Sign changing solutions for critical double phase problems with variable exponent

Nikolaos S. Papageorgiou, Francesca Vetro, and Patrick Winkert

Abstract

In this paper, we deal with a double phase problem with variable exponent and a righthand side consisting of a Carathéodory perturbation defined only locally and of a critical term. We stress that the presence of the critical term inhibits the possibility to apply results of the critical point theory to the corresponding energy functional. Instead, we use suitable cut-off functions and truncation techniques in order to work with a coercive functional. Then, using variational tools and an appropriate auxiliary coercive problem, we can produce a sequence of sign changing solutions to our main problem converging to 0 in L^{∞} and in the Musielak-Orlicz Sobolev space.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}(N \geq 2)$ be a bounded domain with Lipschitz boundary $\partial \Omega$. In this paper, we study the following critical double phase Dirichlet problem:

$$
\begin{align*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q(x)-2} \nabla u\right) & =f(x, u)+|u|^{p^{*}-2} u & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega,
\end{align*}
$$

where the exponents and the weight function satisfy the following condition:
(H1) $q \in C(\bar{\Omega})$ is such that $1<p<N, p<q(x)<p^{*}:=\frac{N p}{N-p}$ for all $x \in \bar{\Omega}$ and $0 \leq \mu(\cdot) \in L^{\infty}(\Omega)$.
For $r \in C(\bar{\Omega})$, we put

$$
r^{-}=\min _{x \in \bar{\Omega}} r(x) \quad \text { and } \quad r^{+}=\max _{x \in \bar{\Omega}} r(x)
$$

Then we assume the following hypotheses on $f(\cdot, \cdot)$:
(H2) $f: \Omega \times\left[-\eta_{0}, \eta_{0}\right] \rightarrow \mathbb{R}$ is a Carathéodory function for $\eta_{0}>0$ with $f(x, 0)=0$, $f(x, \cdot)$ is odd for a.a. $x \in \Omega$ and
(i) there exists $a_{0} \in L^{\infty}(\Omega)$ such that

$$
|f(x, s)| \leq a_{0}(x) \quad \text { for a.a. } x \in \Omega \text { and for all }|s| \leq \eta_{0}
$$

[^0](ii) there exists $\tau \in\left(1, \min \left\{p, \frac{p^{2}}{N-p}+1\right\}\right)$ such that
$$
\lim _{s \rightarrow 0} \frac{f(x, s)}{|S|^{\tau-2} s}=0 \quad \text { uniformly for a.a. } x \in \Omega ;
$$
(iii)
$$
\lim _{s \rightarrow 0} \frac{f(x, s)}{|s|^{p-2} s}=+\infty \quad \text { uniformly for a.a. } x \in \Omega
$$

Remark 1.1. Note that f is defined only locally. Therefore, according to

$$
\lim _{s \rightarrow 0} \frac{f(x, s)}{|s|^{p-2} s}=+\infty \quad \text { uniformly for a.a. } x \in \Omega
$$

we can suppose, without any loss of generality, that

$$
\frac{f(x, s)}{|s|^{p-2} s}>0 \quad \text { for a.a. } x \in \Omega \text { and all }|s| \leq \eta_{0}
$$

which implies

$$
f(x, s)>0 \quad \text { for all } 0<s \leq \eta_{0} \quad \text { and } \quad f(x, s)<0 \quad \text { for all }-\eta_{0} \leq s<0 .
$$

We call a function $u \in W_{0}^{1, \mathscr{H}}(\Omega)$ a weak solution of problem (1.1) if

$$
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q(x)-2} \nabla u\right) \cdot \nabla h \mathrm{~d} x=\int_{\Omega}\left(f(x, u)+|u|^{p^{*}-2} u\right) h \mathrm{~d} x
$$

is satisfied for all $h \in W_{0}^{1, \mathscr{H}}(\Omega)$.
Our main result reads as follows.
Theorem 1.2. Let hypotheses $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$ be satisfied. Then problem (1.1) has a sequence $\left\{w_{n}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \mathscr{H}}(\Omega) \cap L^{\infty}(\Omega)$ of sign-changing solutions such that $\left\|w_{n}\right\| \rightarrow 0$ and $\left\|w_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$.

In the right-hand side of (1.1), we have the combined effects of a Carathéodory perturbation $f(x, \cdot)$ which is defined only locally and of a critical term $u \rightarrow|u|^{p^{*}-2} u$, where $p^{*}:=\frac{N p}{N-p}$ is the critical exponent corresponding to p. We note that the presence of the critical term inhibits the possibility to apply results of the critical point theory to the corresponding energy functional. Consequently, here we introduce suitable cut-off functions and truncation techniques to deal with a coercive functional so that we can act by using variational tools. Thus, we work on an auxiliary coercive problem and we show the existence of extremal constant sign solutions for such a problem (see Section 3). Then we apply these extremal solutions and a generalized version of the symmetric mountain pass theorem due to Kajikiya [18, Theorem 1] in order to produce a sequence of sign changing solutions for problem (1.1). In this way, we extend the results of Liu-Papageorgiou [24] to the double phase operator with one variable exponent, and we were able to skip condition H_{1} (iii) in [24].

Recall that functionals of type

$$
\omega \mapsto \int_{\Omega}\left(|\nabla \omega|^{p}+\mu(x)|\nabla \omega|^{q}\right) \mathrm{d} x, \quad 1<p<q<N
$$

were first considered by Zhikov [36] in order to describe strongly anisotropic materials in the context of homogenization and elasticity; we refer also to applications in the study of duality theory and of the Lavrentiev gap phenomenon; see Zhikov [37, 38]. A first mathematical framework for such type of functionals has been done by Baroni-ColomboMingione [4]; see also the related works by the same authors in [5, 6] and of De FilippisMingione [10] about nonautonomous integrals.

Even though double phase differential operators and corresponding energy functionals appear in several physical applications, there are only few results involving the variable exponent double phase operator. We refer to the recent results of Aberqi-Bennouna-Benslimane-Ragusa [1] for existence results in complete manifolds, Albalawi-AlharthiVetro [2] for convection problems with $(p(\cdot), q(\cdot))$-Laplace type problems, Bahrouni-Rădulescu-Winkert [3] for double phase problems of Baouendi-Grushin type operator, Crespo-Blanco-Gasiński-Harjulehto-Winkert [8] for double phase convection problems, Kim-Kim-Oh-Zeng [19] for concave-convex-type double phase problems, LeonardiPapageorgiou [21] for concave-convex problems, Vetro-Winkert [33] for parametric problems involving superlinear nonlinearities and Zeng-Rădulescu-Winkert [35] for multivalued problems; see also the references therein. In order to enlarge the literature on the topic, we refer to the papers of Colasuonno-Squassina [7] for eigenvalue problems of double phase type, Farkas-Winkert [12] for Finsler double phase problems, GasińskiPapageorgiou [13] for locally Lipschitz right-hand sides, Gasiński-Winkert [14, 15] for convection problems and constant sign-solutions, Liu-Dai [23] for a Nehari manifold approach, Papageorgiou-Vetro [27] for superlinear problems, Papageorgiou-Vetro-Vetro [28] for parametric Robin problems, Perera-Squassina [30] for a Morse theoretical approach, Vetro-Winkert [32] for parametric convective problems, Zeng-Bai-GasińskiWinkert [34] for implicit obstacle problems with multivalued operators.

2. Preliminaries

In this section, we recall the main properties of the Musielak-Orlicz Sobolev spaces and tools which we will need later. To this end, let $M(\Omega)$ be the set of all measurable functions $u: \Omega \rightarrow \mathbb{R}$. For a given $r \in C(\bar{\Omega})$ with $r(x)>1$ for all $x \in \bar{\Omega}$, we denote by $L^{r(\cdot)}(\Omega)$ the usual variable exponent Lebesgue space defined by

$$
L^{r(\cdot)}(\Omega)=\left\{u \in M(\Omega): \varrho_{r}(u):=\int_{\Omega}|u|^{r(x)} \mathrm{d} x<+\infty\right\}
$$

and equip it with the Luxemburg norm

$$
\|u\|_{r(\cdot)}=\inf \left\{\beta>0: \varrho_{r}\left(\frac{u}{\beta}\right) \leq 1\right\}
$$

Similarly, we can define the corresponding Sobolev spaces $W^{1, r(\cdot)}(\Omega)$ and $W_{0}^{1, r(\cdot)}(\Omega)$ endowed with the norms $\|\cdot\|_{1, r(\cdot)}$ and $\|\nabla \cdot\|_{r(\cdot)}$, respectively; see Diening-Harjulehto-Hästö-Růžička [11] or Harjulehto-Hästö [16].

Now, under assumption (H1), we introduce the nonlinear function $\mathscr{H}: \Omega \times[0,+\infty) \rightarrow$ $[0,+\infty)$ defined by

$$
\mathscr{H}(x, t)=t^{p}+\mu(x) t^{q(x)} \quad \text { for all } x \in \Omega \text { and for all } t \geq 0 .
$$

Then we can introduce the Musielak-Orlicz space $L^{\mathscr{H}}(\Omega)$ by

$$
L^{\mathscr{H}}(\Omega)=\left\{u \in M(\Omega): \rho_{\mathscr{H}}(u)<+\infty\right\}
$$

equipped with the Luxemburg norm

$$
\|u\|_{\mathscr{H}}:=\inf \left\{\beta>0: \rho_{\mathcal{H}}\left(\frac{u}{\beta}\right) \leq 1\right\}
$$

where the modular $\rho_{\mathscr{H}}(\cdot)$ is given by

$$
\rho_{\mathscr{H}}(u)=\int_{\Omega} \mathscr{H}(x,|u|) \mathrm{d} x=\int_{\Omega}\left(|u|^{p}+\mu(x)|u|^{q(x)}\right) \mathrm{d} x .
$$

Using the Musielak-Orlicz space, we define the corresponding Musielak-Orlicz Sobolev space $W^{1, \mathscr{H}}(\Omega)$ by

$$
W^{1, \mathscr{H}}(\Omega)=\left\{u \in L^{\mathscr{H}}(\Omega):|\nabla u| \in L^{\mathscr{H}}(\Omega)\right\}
$$

and endow it with the norm

$$
\|u\|_{1, \mathscr{H}}:=\|\nabla u\|_{\mathscr{H}}+\|u\|_{\mathscr{H}}
$$

where $\|\nabla u\|_{\mathscr{H}}:=\||\nabla u|\|_{\mathscr{H}}$. Furthermore, we denote by $W_{0}^{1, \mathscr{H}}(\Omega)$ the completion of $C_{0}^{\infty}(\Omega)$ in $W^{1, \mathscr{H}}(\Omega)$. We point out that the norm $\|\cdot\|_{\mathscr{H}}$ defined on $L^{\mathscr{H}}(\Omega)$ is uniformly convex and hence the spaces $L^{\mathscr{H}}(\Omega), W^{1, \mathscr{H}}(\Omega)$ and $W_{0}^{1, \mathscr{H}}(\Omega)$ are reflexive Banach spaces; see Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.12]. In addition, based on [8, Proposition 2.18], we can equip the space $W_{0}^{1, H}(\Omega)$ with the equivalent norm

$$
\|u\|:=\|\nabla u\|_{\mathscr{H}} \quad \text { for all } u \in W_{0}^{1, \mathscr{H}}(\Omega)
$$

The next proposition gives some important embedding results for the space $W_{0}^{1, \mathscr{H}}(\Omega)$; see Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.16].

Proposition 2.1. Let hypothesis (H1) be satisfied. Then the following hold:
(i) $W_{0}^{1, \mathscr{H}}(\Omega) \hookrightarrow W_{0}^{1, r(\cdot)}(\Omega)$ is continuous for all $r \in C(\bar{\Omega})$ with $1 \leq r(x) \leq p$ for all $x \in \bar{\Omega}$;
(ii) $W_{0}^{1, \mathscr{H}}(\Omega) \hookrightarrow L^{r(\cdot)}(\Omega)$ is compact for all $r \in C(\bar{\Omega})$ with $1 \leq r(x)<p^{*}$ for all $x \in \bar{\Omega}$.

Now, we point out the relation between the modular $\rho_{\mathscr{H}}$ and the norm $\|\cdot\|_{\mathscr{H}}$; see Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.13].

Proposition 2.2. Let hypothesis (H1) be satisfied. Then the following hold:
(i) $\|u\|_{\mathscr{H}}<1\left(\right.$ resp. $\left.\|u\|_{\mathscr{H}}>1,\|u\|_{\mathscr{H}}=1\right)$ if and only if $\rho_{\mathcal{H}}(u)<1\left(\right.$ resp. $\rho_{\mathcal{H}}(u)>1$, $\left.\rho_{\mathcal{H}}(u)=1\right)$;
(ii) if $\|u\|_{\mathscr{H}}<1$ then $\|u\|_{\mathscr{H}}^{q^{+}} \leq \rho_{\mathcal{H}}(u) \leq\|u\|_{\mathscr{H}}^{p}$;
(iii) if $\|u\|_{\mathscr{H}}>1$ then $\|u\|_{\mathscr{H}}^{p} \leq \rho_{\mathscr{H}}(u) \leq\|u\|_{\mathscr{H}}^{q^{+}}$;
(iv) $\|u\|_{\mathscr{H}} \rightarrow 0$ if and only if $\rho_{\mathscr{H}}(u) \rightarrow 0$;
(v) $\|u\|_{\mathscr{H}} \rightarrow+\infty$ if and only if $\rho_{\mathscr{H}}(u) \rightarrow+\infty$.

Let $A: W_{0}^{1, \mathscr{H}}(\Omega) \rightarrow W_{0}^{1, \mathscr{H}}(\Omega)^{*}$ be the nonlinear operator defined by

$$
\langle A(u), v\rangle_{\mathscr{H}}=\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q(x)-2} \nabla u\right) \cdot \nabla v \mathrm{~d} x
$$

for all $u, v \in W_{0}^{1, \mathscr{H}}(\Omega)$ with $\langle\cdot, \cdot\rangle_{\mathscr{H}}$ being the duality pairing between $W_{0}^{1, \mathscr{H}}(\Omega)$ and its dual space $W_{0}^{1, \mathscr{H}}(\Omega)^{*}$. The properties of the operator $A: W_{0}^{1, \mathscr{H}}(\Omega) \rightarrow W_{0}^{1, \mathscr{H}}(\Omega)^{*}$ are summarized in the next proposition; see Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Theorem 3.3].

Proposition 2.3. Let hypothesis (H1) be satisfied. Then the operator A is bounded (that is, it maps bounded sets into bounded sets), continuous, strictly monotone (hence maximal monotone), of type $\left(\mathrm{S}_{+}\right)$, coercive and a homeomorphism.

As usual, we denote by $C_{0}^{1}(\bar{\Omega})$ the ordered Banach space

$$
C_{0}^{1}(\bar{\Omega})=\left\{u \in C^{1}(\bar{\Omega}):\left.u\right|_{\partial \Omega}=0\right\}
$$

with positive cone

$$
C_{0}^{1}(\bar{\Omega})_{+}=\left\{u \in C_{0}^{1}(\bar{\Omega}): u(x) \geq 0 \forall x \in \bar{\Omega}\right\} .
$$

This cone has a nonempty interior given by

$$
\operatorname{int}\left(C_{0}^{1}(\bar{\Omega})_{+}\right)=\left\{u \in C_{0}^{1}(\bar{\Omega}): u(x)>0 \forall x \in \Omega \text { and } \frac{\partial u}{\partial n}(x)<0 \forall x \in \partial \Omega\right\},
$$

where $n=n(x)$ is the outer unit normal at $x \in \partial \Omega$.
We complete this section with some known results on the spectrum of the r-Laplacian with $1<r<\infty$ and homogeneous Dirichlet boundary condition given by

$$
\begin{align*}
-\Delta_{r} u & =\lambda|u|^{r-2} u & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega . \tag{2.1}
\end{align*}
$$

We call a number $\lambda \in \mathbb{R}$ an eigenvalue of (2.1) if problem (2.1) has a nontrivial solution $u \in$ $W_{0}^{1, r}(\Omega)$. Such a solution is called an eigenfunction corresponding to the eigenvalue λ.

From Lê [20], we know that there exists a smallest eigenvalue $\lambda_{1, r}$ of (2.1) which is positive, isolated, simple and it can be variationally characterized through

$$
\begin{equation*}
\lambda_{1, r}=\inf \left\{\frac{\|\nabla u\|_{r}^{r}}{\|u\|_{r}^{r}}: u \in W_{0}^{1, r}(\Omega), u \neq 0\right\} . \tag{2.2}
\end{equation*}
$$

In what follows, we denote by $u_{1, r}$ the L^{r}-normalized (i.e., $\left\|u_{1, r}\right\|_{r}=1$) positive eigenfunction corresponding to $\lambda_{1, r}$. The nonlinear regularity theory and the nonlinear maximum principle imply that $u_{1, r} \in \operatorname{int}\left(C_{0}^{1}(\bar{\Omega})_{+}\right)$; see Lieberman [22] and Pucci-Serrin [31].

For any $s \in \mathbb{R}$, we put $s_{ \pm}=\max \{ \pm s, 0\}$, that means, $s=s_{+}-s_{-}$and $|s|=s_{+}+s_{-}$. Also, for any function $v: \Omega \rightarrow \mathbb{R}$, we put $v_{ \pm}(\cdot)=[v(\cdot)]_{ \pm}$.

Given a Banach space X and its dual space X^{*}, we say that a functional $\varphi \in C^{1}(X)$ satisfies the Palais-Smale condition (PS-condition for short) if every sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq$ X such that $\left\{\varphi\left(x_{n}\right)\right\}_{n \in \mathbb{N}} \subseteq \mathbb{R}$ is bounded and

$$
\varphi^{\prime}\left(x_{n}\right) \rightarrow 0 \quad \text { in } X^{*} \text { as } n \rightarrow \infty
$$

admits a strongly convergent subsequence. Moreover, we denote by K_{φ} the set of all critical points of φ, that is,

$$
K_{\varphi}=\left\{u \in X: \varphi^{\prime}(u)=0\right\}
$$

We also recall that a set $\delta \subseteq X$ is said to be downward directed if, for given $u_{1}, u_{2} \in S$,
 directed if, for given $v_{1}, v_{2} \in S$, we can find $v \in S$ such that $v_{1} \leq v$ and $v_{2} \leq v$.

3. An auxiliary problem

In this section, we consider an auxiliary problem in order to prove Theorem 1.2 in the next section. For this purpose, let $\theta \in C^{1}(\mathbb{R})$ be an even cut-off function satisfying the following conditions:

$$
\begin{equation*}
\operatorname{supp} \theta \subseteq\left[-\eta_{0}, \eta_{0}\right], \quad \theta_{\left[\left[\frac{-\eta_{0}}{2}, \frac{\eta_{0}}{2}\right]\right.} \equiv 1 \quad \text { and } \quad 0<\theta \leq 1 \quad \text { on }\left(-\eta_{0}, \eta_{0}\right) \tag{3.1}
\end{equation*}
$$

Taking θ into account, we define the Carathéodory function $k: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
k(x, s)=\theta(s)\left[f(x, s)+|s|^{p^{*}-2} s\right]+(1-\theta(s))|s|^{\tau-2} s \tag{3.2}
\end{equation*}
$$

for all (x, s) $\in \Omega \times \mathbb{R}$, where τ is given in (H2) (ii). Note that, from (3.1) and (H2) (ii), we get that

$$
\begin{equation*}
|k(x, s)| \leq c\left(1+|s|^{\tau-1}\right) \tag{3.3}
\end{equation*}
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$ with some $c>0$.
Next, we study the following auxiliary double phase Dirichlet problem

$$
\begin{align*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q(x)-2} \nabla u\right) & =k(x, u) & & \text { in } \Omega, \tag{3.4}\\
u & =0 & & \text { on } \partial \Omega .
\end{align*}
$$

Our aim is to show the existence of extremal constant sign solutions for problem (3.4). We are going to need these extremal solutions in order to produce sign changing solutions for problem (1.1).

Let S_{+}and S_{-}be the sets of positive and negative solutions of problem (3.4), respectively.

Proposition 3.1. Let hypotheses $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$ be satisfied. Then \mathcal{S}_{+}and \mathcal{S}_{-}are nonempty subsets in $W_{0}^{1, \mathscr{H}}(\Omega) \cap L^{\infty}(\Omega)$.

Proof. We start by proving that $S_{+} \neq \emptyset$ and denote by $\Phi_{+}: W_{0}^{1, \mathscr{H}}(\Omega) \rightarrow \mathbb{R}$ the $C^{1_{-}}$ functional defined by

$$
\Phi_{+}(u)=\int_{\Omega}\left[\frac{1}{p}|\nabla u|^{p}+\frac{\mu(x)}{q(x)}|\nabla u|^{q(x)}\right] \mathrm{d} x-\int_{\Omega} K\left(x, u_{+}\right) \mathrm{d} x
$$

for all $u \in W_{0}^{1, \mathscr{H}}(\Omega)$, where $K(x, s)=\int_{0}^{s} k(x, t) \mathrm{d} t$. First, we have

$$
\begin{aligned}
\Phi_{+}(u) & \geq \frac{1}{p} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\frac{1}{q^{+}} \int_{\Omega} \mu(x)|\nabla u|^{q(x)} \mathrm{d} x-\int_{\Omega} K\left(x, u_{+}\right) \mathrm{d} x \\
& \geq \frac{1}{q^{+}} \rho_{\mathscr{H}}(|\nabla u|)-\int_{\Omega} K\left(x, u_{+}\right) \mathrm{d} x
\end{aligned}
$$

Combining this and (3.3) along with $\tau<p$ (see (H2) (ii)) and Proposition 2.2 (iii), it is clear that Φ_{+}is coercive. In addition, thanks to the compactness of the embedding $W_{0}^{1, \mathscr{H}}(\Omega) \hookrightarrow L^{r(\cdot)}(\Omega)$ for any $r \in C(\bar{\Omega})$ with $1 \leq r(x)<p^{*}$ for all $x \in \bar{\Omega}$ (see Proposition 2.1 (ii)), we conclude that the functional Φ_{+}is sequentially weakly lower semicontinuous. Then there exists $u_{0} \in W_{0}^{1, \mathscr{H}}(\Omega)$ such that

$$
\Phi_{+}\left(u_{0}\right)=\inf \left[\Phi_{+}(u): u \in W_{0}^{1, \mathscr{H}}(\Omega)\right] .
$$

Let us prove that u_{0} is nontrivial. From hypothesis (H2) (iii), we can find for each $\eta>0$ a number $\delta \in\left(0, \min \left\{\frac{\eta_{0}}{2}, 1\right\}\right)$ such that

$$
\begin{equation*}
F(x, s)=\int_{0}^{s} f(x, t) \mathrm{d} t \geq \frac{\eta}{p}|s|^{p} \quad \text { for all }|s| \leq \delta \tag{3.5}
\end{equation*}
$$

Further, we can take $t \in(0,1)$ small enough so that $t u_{1, p}(x) \in(0, \delta]$ for all $x \in \bar{\Omega}$, where $u_{1, p} \in \operatorname{int}\left(C_{0}^{1}(\bar{\Omega})_{+}\right)$is the L^{p}-normalized positive eigenfunction corresponding to $\lambda_{1, p}$ (see Section 2). Thus, we have, using (2.2),

$$
\begin{align*}
\Phi_{+}\left(t u_{1, p}\right) & =\int_{\Omega}\left[\frac{1}{p}\left|\nabla\left(t u_{1, p}\right)\right|^{p}+\frac{\mu(x)}{q(x)}\left|\nabla\left(t u_{1, p}\right)\right|^{q(x)}\right] \mathrm{d} x-\int_{\Omega} K\left(x, t u_{1, p}\right) \mathrm{d} x \\
& \leq \frac{t^{p}}{p} \int_{\Omega}\left|\nabla u_{1, p}\right|^{p} \mathrm{~d} x+\frac{t^{q^{-}}}{q^{-}} \int_{\Omega} \mu(x)\left|\nabla u_{1, p}\right|^{q(x)} \mathrm{d} x-\int_{\Omega} K\left(x, t u_{1, p}\right) \mathrm{d} x \\
& =\frac{t^{p}}{p} \lambda_{1, p}+\frac{t^{q^{-}}}{q^{-}} \int_{\Omega} \mu(x)\left|\nabla u_{1, p}\right|^{q(x)} \mathrm{d} x-\int_{\Omega} K\left(x, t u_{1, p}\right) \mathrm{d} x . \tag{3.6}
\end{align*}
$$

Since $t u_{1, q} \in(0, \delta]$ and $\delta \in\left(0, \min \left\{\frac{\eta_{0}}{2}, 1\right\}\right)$ from (3.1), we deduce that

$$
\begin{equation*}
k\left(x, t u_{1, p}\right)=f\left(x, t u_{1, p}\right)+\left(t u_{1, p}\right)^{p^{*}-2} t u_{1, p} \geq f\left(x, t u_{1, p}\right) \tag{3.7}
\end{equation*}
$$

Then, using (3.5) and (3.7) in (3.6), we obtain

$$
\begin{aligned}
\Phi_{+}\left(t u_{1, p}\right) & \leq \frac{t^{p}}{p} \lambda_{1, p}+\frac{t^{q^{-}}}{q^{-}} \int_{\Omega} \mu(x)\left|\nabla u_{1, p}\right|^{q(x)} \mathrm{d} x-\frac{t^{p}}{p} \eta \\
& =\frac{t^{p}}{p}\left(\lambda_{1, p}-\eta\right)+\frac{t^{q^{-}}}{q^{-}} \int_{\Omega} \mu(x)\left|\nabla u_{1, p}\right|^{q(x)} \mathrm{d} x .
\end{aligned}
$$

If we choose $\eta>\lambda_{1, p}$, then $\lambda_{1, p}-\eta<0$, and thus, for $t>0$ sufficiently small, we have

$$
\frac{t^{p}}{p}\left(\lambda_{1, p}-\eta\right)+\frac{t^{q^{-}}}{q^{-}} \int_{\Omega} \mu(x)\left|\nabla u_{1, p}\right|^{q(x)} \mathrm{d} x<0
$$

since $p<q^{-}$. Hence, we have $\Phi_{+}\left(t u_{1, p}\right)<0=\Phi_{+}(0)$ for $t \in(0,1)$ sufficiently small, which implies that $u_{0} \neq 0$.

Recall that u_{0} is a global minimizer of Φ_{+}. Hence, $\Phi_{+}^{\prime}\left(u_{0}\right)=0$, that is,

$$
\begin{align*}
\int_{\Omega} & \left(\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}+\mu(x)\left|\nabla u_{0}\right|^{q(x)-2} \nabla u_{0}\right) \cdot \nabla h \mathrm{~d} x \\
& =\int_{\Omega} k\left(x,\left(u_{0}\right)_{+}\right) h \mathrm{~d} x \tag{3.8}
\end{align*}
$$

for all $h \in W_{0}^{1, \mathscr{H}}(\Omega)$. Note that $\pm u_{ \pm} \in W_{0}^{1, \mathscr{H}}(\Omega)$ for any $u \in W_{0}^{1, \mathscr{H}}(\Omega)$; see Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.17]. So, if we choose $h=-\left(u_{0}\right)_{-}$ in (3.8), then we obtain that $\left(u_{0}\right)_{-}=0$. This gives $u_{0} \geq 0$. Taking into account that $u_{0} \neq 0$, we conclude that u_{0} is a nontrivial positive weak solution of problem (3.4). Hence, it follows that $S_{+} \neq \emptyset$. From Crespo-Blanco-Winkert [9, Theorem 3.1], we know that $u_{0} \in$ $W_{0}^{1, \mathscr{H}}(\Omega) \cap L^{\infty}(\Omega)$.

In a similar way, we get the existence of a nontrivial negative weak solution of problem (3.4). In this case, we work with the C^{1}-functional $\Phi_{-}: W_{0}^{1, \mathscr{H}}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\Phi_{-}(u)=\int_{\Omega}\left[\frac{1}{p}|\nabla u|^{p}+\frac{\mu(x)}{q(x)}|\nabla u|^{q(x)}\right] \mathrm{d} x-\int_{\Omega} K\left(x,-u_{-}\right) \mathrm{d} x
$$

for all $u \in W_{0}^{1, \mathscr{H}}(\Omega)$ and show that it has a global minimizer which turns out to be nontrivial and nonpositive. Hence, it must be a nontrivial negative weak solution of problem (3.4).

Now, we are going to prove the existence of extremal solution of (3.4), that is, the existence of a smallest positive solution $u_{*} \in S_{+}$and the existence of a largest negative solution $v_{*} \in S_{-}$.

Proposition 3.2. Let hypotheses (H1) and (H2) be satisfied. Then there exists $u_{*} \in \Im_{+}$ such that $u_{*} \leq u$ for all $u \in S_{+}$and there exists $v_{*} \in S_{-}$such that $v_{*} \geq v$ for all $v \in S_{-}$.

Proof. We start by proving the existence of a smallest positive solution of (3.4). Similar to the proof of [25, Proposition 7] by Papageorgiou-Rădulescu-Repovš, we can show that ς_{+}is downward directed. Then, from Hu-Papageorgiou [17, Lemma 3.10, p. 178], we know that we can find a decreasing sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq S_{+}$such that

$$
\inf _{n \in \mathbb{N}} u_{n}=\inf S_{+}
$$

Also, since $u_{n} \in S_{+}$, we have

$$
\begin{equation*}
\int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}+\mu(x)\left|\nabla u_{n}\right|^{q(x)-2} \nabla u_{n}\right) \cdot \nabla h \mathrm{~d} x=\int_{\Omega} k\left(x, u_{n}\right) h \mathrm{~d} x \tag{3.9}
\end{equation*}
$$

for all $h \in W_{0}^{1, \mathscr{H}}(\Omega)$ and for all $n \in \mathbb{N}$. If we take $h=u_{n}$ in (3.9), using (3.3) and $0 \leq u_{n} \leq u_{1}$, we get that

$$
\rho_{\mathcal{H}}\left(\nabla u_{n}\right)=\int_{\Omega}\left|\nabla u_{n}\right|^{p} \mathrm{~d} x+\int_{\Omega} \mu(x)\left|\nabla u_{n}\right|^{q(x)} \mathrm{d} x<c_{1}
$$

for some $c_{1}>0$ and for all $n \in \mathbb{N}$. From this and Proposition 2.2, we deduce that

$$
\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \mathscr{H}}(\Omega)
$$

is bounded. Moreover, due to hypothesis (H2), we have $\tau<\frac{p^{2}}{N-p}+1$, which implies that $\frac{N}{p}(\tau-1)<p^{*}$. Now, we choose $s>\frac{N}{p}$ such that $s(\tau-1)<p^{*}$. Then, taking into account that $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq W_{0}^{1, \mathscr{H}}(\Omega)$ is bounded, we can assume that

$$
u_{n} \rightharpoonup u_{*} \quad \text { in } W_{0}^{1, \mathscr{H}}(\Omega) \quad \text { and } \quad u_{n} \rightarrow u_{*} \quad \text { in } L^{s(\tau-1)}(\Omega)
$$

From (3.1), (3.2) and hypothesis (H2) (i), it follows that

$$
\begin{equation*}
|k(x, s)| \leq b_{1}|s|^{\tau-1} \tag{3.10}
\end{equation*}
$$

for a.a. $x \in \Omega$, for all $s \in \mathbb{R}$ and for some $b_{1}>0$. Then, from (3.9) and (3.10) along with a Moser-iteration type argument as it was explained by Colasuonno-Squassina [7, Section 3.2], we obtain, as $s>\frac{N}{p}$, that

$$
\left\|u_{n}\right\|_{\infty} \leq b_{2}\left\|u_{n}\right\|_{s(\tau-1)}^{\frac{\tau-1}{p-1}}
$$

for some $b_{2}>0$ and for all $n \in \mathbb{N}$.
Suppose now $u_{*}=0$; then $\left\|u_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow+\infty$. This implies the existence of $n_{0} \in \mathbb{N}$ such that

$$
0<u_{n}(x) \leq \delta
$$

for a.a. $x \in \Omega$ and for all $n \geq n_{0}$, where $\delta \in\left(0, \min \left\{\frac{\eta_{0}}{2}, 1\right\}\right)$. Hence, in view of (3.1) and (3.2), it follows that

$$
\begin{equation*}
k\left(x, u_{n}(x)\right)=f\left(x, u_{n}(x)\right)+u_{n}(x)^{p^{*}-1} \tag{3.11}
\end{equation*}
$$

for a.a. $x \in \Omega$ and for all $n \geq n_{0}$. Now, we put $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$ for all $n \in \mathbb{N}$; then $\left\|y_{n}\right\|=1$ and $y_{n} \geq 0$ for all $n \in \mathbb{N}$. We may assume that

$$
y_{n} \rightharpoonup y \quad \text { in } W_{0}^{1, \mathscr{H}}(\Omega) \quad \text { and } \quad y_{n} \rightarrow y \quad \text { in } L^{p}(\Omega)
$$

with $y \geq 0$. From (3.9) and (3.11), we get

$$
\begin{aligned}
& \int_{\Omega}\left(\left\|u_{n}\right\|^{p-1}\left|\nabla y_{n}\right|^{p-2} \nabla y_{n}+\mu(x)\left\|u_{n}\right\|^{q(x)-1}\left|\nabla y_{n}\right|^{q(x)-2} \nabla y_{n}\right) \cdot \nabla h \mathrm{~d} x \\
& \quad=\int_{\Omega}\left\|u_{n}\right\|^{p-1}\left[\frac{f\left(x, u_{n}\right)}{u_{n}^{p-1}}+u_{n}^{p^{*}-p}\right] y_{n}^{p-1} h \mathrm{~d} x
\end{aligned}
$$

for all $h \in W_{0}^{1, \mathscr{H}}(\Omega)$ and for all $n \geq n_{0}$, which can be equivalently written as

$$
\begin{align*}
& \int_{\Omega}\left|\nabla y_{n}\right|^{p-2} \nabla y_{n} \cdot \nabla h \mathrm{~d} x+\int_{\Omega}\left\|u_{n}\right\|^{q(x)-p}\left|\nabla y_{n}\right|^{q(x)-2} \nabla y_{n} \cdot \nabla h \mathrm{~d} x \\
&=\int_{\Omega}\left[\frac{f\left(x, u_{n}\right)}{u_{n}^{p-1}}+u_{n}^{p^{*}-p}\right] y_{n}^{p-1} h \mathrm{~d} x \tag{3.12}
\end{align*}
$$

for all $h \in W_{0}^{1, \mathscr{H}}(\Omega)$ and for all $n \geq n_{0}$. We point out that the left-hand side of (3.12) is bounded for all $h \in W_{0}^{1, \mathscr{H}}(\Omega)$. From this, using hypothesis (H2) (ii), we infer

$$
y=0 \quad \text { and } \quad \frac{f\left(x, u_{n}\right)}{u_{n}^{p-1}} y_{n}^{p-1} \rightarrow 0 \quad \text { for a.a. } x \in \Omega .
$$

In addition, if we take $h=y_{n}$ in (3.12) and pass to the limit as $n \rightarrow+\infty$, we obtain

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla y_{n}\right|^{p}=0
$$

This implies, at least for a susequence, that $\nabla y_{n}(x) \rightarrow 0$ for a.a. $x \in \Omega$, and hence we deduce that $\mathscr{H}\left(\nabla y_{n}\right) \rightarrow 0$ for a.a. $x \in \Omega$. Taking into account that $\left\{\mathscr{H}\left(\nabla y_{n}\right)\right\}_{n \in \mathbb{N}} \subset L^{1}(\Omega)$ is uniformly integrable by Vitali's convergence theorem, we get that

$$
\begin{equation*}
\rho_{\mathscr{H}}\left(\nabla y_{n}\right) \rightarrow 0 \quad \text { in } W_{0}^{1, \mathscr{H}}(\Omega) . \tag{3.13}
\end{equation*}
$$

Now, we recall that $\left\|y_{n}\right\|=1$, and this implies that $\rho_{\mathcal{H}}\left(\nabla y_{n}\right)=1$ for all $n \in \mathbb{N}$; see Proposition 2.2 (i). This gives a contradiction to (3.13). Therefore, $u_{*} \neq 0$, and so $u_{*} \in \Im_{+}$ with u_{*} being the smallest positive solution of (1.1) in S_{+}. Proceeding in a similar way, we can show that $v_{*} \in S_{-}$such that $v_{*}=\sup S_{-}$.

4. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2, that is, we prove the existence of a sequence of sign changing solutions for problem (1.1), which converges to 0 in $W_{0}^{1, \mathscr{H}}(\Omega)$ and in $L^{\infty}(\Omega)$. Our strategy is to use the extremal constant sign solutions u_{*} and v_{*}
obtained in Proposition 3.2 and focus on the order interval

$$
\left[v_{*}, u_{*}\right]:=\left\{u \in W_{0}^{1, \mathscr{H}}(\Omega): v_{*}(x) \leq u(x) \leq u_{*}(x) \text { for a.a. } x \in \Omega\right\} .
$$

For this purpose, we use truncations of $k(x, \cdot)$ at $v_{*}(x)$ and $u_{*}(x)$, that is, we consider the function $k_{*}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
k_{*}(x, s):= \begin{cases}k\left(x, v_{*}(x)\right) & \text { if } s<v_{*}(x) \\ k(x, s) & \text { if } v_{*}(x) \leq s \leq u_{*}(x) \\ k\left(x, u_{*}(x)\right) & \text { if } u_{*}(x)<s\end{cases}
$$

Then we introduce the C^{1}-functional $\Psi_{*}: W_{0}^{1, \mathscr{H}}(\Omega) \rightarrow \mathbb{R}$ by

$$
\Psi_{*}(u)=\int_{\Omega}\left[\frac{1}{p}|\nabla u|^{p}+\frac{\mu(x)}{q(x)}|\nabla u|^{q(x)}\right] \mathrm{d} x-\int_{\Omega} K_{*}(x, u) \mathrm{d} x
$$

for all $u \in W_{0}^{1, \mathscr{H}}(\Omega)$, where $K_{*}(x, s)=\int_{0}^{s} k_{*}(x, t) \mathrm{d} t$.
First, we point out that $K_{\Psi_{*}}=\left\{u \in W_{0}^{1, \mathscr{H}}(\Omega):\left(\Psi_{*}\right)^{\prime}(u)=0\right\}$ is contained in the order interval $\left[v_{*}, u_{*}\right]$. In fact, let $u \in K_{\Psi_{*}} \backslash\left\{u_{*}, v_{*}\right\}$; then we have

$$
\begin{align*}
& \int_{\Omega}\left(|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q(x)-2} \nabla u\right) \cdot \nabla h \mathrm{~d} x \\
& \quad=\int_{\Omega} k_{*}(x, u) h \mathrm{~d} x \quad \text { for all } h \in W_{0}^{1, \mathscr{H}}(\Omega) . \tag{4.1}
\end{align*}
$$

Taking the function test $h=\left(u-u_{*}\right)_{+}$in (4.1), we get

$$
\begin{aligned}
\int_{\Omega} & \left(|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q(x)-2} \nabla u\right) \cdot \nabla\left(u-u_{*}\right)_{+} \mathrm{d} x \\
& =\int_{\Omega} k_{*}(x, u)\left(u-u_{*}\right)_{+} \mathrm{d} x \\
& =\int_{\Omega} k\left(x, u_{*}\right)\left(u-u_{*}\right)_{+} \mathrm{d} x \\
& =\int_{\Omega}\left(\left|\nabla u_{*}\right|^{p-2} \nabla u_{*}+\mu(x)\left|\nabla u_{*}\right|^{q(x)-2} \nabla u_{*}\right) \cdot \nabla\left(u-u_{*}\right)_{+} \mathrm{d} x
\end{aligned}
$$

since $u_{*} \in \mathscr{S}_{+}$. This implies that

$$
\begin{aligned}
& \int_{\Omega}\left(|\nabla u|^{p-2} \nabla u-\left|\nabla u_{*}\right|^{p-2} \nabla u_{*}\right) \cdot \nabla\left(u-u_{*}\right)_{+} \mathrm{d} x \\
& \quad+\int_{\Omega} \mu(x)\left(|\nabla u|^{q(x)-2} \nabla u-\left|\nabla u_{*}\right|^{q(x)-2} \nabla u_{*}\right) \cdot \nabla\left(u-u_{*}\right)_{+} \mathrm{d} x=0 .
\end{aligned}
$$

Hence, we deduce that $u \leq u_{*}$. Similarly, if we choose the function test $h=\left(v_{*}-u\right)_{+}$ in (4.1), then we easily check that $v_{*} \leq u$.

Let $V \subseteq W_{0}^{1, \mathscr{H}}(\Omega) \cap L^{\infty}(\Omega)$ be a finite-dimensional subspace. Then we have the following result.

Proposition 4.1. Let hypotheses (H1) and (H2) be satisfied. Then we can find $r_{V}>0$ such that

$$
\sup \left[\Psi_{*}(v): v \in V,\|v\|=r_{V}\right]<0
$$

Proof. Since, V is finite-dimensional, all the norms on V are equivalent; see, for example, Papageorgiou-Winkert [29, Proposition 3.1.17, p. 183]. This allows us to find $r_{V}>0$ such that

$$
v \in V \text { and }\|v\| \leq r_{V} \text { imply }|v(x)| \leq \delta \text { for a.a. } x \in \Omega
$$

with $\delta \in\left(0, \min \left\{\frac{\eta_{0}}{2}, 1\right\}\right)$. In particular, we have $\delta<\frac{\eta_{0}}{2}$, which implies that $\theta(v(x))=1$ for a.a. $x \in \Omega$; see (3.1). Taking this into account, for $v \in V$ with $\|v\| \leq r_{V}$, we have

$$
k_{*}(x, v(x))= \begin{cases}f\left(x, v_{*}(x)\right)+\left|v_{*}(x)\right|^{p^{*}-2} v_{*}(x) & \text { if } v(x)<v_{*}(x) \\ f(x, v(x))+|v(x)|^{p^{*}-2} v(x) & \text { if } v_{*}(x) \leq v(x) \leq u_{*}(x) \\ f\left(x, u_{*}(x)\right)+\left|u_{*}(x)\right|^{p^{*}-2} u_{*}(x) & \text { if } u_{*}(x)<v(x)\end{cases}
$$

We denote by $f_{*}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ the function given by

$$
f_{*}(x, v(x))= \begin{cases}f\left(x, v_{*}(x)\right) & \text { if } v(x)<v_{*}(x) \\ f(x, v(x)) & \text { if } v_{*}(x) \leq v(x) \leq u_{*}(x) \\ f\left(x, u_{*}(x)\right) & \text { if } u_{*}(x)<v(x)\end{cases}
$$

and put $F_{*}(x, s):=\int_{0}^{s} f_{*}(x, t) \mathrm{d} t$. We point out that, for $v<v_{*}$, we have

$$
\begin{aligned}
F_{*}(x, v) & =\int_{0}^{v_{*}} f_{*}(x, s) \mathrm{d} s+\int_{v_{*}}^{v} f_{*}(x, s) \mathrm{d} s \\
& =\int_{0}^{v_{*}} f(x, s) \mathrm{d} s+\int_{v_{*}}^{v} f\left(x, v_{*}\right) \mathrm{d} s \\
& =F\left(x, v_{*}\right)+f\left(x, v_{*}\right)\left(v-v_{*}\right) .
\end{aligned}
$$

We recall that $f\left(x, v_{*}\right)$ is negative (see Remark 1.1); hence, $f\left(x, v_{*}\right)\left(v-v_{*}\right)>0$. Using this, we deduce

$$
\begin{aligned}
F(x, v)-F_{*}(x, v) & =F(x, v)-F\left(x, v_{*}\right)+f\left(x, v_{*}\right)\left(v_{*}-v\right) \\
& \leq F(x, v)-F\left(x, v_{*}\right)
\end{aligned}
$$

where $F(x, s):=\int_{0}^{s} f(x, t) \mathrm{d} t$. Similarly, for $u_{*}<v$, we have

$$
F_{*}(x, v)=F\left(x, u_{*}\right)+f\left(x, u_{*}\right)\left(v-u_{*}\right)
$$

which implies

$$
\begin{aligned}
F(x, v)-F_{*}(x, v) & =F(x, v)-F\left(x, u_{*}\right)+f\left(x, u_{*}\right)\left(u_{*}-v\right) \\
& \leq F(x, v)-F\left(x, u_{*}\right)
\end{aligned}
$$

since $f\left(x, u_{*}\right)\left(u_{*}-v\right)<0$; see Remark 1.1.

On account of this, we can write

$$
\begin{aligned}
\Psi_{*}(v)= & \int_{\Omega}\left[\frac{1}{p}|\nabla v|^{p}+\frac{\mu(x)}{q(x)}|\nabla v|^{q(x)}\right] \mathrm{d} x-\int_{\Omega} K_{*}(x, v) \mathrm{d} x \\
\leq \frac{1}{p} & \int_{\Omega}|\nabla v|^{p} \mathrm{~d} x+\frac{1}{q^{-}} \int_{\Omega} \mu(x)|\nabla v|^{q(x)} \mathrm{d} x \\
& -\int_{\left\{v<v_{*}\right\}}\left[F_{*}(x, v)+\frac{1}{p^{*}}\left|v_{*}\right|^{p^{*}}\right] \mathrm{d} x \\
& -\int_{\left\{v_{*} \leq v \leq u_{*}\right\}}\left[F(x, v)+\frac{1}{p^{*}}|v|^{p^{*}}\right] \mathrm{d} x \\
& -\int_{\left\{u_{*}<v\right\}}\left[F_{*}(x, v)+\frac{1}{p^{*}}\left|u_{*}\right|^{p^{*}}\right] \mathrm{d} x \\
\leq \frac{1}{p} & \int_{\Omega}|\nabla v|^{p} \mathrm{~d} x+\frac{1}{q^{-}} \int_{\Omega} \mu(x)|\nabla v|^{q(x)} \mathrm{d} x-\int_{\left\{v<v_{*}\right\}} F_{*}(x, v) \mathrm{d} x \\
& -\int_{\left\{v_{*} \leq v \leq u_{*}\right\}} F(x, v) \mathrm{d} x-\int_{\left\{u_{*}<v\right\}} F_{*}(x, v) \mathrm{d} x,
\end{aligned}
$$

where we used the abbreviations

$$
\begin{aligned}
\left\{v<v_{*}\right\} & :=\left\{x \in \Omega: v(x)<v_{*}(x)\right\}, \\
\left\{v_{*} \leq v \leq u_{*}\right\} & :=\left\{x \in \Omega: v_{*}(x) \leq v(x) \leq u_{*}(x)\right\}, \\
\left\{u_{*}<v\right\} & :=\left\{x \in \Omega: u_{*}(x)<v(x)\right\}
\end{aligned}
$$

and the fact that the terms

$$
\frac{1}{p^{*}}\left|v_{*}\right| p^{p^{*}},\left.\quad \frac{1}{p^{*}}|v|\right|^{p^{*}} \quad \text { and }\left.\quad \frac{1}{p^{*}}\left|u_{*}\right|\right|^{*}
$$

are positive. Furthermore, we have

$$
\begin{aligned}
& \Psi_{*}(v) \leq \frac{1}{p} \\
& \int_{\Omega}|\nabla v|^{p} \mathrm{~d} x+\frac{1}{q^{-}} \int_{\Omega} \mu(x)|\nabla v|^{q(x)} \mathrm{d} x-\int_{\Omega} F(x, v) \mathrm{d} x \\
&+\int_{\left\{v<v_{*}\right\}}\left[F(x, v)-F_{*}(x, v)\right] \mathrm{d} x+\int_{\left\{u_{*}<v\right\}}\left[F(x, v)-F_{*}(x, v)\right] \mathrm{d} x \\
& \leq \frac{1}{p} \\
& \int_{\Omega}|\nabla v|^{p} \mathrm{~d} x+\frac{1}{q^{-}} \int_{\Omega} \mu(x)|\nabla v|^{q(x)} \mathrm{d} x-\int_{\Omega} F(x, v) \mathrm{d} x \\
&+\int_{\left\{v<v_{*}\right\}}\left[F(x, v)-F\left(x, v_{*}\right)\right] \mathrm{d} x+\int_{\left\{u_{*}<v\right\}}\left[F(x, v)-F\left(x, u_{*}\right)\right] \mathrm{d} x .
\end{aligned}
$$

Now, as f is odd and thanks to hypothesis (H2) (iii), we know that, for each $\eta>0$, it is possible to find $\delta \in\left(0, \min \left\{\frac{\eta_{0}}{2}, 1\right\}\right)$ such that

$$
F(x, s) \geq \frac{\eta}{p}|s|^{p} \quad \text { for all }|s| \leq \delta
$$

Consequently, choosing r_{V} small enough so that

$$
\int_{\left\{v<v_{*}\right\}}\left[F(x, v)-F\left(x, v_{*}\right)\right] \mathrm{d} x+\int_{\left\{u_{*}<v\right\}}\left[F(x, v)-F\left(x, u_{*}\right)\right] \mathrm{d} x<\delta^{p}
$$

we then get

$$
\Psi_{*}(v) \leq \frac{1}{p} \int_{\Omega}|\nabla v|^{p} \mathrm{~d} x+\frac{1}{q^{-}} \int_{\Omega} \mu(x)|\nabla v|^{q(x)}-\frac{\eta}{p} \int_{\Omega}|v|^{p} \mathrm{~d} x+\delta^{p}
$$

Next, we remark that

$$
\int_{\Omega} \mu(x)|\nabla v|^{q(x)} \mathrm{d} x \leq \rho_{\mathcal{H}}(\nabla v) \leq \max \left\{\|v\|^{p},\|v\|^{q^{+}}\right\}
$$

due to Proposition 2.2 (ii), (iii). Also, we recall again that V is finite-dimensional, and so all the norms on V are equivalent. On account of this, we know that there exist positive constants c_{1}, c_{2}, c_{3}, independent of δ, such that

$$
\Psi_{*}(v) \leq c_{1}\|v\|_{\infty}^{p}+c_{2} \max \left\{\|v\|_{\infty}^{p},\|v\|_{\infty}^{q^{+}}\right\}-\eta c_{3}\|v\|_{\infty}^{p}+\delta^{p}
$$

Further, for $v \in V$ with $\|v\|=r_{V}$, again using the equivalence of the norms, we get

$$
\begin{aligned}
\Psi_{*}(v) & \leq c_{1} \delta^{p}+c_{2} \max \left\{\delta^{p}, \delta^{q^{+}}\right\}-\eta c_{3} \delta^{p}+\delta^{p} \\
& =c_{1} \delta^{p}+\left(c_{2}-\eta c_{3}+1\right) \delta^{p}
\end{aligned}
$$

as $\delta<1$. Therefore, if we choose $\eta>\frac{c_{1}+c_{2}+1}{c_{3}}$, then we have that $\Psi_{*}(v)<0$ for all $v \in V$ with $\|v\|=r_{V}$. This gives the assertion of the proposition.

Now, using Proposition 4.1, we can apply a generalized version of the symmetric mountain pass theorem due to Kajikiya [18, Theorem 1] in order to give the proof of Theorem 1.2.

Proof of Theorem 1.2. It is easy to see that the truncated functional Ψ_{*} : $W_{0}^{1, \mathscr{H}}(\Omega) \rightarrow \mathbb{R}$ is even and coercive. This implies, in particular, that Ψ_{*} is bounded from below. In addition, we recall that Ψ_{*} satisfies the PS-condition; see Papageorgiou-Radulescu-Repovs [26, Proposition 5.1.15]. On account of this and thanks to Proposition 4.1, we can apply [18, Theorem 1] by Kajikiya, which implies the existence of a sequence $\left\{w_{n}\right\}_{n \in \mathbb{N}} \subset$ $W_{0}^{1, \mathscr{H}}(\Omega) \cap L^{\infty}(\Omega)$ satisfying the following properties:

$$
w_{n} \in K_{\Psi_{*}} \subseteq\left[v_{*}, u_{*}\right], \quad w_{n} \neq 0, \quad \Psi_{*}\left(w_{n}\right) \leq 0 \quad \text { for all } n \in \mathbb{N}
$$

and

$$
\left\|w_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow+\infty
$$

We point out that v_{*} and u_{*} are extremal solutions for problem (3.4). Thus, from $w_{n} \in K_{\Psi_{*}} \subseteq\left[v_{*}, u_{*}\right]$ and $w_{n} \neq 0$ for all $n \in \mathbb{N}$, we deduce that w_{n} is a nodal solution of problem (3.4) for all $n \in \mathbb{N}$. In addition, we recall the following estimate already
mentioned in the proof of Proposition 3.2:

$$
\left\|w_{n}\right\|_{\infty} \leq d\left\|w_{n}\right\|_{s(\tau-1)}^{\frac{\tau-1}{p-1}}
$$

for some $d>0$ and for all $n \in \mathbb{N}$ with $s>\frac{N}{p}$ as well as $s(\tau-1)<p^{*}$. Therefore, since $\left\|w_{n}\right\| \rightarrow 0$, we can deduce that $\left\|w_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow+\infty$. Furthermore, we can find $n_{0} \in \mathbb{N}$ such that $\left|w_{n}(x)\right| \leq \frac{\eta_{0}}{2}$ for a.a. $x \in \Omega$ and for all $n \geq n_{0}$. This implies that $\theta\left(w_{n}(x)\right)=1$ for a.a. $x \in \Omega$ and for all $n \geq n_{0}$. Hence, we conclude that w_{n} is a sign changing solution of problem (1.1) for all $n>n_{0}$.

References

[1] A. Aberqi, J. Bennouna, O. Benslimane, and M. A. Ragusa, Existence results for double phase problem in Sobolev-Orlicz spaces with variable exponents in complete manifold. Mediterr. J. Math. 19 (2022), no. 4, article no. 158 Zbl 1491.35202 MR 4443109
[2] K. S. Albalawi, N. H. Alharthi, and F. Vetro, Gradient and parameter dependent Dirichlet $(p(x), q(x))$-Laplace type problem. Mathematics $\mathbf{1 0}$ (2022), no. 8, article no. 1336 Zbl 1497.35265
[3] A. Bahrouni, V. D. Rădulescu, and P. Winkert, Double phase problems with variable growth and convection for the Baouendi-Grushin operator. Z. Angew. Math. Phys. 71 (2020), no. 6, article no. 183 Zbl 1454.35179 MR 4161962
[4] P. Baroni, M. Colombo, and G. Mingione, Harnack inequalities for double phase functionals. Nonlinear Anal. 121 (2015), 206-222 Zbl 1321.49059 MR 3348922
[5] P. Baroni, M. Colombo, and G. Mingione, Nonautonomous functionals, borderline cases and related function classes. St. Petersburg Math. J. 27 (2015), 347-379 Zbl 1335.49057 MR 3570955
[6] P. Baroni, M. Colombo, and G. Mingione, Regularity for general functionals with double phase. Calc. Var. Partial Differential Equations 57 (2018), no. 2, article no. 62 Zbl 1394.49034 MR 3775180
[7] F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. (4) 195 (2016), no. 6, 1917-1959 Zbl 1364.35226 MR 3558314
[8] Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, and P. Winkert, A new class of double phase variable exponent problems: existence and uniqueness. J. Differential Equations 323 (2022), 182-228 Zbl 1489.35041 MR 4403612
[9] Á. Crespo-Blanco and P. Winkert, Nehari manifold approach for superlinear double phase problems with variable exponents. Ann. Mat. Pura Appl. (4) (2023), DOI 10.1007/s10231-023-01375-2
[10] C. De Filippis and G. Mingione, Lipschitz bounds and nonautonomous integrals. Arch. Ration. Mech. Anal. 242 (2021), no. 2, 973-1057 Zbl 1483.49050 MR 4331020
[11] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Math. 2017, Springer, Heidelberg, 2011 Zbl 1222.46002 MR 2790542
[12] C. Farkas and P. Winkert, An existence result for singular Finsler double phase problems. J. Differential Equations 286 (2021), 455-473 Zbl 1465.35148 MR 4234813
[13] L. Gasiński and N. S. Papageorgiou, Constant sign and nodal solutions for superlinear double phase problems. Adv. Calc. Var. 14 (2021), no. 4, 613-626 Zbl 1478.35118 MR 4319046
[14] L. Gasiński and P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity. Nonlinear Anal. 195 (2020), article no. 111739 Zbl 1437.35233 MR 4050785
[15] L. Gasiński and P. Winkert, Existence and uniqueness results for double phase problems with convection term. J. Differential Equations 268 (2020), no. 8, 4183-4193 Zbl 1435.35172 MR 4066014
[16] P. Harjulehto and P. Hästö, Orlicz spaces and generalized Orlicz spaces. Lecture Notes in Math. 2236, Springer, Cham, 2019 Zbl 1436.46002 MR 3931352
[17] S. Hu and N. S. Papageorgiou, Handbook of multivalued analysis. Vol. I. Math. Appl. 419, Kluwer Academic Publishers, Dordrecht, 1997 Zbl 0887.47001 MR 1485775
[18] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J. Funct. Anal. 225 (2005), no. 2, 352-370 Zbl 1081.49002 MR 2152503
[19] I. H. Kim, Y.-H. Kim, M. W. Oh, and S. Zeng, Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent. Nonlinear Anal. Real World Appl. 67 (2022), article no. 103627 Zbl 1492.35124 MR 4425245
[20] A. Lê, Eigenvalue problems for the p-Laplacian. Nonlinear Anal. 64 (2006), no. 5, 1057-1099 Zbl 1208.35015 MR 2196811
[21] S. Leonardi and N. S. Papageorgiou, Anisotropic Dirichlet double phase problems with competing nonlinearities. Rev. Mat. Complut. 36 (2023), no. 2, 469-490 Zbl 1514.35240 MR 4581758
[22] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12 (1988), no. 11, 1203-1219 Zbl 0675.35042 MR 969499
[23] W. Liu and G. Dai, Existence and multiplicity results for double phase problem. J. Differential Equations 265 (2018), no. 9, 4311-4334 Zbl 1401.35103 MR 3843302
[24] Z. Liu and N. S. Papageorgiou, Asymptotically vanishing nodal solutions for critical double phase problems. Asymptot. Anal. 124 (2021), no. 3-4, 291-302 Zbl 1505.35227 MR 4303021
[25] N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2589-2618 Zbl 1365.35017 MR 3619074
[26] N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Nonlinear analysis-theory and methods. Springer Monogr. Math., Springer, Cham, 2019 MR 3890060
[27] N. S. Papageorgiou and C. Vetro, Superlinear $(p(z), q(z))$-equations. Complex Var. Elliptic Equ. 64 (2019), no. 1, 8-25 Zbl 1409.35069 MR 3885853
[28] N. S. Papageorgiou, C. Vetro, and F. Vetro, Solutions for parametric double phase Robin problems. Asymptot. Anal. 121 (2021), no. 2, 159-170 Zbl 1473.35319 MR 4198477
[29] N. S. Papageorgiou and P. Winkert, Applied nonlinear functional analysis. De Gruyter Graduate, De Gruyter, Berlin, 2018 Zbl 1404.46001 MR 3823796
[30] K. Perera and M. Squassina, Existence results for double-phase problems via Morse theory. Commun. Contemp. Math. 20 (2018), no. 2, article no. 1750023 Zbl 1379.35152 MR 3730751
[31] P. Pucci and J. Serrin, The maximum principle. Progr. Nonlinear Differential Equations Appl. 73, Birkhäuser, Basel, 2007 Zbl 1134.35001 MR 2356201
[32] F. Vetro and P. Winkert, Existence, uniqueness and asymptotic behavior of parametric anisotropic (p, q)-equations with convection. Appl. Math. Optim. 86 (2022), no. 2, article no. 18 Zbl 1506.35109 MR 4449688
[33] F. Vetro and P. Winkert, Constant sign solutions for double phase problems with variable exponents. Appl. Math. Lett. 135 (2023), article no. 108404 Zbl 1500.35123 MR 4475891
[34] S. Zeng, Y. Bai, L. Gasiński, and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators. Calc. Var. Partial Differential Equations 59 (2020), no. 5, article no. 176 Zbl 1453.35070 MR 4153902
[35] S. Zeng, V. D. Rădulescu, and P. Winkert, Double phase obstacle problems with variable exponent. Adv. Differential Equations 27 (2022), no. 9-10, 611-645 Zbl 1497.35146 MR 4449916
[36] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710, 877 MR 864171
[37] V. V. Zhikov, On Lavrentiev's phenomenon. Russian J. Math. Phys. 3 (1995), no. 2, 249-269 Zbl 0910.49020 MR 1350506
[38] V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. 173 (2011), no. 5, 463-570 Zbl 1279.49005 MR 2839881

Received 31 January 2023.

Nikolaos S. Papageorgiou

Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece; npapg @math.ntua.gr

Francesca Vetro

90123 Palermo, Italy; francescavetro80@gmail.com

Patrick Winkert

Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany; winkert@math.tu-berlin.de

[^0]: 2020 Mathematics Subject Classification. Primary 35D30; Secondary 35A01, 35J60, 35J62, 35J66.
 Keywords. Critical problem, double phase operator, existence results, multiple solutions, sign changing solutions, variable exponent.

