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Abstract In this paper we present global a priori bounds for a class of variational inequali-
ties involving general elliptic operators of second-order and terms of generalized directional
derivatives. Based on Moser’s and De Giorgi’s iteration technique we prove the bounded-
ness of solutions of such inequalities under certain criteria on the set of constraints. In our
proofs we also use the localization method with a certain partition of unity and a version
of a multiplicative inequality estimating the boundary integrals. Some sets of constraints
satisfying the required conditions are stated as well.
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1 Introduction

Given a bounded domain � ⊂ R
N, N > 1, with Lipschitz boundary ∂�, we consider the

following problem: Find u ∈ K such that∫
�

A(x, u,∇u) · ∇(v − u)dx +
∫

�

F(x, u,∇u)(v − u)dx

+
∫

�

j◦
1 (x, u; v − u)dx +

∫
∂�

j◦
2 (x, u; v − u)dσ ≥ 0,

(1.1)

for all v ∈ K, where K is a subset of a Banach space V (will be specified below) and
j◦
k (x, s; r) (k = 1, 2) denotes the generalized directional derivative of a locally Lipschitz

function s �→ jk(x, s) at s in the direction r . The maps A : � × R × R
N → R

N and F :
� × R × R

N → R are supposed to be Carathéodory functions satisfying suitable structure
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conditions (see hypotheses (H1) and (H2) below) while dσ denotes the usual (N − 1)-
dimensional surface measure and for u ∈ V the generalized boundary values on ∂� are
well defined in the sense of traces. For reasons of simplification we drop the notation for
the trace operator.

The aim of our treatment is to present conditions on the set of constraints, namely K,
such that every solution u ∈ K of (1.1) is essentially bounded. In order to specify the
space V we will discuss two different cases: In Section 3 we choose V = W 1,p(�) with
1 < p < ∞ and in Section 4 we set V = W 1,p(·)(�) with p ∈ C(�) and 1 < inf� p.
These cases will be handled by different methods, the first one via Moser iteration and the
second one via De Giorgi’s iteration technique.

Due to the presence of the terms j◦
k (x, s; r), inequalities of type (1.1) are called

variational-hemivariational inequalities which include several interesting problems as spe-
cial cases.

a) If K = V and jk (k = 1, 2) are smooth, problem (1.1) becomes∫
�

A(x, u,∇u) · ∇vdx +
∫

�

F(x, u,∇u)vdx

+
∫

�

j ′
1(x, u)vdx +

∫
∂�

j ′
2(x, u)vdσ = 0, ∀v ∈ V,

which means that u ∈ V is a weak solution to the problem

− div A(x, u,∇u) + F(x, u,∇u) + j ′
1(x, u) = 0 in �,

A(x, u,∇u) · ν + j ′
2(x, u) = 0 on ∂�,

where ν(x) denotes the outer unit normal of � at x ∈ ∂�. Regarding a priori bounds for
such problems we refer to Winkert-Zacher [32, Theorem 1.1 and Corollary 1.2] (if V =
W 1,p(·)(�)), Winkert [31, Theorem 4.1] (if V = W 1,p(�), see also Winkert [30, Proof
of Proposition 5.2]) and Hu-Papageorgiou [18, Proposition 5] (if V = W 1,p(�) with
homogeneous Neumann boundary condition).

b) If jk = 0 (k = 1, 2), (1.1) reduces to a classical variational inequality: Find u ∈ K such
that ∫

�

A(x, u,∇u) · ∇(v − u)dx +
∫

�

F(x, u,∇u)(v − u)dx ≥ 0 ∀v ∈ K.

Boundedness results for solutions of such variational inequalities under suitable crite-
ria on the set of constraints have been obtained by Kovalevsky-Nicolosi [20, Theorem
2.8], where V = W 1,p(θ,�) with 1 < p < ∞ and a positive weight θ satisfying
θ ∈ L1

loc(�) and 1/θ ∈ L
1/(p−1)

loc (�) (see also Ježková [19] for local boundedness
results). Concerning degenerated elliptic operators of high order we refer to a work of
the same authors [21]. Recently, Gorban-Kovalevsky [16] have been studied the bound-
edness of solutions of degenerate anisotropic elliptic variational inequalities under
certain conditions on the right-hand side and the set of constraints.

c) In case that K is the whole space V and jk (k = 1, 2) not necessarily smooth, problem
(1.1) is a hemivariational inequality which contains as a special case the subsequent
elliptic inclusion

− div A(x, u,∇u) + F(x, u, ∇u) + ∂j1(x, u) � 0 in �,

A(x, u,∇u) · ν + ∂j2(x, u) � 0 on ∂�,

where the expression ∂jk(x, s) denotes the generalized gradient of the locally Lipschitz
function jk(x, ·) in the sense of Clarke (see Section 2 for more details).



On the Boundedness of Solutions to Elliptic Variational Inequalities 765

d) Let V = W 1,p(�) with 1 < p < ∞. If the operator A satisfies appropriate mono-
tonicity conditions with respect to the second and third argument and if the functions
involved fulfill suitable structure conditions (similar to those in Section 3), then inequal-
ity (1.1) is equivalent to the multi-valued variational inequality: Find u ∈ K such
that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η(x) ∈ ∂j1(x, u(x)) a.e. in �, ξ(x) ∈ ∂j2(x, u(x)) a.e. in ∂�,∫
�

A(x, u,∇u) · ∇(v − u)dx +
∫

�

F(x, u, ∇u)(v − u)dx

+
∫

�

η(v − u)dx +
∫

∂�

ξ(v − u)dσ ≥ 0, ∀v ∈ K.

This result was published by Carl [5].

We point out that our results are more general than those in [20]. On the one hand we
extend their results to variational-hemivariational inequalities including nonlinear boundary
terms and on the other hand we have weaker assumptions on the set of constraints. Indeed,
hypothesis 2.6(i) in [20] is not needed in our treatment. For the sake of convenience we do
not use Sobolev spaces with weights, but this case can be done in the same way. Another
novelty of this work is the treatment of variational-hemivariational inequalities restricted to
sets K belonging to variable exponent spaces W 1,p(·)(�) with p continuous on �. To the
best of our knowledge, our a priori estimates have not been published before.

Notice that we do not suppose that the set K is closed and convex in V . But in general,
this is the typical assumption in the existence theory of inequalities like (1.1). Regarding
existence and multiplicity results for problems of the form (1.1) we refer, without guarantee
of completeness, to the papers of Carl [6], Kyritsi-Papageorgiou [23], Motreanu-Bonanno-
Winkert [2], Bonanno-Winkert [3], Motreanu-Winkert [27] and the references therein. An
overview about results to nonsmooth analysis and variational-hemivariational inequalities
can be found in the monographs of Carl-Le-Motreanu [7] and Motreanu-Rădulescu [26].
We also point out a recent work of Carl [4] in which the class of variational-hemivariational
inequalities has been extended to a more general class of inequalities.

The paper is organized as follows. In Section 2 we present some basic facts about non-
smooth analysis and the corresponding function spaces to problem (1.1). Furthermore, we
prove an useful multiplicative inequality for boundary integrals. Section 3 handles the con-
stant exponent case (i.e., V = W 1,p(�) with 1 < p < ∞) where we will apply Moser’s
iteration following the ideas of Drábek-Kufner-Nicolosi [12]. In the last section we extend
our results to the variable exponent case (i.e. V = W 1,p(·)(�) with p ∈ C(�) and
1 < inf� p) by applying De Giorgi’s iteration. The results in this section are based on ideas
of DiBenedetto [10], Ladyženskaja-Solonnikov-Ural’ceva [24], and Winkert-Zacher [32].

2 Preliminaries and Hypotheses

Let � be a bounded domain in R
N with Lipschitz boundary ∂� and let p ∈ C(�) with

p(x) > 1 for all x ∈ �. Setting p− := minx∈� p(x) and p+ := maxx∈� p(x), we have
p− > 1 and p+ < ∞. The variable exponent Lebesgue space Lp(·)(�) is defined by

Lp(·)(�) =
{
u

∣∣∣ u : � → R is measurable and
∫

�

|u|p(x)dx < +∞
}
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equipped with the Luxemburg norm

‖u‖Lp(·)(�) = inf

{
τ > 0 :

∫
�

∣∣∣∣u(x)

τ

∣∣∣∣
p(x)

dx ≤ 1

}
.

By W 1,p(·)(�) we identify the variable exponent Sobolev space which is defined by

W 1,p(·)(�) =
{
u ∈ Lp(·)(�) : |∇u| ∈ Lp(·)(�)

}

with the norm

‖u‖W 1,p(·)(�) = ‖∇u‖Lp(·)(�) + ‖u‖Lp(·)(�).

We refer to the papers of Fan-Zhao [15], Kováčik-Rákosnı́k [22] and the monograph of
Diening-Harjulehto-Hästö-Růžička [11] for more information and basic properties about
variable exponent spaces. If p(x) ≡ p is a constant, the usual Sobolev space W 1,p(�) is
endowed with the norm

‖u‖W 1,p(�) =
(∫

�

|∇u|pdx +
∫

�

|u|pdx

) 1
p

.

Let us recall some basic facts on nonsmooth analysis. Let (X, ‖·‖) be a real Banach space
and denote by X∗ its dual space while the duality pairing between X and X∗ is denoted by
〈·, ·〉. The dual space X∗ is equipped with the dual norm ‖ · ‖∗, that is

‖ξ‖∗ = sup {〈ξ, v〉 : v ∈ X, ‖v‖ ≤ 1} .

A function j : X → R is said to be locally Lipschitz if for every x ∈ X there exist a
neighborhood U of x in X and a constant C > 0 such that

|j (y) − j (z)| ≤ C‖y − z‖, for all y, z ∈ U.

The generalized directional derivative of a locally Lipschitz function j : X → R at a point
u ∈ X along the direction v ∈ X is defined by

j◦(u; v) := lim sup
x→u,t→0+

j (x + tv) − j (x)

t
.

Since j is locally Lipschitz at u we have j◦(u; v) ∈ R for all v ∈ X. Furthermore, the
function j◦(u; ·) : X → R is subadditive, positively homogeneous and there holds the
inequality

|j◦(u; v)| ≤ C‖v‖ for all v ∈ X

with C being the Lipschitz constant of j near the point u ∈ X.
The generalized gradient of a locally Lipschitz function j : X → R at a point u ∈ X,

denoted by ∂j (u), is the subset of X∗ defined by

∂j (u) := {ξ ∈ X∗ : j◦(u; v) ≥ 〈ξ, v〉 for all v ∈ X
}
,

which is also known as Clarke’s generalized gradient. Based on the Hahn-Banach theorem
we easily verify that ∂j (u) is nonempty. Moreover, ∂j (u) is a convex, weak* compact subset
of X∗ and it holds ‖ξ‖∗ ≤ C for all ξ ∈ ∂j (u). For every v ∈ X, one has

j◦(u; v) = max {〈ξ, v〉 : ξ ∈ ∂j (u)} .

We refer to the monographs of Clarke [9] and Motreanu-Rădulescu [26] as well as the
paper of Chang [8] for more details and properties of generalized directional derivatives and
generalized gradients.
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The next result is needed for the proof via Moser iteration to estimate the boundary
integrals by suitable integrals defined in �. The proof is based on appropriate embeddings
and interpolation results of Besov and Sobolev Slobodeckij spaces.

Proposition 2.1 Let � ⊂ R
N ,N > 1, be a bounded domain with Lipschitz boundary ∂�,

let 1 < p < ∞, and let q be such that p ≤ q < p∗ with the critical exponent

p∗ =
{

(N−1)p
N−p

if p < N,

∞ if p ≥ N.

Then, for every ε > 0, there exist constants a1 > 0 and a2 > 0 such that

‖u‖p

Lq (∂�)
≤ ε‖u‖p

W 1,p(�)
+ a1ε

−a2‖u‖p

Lp(�)
for all u ∈ W 1,p(�).

Proof Since q < p∗ we may fix a number θ ∈ (0, 1) small enough such that

q

{
≤ (N−1)p

N−p+θp
if p ≤ N

<
p−N

θ
if p > N

and 1 − θ >
1

p
. (2.1)

From Triebel [28, 3.3.3], we have the continuous embedding

B1−θ
p,p (�) = W 1−θ,p(�) → B

1−θ− 1
p

p,p (∂�) = W
1−θ− 1

p ,p
(∂�), (2.2)

where Bs
p,p, s ∈ (0, 1), denotes the Besov space which coincides with the Sobolev Slo-

bodeckij space Ws,p . Note that the embedding (2.2) requires only a Lipschitz boundary as
1 − θ < 1.

From the choice of θ ∈ (0, 1) and since p ≤ q (see also (2.1)) we get
(

1 − θ − 1

p

)
p

{
< N − 1 if p ≤ N,

> N − 1 if p > N.

Taking into account the Sobolev embedding theorem for fractional order Sobolev spaces
(see Adams [1, Theorem 7.57]) gives

W
1−θ− 1

p ,p
(∂�) → Lq(∂�) (2.3)

for

q

⎧⎪⎨
⎪⎩

≤ (N−1)p

N−1−
(

1−θ− 1
p

)
p

= (N−1)p
N−p+θp

if
(

1 − θ − 1
p

)
p < N − 1,

< ∞ if
(

1 − θ − 1
p

)
p > N − 1.

Actually, in case
(

1 − θ − 1
p

)
p > N − 1 we have the stronger embedding

W
1−θ− 1

p ,p
(∂�) → C(∂�).

Since W 1,p(�) ⊂ W 1−θ,p(�) ⊂ Lp(�) are continuous embeddings we may apply real
interpolation (see Triebel [29, 1.6.2 and 1.6.7])

(Lp(�),W 1,p(�))1−θ,p = W 1−θ,p(�),

which implies the estimate

‖u‖W 1−θ,p(�) ≤ C̃1‖u‖1−θ

W 1,p(�)
‖u‖1−(1−θ)

Lp(�)
for all u ∈ W 1,p(�) (2.4)
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with a positive constant C̃1. Combining (2.2)–(2.4) and using Young’s inequality with δ̃ > 0
results in

‖u‖p

Lq (∂�)
≤ C̃2δ̃

1−θ‖u‖(1−θ)p

W 1,p(�)
δ̃−1+θ‖u‖θp

Lp(�)

≤ C̃2

(
δ̃‖u‖p

W 1,p(�)
+ δ̃

−1+θ
θ ‖u‖p

Lp(�)

)
.

Setting δ̃ := ε

C̃2
with arbitrary ε > 0 provides the desired estimate.

Finally, we conclude this section by fixing our notation. If s ∈ R we write s+ =
max(s, 0) and s− = min(s, 0). For functions u, v : � → R we use the notation u ∧ v =
min(u, v), u∨v = max(u, v), K∧K = {u∧v : u, v ∈ K}, and K∨K = {u∨v : u, v ∈ K}.
If the set K ⊆ V satisfies

K ∧ K ⊂ K and K ∨ K ⊂ K, (2.5)

we say that K has lattice structure. Note that V has lattice structure, that means,

V ∧ V ⊂ V and V ∨ V ⊂ V

(see Heinonen-Kilpeläinen-Martio [17, Theorem 1.20] if V = W 1,p(�) and Le [25, Lemma
3.2] if V = W 1,p(·)(�)). Throughout the paper we will denote by Mi and M̂j , i, j =
1, 2, . . . positive constants depending on the given data and the Lebesgue measure on R

N is
given by | · |N .

3 The Case V = W 1,p(�) Via Moser Iteration

We start our treatment with the constant exponent case and use Moser’s iteration to prove
L∞-bounds for solutions of inequality (1.1). In this section we suppose the following
assumptions.

(H1) The mappings A : � ×R×R
N → R

N and F : � ×R×R
N → R are supposed to

satisfy a Carathéodory condition while x �→ j1(x, s), x �→ j2(x, s) are measurable
for all s ∈ R and s �→ j1(x, s), s �→ j2(x, s) are locally Lipschitz for a.a. x ∈ �

and for a.a. x ∈ ∂�, respectively. In addition the subsequent structure conditions are
assumed:

(i) A(x, s, ξ ) · ξ ≥ a1|ξ |p − a2|s|q1 − a3 for a.a. x ∈ �;

(ii) |A(x, s, ξ )| ≤ a4|ξ |p−1 + a5|s|q1
p−1
p + a6 for a.a. x ∈ �;

(iii) |F(x, s, ξ )| ≤ b1|ξ |p
q1−1
q1 + b2|s|q1−1 + b3 for a.a. x ∈ �;

(iv) |η| ≤ c1|s|q1−1 + c2 for a.a. x ∈ �, for all η ∈ ∂j1(x, s);

(v) |τ | ≤ d1|s|q2−1 + d2, for a.a. x ∈ ∂�, for all τ ∈ ∂j2(x, s);

and for all s ∈ R, and all ξ ∈ R
N with positive constants ai, bj , ck, dl

(i ∈ {1, . . . , 6}, j ∈ {1, . . . , 3}, k, l ∈ {1, 2}) and fixed numbers p, q1, q2 such that

1 < p < ∞, p ≤ q1 < p∗, p ≤ q2 < p∗
with the critical exponents

p∗ =
{

Np
N−p

if p < N,

+∞ if p ≥ N,
p∗ =

{
(N−1)p
N−p

if p < N,

+∞ if p ≥ N.
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Recalling

∂jk(x, s) = {ξ ∈ R : j◦
k (x, s; r) ≥ ξr,∀r ∈ R

}
for a.a. x ∈ � (k = 1), respectively, for a.a. x ∈ ∂� (k = 2) we easily derive the estimates

|j◦
1 (x, s; r)| ≤

(
c1|s|q1−1 + c2

)
|r| for a.a. x ∈ � and for all s, r ∈ R, (3.1)

|j◦
2 (x, s; r)| ≤

(
d1|s|q2−1 + d2

)
|r| for a.a. x ∈ ∂� and for all s, r ∈ R, (3.2)

thanks to (H1)(iv) and (v). From the embeddings W 1,p(�) → Lq1(�) and W 1,p(�) →
Lq2(∂�) (see Adams [1]) and the growth conditions in (H1)(ii), (iii), (3.1) as well as (3.2)
we see that the integrals in (1.1) are finite.

For u ∈ W 1,p(�) and α, β > 0 we define the functions vα(x) := min(u+(x), α)

and vβ(x) := max(u−(x),−β) which belong both to W 1,p(�). We suppose the following
conditions on the set K.

(K1) For u ∈ K, α > 0, and κ > 0 there exists t > 0 such that

ϕ = u − tvκp
α u ∈ K.

(K2) For u ∈ K, β > 0, and κ > 0 there exists h > 0 such that

ψ = u − h(−vβ)κpu ∈ K.

Note that both ϕ and ψ are elements of W 1,p(�) and their gradients are given by

∇ϕ = ∇u − tκpvκp−1
α ∇vαu − tvκp

α ∇u = ∇u − tκpvκp
α ∇vα − tvκp

α ∇u

respectively,

∇ψ = ∇u − hκp(−vβ)κp−1∇(−vβ)u − h(−vβ)κp∇u

= ∇u + hκp(−vβ)κp∇(−vβ) − h(−vβ)κp∇u.

We have the following result.

Theorem 3.1 Let hypothesis (H1) be satisfied and let u ∈ K be a solution of (1.1). Then
there exists a constant C1 > 0 such that the following assertions hold.

(1) If condition (K1) is satisfied, then

ess sup
x∈�

u(x) ≤ C1.

(2) If condition (K2) is satisfied, then

ess inf
x∈�

u(x) ≥ −C1.

Proof We start with (1) and assume, without loss of generality, that p < q1 and p < q2.
The cases p = q1 and/or p = q2 work similarly. Thanks to (K1) we may take v = ϕ =
u − tv

κp
α u ∈ K in (1.1). This gives

tκp

∫
�

A(x, u,∇u) · ∇vαvκp
α dx + t

∫
�

A(x, u,∇u) · ∇uvκp
α dx

≤ −t

∫
�

F(x, u, ∇u)vκp
α udx +

∫
�

j◦
1

(
x, u;−tvκp

α u
)
dx

+
∫

∂�

j◦
2

(
x, u;−tvκp

α u
)
dσ.

(3.3)
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Since jk (k = 1, 2) are positively homogeneous with respect to the third argument (cf.
[9, Proposition 2.1.1]), we can divide inequality (3.3) by t > 0.

Let us estimate the several terms in (3.3). We start with the left-hand side of (3.3) by
applying hypothesis (H1)(i) and Hölder’s inequality. We obtain

κp

∫
�

A(x, u, ∇u) · ∇vαvκp
α dx +

∫
�

A(x, u,∇u) · ∇uvκp
α dx

= κp

∫
�

A(x, vα,∇vα) · ∇vαvκp
α dx +

∫
�

A(x, u+, ∇u+) · ∇u+vκp
α dx

≥ κp

∫
�

(
a1|∇vα|p − a2|vα|q1 − a3

)
vκp
α dx

+
∫

�

(
a1|∇u+|p − a2|u+|q1 − a3

)
vκp
α dx

≥ κp

(
a1

∫
�

|∇vα|pvκp
α dx − a2

∫
�

u
(κ+1)p
+ u

q1−p
+ dx − a3

∫
�

u
κp
+ dx

)

+ a1

∫
�

|∇u+|pvκp
α dx − (a2 + a3)

∫
�

u
(κ+1)p
+ u

q1−p
+ dx − a3|�|N

≥ a1κp

∫
�

|∇vα|p vκp
α dx + a1

∫
�

|∇u+|pvκp
α dx

− M1(κp + 1)

∥∥∥uκ+1+
∥∥∥p

Lq1 (�)
− M2.

(3.4)

By means of (H1)(iii) combined with Hölder’s inequality and Young’s inequality with
ε1 > 0 the first term on the right-hand side can be estimated through

−
∫

�

F(x, u,∇u)vκp
α udx

≤ b1

∫
�

ε

q1−1
q1

1 |∇u+|p
q1−1
q1 u

κp
q1−1
q1+ ε

− q1−1
q1

1 u
κp
(

1− q1−1
q1

)
+1

+ dx

+ (b2 + b3)

∫
�

u
(κ+1)p
+ u

q1−p
+ dx + b3|�|N

≤ ε1b1

(κ + 1)p

∫
�

|∇uκ+1+ |pdx + M3

(
ε
−(q1−1)

1 + 1
) ∥∥∥uκ+1+

∥∥∥p

Lq1 (�)
+ M4.

(3.5)

Owing to (3.1) combined with Hölder’s inequality the second integral on the right-hand side
of (3.3) gives

∫
�

j◦
1

(
x, u;−vκp

α u
)
dx ≤

∫
�

(
c1|u|q1−1 + c2

)
u

κp+1
+ dx

≤ M5

∥∥∥uκ+1+
∥∥∥p

Lq1 (�)
+ M6.

(3.6)

In the same way, using (3.2) and again Hölder’s inequality, we get for the last integral
∫

∂�

j◦
2

(
x, u; −vκp

α u
)
dσ ≤

∫
∂�

(
d1|u|q2−1 + d2

)
u

κp+1
+ dσ

≤ M7

∥∥∥uκ+1+
∥∥∥p

Lq2 (∂�)
+ M8.

(3.7)
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Now, combining (3.3)–(3.7) we have

a1κp

∫
�

|∇vα|p vκp
α dx + a1

∫
�

|∇u+|pvκp
α dx

≤ ε1b1

(κ + 1)p

∫
�

|∇uκ+1+ |pdx + M9

(
ε
−(q1−1)

1 + 1
)∥∥∥uκ+1+

∥∥∥p

Lq1 (�)

+ M10

∥∥∥uκ+1+
∥∥∥p

Lq2 (∂�)
+ M11.

Taking into account Fatou’s lemma yields

a1
κp + 1

(κ + 1)p

∫
�

∣∣∣∇uκ+1+
∣∣∣p dx

≤ ε1b1

(κ + 1)p

∫
�

|∇uκ+1+ |pdx + M9

(
ε
−(q1−1)

1 + 1
)∥∥∥uκ+1+

∥∥∥p

Lq1 (�)

+ M10

∥∥∥uκ+1+
∥∥∥p

Lq2 (∂�)
+ M11.

(3.8)

Choosing ε1 = a1
2b1

(κp + 1) implies ε
−(q1−1)

1 ≤ M12. Then, (3.8) becomes

a1

2

κp + 1

(κ + 1)p

∫
�

∣∣∣∇uκ+1+
∣∣∣p dx

≤ M13

∥∥∥uκ+1+
∥∥∥p

Lq1 (�)
+ M10

∥∥∥uκ+1+
∥∥∥p

Lq2 (∂�)
+ M11.

(3.9)

Now, we may apply Proposition 2.1 to the boundary term in (3.9) (with q = q2, ε = ε2)
and Hölder’s inequality as before to get

∥∥∥uκ+1+
∥∥∥p

Lq2 (∂�)

≤ ε2

∫
�

|∇uκ+1+ |pdx + ε2

∫
�

u
(κ+1)p
+ dx + a1ε

−a2
2

∫
�

u
(κ+1)p
+ dx

≤ ε2

∫
�

|∇uκ+1+ |pdx + M14

(
ε2 + ε

−a2
2

) ∥∥∥uκ+1+
∥∥∥p

Lq1 (�)
.

(3.10)

Combining (3.9) and (3.10) results in(
a1

2

κp + 1

(κ + 1)p
− M10ε2

)∫
�

∣∣∣∇uκ+1+
∣∣∣p dx

≤ M15

(
ε2 + ε

−a2
2 + 1

) ∥∥∥uκ+1+
∥∥∥p

Lq1 (�)
+ M11.

The choice ε2 = a1
4M10

κp+1
(κ+1)p

gives

a1

4

κp + 1

(κ + 1)p

∫
�

∣∣∣∇uκ+1+
∣∣∣p dx ≤ M16

(
(κ + 1)p

κp + 1

)M17 ∥∥∥uκ+1+
∥∥∥p

Lq1 (�)
+ M11. (3.11)

Finally, we divide (3.11) by a1
4

κp+1
(κ+1)p

> 0 and add on both sides the integral
∫
�

u
(κ+1)p
+ dx

which leads to ∫
�

∣∣∣∇uκ+1+
∣∣∣p dx +

∫
�

u
(κ+1)p
+ dx

≤ M18

(
(κ + 1)p

κp + 1

)M19
(∥∥∥uκ+1+

∥∥∥p

Lq1 (�)
+ 1

)
,

(3.12)



772 P. Winkert

where Hölder’s inequality was again taken into account on the right-hand side.
Having regard to the continuous embedding W 1,p(�) → Lp̃∗

(�) with

p̃∗ =
{

Np
N−p

if p < N,

2q1 if p ≥ N,

we obtain

‖u+‖L(κ+1)p̃∗
(�) =

∥∥∥uκ+1+
∥∥∥

1
κ+1

Lp̃∗
(�)

≤ M
1

κ+1
20 ‖uκ+1+ ‖

1
κ+1

W 1,p(�)

= M
1

κ+1
20

(∫
�

|∇uκ+1+ |pdx +
∫

�

u
(κ+1)p
+ dx

) 1
(κ+1)p

,

(3.13)

where M20 > 0 denotes the embedding constant. Combining (3.12) and (3.13) we derive

‖u+‖L(κ+1)p̃∗
(�)

≤ M
1

κ+1
20

(∫
�

|∇uκ+1+ |pdx +
∫

�

u
(κ+1)p
+ dx

) 1
(κ+1)p

≤ M
1

κ+1
20 M

1
(κ+1)p

18

⎛
⎝ (κ + 1)M19

(κp + 1)
M19
p

⎞
⎠

1
κ+1 (∥∥∥uκ+1+

∥∥∥p

Lq1 (�)
+ 1

) 1
(κ+1)p

.

(3.14)

Observe that
⎛
⎝ (κ + 1)M19

(κp + 1)
M19
p

⎞
⎠

1√
κ+1

≥ 1 and lim
κ→∞

⎛
⎝ (κ + 1)M19

(κp + 1)
M19
p

⎞
⎠

1√
κ+1

= 1.

Hence, we find a constant M21 > 1 such that
⎛
⎝ (κ + 1)M19

(κp + 1)
M19
p

⎞
⎠

1
κ+1

≤ M

1√
κ+1

21 . (3.15)

Applying (3.15) to (3.14) gives the estimate

‖u+‖L(κ+1)p̃∗
(�) ≤ M

1
κ+1

20 M
1

(κ+1)p

18 M

1√
κ+1

21

(∥∥∥uκ+1+
∥∥∥p

Lq1 (�)
+ 1

) 1
(κ+1)p

. (3.16)

Now we can start with the typical bootstrap arguments. Choosing κ such that

κ1 : (κ1 + 1)q1 = p̃∗,
κ2 : (κ2 + 1)q1 = (κ1 + 1)p̃∗,
κ3 : (κ3 + 1)q1 = (κ2 + 1)p̃∗,

...
... .

we see that

‖u+‖L(κ+1)p̃∗
(�) ≤ C(κ)

for any finite number κ , where C(κ) is a positive constant depending on κ . Thus, u+ ∈
Lr(�) for any r ∈ (1,∞).
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In order to prove the uniform estimate with respect to κ we argue as follows. If there is a
sequence κn → ∞ such that ∫

�

u
(κn+1)q1+ dx ≤ 1,

we directly obtain

‖u+‖L∞(�) ≤ 1.

In the opposite case there exists a number κ0 > 0 such that∫
�

u
(κ+1)q1+ dx > 1 for any κ ≥ κ0.

Then we conclude from (3.16)

‖u+‖L(κ+1)p̃∗
(�) ≤ M

1
κ+1

20 M
1

(κ+1)p

18 M

1√
κ+1

21

(
2
∥∥∥uκ+1+

∥∥∥p

Lq1 (�)

) 1
(κ+1)p

≤ M
1

κ+1
20 M

1
(κ+1)p

22 M

1√
κ+1

21 ‖u+‖
L(κ+1)q1 (�) .

(3.17)

Applying again the bootstrap arguments we define a sequence (κn) such that

κ1 : (κ1 + 1)q1 = (κ0 + 1)p̃∗,
κ2 : (κ2 + 1)q1 = (κ1 + 1)p̃∗,
κ3 : (κ3 + 1)q1 = (κ2 + 1)p̃∗,

...
... .

(3.18)

By induction, from (3.17) and (3.18), we obtain

‖u+‖L(κn+1)p̃∗
(�) ≤ M

1
κn+1

20 M
1

(κn+1)p

22 M

1√
κn+1

21 ‖u+‖L(κn+1)q1 (�)

= M
1

κn+1
20 M

1
(κn+1)p

22 M

1√
κn+1

21 ‖u+‖
L(κn−1+1)p̃∗

(�)

for any n ∈ N, where the sequence (κn) is chosen such that (κn + 1) = (κ0 + 1)
(

p̃∗
q1

)n

.

Then, we have

‖u+‖L(κn+1)p̃∗
(�) ≤ M

∑n
i=1

1
κi+1

20 M

∑n
i=1

1
(κi+1)p

22 M

∑n
i=1

1√
κi+1

21 ‖u+‖
L(κ0+1)p̃∗

(�)
,

with (κn +1)p̃∗ → ∞ as n → ∞. Since 1
κi+1 = 1

κ0+1

(
q1
p̃∗
)i

and q1
p̃∗ < 1 there is a constant

M23 > 0 such that

‖u+‖L(κn+1)p̃∗
(�) ≤ M23‖u+‖

L(k0+1)p̃∗
(�)

. (3.19)

Since u+ ∈ Lr(�) for any r ∈ (1,∞), the right-hand side of (3.19) is finite. By means of
(3.19) it follows that

ess sup
x∈�

u+(x) ≤ C1

(see Drábek-Kufner-Nicolosi [12, proof of Lemma 3.2]).
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The second part can be proved similarly. We take v = ψ = u − h(−vβ)κpu in (1.1)
which leads to

hκp

∫
�

A(x, u,∇u) · ∇vβ(−vβ)κpdx + h

∫
�

A(x, u,∇u) · ∇u(−vβ)κpdx

≤ −h

∫
�

F(x, u,∇u)(−vβ)κpudx +
∫

�

j◦
1

(
x, u;−h(−vβ)κpu

)
dx

+
∫

∂�

j◦
2

(
x, u; −h(−vβ)κpu

)
dσ.

(3.20)

Applying again the structure conditions in (H1) combined with Hölder’s and Young’s
inequality to (3.20) the statement in (2) can be shown as in the first part. This completes the
proof.

As a direct consequence of Theorem 3.1 we obtain the following corollary.

Corollary 3.1 Assume hypotheses (H1), (K1), (K2) and let u ∈ K be a solution of (1.1).
Then there holds

ess sup
x∈�

|u(x)| ≤ C1,

where the constant C1 is the same as in Theorem 3.1.

Remark 3.3 Note that the constant C1 in Theorem 3.1 depends on the given data and on the
solution u ∈ K, that is,

C1 = C1(p, q1, q2, a1, a2, a3, b1, b2, b3, c1, c2, d1, d2,�, u).

The assumption (H1)(ii) is not needed in the proof of Theorem 3.1. It should be noted that
the finiteness of the integrals∫

�

|∇uκ+1+ |pdx,

∫
�

u
(κ+1)q1+ dx

is shown in the end of the proof of Theorem 3.1 by a suitable choice of the parameter κ .
This is a typical proceeding in the usage of the Moser iteration.

Remark 3.4 If V = W
1,p

0 (�) being the usual Sobolev space consisting of the elements of
W 1,p(�) with zero traces on ∂�, problem (1.1) reduces to

u ∈ K :
∫

�

A(x, u, ∇u) · ∇(v − u)dx +
∫

�

F(x, u,∇u)(v − u)dx

+
∫

�

j◦
1 (x, u; v − u)dx ≥ 0,

(3.21)

for all v ∈ K ⊆ W
1,p

0 (�). We observe that the results ensured by Theorem 3.1 still hold for
problems of type (3.21). In this case we do not need Proposition 2.1 and the proof becomes
more simple. In general, the assumptions in (K1) and (K2) are satisfied if K = W

1,p

0 (�)

and K = W 1,p(�).

Remark 3.5 As already mentioned in the Introduction our assumptions on the set of con-
straints are weaker than those in Kovalevsky-Nikolosi [20]. Precisely, Hypothesis 2.6(i) in
[20] is not necessary in our proof.
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Let us consider some examples of suitable sets K. To this end, let ϑ, ϑj , ω, ψ : � → R,
j = 1, . . . , N , be given functions such that ϑ ≥ 0, ω ≤ 0 ≤ ψ a.e. in �.

Example 3.6 Let � : � × R → R be a function such that s → �(x, s) is convex for a.a.
x ∈ � and such that �(x, 0) ≤ 0 for a.a. x ∈ �. Then the set

K =
{
u ∈ W 1,p(�) : �(x, u(x)) ≤ 0 a.e. in �

}

fulfills the conditions (K1), (K2) with t = α−κp and h = β−κp. In particular, � can be of
the following form

�(x, s) = s − ϑ(x), �(x, s) = −s − ϑ(x), �(x, s) = (s − ω(x))(s − ψ(x)).

From this choice we see that the subsequent sets satisfy our assumptions:

K = {u ∈ W 1,p(�) : u ≤ ϑ a.e. in �},
K = {u ∈ W 1,p(�) : u ≥ −ϑ a.e. in �},
K = {u ∈ W 1,p(�) : ω ≤ u ≤ ψ a.e. in �}.

Example 3.7 Let ϒ : � ×R
N → R be a function such that ξ → ϒ(x, ξ) is convex for a.a.

x ∈ � and such that ϒ(x, 0) ≤ 0 for a.a. x ∈ �. Then the set

K =
{
u ∈ W 1,p(�) : ϒ(x,∇u(x)) ≤ 0 a.e. in �

}

fulfills the conditions (K1), (K2) with t = (κp + 1)−1α−κp and h = (κp + 1)−1β−κp. As
before, we see that

ϒ(x, ξ) = |ξ | − ϑ(x), ϒ(x, ξ) =
N∑

j=1

ϑj (x)ξj − ϑ(x), ξ = (ξ1, . . . , ξN)

are suitable choices for ϒ . Hence, our results can be applied to the sets

K = {u ∈ W 1,p(�) : |∇u| ≤ ϑ a.e. in �},

K =
⎧⎨
⎩u ∈ W 1,p(�) :

N∑
j=1

ϑj
∂u

∂xj

≤ ϑ a.e. in �

⎫⎬
⎭ .

4 The Case V = W 1,p(·)(�) Via De Giorgi Iteration

In this section we will provide a priori bounds for (1.1) by applying De Giorgi’s iteration
technique if p is a continuous function on �. Our assumptions in that case read as follows:

(H2) The mappings A : � ×R×R
N → R

N and F : � ×R×R
N → R are supposed to

satisfy a Carathéodory condition while x �→ j1(x, s), x �→ j2(x, s) are measurable
for all s ∈ R and s �→ j1(x, s), s �→ j2(x, s) are locally Lipschitz for a.a. x ∈ �

and for a.a. x ∈ ∂�, respectively. Furthermore, it is assumed the following:

(i) A(x, s, ξ ) · ξ ≥ a1|ξ |p(x) − a2|s|q1(x) − a3 for a.a. x ∈ �;

(ii) |A(x, s, ξ )| ≤ a4|ξ |p(x)−1 + a5|s|q1(x)
p(x)−1
p(x) + a6 for a.a. x ∈ �;



776 P. Winkert

(iii) |F(x, s, ξ )| ≤ b1|ξ |p(x)
q1(x)−1
q1(x) + b2|s|q1(x)−1 + b3 for a.a. x ∈ �;

(iv) |η| ≤ c1|s|q1(x)−1 + c2 for a.a. x ∈ �, for all η ∈ ∂j1(x, s);

(v) |τ | ≤ d1|s|q2(x)−1 + d2, for a.a. x ∈ ∂�, for all τ ∈ ∂j2(x, s);

and for all s ∈ R, and all ξ ∈ R
N with positive constants ai, bj , ck, dl

(i ∈ {1, . . . , 6}, j ∈ {1, . . . , 3}, k, l ∈ {1, 2}) and fixed functions p, q1 ∈ C(�),

q2 ∈ C(∂�) such that 1 < infx∈� p(x) and

p(x) ≤ q1(x) < p∗(x), x ∈ �, p(x) ≤ q2(x) < p∗(x), x ∈ ∂�, (4.1)

with the critical exponents

p∗(x) =
{

Np(x)
N−p(x)

if p(x) < N,

+∞ if p(x) ≥ N,
p∗(x) =

{
(N−1)p(x)
N−p(x)

if p(x) < N,

+∞ if p(x) ≥ N.

As in the case of constant exponents we obtain a certain growth rate of the generalized
directional derivatives of the form

|j◦
1 (x, s; r)| ≤

(
c1|s|q1(x)−1 + c2

)
|r| for a.a. x ∈ � and for all s, r ∈ R, (4.2)

|j◦
2 (x, s; r)| ≤

(
d1|s|q2(x)−1 + d2

)
|r| for a.a. x ∈ ∂� and for all s, r ∈ R. (4.3)

Then, the finiteness of the left-hand side in (1.1) is a consequence of the compact embedding
W 1,p(·)(�) → Lq1(·)(�) and the fact that the trace operator is a bounded operator from
W 1,p(·)(�) into Lq2(·)(∂�) (see Fan-Shen-Zhao [14, Theorem 1.3] and Fan [13, Corollary
2.4]). Notice that we do not need log-Hölder continuity conditions, the variable exponents
p, q1, and q2 are only supposed to be continuous.

We assume the following hypotheses on the set K.

(K3) For u ∈ K and κ > 0 there exists t > 0 such that

ϕ = u − t (u − κ)+ ∈ K.

(K4) For u ∈ K and κ > 0 there exists h > 0 such that

ψ = u − h(u + κ)− ∈ K.

Since W 1,p(·)(�) has lattice structure we notice that both function ϕ and ψ belong to
W 1,p(·)(�).

We start with the result on truncated energy estimates.

Proposition 4.1 Assume hypothesis (H2) and let u ∈ K be a solution of (1.1).

(1) If condition (K3) is satisfied, then∫
Aκ

|∇u|p(x)dx ≤ M̂1

∫
Aκ

uq1(x)dx + M̂2

∫
∂Aκ

uq2(x)dσ,

where

Aκ = {x ∈ � : u(x) > κ}, ∂Aκ = {x ∈ ∂� : u(x) > κ}, κ ≥ 1,

and with positive constants M̂1 = M̂1(q1, a1, a2, a3, b1, b2, b3, c1, c2) and
M̂2 = M̂2(a1, d1, d2).
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where uq1(x) > u > 1 in Aκ was taken into account. The first term on the right-hand side
can be estimated via Young’s inequality with ε ∈ (0, 1] and condition (H2)(iii). This leads
to ∫

Aκ

F (x, u, ∇u)(−(u − κ))dx

≤
∫

Aκ

[
b1|∇u|p(x)

q1(x)−1
q1(x) + b2|u|q1(x)−1 + b3

]
(u − κ)dx

≤ b1

∫
Aκ

[
ε

q1(x)−1
q1(x) |∇u|p(x)

q1(x)−1
q1(x) ε

− q1(x)−1
q1(x) u

]
dx + (b2 + b3)

∫
Aκ

uq1(x)dx

≤ b1

∫
Aκ

ε|∇u|p(x)dx + b1

∫
Aκ

ε−(q1(x)−1)uq1(x)dx

+ (b2 + b3)

∫
Aκ

uq1(x)dx

≤ εb1

∫
Aκ

|∇u|p(x)dx +
(
b1ε

−(q+
1 −1) + b2 + b3

) ∫
Aκ

uq1(x)dx,

(4.6)

(2) If condition (K4) is satisfied, then∫
Ãκ

|∇u|p(x)dx ≤ M̂1

∫
Ãκ

(−u)q1(x)dx + M̂2

∫
∂Ãκ

(−u)q2(x)dσ,

where

Ãκ = {x ∈ � : −u(x) > κ}, ∂Ãκ = {x ∈ ∂� : −u(x) > κ}, κ ≥ 1,

with the same constants M̂1 and M̂2 as in part (1).

Proof Let κ ≥ 1 be fixed and let u ∈ K be a solution of (1.1). Due to (K3) we may choose
v = ϕ = u − t (u − κ)+ ∈ K in (1.1) to get∫

Aκ

A(x, u,∇u) · ∇(t (u − κ))dx

≤
∫

Aκ

F (x, u,∇u)(−t (u − κ))dx +
∫

Aκ

j◦
1 (x, u;−t (u − κ))dx

+
∫

∂Aκ

j◦
2 (x, u; −t (u − κ))dσ.

(4.4)

Since r �→ j◦
k (x, s; r) is positively homogeneous (see [9, Proposition 2.1.1]) we may divide

inequality (4.4) by t > 0. By virtue of condition (H2)(i) we obtain for the left-hand side of
(4.4) ∫

Aκ

A(x, u,∇u) · ∇(u − κ)dx

=
∫

Aκ

A(x, u,∇u) · ∇udx

≥
∫

Aκ

(
a1|∇u|p(x) − a2|u|q1(x) − a3

)
dx

≥ a1

∫
Aκ

|∇u|p(x)dx − (a2 + a3)

∫
Aκ

|u|q1(x)dx,

(4.5)
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where q+
1 = max� q1. By means of hypothesis (H2)(iv) (see also (4.2)) the second term on

the right-hand side of (4.4) gives∫
Aκ

j◦
1 (x, u;−(u − κ))dx ≤

∫
Aκ

(
c1|u|q1(x)−1 + c2

)
(u − κ)dx

≤ (c1 + c2)

∫
Aκ

uq1(x)dx.

(4.7)

Finally, due to (H2)(v) (see also (4.3)), we arrive∫
∂Aκ

j◦
2 (x, u;−(u − κ))dσ ≤

∫
∂Aκ

(
d1|u|q2(x) + d2

)
(u − κ)dσ

≤ (d1 + d2)

∫
∂Aκ

uq2(x)dσ.

(4.8)

Combining (4.4)–(4.8) and choosing ε = min
(

1, a1
2b1

)
yields

a1

2

∫
Aκ

|∇u|p(x)dx

≤
(
a2 + a3 + b1ε

−(q+
1 −1) + b2 + b3 + c1 + c2

) ∫
Aκ

uq1(x)dx

+ (d1 + d2)

∫
∂Aκ

uq2(x)dσ.

(4.9)

Now we may divide (4.9) by a1
2 > 0 which yields claim (1).

In order to prove part (2) we take v = ψ = u − h(u + κ)− ∈ K as test function in (1.1).
This leads to

h

∫
Ãκ

A(x, u,∇u) · ∇(u + κ)dx

≤ −h

∫
Ãκ

F (x, u,∇u)(u + κ)dx + h

∫
Ãκ

j◦
1 (x, u; −(u + κ))dx

+ h

∫
∂Ãκ

j◦
2 (x, u;−(u + κ))dσ.

Dividing again by h > 0 and applying the structure conditions in (H2)(i), (iii)–(v) we obtain
the estimate in (2).

Now we can state our main result on upper and lower bounds for solutions of (1.1).

Theorem 4.2 Assume hypothesis (H2) and let u ∈ K be a solution of (1.1). Then there
exists a constant C2 > 0 such that the following assertions hold.

(1) If condition (K3) is satisfied, then

ess sup
x∈�

u(x) ≤ C2.

(2) If condition (K4) is satisfied, then

ess inf
x∈�

u(x) ≥ −C2.

Proof The proof can exactly be done as in [32, Theorem 1.1] where Lemma 3.1 and 3.2 in
[32] have to be replaced by Proposition 4.1.
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Analogous to Section 3 we have the corresponding result on the boundedness of solutions
of (1.1).

Corollary 4.3 Let the conditions in (H2), (K3), and (K4) be satisfied and let u ∈ K be a
solution of (1.1). Then there holds

ess sup
x∈�

|u(x)| ≤ C2,

with the same constant C2 stated in Theorem 4.2s.

Remark 4.4 As proved in [32] the constant C2 given in Theorem 4.2 and Corollary 4.3 can
be characterized through

C2 = 2 max

(
1, M̂3

[∫
�

u
q1(x)
+ dx +

∫
∂�

u
q2(x)
+ dσ

]M̂4
)

with positive constants M̂3 = M̂3(p, q1, q2, a1, a2, a3, b1, b2, b3, c1, c2, d1, d2,N, �) and
M̂4 = M̂4(p, q1, q2). As already mentioned in the constant exponent case the growth con-
dition for A : � × R × R

N → R
N (see (H2)(ii)) is not needed in the proof of Theorem

4.2.

Remark 4.5 The proof of Theorem 1.1 in [32] is mainly based on the localization method
combined with an appropriate choice of the partition of unity. Since � is compact we find,
for any R > 0, a finite open cover {Bi(R)}i=1,...,m of balls Bi := Bi(R) with radius R such
that � ⊂ ⋃m

i=1 Bi(R). Because of the continuity of p, q1, q2 and due to (4.1) we may take
R > 0 small enough such that

p+
i ≤ q+

1,i
< (p−

i )∗, p+
i ≤ q+

2,i
< (p−

i )∗, i = 1, . . . , m,

where

p+
i = max

x∈Bi∩�

p(x), q+
1,i

= max
x∈Bi∩�

q1(x),

p−
i = min

x∈Bi∩�

p(x), q+
2,i

= max
x∈Bi∩∂�

q2(x),

and (p−
i )∗, (p−

i )∗ denote the usual critical exponents of p−
i . Then, we can choose a partition

of unity {ξi}mi=1 ⊂ C∞
0 (RN) with respect to the open cover {Bi(R)}i=1,...,m. That means,

we have

supp ξi ⊂ Bi, 0 ≤ ξi ≤ 1, i = 1, . . . ,m, and
m∑

i=1

ξi = 1 on �.

In fact, the idea is to treat problems involving nonstandard growth conditions as problems
with constant exponent growth rates. It arises the open question what happens if p is not
continuous, but essentially bounded. In this case the ideas above cannot be applied.

Remark 4.6 In contrast to De Giorgi’s iteration it seems that Moser’s iteration is less suitable
for problems with variable exponents concerning global a priori bounds. With view to the
assumptions in (K1) and (K2), we see that p occurs as exponent in the test function. This
makes the corresponding gradient more complicated and it is not clear for the author if this
method works in the variable exponent case even if K = W 1,p(·)(�) and jk (k = 1, 2)
smooth.
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Now we give sufficient conditions for the set K satisfying the conditions in (K3) and
(K4).

Lemma 4.7

(1) If K contains the positive constant functions and if K satisfies the condition K ∧K ⊂
K, then the hypothesis (K3) is satisfied with t = 1.

(2) If K contains the negative constant functions and if K satisfies the condition K ∨K ⊂
K, then the hypothesis (K4) is satisfied with h = 1.

(3) If K contains the constant functions and if K has lattice structure, then the hypotheses
(K3) and (K4) are satisfied with t = h = 1.

Proof Let u ∈ K. Since K is closed under “∧” we obtain, for κ ∈ K with κ > 0,

min(u, κ) = u − (u − κ)+ ∈ K.

Hence, condition (K3) is satisfied for t = 1. This proves (1). Similarly, we have, for u ∈ K

and −κ ∈ K with κ > 0,

max(u,−κ) = u − (u + κ)− ∈ K,

as K is closed under “∨”. Then, condition (K4) is fulfilled for h = 1 which yields the
assertion in (2). The last part follows directly from (1) and (2).

Let us consider some examples.

Example 4.8 Let ϑ : � → R be a given function with ϑ ≥ 0 a.e. in � and consider the sets

K = {v ∈ W 1,p(·)(�) : v ≤ ϑ a.e. in �},
K = {v ∈ W 1,p(·)(�) : v ≥ −ϑ a.e. in �},
K = {v ∈ W 1,p(·)(�) : |∇v| ≤ ϑ a.e. in �}.

We observe that these sets have lattice structure, that means, they fulfill (2.5). Moreover,
the first set contains the negative constant functions, the second set the positive constant
functions and the last one the constant functions. Hence, the assumptions of Lemma 4.7 are
satisfied and Theorem 4.2 can be applied to these sets.

As a special case of the second set we have the cone of nonnegative elements of
W 1,p(·)(�), that is

K≥0 = {v ∈ W 1,p(·)(�) : v ≥ 0 a.e. in �}.
It is clear that K≥0 has lattice structure and contains the positive constant functions. Hence,
Lemma 4.7(1) implies that K≥0 satisfies (K3) and from Theorem 4.2(1) we infer that every
solution u ∈ K≥0 of (1.1) is bounded from above. Since K≥0 is bounded from below by
zero, we have that u ∈ L∞(�).
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