v) :={E€ Y™ : £(z) € Us(w,v(x)) a.a. on Ty}

for all (u,v) € X XY, respectively. As before, by i: V — X and v: V =Y, we denote
the embedding operator of V to X and the trace operator from V to Y, respectively.
It follows from Proposition 2.1 that the operators¢: V' — X and y: V — Y are linear,
bounded, and compact. Therefore, we can see that their dual operators ¢*: X* — V*
and v*: Y* — V* are linear, bounded, and compact as well. The following lemma is
a direct consequence of Lemma 3.6 of Zeng, Rddulescu, and Winkert [52].

LEMMA 3.6. Let H(Uy) and H(Us) be satisfied. Then the following statements

hold:

(i) Uy and Uz are well-defined, and for each u € X andv €Y, the sets Uy (u) and
Us(v) are bounded, closed, and convex in X* and Y*, respectively;

(ii) Uy and Us are strongly-weakly upper semicontinuous, i.e., Uy is upper semi-
continuous from X with the strong topology to the subsets of X* with the weak
topology, and Uy is upper semicontinuous from Y with the strong topology to
the subsets of Y* with the weak topology.

The following theorem states the main results of this section, which indicates that
the set of weak solutions to problem (1.1) is nonempty and compact in V.

THEOREM 3.7. Let 2 <p. Assume that H(1), H(2), H(M), H(f), H(N), H(G),
H(U1), H(Us), H(¢), H(L), and H(J) are satisfied. Then the solution set of problem
(1.1), denoted by ], is nonempty and compact in V.

Proof. First we prove the following claims.

Claim 1. The solution set [] of problem (1.1) is bounded when [] is nonempty.

Assume that ] is nonempty, and let w € [] be arbitrary. Then we can find
functions (n,&) € X* x Y* satisfying n(z) € Uy(z,u(x)) for a.a. x € Q and £(z) €
Us(z,u(x)) for a.a. x € Ty and the following inequality holds:
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M(u)/ |VulP~2Vu - V(v — u) dz + / w(z) | Vu|?2Vu - V(v — u) dz
Q Q
+ [l 2t p@lal 0 - wde+ [ N@(@)o-u)de
Q Q

+ o(z,v)dl — d(z,u)dl + / G(u)(z)(v—u)dl

I's s Iy

Z/Qn(x)(vfu)der E(x)(vfu)dI‘Jr/Qf(x,u,Vu)(fou)dx

T2

for all v € K (u). Recall that 0 € K(u). So we can put v =0 into the above inequality
in order to get that

M(U)HVUHZQ'i_”vu”g,y"i_Hu||§,ﬂ+”qu,uJ’_/ﬂN(u)de"" g G(u)udl
4

(3.12) + (b(:ﬂ,u)dl“—/f(:c,u,Vu)uda:
)

s

< [ ¢(x,0) dF+/ n@x)udz+ [ &(z)udl.
T3 Q Ty

From hypotheses H(U;)(iv) and H(Us)(iv) it follows that
[ n@u@ o< [ @)l az

(3.13) < / (o (@) + ap, [u(@)P ) u(z)] de

< ay, [|ullp.q + llav, [y ellullp.o
< av, (O [|ulli, + llav, [l .acp (D) llullv

and
/F £()u(x) dT < / €(@)][u(z)| AT

(3.14) < / (0 (2) + ags |u(z)[P~) Ju(z)| dT
2
< ay, Hu”p,Fz + ||aU2 ||P/’F2 ||UHP7F2
< avyep(To)? [l + [l racp(T2) [l

By hypotheses H(f)(i), H(V), and H(G) we have

/Qf(z,u,Vu)udxg/Q(af|Vu\p71—|—bf\u|p71+ozf(a:)) |u| dz

1 —1
(3.15) < ag|Vul?eHu

lp.0 +sllully o + llaslly ollullp.o

L
SapA? [ Vullp o + ()P ully, + llaylly ocp () lullv

and
(3.16) /QN(U)(:v)udw > —[IN()ll¢; ellulle,.o = —(an +bn[ullg olullc o
and

(3.17) g G(u)(@)udl > = [|G(u)ll, rallullesrs = —(ac +ballulle; p,) ullca s
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Taking into account (3.12), (3.13), (3.14), (3.15), (3.16), and (3.17), we obtain
o1
(crr — A3 ) IVl -+ IVuG0 + [l + il — v, (7 [l
— au,cp(T2)P |lully, — byep(Q)P ||ull3,

< (an +onllullEl o) lullco + (a6 + bolulEr, ) ulcars + llav, I acp(@lully
+llowally raco Tl + o ey @llally + [ 6(@.0)dr+ aglluly + 5
3

Therefore, if [Jul]y; > 1, then we have

: 1
(3.18) (mm{cM —apA?, 1} — (ap, +by)ep(Q2)P — aUQCp(Fz)p) [|ull},
<mo (1+ [[ullv + [lul g+ flufi2 ),

with some mg > 0 which is independent of u, where we have used the continuity of
embeddings of V to L% (Q), of V to LP(2), of V to L%2(Ty), and of V to LP(Ty).
Using the inequalities

1<ri<p—1, 1<ka<p-—1,
min{cM - afj\%,l} — (ay, +bs)cp(Q)P —ay,cp(T'2)? >0,
and (3.18), we conclude that the solution set [] of problem (1.1) is bounded when [
is nonempty.

Claim 2. Let C' >0, and let By (0,C) :={u eV : ||Ju|ly <C}. Then we can find
a positive constant C* > 0 satisfying

(3.19) S(Bv(07c*), ul(ti(O,C*)), UQ(’}/Bv(O,C*))) C BV(O,C*)

We prove it by contradiction. Suppose there is no such constant C* to satisfy the
inclusion (3.19). Therefore, for every n > 1, we are able to find elements w.,, 2, yn €

By (0,n) and (n,,&,) € X* x Y* such that n, € Uy (izn), & € Ua(vyn), and
Unp =S(wn,77m€n) and ||un||V >n.

By the definition of u, we have
M(wn)/ |V, [PV, - V(v —uy,)de + / ()| Vun |92V, - V(v —u,) dz
Q Q
[ Qa2+ @)1 n) 0 = ) o [ Nawa) @)~ ) d
Q Q

+ [ é(z,v)dr - ¢(a:,un)dr+/F Gwn) (@) (v — ) dT

s I's

2/ N () (v — up) do + En(@)(v—un)dl + [ f(z,wn, Vu,) (v — uy,)de
Q T, Q

for all v € K(wy,). In the inequality above, we take v =0 to obtain

M(wn)[Van|Z g+ IVtnllS, + [tnlP + ltinllg s + / N (wn)un dz

(3.20) + | G(up)u, dl' + ¢(m,un)df—/ f(z,wn, Vg )u, dz
Ty T3 Q

< [ ¢(x,0) dF+/nn(x)undaz+/ &n(x)uy, dT.
Q I

s
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Tt follows from hypotheses H(Uy)(iv) and H(Usz)(iv) that
[ mntaun(@)do < [ na(e)lfun ()] da
Q Q
(3.21) < [ (v, @)+ av, lon @) Juo(0)| da

-1
< llow, llpalltnllp.o + av, 205 1unllp.o

-1
< ep(Qllav, [y allunllv + av, cp () [|lzn I 1unllv

and
()i () dr < / 60 ()] n ()| da
FQ 1—‘2
(3.22) < [ (an@) +avlin(@)P ) o) o
2
—1
< llaw, s ltm 1 + a0 [l 5 et
—1
< ()l It a1y + @tz (T2)P L 12 -

Moreover, hypotheses H(N) and H(G) imply that
(3.23) /QN(wn)Un dz <[|N(wn)ll¢c;.allunlle.o < (an +bn[wall} o)l[unlla 0

and

(324) | G(wn)un AT < |G (wn)| ¢ ralltnlle, vy < (ag +ballwnlles ) [wnllc, ra-
4

Finally, by hypothesis H(f)(i), we have
/ f(l‘, Wn, Vun)un dzx
Q

(3.25) < /Q (ag[VunP~H +bylwn [P~ + ap(2)) [up| da

-1 -1
< arl|Vunllp o llunllp.o +ofllwnlly o llunllp.o + loglly.allunllp.o

1 .
SapA||Vun|lp o + 0ren( [wnlly unllv + logllp ocp () unllv-

Since n > 1 and |lyn|lv < n < |Jun|lv, we insert (3.21), (3.22), (3.23), (3.24), (3.25)
into (3.20) to obtain

. L1
(minfeas = as A%, 1} = (av, +b)ep(Q)7 = avyey(T2)" ) lunf
< (ay +bylwnlE o)llunllc,0 + (a6 +ballwall ) unllcer,

+llav lyaeolunllv + llav, o0 (T)llunllv + llaglle o () lunllv

+ &(z,0)dI" + a||unllv + By,
I's

where we have used inequality (3.5). Passing to the limit as n — oo to the inequality
above, one has

= lim (min{cM — af;\% 1} — (au, +b5)ep(Q)P — aUQCp(FQ)p) ||’un||€/_max{m’M}_1
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a contradiction. Therefore, we conclude that there exists a positive constant C* > 0
such that (3.19) holds. This proves Claim 2.

As mentioned before, the main tool in the proof of the existence of a solution
to problem (1.1) is Tychonoff’s fixed point theorem for multivalued operators; see
Theorem 2.5. For this purpose, let us consider the multivalued mapping A: V x X™* x
Y* — 2V XY defined by

A(’U,7 n, 6) = (S(u7 7775)72/{1 (“07“2(7“’))

Observe that if (u,n,§) is a fixed point of A, then we have u=S(u,n,£) and (n,£) €
Uy (iu) X Us(yu). Tt is obvious from the definitions of S, Uy, and U, that u is also a
weak solution of problem (1.1). Therefore, we are going to examine the validity of
the conditions of Theorem 2.5.

Invoking Proposition 3.4 and Lemma 3.5, we can see that for each (w,n,§) €
V x X* xY™*, the set A(w,n,§) is a nonempty, bounded, closed, and convex subset of
Vx X*xY*.

Employing hypotheses H(U;)(iv) and H(Uz)(iv), it is not difficult to prove that
Up: X = 25 and Uy: Y — 2 are two bounded operators, and there exist two
constants M7 >0 and Ms > 0 satisfying

241 (iBy (0,C%))|x+ < My and [t (v By (0,C%))]

v+ < Mo.

Additionally, we introduce a bounded, closed, and convex subset D of V' x X* x Y'*
defined by

D={(u,n,&) eV xX*xY": |ully <C*, ||n|lx- <M, and |&|

v <M}

From this and (3.19) we know that A maps D into itself.

Next, we are going to prove that the multivalued mapping A is weakly-weakly
upper semicontinuous. For any weakly closed set E in V x X* x Y* such that
A= (E) # 0, let {(wn,Nn, &) nen € A™(E) be such that (wn,nn, &) — (w,n,£)
in VxX*xY* for some (w,n,§) € V x X* x Y*. Our goal is to show that
(w,n,&) € A~ (F), namely that there exists (u,d,0) € A(w,n,&) N E. Indeed, for
each n € N, we are able to find (un,0n,04) € AW, Mn,&n) N E, 50 wy = S(Wn, My &n)s
On € Uy (twy,), and oy, € Us(ywy,). From the boundedness of U; and Us one has that
the sequences {0, }nen and {0, }nen are bounded in X* and Y, respectively. Passing
to a subsequence if necessary, we may assume that

0p — 6 inX* and o0, — o nY*

for some (§,0) € X* x Y*. Recall that S is completely continuous. So, it holds that
Up =S Wy, M, &) — S(w,n,€) :==uin V. Note that i and v are both compact. Hence,
iw, — tw in X and yw, — yw in Y. Since U; (resp., Us) is strongly-weakly upper
semicontinuous and has nonempty, bounded, closed, and convex values, it follows
from Theorem 1.1.4 of Kamenskii, Obukhovskii, and Zecca [25] that U; (resp., Us)
is strongly-weakly closed. The latter combined with the convergences above implies
that § € Uy (iw) and o € Us(yw), namely that (u,d,0) € Alw,n,£) N E, because of
the weak closedness of E. Therefore, we conclude that A is weakly-weakly upper
semicontinuous.

Therefore, all conditions of Theorem 2.5 are satisfied. Using this theorem, we
conclude that A has at least a fixed point, say (u*,n*,£*) € V x X* x Y*. Hence,
u* € V is a weak solution of problem (1.1).
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Next, let us prove the compactness of the solution set [[. From Claim 1, we
can see that the solution set ][] of problem (1.1) is bounded in V. By the definitions
of a weak solution (see Definition 3.3) and of A, there exist (n,£) € X* x Y* such
that u = S(u,n,§), n € Ui(iu), and & € Us(yu), that is, (u,n,&) € A(u,n,€). Let
{un }nen be any sequence of solutions to problem (1.1). Then there are two sequences
{Mn}neny € X* and {&,}neny C Y™ such that n, € Ui (iu,), &, € Ua(yuy) such that
Un, = S(Un, N, &) for all n € N. From the boundedness of [ we may assume that

w .
U, —> u inV

for some u € V. This together with the boundedness of U; and Us deduces that
{Nn}neny C X* and {&, }neny C Y™ are both bounded. So, passing to a subsequence if
necessary, we suppose that

M — 1 inX* and &, — & inY*

for some 7 € Uy (iu) and & € Uz(yu), owing to the compactness of ¢ and v as well as
the strongly-weakly closedness of U; and Us. Using the complete continuity of S, we
conclude that

Un = S(Umﬂnafn) — S(uan7§) =u.

This means that  is a solution to problem (1.1). Consequently, the solution set [ of
problem (1.1) is compact. |

4. Special cases of the original problem. In this section, we are going to
study several special cases of problem (1.1) and discuss some particular situations.

First, we move our attention to consider the special case of problem (1.1) formed
as follows:

(4.1)
—Dppu+ |uP2u 4 p(2)|ul??u € v (u)dh (,u) + N(u)(z) + f(z,u, Vu) in 0,
u=0 on I'y,
Ou € dj r
v, r2(u)0j2(z, u) on lg,
0
fa—;: € d.6(x,u) on Ty,
0
gy = C)(@) on T,
L(u) < J(u),

where the terms 0j; and 0jy stand for Clarke’s generalized gradients of locally Lip-
schitz functions s — ji(x,s) and s — ja(z,s), respectively. Here the functions
J1: xR — R and jo: I's x R — R are supposed to satisfy the following proper-
ties:
H(j1): The functions j;: @ xR — R and r;: R — R are such that the following hold:
(i) x> j1(z,s) is measurable in Q for all s € R, with = — j;(z,0) belonging
to L1(9);
(ii) s~ j1(x,s) is locally Lipschitz continuous for a.a. = € €2, and the function
r1: R — R is continuous;
(ili) there exist a function o, € LY (Q), and a constant a;, > 0 such that

[r1(s)nl < oy () + ag, s~

for all n € 941 (x, s), for a.a. € Q, and for all s €R.
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H(jz2): The functions j3: 'y xR — R and 73: R — R are such that the following hold:
(i) x> ja(z,s) is measurable on T’y for all s € R, with x + jo(z,0) belonging
to Ll (FQ),
(ii) s~ jo(x,s) is locally Lipschitz continuous for a.a. x € I'y, and the function
ro: R — R is continuous;
(ili) there exist a function o, € LP (I'y)4 and a constant a;, > 0 such that

[r2(s)8] < 0y () + ajy |5~

for all £ € 9ja(x,s), for a.a. €9 and for all s € R.
Using the same arguments as in the proof of Theorem 3.11 of Zeng, Radulescu,
and Winkert [52], we have the following lemma.

LEMMA 4.1. Assume that H(j1) and H(j2) are fulfilled. Then the multivalued
mappings Uy : @ x R— 28 and Uy: T'y x R — 28 defined by
Ui(z,s):=711(5)0j1(z,s) and Us(y,s):=ra(s)0j2(y,s)
for all s e R, for a.a. x €Q, and for a.a. y € 'y satisfy H(Uy) and H(Us), respectively.

By Theorem 3.7 and Lemma 4.1, we have the following existence theorem to
problem (4.1).

THEOREM 4.2. Let p > 2. Assume that H(1), H(M), H(f), H(N), H(G), H(j1),
H(js2), H(¢), H(L), H(J) and the inequalities
0<k(p)enm — efj\%,
0 <minfeas —apAr, 1} = (aj, +by) p(Q)P — aj,¢,(Ta)?
are satisfied. Then the solution set of problem (4.1) is nonempty and compact in V.

When f is independent of the third variable (i.e., f is formulated by f: QxR — R),
problem (1.1) becomes to the following problem:

— Dagut [ufP~2u+ () [ul*%u € Us(2,u) + N(u)(@) + fa,u)  in

u=0 on I'y,
O Uy(z,u) r
al/a 2\, U on Lo,
(4.2) 9,
—alz € 0cp(z,u) on I's,
9,
—&Z =G(u)(z) on Iy,
L(u) < J(u).

A careful reading of the proofs in section 3 gives the following results to problem
(4.2).

THEOREM 4.3. Letp>2. Assume that H(1), H(M), H(N), H(G), H(U;), H(Us),

H(¢), H(L), and H(J) are satisfied. If, in addition, f satisfies the following condition,

H(f"): f: Q@ xR = R is a Carathéodory function such that there exist a constant
by >0 and a function ay € L%(QM satisfying

[f(,8)] <bpls[P~" + oy ()

for a.a. x€Q and for all s eR,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/17/24 to 86.124.222.172 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS 901

and the following inequality is satisfied,
0< min{CMa 1} - (aUl + bf) CP(Q)p - aU2cp(F2)pa

then the solution set of problem (4.2) is nonempty and compact in V.

Therefore, from Theorems 4.2 and 4.3, we can directly obtain the existence of a
weak solution to the following implicit obstacle inclusion problem:

(4.3)
—Daru+ [ulP"u+ p(a)[ul " u € ri(u)djr (2, ) + N(u)(z) + f(z,u)  inQ,
u=0 on I'y,
Ou d; r
v, € ra(u)dja(x, u) on Lo,
B}
= a;; € d.6(x,u) on Ty,
o
- ayi = G(u)(x) on Ty,
L(u) < J(u).

THEOREM 4.4. Let p>2. Assume that H(1), H(M), H(N), H(G), H(j1), H(j2),
H(¢), H(L), and H(J) are satisfied. If, in addition, H(f') and the following inequality
are satisfied,

0< Inin{CMa 1} - (ajl + bf) CP(Q)p - aj2cp<r2)pa

then the solution set of problem (4.3) is nonempty and compact in V.
Particularly, if 'y =T's =Ty = 0 (namely that I'y =T'), then problem (1.1) reduces
to the following nonlocal implicit obstacle problem with Dirichlet boundary condition:
—Dyu+ |uP2u+ p(z)|u?*u € Uy (@, u) + N (v)(z) + f(x,u, Vu) in £,
(4.4) u=0 on I,
L(u) < J(u).

Obviously, the elementary function space considered in problem (4.4) is the closed
subspace

W()l,H(Q) ={ueWh"(Q) :u=0o0nT}

of WHH(Q). Tt is well known that Vy := W, 7*(92) endowed with the norm [ul|y, :=
l|Vul|| for all u € V becomes a reflexive Banach space. Therefore, we have the
following existence theorem to problem (4.4).

THEOREM 4.5. Let p > 2. Assume that H(1), H(M), H(f), H(N), H(U1), H(L),
H(J) and the inequalities

A1
0<k(p)earr —efAr,
0 <min{ey — apAv, 1} — (ay, +by) cp(Q)P

are satisfied. Then, the solution set of problem (4.4), denoted by [], is nonempty and
compact in V.
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More particularly, if f is independent of the third variable and U; is specialized
by the formulation U; (z,s) = r1(s)9j1(x,s) for all (x,s) € Q x R, then problem (4.4)
reduces to the following implicit obstacle problems, respectively:

—Dppu+ |uP?u 4 p(x)|ul??u € Uy (z,u) + N(u)(x) + f(z,u) in 0,

(4.5) u=0 on T,
L(u) < J(u)
and
(4.6)
—Dagu+ |uP2u + p(x)|u 2w € r1(u)dh (z,u) + N (u)(2) + f(z,u, Vu) in €,
u=0 on I,
L(u) < J(u).

Therefore, we have the following existence theorems to problems (4.5) and (4.6),
respectively.

THEOREM 4.6. Let p>2. Assume that H(1), H(M), H(f"), H(N), H(U;), H(L),
H(J), and the inequality
0 <min{ear, 1} — (ay, +by) ¢, (Q)P
is satisfied. Then the solution set of problem (4.5), denoted by |, is nonempty and
compact in Vj.
THEOREM 4.7. Let p > 2. Assume that H(1), H(M), H(f), H(N), H(j1), H(L),
H(J), and the inequalities
~1
0<k(p)enr —efAr,
0 <min{cp — af;\% 1} —(aj, +b5) cp(Q)P
are satisfied. Then the solution set of problem (4.6), denoted by [], is nonempty and
compact in Vj.

Let ¢; >0 be a given constant. When J(u) = c; for all u € V, problem (1.1) can
be rewritten as the following nonlocal elliptic system:

—Dpru+ |uP?u 4 p(x)|ul??u € Uy (z,u) + N(u)(x) + f(z,u, Vu) in Q,

u=0 on I'y,
Ou € Usy( r
(91/,1 2 IE,U) on la,
4.7 Ju
(4.7 “av. € 0.0(x,u) on I's,
0
gy = C)(@) on Iy,
L(u)<ecy.

With respect to problem (4.7), the constraint set is denoted by the following one:
K:={ueV: L(u)<cy}.

Observe that the condition
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H(L'): L: V — R is a lower semicontinuous and convex function

is weaker than hypothesis H(L). Without loss of generality, in what follows, we
suppose that L(0) < c;. Therefore, it is not difficult to prove that if H(L') holds, then
the constraint set K is a nonempty, closed, and convex subset of V with 0 € K.

In Theorem 3.7, the inequalities given in H(2) play a critical role in proving the
existence of weak solutions to problem (1.1). But, in some sense, such inequalities
restrict the scope of applications to our theoretical results. A natural question arises
whether we can drop hypothesis H(2). However, this is still an open problem for
the equations with the implicit obstacle effect (for example, problem (1.1)). But,
fortunately, if the obstacle constraint is formulated by the form L(u) <c¢; and M is a
coercive in V', i.e., M(u) — 400 as ||u|ly — oo, then hypothesis H(2) can be removed.
More precisely, if the obstacle constraint is formulated by L(u) < ¢z, then hypothesis
H(M) can be relaxed to the following condition:

H(M'): M: L” () — (0,400) is bounded and continuous in V such that inf,cy
M (u) > 0.

THEOREM 4.8. Assume that H(1), H(f)(i), H(N), H(G), H(U), H(U2), H(¢),
H(M'), and H(L') are satisfied. If, moreover, M : LP" () — (0, +00) is coercive in V,
then the solution set of problem (4.7), denoted by [, is nonempty and compact in V.

Proof. Let A:V x V = V* F:V = LF(Q) c V*, and G: V — V* be the
functions defined by

(A(u,u),v) := M(u)/Q (IVul[P>Vu + p(z)|Vu|!*Vu) - Voda
+ [ (P2 pa) e,
(Fu,v) ::/Qf(x,u,Vu)vdx,

(G(u),v):= /Q N@u)(x)(v—u)dz+ | G(u)(z)vdD

ry
for all u,v € V. Applying a standard procedure, it is easily to show that v € V is a
weak solution to problem (4.7) if and only if it solves the following inclusion problem:

A(u,u) + G(u) + F(u) + U (1w) + v Us (yu) + Oepr (u) 20 in V*,

where O,k is the convex differential operator of o := ¢ + I and I is the indicator
function of K.

We assert that the multivalued mapping V' 3> u — A(u,u) + G(u) + F(u) +
iU (u) + v Uz (u) + Ocp i (1) C V™ is coercive. Let uw € K, n €U (iu), and & € Us(yu)
be arbitrary. A simple calculating gives

| M@IVUl? 4+ ) Tl + [l + o)l o+ [ N ) @)uds
Q Q

+ [ ¢(z,u)dl— [ ¢(z,0)dT+ | G(u)(z)udl + / n(x)udx
Is 'z Ty Q

+ [ e(@udr+ / Fasu, Vauda
s Q

!
> M)|[Vully o+ IVullg, + llully.q + lullg . — ar A7 [Vullp o = brllully o

~llaglyalulpe = (ax +bxllul o) lula - (e + belulZ r, ) llull. .
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—aglvllv =By - /F ¢(,0)dl — [law, [l ellullp.o — av, [Jull;
3
- ||aU2 H;D’,Fz ”U‘”P,Q — ay, Hu”p,Fg
> (M) = a0 —bsd = ap, A —au A5, (1+ ) [Vl o + [ Vul,
llull g + kg, = gl allllpe = (an +bx 2 o) lulle, o
= (aa + bellulzr, ) Tl = agliolly = 8, = [ o(o,0)ar,
3
where we have used the variational identity (2.5). Hence, if ||u||y > 1 is such that
M(u) — afj\% —bfA—ag, A — asz\ip(l +A)>1,

then we have

[ M@IVl? 4+ @) [Falt 4 [ + @)l do + [ Nw)(a)uds
Q Q
+ | é(z,uw)dl — [ ¢(z,0)dT+ [ G(u)(z)udl + / n(x)udx
I's I's Iy Q

+ 5(%)udF+/ f(x,u, Vu)udx
Q

I

[ullp.e — (an + b lullEo) lulle,o

= (s + bolulzr, ) lelear, = aglivlly = 8, = | olz.0)ar.
3

> [lully = llasllp .o

Recall that k1 +1 <p and k2 + 1 < p. Therefore, we have

(A(u,u) + G(u) + F(u) + i*Us (u) + v Uz (1) + Ocpr (1), u)
l[ullv

This means that the multivalued mapping V' 3 u+— A(u,u) +G(u) + F (u) + 3 U (u) +
Y Uz (u) + Ocpr (u) C V* is coercive.

From the proof of Theorem 3.4 of Zeng, Bai, and Gasiniski [47] and Theorem 3.7,
we can see that the weak continuity of M plays an important role in proving the
pseudomonotonicity of V' 3 u+— A(u,u) + G(u) + F(u) + i*Us (iu) + v U (yu) C V*.
More exactly, it directly effects the validity of the condition that

o if {u,}nen CV with u, = win V and v’ € A(un, un) + G(un) + F(u,) +
i*Uy (iuy) + v Uz (yuy) are such that

— 00 as |lully — oo.

(4.8) lim sup (), u, —u) <0,
n—oo
then to each element v € V, there exists u*(v) € A(u,u) + G(u) + F(u) +
iUy (iu) + v Us (yu), with
(4.9) (u*(v),u —v) <liminf (uy, u, — v).

n—0o0

Let {un}nen CV and {u}}nen C V* be sequences such that u) € A(un,un) +
G(un) + F(un) + U (tuy) + v Uz2(vuy), and suppose inequality (4.8) holds. Then
there exist sequences {n,}neny C X* and {&,}neny C Y™ satisfying n, € Ui (iuy,),
&n € Us(yuy,), and

uy = AU, un) + G(un) + F(un) + i np +v*E,  for all n e N.
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Using hypotheses H(U;) and H(Us), we can observe that the sequences {1, }neny C X*
and {&, }nen C Y™ are both bounded. Passing to a subsequence if necessary, we may
assume that

(4.10) N —= 7 in X* and &, -5 ¢ inY*

for some (n,£) € X* x Y*. Besides, hypothesis H(f)(i) reveals that the sequence
{F(un)}nen is bounded in LP (). Then we use the compactness of i and 7 as well
as of the embedding from V into L?(2) to obtain

0 > limsup(u;, , u, — )
n—oo

> limsup(A(un, un ), up, — u) + liminf(G(u,), u, — ) + liminf (F(uy, ), uy — )

n—00 n— 00 N— 00

— M SUP(n, U — ) 1 () Lo () — M SUD(Ens Un = U) 17 (1) o (1)

> lim sup(A(tn, Un), Up, — u).

n—oo

Let ¢pr :=inf,cy M(u) >0, and let 0 < e < ¢pr be arbitrary. Recalling that u, 5 u
in V and M is bounded in V, we have

O Z hm Sup(A(un, un)7 Up — u>

n—oo

= limsup/ (M (un)|Vun [P Vu, 4+ p(2) [V, 97> Vuy,) - V(u, — u)
n—oo Q

+ (|un\p_2un + u(x)\un\q_zun) (up, —u)dx
> Timinf (M (u,) — ) / VP2V - V (- u) dir
Q

n—oo

+ limsup/ (el Vun|P 72V, + 1(2) |V, |7 ?Vu,) - V(u, — u)
n—oo JQ

+ (Iun‘p_Qun + U(x)‘un‘q_Qun) (up —u)dz
> lirginf (M (uy) — 5)/ |VulP~2Vu - V (u, — u) do
n oo Q
+ limsup/ (e|Vun P72V, + p(z)|Vun |2V, ) - V(u, — u)
Q

n—oo

+ (JunlP2un + (@) [un |7 *uy) (uy — u) dz
> limsup/ (e|Vun [P~2Vuy, + pu(2) | Vun|* 2 Vuy,) - V(u, — u)
Q

n—oo

+ (JunlP2un + p(@) [un |7 *uy) (uy — u) da.
Let us define the function &7 : V — V*:

(w,v) ::/ (e|Vw[P*Vw + p(z)|Vw|?T*Vw) - Vv
Q

+ (JwP~?w + p(z)|w|!*w) vdz,

which is of type (S+) (see Proposition 2.3). This implies that w, —u in V.
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Recall that Uy and U, are strongly-weakly closed. Therefore, from (4.10) it follows
that n € Uy (iu) and £ € Us(yu). For any v € V, we have

lm (u),un, —v) = (A(u,u) + G(u) + F(u) —i*n — ", u — v).

n—oo

The latter combined with the fact that n € U;(iu) and £ € Uz(yu) implies that
u* € A(u,u) + G(u) + F(u) + i*U (iu) + v*Usz (yu). Therefore, we conclude that (4.9)
holds.

Using the same arguments as in the proof of Theorems 3.7 and 3.4 of Zeng, Bai,
and Gasiniski [47], it is not difficult to prove that the solution set of problem (4.7) is
nonempty and compact in V. O

Remark 4.9. In fact, there are a several of functions which satisfy the hypothesis
H(M') such that M is coercive in V. For example, the following functions are coercive
in V and fulfill hypothesis H(M"):

M(u)=co+ lullv, M) =co+In(1+[lully), Mu)=cq+ [ufi ",
and M(u) = ellullv

for all w €V with ¢, > 0.

Let D C Q be a nonempty set with positive measure and ¥: D — R be a given
obstacle function. Furthermore, when J(u) =0 (i.e., ¢y =0) and L is formulated by

L(u)= /D(u(x) —U(z))"der forallueV,

then problem (4.7) can be written by the following obstacle problem:

(4.11)
—Dygu+ |ulP2u + p(2)|u|? 2w € Uy (x,u) + N (u)(2) + f(x,u, Vu) in Q,
u=0 on I',
0 () nT
e 2(T, U o 2,
0
—a;i € 0cop(z,u) on I's,
0
- a;i = G(u)() on Ty,
u(z) < ¥(z) in D.

Therefore, we have the following corollary.

COROLLARY 4.10. Assume that H(1), H(f)(1), H(N), H(G), H(Uy), H(Uz), H(¢),
and H(M') are satisfied. If, moreover, M is coercive in V and ®: Q — R is a mea-
surable function, then the solution set of problem (4.11), denoted by [, is nonempty
and compact in V.

Under the analysis above, we have the following theorems and corollaries.

THEOREM 4.11. Assume that H(1), H(f)(i), H(N), H(G), H(j1), H(j2), H(¢),
H(M"), and H(L') are satisfied. If, moreover, M is coercive in V, then the solution
set of the nonlocal obstacle problem
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—Dagu+ |[ulP2u + px) |u|T?u € 1 (w)dh1 (x,u) + N (u)(z) + f(x,u, Vu) in Q,

u=0 on I'q,
O & ra(u) D) r
o r2(u)0j2(, u on Iy,
0
—alz € 0:p(x,u) on I's,
0
—alz =G(u)(z) on Ty,
L(u) <ecy

s monempty and compact in V.

COROLLARY 4.12. Assume that H(1), H(f)(i), H(N), H(G), H(j1), H(j2), H(M'),
and H(¢) are satisfied. If, moreover, M is coercive in V and ®: Q — R is a measurable
function, then the solution set of the obstacle problem

—Dagu+ |uP2u + p(z) |u|?u € 1 (w)dj1 (x,u) + N (u)(z) + f(x,u, Vu) in Q,

u=0 on I'y,
Ou 0j r
v, € ra(u)0ja(z, u) on g,
0
_(97;: € 8c¢($au) on Fg,
0
—a;: =G(u)(z) on Ty,
u(z) < U(x) in D

is nonempty and compact in V.

THEOREM 4.13. Assume that H(1), H(f"), H(N), H(G), H(U;y), H(Us), H(¢),
H(M"), and H(L') are satisfied. If, moreover, M is coercive in V, then the solution
set of the obstacle problem

—Dpru+ |uP?u 4 p(x)|ul??u € Uy (z,u) + N(u)(x) + f(2,u) in Q,

u=0 on Ty,

Ou € Uy( r
(91/(1 2 fE,U) on 1,
ou

- 2L e 0uplw) on s,
0

7612 =G(u)(z) on Ty,
L(u)<ey

is nonempty and compact in V.

COROLLARY 4.14. Assume that H(1), H(f), H(N), H(G), H(U1), H(Uz2), H(M'),
and H(¢) are satisfied. If, moreover, M is coercive in V and ®: Q — R is a measurable
function, then the solution set of the obstacle problem
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—Dagu+ [l + p(@)ul*%u € Ui (o,0) + N(u)(@) + fla,u)  in O,

u=0 on I'y,
O U () r
al/a 2(T, U on la,
0
—a—lz € O, u) on Iz,
0
- azz = G(u)(x) on Ty,
u(z) < U(x) inD

is nonempty and compact in V.

THEOREM 4.15. Assume that H(1), H(f"), H(N), H(G), H(j1), H(j2), H(e),
H(M"), and H(L') are satisfied. If, moreover, M is coercive in V, then the solution
set of the obstacle problem

—Dagu+ |ulP2u + p(z) |u|T 2w € r1(w)dh (z,u) + N (u)(x) + f(z,u) in €,

u=0 on I'y,
04 ¢ ra(wdja(a,u) r
R r2(u)0j2(T,u on 1,
0
_a;: eac¢($7u) on F37
0
_311 =G(u)(z) on Ty,
L(u) <ey

is nonempty and compact in V.

COROLLARY 4.16. Assume that H(1), H(f"), H(N), H(G), H(j1), H(j2), H(M'),
and H(¢) are satisfied. If, moreover, M is coercive in V and ®: Q — R is a measurable
function, then the solution set of the obstacle problem

—Dyu+ |u|p_2u + u(x)\u|q_2u €ri1(w)dj1(z,u) + N(u)(z) + f(z,u) n Q,

u=20 on Fl,
Ou d; r
v, € ra(u)dja(w, u) on 1o,
0
—87;: € 0c0(x,u) on I's,
0
_8:1 =G(u)(z) on Ty,
u(z) < U(x) in D

18 nonempty and compact in V.

THEOREM 4.17. Assume that H(1), H(f)(i), H(N), H(Uy), H(M'), and H(L')
are satisfied. If, moreover, M is coercive in Vg, then the solution set of the obstacle
problem

—Dpru+ [ulP~2u + (@) |u|?2u € Uy (z,u) + N(u)(x) + f(x,u, Vu) in Q,
u=0 on T,

L(u)<cy

s monempty and compact in Vj.
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COROLLARY 4.18. Let D be a nonempty and measurable subset of 2. Assume that
H(1), H(f)(1), H(N), H(M'), and H(U;y) are satisfied. If, moreover, M is coercive
mn Vo and ®: Q — R is a measurable function, then the solution set of the obstacle
problem

—Dygu+ |ulP2u + p(2)|u2u € Uy (x,u) + N (u)(2) + f(x,u, Vu) in Q,
u=0 on T,
u(z) < U(x) in D

s monempty and compact in V.

THEOREM 4.19. Assume that H(1), H(f'), H(N), H(U1), H(M'), and H(L') are
satisfied. If, moreover, M is coercive in Vy, then the solution set of the obstacle
problem

—Dyu+ |uP2u + p(2)|u]?2u € Uy (z,u) + N (u)(2) + f(z,u) in Q,
u=0 on T,
L(u) S Ccjy

is nonempty and compact in V.

COROLLARY 4.20. Assume that H(1), H(f"), H(N), H(M"), and H(U1) are satis-
fied. If, moreover, M is coercive in Vy and ®: Q — R is a measurable function, then
the solution set of the obstacle problem

Dy fulP~2u+ (o)l 20 € Uy () + Nw)(@) + fz)  in 9,
u=0 on T,
u(z) < U(x) in D

s monempty and compact in Vj.

THEOREM 4.21. Assume that H(1), H(f)(1), H(N), H(j1), H(M'), and H(L')
are satisfied. If, moreover, M is coercive in Vg, then the solution set of the obstacle
problem

—Dau+ |ulP~?u + p(z) |u|T?u € 71 (w)d71 (x,u) + N (u)(z) + f(x,u, Vu) in Q,
u=0 on T,
L(u)<ey

is nonempty and compact in V.

COROLLARY 4.22. Assume that H(1), H(f), H(N), H(M'), and H(j1) are satis-
fied. If, moreover, M is coercive in Vy and ®: Q — R is a measurable function, then
the solution set of the obstacle problem

—Dpru+ [uP2u 4 p(2)|ul??u € r1(u)dj (,u) + N(u)(z) + f(z,u, Vu) in Q,
u=0 on T,
u(z) < U(x) in D

18 nonempty and compact in Vy.
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