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SMALL PERTURBATIONS OF ROBIN PROBLEMS

DRIVEN BY THE p -LAPLACIAN

PLUS A POSITIVE POTENTIAL

Anouar Bahrouni — Vicenţiu D. Rădulescu — Patrick Winkert

Abstract. We consider a quasilinear Robin problem driven by the p-La-

placian plus a positive potential and with a small perturbation. We assume
that the main term in the equation has an Ekeland structure but we do

not suppose any growth condition for the perturbation term. Applying

variational methods, we prove the existence of at least one nontrivial weak
solution.

1. Introduction

In this paper, we study the following quasilinear Robin p-Laplace problem

with small perturbation given by

(1.1)

−∆pu+ V (x)u = a(x)|u|q−1u+ λg(x, u) + f(x) in Ω,

|∇u|p−2∇u · ν + β(x)|u|p−2u = 0 on ∂Ω,

where Ω ⊆ RN (N > 2) is a bounded domain with a C2-boundary ∂Ω, p ≥ 2,

λ is a real parameter, 0 < q < p − 1 and ν(x) denotes the outer unit normal of
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Ω at x ∈ ∂Ω. This problem is driven by the p-Laplacian, which is defined by

∆pu = div
(
|∇u|p−2∇u

)
for u ∈W 1,p(Ω).

Our aim is to prove the existence of at least one weak solution of problem

(1.1) by applying variational methods like Ekeland’s variational principle. In

order to state our main result we need to give first the precise assumptions on

the data of problem (1.1).

H(a) a ∈ L∞(Ω) and there exists α > 0 such that

a(x) ≤ −α for all x ∈ Ω;

H(β) β ∈ L∞(∂Ω) and β(x) ≥ 0 for all x ∈ ∂Ω with β 6≡ 0;

H(g) g : Ω× R→ R is continuous;

H(V ) V ∈ L∞(Ω) and infx∈Ω V (x) > 1;

H(f) f ∈ L∞(Ω) and there exist x0 ∈ Ω and R0 > 0 such that f(x) > 0 for

all x ∈ B(x0, R0).

Our main result reads as follows.

Theorem 1.1. Assume that conditions H(a), H(β), H(f), H(g) and H(V ) hold.

Moreover, suppose that N < p and 0 < q < p − 1. Then there exists a positive

number λ0 such that if |λ| < λ0, problem (1.1) has at least one nontrivial weak

solution.

In order to treat problem (1.1), we first study the existence of solutions of

the following auxiliary problem

(1.2)

−∆pu+ V (x)u = a(x)|u|q−1u+ f(x) in Ω,

|∇u|p−2∇u · ν + β(x)|u|p−2u = 0 on ∂Ω.

For V we suppose a weaker condition in the following way.

H(V ′) V ∈ L∞(Ω) and ‖V −‖N/2 ≤ S,

where V ± = max {V ±, 0} and S denotes the best Sobolev constant of the com-

pact embedding D1,2(Ω) into Lr(Ω) for r ∈ [1, 2∗), see Anello and Cordaro [1,

Lemma 2.1], that is,

S = inf

{
‖∇u‖22
‖u‖22

∣∣∣∣ u ∈ D1,2(Ω)

}
,

where D1,2(Ω) is the completion of the space of continuous functions on Ω with

compact support with respect to the norm(∫
Ω

|∇u|2 dx
)1/2

.

Remark 1.2. It is clear that condition H(V ) implies assumption H(V ′).

For problem (1.2) we are going to prove the following result.
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Theorem 1.3. Let H(a), H(β), H(f) and H(V ′) be satisfied and let 0 < q < p−1.

Then there exists a positive number λ0 such that if |λ| < λ0, problem (1.2) admits

a nontrivial weak solution.

The main result in this paper establishes that problem (1.1) has a solution

provided that a suitable perturbation of the second reaction term is sufficiently

small. This perturbation is described in terms of the real parameter λ in rela-

tionship with the small values of the first reaction term with respect to a certain

topology.

Such existence type results have been investigated by Papageorgiou and

Rădulescu [8], [10], [9] and Vetro [12] for nonlinear Robin problems and by

Wang [13] for nonlinear Neumann problems. All the aforementioned results

treat the superlinear case and impose more restrictive conditions on the reaction

g : Ω × [0,∞) → R. Moreover, our work here complements the recent works by

Bahrouni, Ounaies and Rădulescu [2], [3], Bahrouni, Rădulescu and Winkert [4]

and Kajikiya [7] where the authors prove for Dirichlet problems an existence

theorem for small values of λ > 0.

The paper is organized as follows. In Section 2 we state the main notations

and the main results which will be used later. The auxiliary problem (1.2) is

then considered in Section 3 by applying critical point theory and Ekeland’s

variational principle, see Theorem 2.2. Taking into account this result, we are

going to prove Theorem 1.1 in Section 4.

2. Preliminaries

In the whole paper we suppose that Ω is a bounded domain in RN , N > 2.

Given 1 ≤ r ≤ ∞, Lr(Ω) and Lr(Ω;RN ) stand for the usual Lebesgue spaces

equipped with the norm ‖ · ‖r while W 1,r(Ω) and W 1,r
0 (Ω) denote the Sobolev

spaces endowed with the norms ‖ · ‖1,r and ‖ · ‖1,r,0, respectively. By r′, we

denote the conjugate of r ∈ (1,∞), that is, 1/r + 1/r′ = 1.

On the boundary ∂Ω we consider the (N−1)-dimensional Hausdorff (surface)

measure σ, by which we can define in the usual way the boundary Lebesgue space

Lr(∂Ω), with norm ‖ · ‖r,∂Ω. It is known that there exists a unique continuous

linear operator γ : W 1,r(Ω)→ Lr(∂Ω), called trace map, such that

γ(u) = u|∂Ω for all u ∈W 1,r(Ω) ∩ C0(Ω).

Henceforth, although all restrictions of Sobolev functions to ∂Ω are understood

in the sense of traces, we will avoid the usage of the trace operator γ to simplify

notation.

In the following we will equip the space E = W 1,p(Ω) with the norm

‖u‖E =
(
‖∇u‖pp + ‖u‖pp,β,∂Ω

)1/p
with ‖u‖p,β,∂Ω =

(∫
∂Ω

β(x)|u|p dσ
)1/p

,
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which is equivalent to the standard one ‖·‖1,p, see Papageorgiou and Winkert [11].

Note that the critical Sobolev exponent to r ∈ (1,∞) is given by

(2.1) r∗ :=


Nr

N − r
if r < N,

+∞ otherwise.

The following definition is important in our treatment.

Definition 2.1. Let X be a real Banach space, let c ∈ R and let F ⊂ X be

a closed subset. We say that I ∈ C1(X,R) satisfies the Palais–Smale condition at

level c ∈ R on F ((PS)F,c-condition for short), if any subsequence (un)n∈N ⊆ F

such that I(un)→ c and I ′(un)→ 0 in X∗, has a convergent subsequence to some

u ∈ F . If F = X we write (PS)c. If F = X and I satisfies the (PS)c-condition

at every level c ∈ R we say that I satisfies the (PS)-condition.

This compactness-type condition on I is crucial in deriving the minimax

theory of the critical values.

Let us recall the following version of Ekeland’s variational principle estab-

lished by Ekeland [5] or Gonçalves and Miyagaki [6].

Theorem 2.2. Let X be a real Banach space. If I ∈ C1(X,R) is bounded from

below on a closed subset F ⊂ X with a nonempty interior and if

I(v) < 0 < inf
u∈∂F

I(u) for some v ∈ F ◦,(2.2)

then

c := inf
u∈F

I(u)(2.3)

is a critical value of I provided that I fulfills the (PS)F,c-condition.

Definition 2.3. Let X be a real Banach space and let I ∈ C1(X,R).

(a) We say that u is a c-Ekeland solution of I if I(u) = 0 and I ′(u) = c,

where c is given in (2.3).

(b) We say that I has the Ekeland geometry if I satisfies property (2.2).

3. Study of the auxiliary problem

Our aim in this section is the proof of Theorem 1.3. First we give the precise

definition of a weak solution of problem (1.2).

Definition 3.1. We call u ∈ E a weak solution of problem (1.1) if∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

V (x)uv dx+

∫
∂Ω

β(x)|u|p−2uv dσ

=

∫
Ω

a(x)|u|q−1uv dx+

∫
Ω

f(x)v dx

is satisfied for all v ∈ E.
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In order to find weak solutions we are going to study the corresponding

energy functional J : E → R of (1.2) given by

J(u) =
1

p

∫
Ω

|∇u|p dx+
1

2

∫
Ω

V (x)|u|2 dx

+
1

p

∫
∂Ω

β(x)|u|p dσ − 1

q + 1

∫
Ω

a(x)|u|q+1 dx−
∫

Ω

f(x)u dx.

Lemma 3.2. Suppose that H(a), H(β), H(f) and H(V ′) are satisfied and let

0 < q < p− 1. Let d ∈ R and let F ⊂ E be a closed subset. Then J satisfies the

(PS)F,d-condition.

Proof. Let (un)n∈N be a (PS)-sequence of J , then there exists c1 > 0 such that

J(un) ≤ c1. We claim that (un)n∈N is bounded in E.

Case 1. p = 2. Note that in this case we have 2∗ = 2N/(N − 2) since 2 < N

by assumption, see also (2.1).

Applying Hölder’s inequality, hypotheses H(a), H(β), H(f) and H(V ′) along

with the embedding W 1,2(Ω) ↪→ L2(Ω), we obtain

c1 ≥ J(un) =
1

2

∫
Ω

|∇un|2 dx+
1

2

∫
Ω

V (x)|un|2 dx(3.1)

+
1

2

∫
∂Ω

β(x)|un|2 dσ −
1

q + 1

∫
Ω

a(x)|un|q+1 dx−
∫

Ω

f(x)un dx

≥ 1

2

∫
Ω

|∇un|2 dx+
1

2

∫
Ω

V +(x)|un|2 dx

− 1

2

∫
Ω

V −(x)|un|2 dx+
1

2

∫
∂Ω

β(x)|un|2 dσ −
∫

Ω

f(x)un dx

≥
(

1

2
−
‖V −‖N/2

2S

)
‖∇un‖22 +

1

2

∫
∂Ω

β(x)|un|2 dσ − ‖f‖2‖un‖2

≥
(

1

2
−
‖V −‖N/2

2S

)
‖un‖2E − C1‖f‖2‖un‖E ,

with a positive constant C1. Thus, there exists C2 > 0 such that ‖un‖E ≤ C2

for all n ∈ N.

Case 2. p > 2. Note that in this case we do not need to know if N > p or

N ≤ p.
Again, by applying Hölder’s inequality, conditions H(a), H(β), H(f) and

H(V ′) and the embedding W 1,p(Ω) ↪→ Lp(Ω) we have

c1 ≥ J(un) ≥ 1

p

∫
Ω

|∇un|p dx+
1

2

∫
Ω

V +(x)|un|2 dx(3.2)

− 1

2

∫
Ω

V −(x)|un|2 dx+
1

p

∫
∂Ω

β(x)|un|p dσ −
∫

Ω

f(x)un dx
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≥ 1

p
‖∇un‖pp +

1

p

∫
∂Ω

β(x)|un|p dσ − C3‖V −‖∞‖un‖2 − C4‖f‖p′‖un‖p

≥ 1

p
‖un‖pE − C5‖V −‖∞‖un‖2E − C6‖f‖p′‖un‖E ,

where C5, C6 are positive constants. Since p > 2 > 1, it is easy to see that

(un)n∈N is also bounded in this case. The proof that the sequence (un)n∈N is

strongly convergent in E is standard and is omitted. �

Lemma 3.3. Assume that the hypotheses of Theorem 1.3 are fulfilled. Then,

problem (1.2) has the Ekeland geometry property.

Proof. First we are going to show that there exist ρ, γ > 0 such that

J(u) ≥ γ for all u ∈ E with ‖u‖E = ρ.(3.3)

Case 1. p = 2. Let u ∈ E. From hypotheses H(a), H(β), H(f) and H(V ′)

and (3.1) it follows that

J(u) ≥ 1

2

∫
Ω

|∇u|2 dx+
1

2

∫
Ω

V +(x)|u|2 dx(3.4)

− 1

2

∫
Ω

V −(x)|u|2 dx+
1

2

∫
∂Ω

β(x)|u|2 dσ −
∫

Ω

f(x)u dx

≥
(

1

2
−
‖V −‖N/2

2S

)
‖u‖2E − ‖f‖2‖u‖E .

We set

ρ =
2‖f‖2(

1

2
−
‖V −‖N/2

2S

)
Then, by (3.4), we derive that

J(u) ≥
(

1

4
−
‖V −‖N/2

4S

)
= γ.

This proves (3.3) if p = 2. The case p > 2 works in the same way by using (3.2)

instead of (3.1).

Now let ϕ ∈ C∞0 (Ω) be such that supp (ϕ) ⊂ B(x0, R0). This yields, for t

sufficiently small enough,

J(tϕ) =
tp

p

∫
Ω

|∇ϕ|p dx+
tp

p

∫
Ω

V (x)|ϕ|p dx+
tp

p

∫
∂Ω

β(x)|ϕ|p dσ(3.5)

− tq+1

q + 1

∫
Ω

a(x)|ϕ|q+1 dx− t
∫

Ω

f(x)ϕdx

= t

(
tp−1

p

∫
Ω

|∇ϕ|p dx+
tp−1

p

∫
Ω

V (x)|ϕ|p dx
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+
tp−1

p

∫
∂Ω

β(x)|ϕ|p dσ − tq

q + 1

∫
Ω

a(x)|ϕ|q+1 dx

−
∫

Ω

f(x)ϕdx

)
< 0.

since q < p− 1. Combining (3.3) and (3.5), we obtain the desired conclusion. �

Proof of Theorem 1.3. Next, we consider the minimization problem

c = inf
u∈B0(ρ)

J(u).

It is clear that −∞ < c < 0. Then by Theorem 2.2 as well as Lemmas 3.2 and 3.3,

there exists u0 ∈ E such that u0 is a nontrivial weak solution of problem (1.2).�

In the next step we are going to prove that every nontrivial weak solution of

problem (1.2) belongs to L∞(Ω).

Lemma 3.4. Suppose that the hypotheses of Theorem 1.3 are fulfilled. Moreover,

assume that H(V ) holds. Then, for every weak solution u of problem (1.2), we

have

−M = −‖f‖∞ ≤ u(x) ≤ ‖f‖∞ = M for all x ∈ Ω.

Proof. Let u ∈ E be a solution of problem (1.2). This leads to

(3.6)

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

V (x)uv dx

+

∫
∂Ω

β(x)|u|p−2uv dσ −
∫

Ω

a(x)|u|q−1uv dx ≤
∫

Ω

‖f‖∞|v| dx

for all v ∈ E. Choosing v = (u− ‖f‖∞)
+ ∈ E in (3.6) gives∫

Ω

|∇u|p−2∇u · ∇ (u− ‖f‖∞)
+
dx+

∫
Ω

V (x)u (u− ‖f‖∞)
+
dx

+

∫
∂Ω

β(x)|u|p−2u (u− ‖f‖∞)
+
dσ −

∫
Ω

a(x)|u|q−1u (u− ‖f‖∞)
+
dx

≤
∫

Ω

‖f‖∞ (u− ‖f‖∞)
+
dx

Hence, by H(a) and H(V ), we obtain∫
Ω

|∇u|p−2∇u · ∇ (u− ‖f‖∞)
+
dx+

∫
Ω

(u− ‖f‖∞) (u− ‖f‖∞)
+
dx

+

∫
∂Ω

β(x)|u|p−2u (u− ‖f‖∞)
+
dσ ≤ 0.

From this we conclude that

‖∇(u− ‖f‖∞)+‖pp + ‖(u− ‖f‖∞)+‖22 +

∫
∂Ω

β(x)|u|p−2u (u− ‖f‖∞)
+
dσ ≤ 0,

which implies that u(x) ≤ ‖f‖∞ for all x ∈ Ω. Similarly, choosing v =

(−‖f‖∞ − u)
+ ∈ E, we obtain −‖f‖∞ ≤ u. �
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4. Proof of the main result

In this section we are going to prove Theorem 1.1.

Definition 4.1. We call u ∈ E a weak solution of problem (1.1) if∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

V (x)uv dx+

∫
∂Ω

β(x)|u|p−2uv dσ

=

∫
Ω

a(x)|u|q−1uv dx+ λ

∫
Ω

g(x, u)v dx+

∫
Ω

f(x)v dx

is satisfied for all v ∈ E.

The corresponding energy functional Jλ : E → R of (1.1) is given by

Jλ(u) =
1

p

∫
Ω

|∇u|p dx+
1

2

∫
Ω

V (x)|u|2 dx+
1

p

∫
∂Ω

β(x)|u|p dσ

− 1

q + 1

∫
Ω

a(x)|u|q+1 dx− λ
∫

Ω

G(x, u) dx−
∫

Ω

f(x)u dx,

where

G(x, s) =

∫ s

0

g(x, t) dt.

Now, we choose a function h ∈ D(Ω,R) such that 0 ≤ h ≤ 1 in Ω, h(x) = 1

for |x| ≤ 2‖f‖∞ and h(x) = 0 for |x| ≥ 4‖f‖∞, where D(Ω,R) is the space of all

smooth functions with compact support. Then the function

G(x, u) := h(x)G(x, u(x)) = h(x)

∫ u(x)

0

g(x, s) ds

is of class C1 in Ω × R. Hence, by H(g), we see that G(x, u) and Gu(x, u) are

bounded on Ω× R.

Next, we define Ĵλ : E → R by

Ĵλ(u) =
1

p

∫
Ω

|∇u|p dx+
1

2

∫
Ω

V (x)u2 dx+
1

p

∫
∂Ω

β(x)up dσ

− 1

q + 1

∫
Ω

a(x)|u|q+1 dx− λ
∫

Ω

h(u(x))G(x, u(x)) dx−
∫

Ω

f(x)u dx.

It is easy to see that a critical point of Ĵλ is a solution of the problem−∆pu+ V (x)u = a(x)|u|q−1u+H(x, u) + f(x) in Ω,

|∇u|p−2∇u · ν + β(x)|u|p−2u = 0 on ∂Ω,

with H(x, u) = λh(u)Gu(x, u) + λh′(u)G(x, u).

Consider the following minimization problem

cλ = inf
u∈B0(ρ)

Ĵλ(u),

where ρ is as defined in the proof of Lemma 3.3. Our idea is the following: First,

we find an Ekeland solution vλ of Ĵλ. Then, we prove that ‖vλ‖∞ ≤ 2M for |λ|
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small enough. Then h′(vλ) = 0, h(vλ) = 1 and therefore vλ becomes a solution

of (1.1).

Lemma 4.2. Under assumptions of Theorem 1.1, for each λ ∈ R, Ĵλ satisfies the

PS-condition.

Proof. Applying the hypotheses H(a), H(β), H(f), H(g) and H(V ) and the fact

that G(x, u) and Gu(x, u) are bounded on Ω×R, the proof is similar to that one

of Lemma 3.2. �

Lemma 4.3. Suppose that the assumptions of Theorem 1.1 are satisfied. Then

there exists λ0>0 such that Ĵλ has the Ekeland geometry property when |λ|≤|λ0|.

Proof. Due to the boundedness of G(x, u), we get

(4.1) J(u)− Cλ ≤ Ĵλ(u) ≤ J(u) + Cλ for all u ∈ E,

where C > 0 is independent of λ and u. Let B0(ρ) be as in the proof of

Lemma 3.3. Applying (4.1) for |λ| small enough yields

−∞ < inf
u∈B0(ρ)

Ĵλ(u) < 0 and 0 < inf
u∈∂B0(ρ)

J(u)− Cλ < inf
u∈∂B0(ρ)

Ĵλ(u).

This completes the proof. �

Lemma 4.4. Under conditions H(a), H(β), H(f), H(g) and H(V ), let λn ∈ R be

a sequence converging to zero and let un be an Ekeland solution of Ĵλn
. Then,

up to a subsequence, (un)n∈N converges to an Ekeland solution v ∈ E of J .

Proof. Using again (4.1), we have

J(u)− Cλn ≤ Ĵλn
(u) ≤ J(u) + Cλn for all u ∈ E,

and so

inf
u∈B0(ρ)

J(u)− Cλn ≤ inf
u∈B0(ρ)

Ĵλn
(u) ≤ inf

u∈B0(ρ)
J(u) + Cλn for all u ∈ E.

Therefore

(4.2) cλn
→ c as n→ +∞.

Invoking condition H(g) and using the fact that G(x, u) and (G)u(x, u) are

bounded on Ω×R as well as λn → 0, we deduce that (un)n∈N is a (PS)-sequence

of J . So, by Lemma 3.2, un → v in E. This fact along with (4.2) yield

J(v) = c and J ′(v) = 0. �

Lemma 4.5. Assume that H(a), H(β), H(f), H(g) and H(V ) hold. Let λn ∈ R
be a sequence converging to zero and let un be an Ekeland solution of Ĵλn . Then,

up to a subsequence, un converges to u in L∞(Ω), where u is an Ekeland solution

of J .
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Proof. Since N < p we know that E is continuously embedded into L∞(Ω).

It follows, because of Lemma 4.4, up to a subsequence, that un → u in L∞(Ω).

This shows the assertion. �

Lemma 4.6. Under the same assumptions of Theorem 1.1, there is a positive

constant λ0 such that any Ekeland solution v ∈ E of Ĵλ with |λ| ≤ λ0 satisfies

‖v‖∞ ≤ 2M.

Proof. We argue by contradiction and suppose there exist λn ∈ R, un ∈ E such

that λn → 0, un is an Ekeland solution of Ĵλn
and ‖un‖∞ > 2M . By Lemma

4.5, (un)n∈N converges to an Ekeland solution w ∈ L∞(Ω) of J . Using Lemma

3.4, it follows that ‖w‖∞ < M . Then, by Lemma 4.5, ‖un‖∞ < 2M for n large

enough which is a contradiction. �

Proof of Theorem 1.1 concluded. We choose λ0 > 0 which satisfies Lem-

mas 4.3 and 4.6. Then, by Lemmas 4.2, 4.3 and Theorem 2.2, there exists uλ ∈ E
such that uλ is a critical point of Ĵλ and cλ = Ĵλ(uλ) with |λ| < |λ0|. From

Lemma 4.6, we have ‖uλ‖∞ < 2M. Thus, h′(uλ) = 0 and h(uλ) = 1. Therefore,

uλ is a nontrivial weak solution of problem (1.1). �
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[3] A. Bahrouni, H. Ounaies and V.D. Rădulescu, Bound state solutions of sublinear

Schrödinger equations with lack of compactness, Rev. R. Acad. Cienc. Exactas F́ıs. Nat.

Ser. A Mat. RACSAM 113 (2019), no. 2, 1191–1210.
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