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Sign changing solutions for critical double phase
problems with variable exponent

Nikolaos S. Papageorgiou, Francesca Vetro, and Patrick Winkert

Abstract. In this paper, we deal with a double phase problem with variable exponent and a right-
hand side consisting of a Carathéodory perturbation defined only locally and of a critical term. We
stress that the presence of the critical term inhibits the possibility to apply results of the critical
point theory to the corresponding energy functional. Instead, we use suitable cut-off functions and
truncation techniques in order to work with a coercive functional. Then, using variational tools and
an appropriate auxiliary coercive problem, we can produce a sequence of sign changing solutions to
our main problem converging to 0 in L1 and in the Musielak–Orlicz Sobolev space.

1. Introduction

Let � � RN (N � 2) be a bounded domain with Lipschitz boundary @�. In this paper,
we study the following critical double phase Dirichlet problem:

� div
�
jrujp�2ruC �.x/jrujq.x/�2ru

�
D f .x; u/C jujp

��2u in �;

u D 0 on @�;
(1.1)

where the exponents and the weight function satisfy the following condition:

(H1) q 2 C.�/ is such that 1 < p < N , p < q.x/ < p� WD Np
N�p

for all x 2 � and
0 � �. � / 2 L1.�/.

For r 2 C.�/, we put

r� D min
x2�

r.x/ and rC D max
x2�

r.x/:

Then we assume the following hypotheses on f . � ; � /:

(H2) f W� � Œ��0; �0�! R is a Carathéodory function for �0 > 0 with f .x; 0/ D 0,
f .x; � / is odd for a.a. x 2 � and

(i) there exists a0 2 L1.�/ such that

jf .x; s/j � a0.x/ for a.a. x 2 � and for all jsj � �0I
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(ii) there exists � 2 .1;min¹p; p2

N�p
C 1º/ such that

lim
s!0

f .x; s/

jsj��2s
D 0 uniformly for a.a. x 2 �I

(iii)

lim
s!0

f .x; s/

jsjp�2s
D C1 uniformly for a.a. x 2 �:

Remark 1.1. Note that f is defined only locally. Therefore, according to

lim
s!0

f .x; s/

jsjp�2s
D C1 uniformly for a.a. x 2 �;

we can suppose, without any loss of generality, that

f .x; s/

jsjp�2s
> 0 for a.a. x 2 � and all jsj � �0;

which implies

f .x; s/ > 0 for all 0 < s � �0 and f .x; s/ < 0 for all ��0 � s < 0:

We call a function u 2 W 1;H
0 .�/ a weak solution of problem (1.1) ifZ

�

�
jrujp�2ruC �.x/jrujq.x/�2ru

�
� rh dx D

Z
�

�
f .x; u/C jujp

��2u
�
h dx

is satisfied for all h 2 W 1;H
0 .�/.

Our main result reads as follows.

Theorem 1.2. Let hypotheses (H1) and (H2) be satisfied. Then problem (1.1) has a se-
quence ¹wnºn2N � W

1;H
0 .�/ \ L1.�/ of sign-changing solutions such that kwnk ! 0

and kwnk1 ! 0 as n!1.

In the right-hand side of (1.1), we have the combined effects of a Carathéodory pertur-
bation f .x; � / which is defined only locally and of a critical term u! jujp

��2u, where
p� WD Np

N�p
is the critical exponent corresponding to p. We note that the presence of the

critical term inhibits the possibility to apply results of the critical point theory to the cor-
responding energy functional. Consequently, here we introduce suitable cut-off functions
and truncation techniques to deal with a coercive functional so that we can act by using
variational tools. Thus, we work on an auxiliary coercive problem and we show the exis-
tence of extremal constant sign solutions for such a problem (see Section 3). Then we
apply these extremal solutions and a generalized version of the symmetric mountain pass
theorem due to Kajikiya [18, Theorem 1] in order to produce a sequence of sign changing
solutions for problem (1.1). In this way, we extend the results of Liu–Papageorgiou [24] to
the double phase operator with one variable exponent, and we were able to skip condition
H1 (iii) in [24].
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Recall that functionals of type

! 7!

Z
�

�
jr!jp C �.x/jr!jq

�
dx; 1 < p < q < N;

were first considered by Zhikov [36] in order to describe strongly anisotropic materials
in the context of homogenization and elasticity; we refer also to applications in the study
of duality theory and of the Lavrentiev gap phenomenon; see Zhikov [37, 38]. A first
mathematical framework for such type of functionals has been done by Baroni–Colombo–
Mingione [4]; see also the related works by the same authors in [5, 6] and of De Filippis–
Mingione [10] about nonautonomous integrals.

Even though double phase differential operators and corresponding energy functionals
appear in several physical applications, there are only few results involving the variable
exponent double phase operator. We refer to the recent results of Aberqi–Bennouna–
Benslimane–Ragusa [1] for existence results in complete manifolds, Albalawi–Alharthi–
Vetro [2] for convection problems with .p. � /; q. � //-Laplace type problems, Bahrouni–
Rădulescu–Winkert [3] for double phase problems of Baouendi–Grushin type operator,
Crespo–Blanco–Gasiński–Harjulehto–Winkert [8] for double phase convection problems,
Kim–Kim–Oh–Zeng [19] for concave-convex-type double phase problems, Leonardi–
Papageorgiou [21] for concave-convex problems, Vetro–Winkert [33] for parametric prob-
lems involving superlinear nonlinearities and Zeng–Rădulescu-Winkert [35] for multival-
ued problems; see also the references therein. In order to enlarge the literature on the
topic, we refer to the papers of Colasuonno–Squassina [7] for eigenvalue problems of
double phase type, Farkas–Winkert [12] for Finsler double phase problems, Gasiński–
Papageorgiou [13] for locally Lipschitz right-hand sides, Gasiński–Winkert [14, 15] for
convection problems and constant sign-solutions, Liu–Dai [23] for a Nehari manifold
approach, Papageorgiou–Vetro [27] for superlinear problems, Papageorgiou–Vetro–Vetro
[28] for parametric Robin problems, Perera–Squassina [30] for a Morse theoretical ap-
proach, Vetro–Winkert [32] for parametric convective problems, Zeng–Bai–Gasiński–
Winkert [34] for implicit obstacle problems with multivalued operators.

2. Preliminaries

In this section, we recall the main properties of the Musielak–Orlicz Sobolev spaces and
tools which we will need later. To this end, letM.�/ be the set of all measurable functions
uW�! R. For a given r 2 C.�/ with r.x/ > 1 for all x 2 �, we denote by Lr. � /.�/ the
usual variable exponent Lebesgue space defined by

Lr. � /.�/ D

²
u 2M.�/ W %r .u/ WD

Z
�

jujr.x/ dx < C1
³

and equip it with the Luxemburg norm

kukr. � / D inf
²
ˇ > 0 W %r

�
u

ˇ

�
� 1

³
:
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Similarly, we can define the corresponding Sobolev spaces W 1;r. � /.�/ and W 1;r. � /
0 .�/

endowed with the norms k � k1;r. � / and kr�kr. � /, respectively; see Diening–Harjulehto–
Hästö–Růžička [11] or Harjulehto–Hästö [16].

Now, under assumption (H1), we introduce the nonlinear function H W�� Œ0;C1/!

Œ0;C1/ defined by

H .x; t/ D tp C �.x/tq.x/ for all x 2 � and for all t � 0:

Then we can introduce the Musielak–Orlicz space LH .�/ by

LH .�/ D ¹u 2M.�/ W �H .u/ < C1º

equipped with the Luxemburg norm

kukH WD inf
²
ˇ > 0 W �H

�
u

ˇ

�
� 1

³
;

where the modular �H . � / is given by

�H .u/ D

Z
�

H .x; juj/ dx D
Z
�

�
jujp C �.x/jujq.x/

�
dx:

Using the Musielak–Orlicz space, we define the corresponding Musielak–Orlicz Sobolev
space W 1;H .�/ by

W 1;H .�/ D ¹u 2 LH .�/ W jruj 2 LH .�/º

and endow it with the norm

kuk1;H WD krukH C kukH ;

where krukH WD kjrujkH . Furthermore, we denote by W 1;H
0 .�/ the completion of

C10 .�/ in W 1;H .�/. We point out that the norm k � kH defined on LH .�/ is uniformly
convex and hence the spaces LH .�/, W 1;H .�/ and W 1;H

0 .�/ are reflexive Banach
spaces; see Crespo–Blanco–Gasiński–Harjulehto–Winkert [8, Proposition 2.12]. In addi-
tion, based on [8, Proposition 2.18], we can equip the spaceW 1;H

0 .�/ with the equivalent
norm

kuk WD krukH for all u 2 W 1;H
0 .�/:

The next proposition gives some important embedding results for the spaceW 1;H
0 .�/;

see Crespo–Blanco–Gasiński–Harjulehto–Winkert [8, Proposition 2.16].

Proposition 2.1. Let hypothesis (H1) be satisfied. Then the following hold:

(i) W 1;H
0 .�/ ,! W 1;r. � /

0 .�/ is continuous for all r 2 C.�/ with 1 � r.x/ � p for
all x 2 �;

(ii) W 1;H
0 .�/ ,! Lr. � /.�/ is compact for all r 2 C.�/ with 1 � r.x/ < p� for all

x 2 �.
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Now, we point out the relation between the modular �H and the norm k � kH ; see
Crespo–Blanco–Gasiński–Harjulehto–Winkert [8, Proposition 2.13].

Proposition 2.2. Let hypothesis (H1) be satisfied. Then the following hold:

(i) kukH <1 (resp. kukH >1, kukH D 1) if and only if �H .u/< 1 (resp. �H .u/> 1,
�H .u/ D 1);

(ii) if kukH < 1 then kukq
C

H
� �H .u/ � kuk

p

H
;

(iii) if kukH > 1 then kukp
H
� �H .u/ � kuk

qC

H
;

(iv) kukH ! 0 if and only if �H .u/! 0;

(v) kukH !C1 if and only if �H .u/!C1.

Let AWW 1;H
0 .�/! W 1;H

0 .�/� be the nonlinear operator defined by

hA.u/; viH D

Z
�

�
jrujp�2ruC �.x/jrujq.x/�2ru

�
� rv dx

for all u; v 2 W 1;H
0 .�/ with h � ; � iH being the duality pairing between W 1;H

0 .�/ and
its dual space W 1;H

0 .�/�. The properties of the operator AWW 1;H
0 .�/! W 1;H

0 .�/� are
summarized in the next proposition; see Crespo–Blanco–Gasiński–Harjulehto–Winkert
[8, Theorem 3.3].

Proposition 2.3. Let hypothesis (H1) be satisfied. Then the operator A is bounded (that
is, it maps bounded sets into bounded sets), continuous, strictly monotone (hence maximal
monotone), of type .SC/, coercive and a homeomorphism.

As usual, we denote by C 10 .�/ the ordered Banach space

C 10 .�/ D ¹u 2 C
1.�/ W uj@� D 0º;

with positive cone

C 10 .�/C D ¹u 2 C
1
0 .�/ W u.x/ � 08x 2 �º:

This cone has a nonempty interior given by

int.C 10 .�/C/ D
²
u 2 C 10 .�/ W u.x/ > 08x 2 � and

@u

@n
.x/ < 08x 2 @�

³
;

where n D n.x/ is the outer unit normal at x 2 @�.
We complete this section with some known results on the spectrum of the r-Laplacian

with 1 < r <1 and homogeneous Dirichlet boundary condition given by

��ru D �juj
r�2u in �;

u D 0 on @�:
(2.1)

We call a number �2R an eigenvalue of (2.1) if problem (2.1) has a nontrivial solution u2
W
1;r
0 .�/. Such a solution is called an eigenfunction corresponding to the eigenvalue �.



N. S. Papageorgiou, F. Vetro, and P. Winkert 240

From Lê [20], we know that there exists a smallest eigenvalue �1;r of (2.1) which is
positive, isolated, simple and it can be variationally characterized through

�1;r D inf
²
krukrr
kukrr

W u 2 W
1;r
0 .�/; u ¤ 0

³
: (2.2)

In what follows, we denote by u1;r the Lr -normalized (i.e., ku1;rkr D 1) positive eigen-
function corresponding to �1;r . The nonlinear regularity theory and the nonlinear maxi-
mum principle imply that u1;r 2 int.C 10 .�/C/; see Lieberman [22] and Pucci–Serrin [31].

For any s 2 R, we put s˙ D max¹˙s; 0º, that means, s D sC � s� and jsj D sC C s�.
Also, for any function vW�! R, we put v˙. � / D Œv. � /�˙.

Given a Banach space X and its dual space X�, we say that a functional ' 2 C 1.X/
satisfies the Palais–Smale condition (PS-condition for short) if every sequence ¹xnºn2N �

X such that ¹'.xn/ºn2N � R is bounded and

'0.xn/! 0 in X� as n!1

admits a strongly convergent subsequence. Moreover, we denote by K' the set of all
critical points of ', that is,

K' D ¹u 2 X W '
0.u/ D 0º:

We also recall that a set � � X is said to be downward directed if, for given u1; u2 2 � ,
we can find u 2 � such that u � u1 and u � u2. Analogously, � � X is said to be upward
directed if, for given v1; v2 2 � , we can find v 2 � such that v1 � v and v2 � v.

3. An auxiliary problem

In this section, we consider an auxiliary problem in order to prove Theorem 1.2 in the
next section. For this purpose, let � 2 C 1.R/ be an even cut-off function satisfying the
following conditions:

supp � � Œ��0; �0�; �
jŒ
��0
2 ;

�0
2 �
� 1 and 0 < � � 1 on .��0; �0/: (3.1)

Taking � into account, we define the Carathéodory function kW� �R! R by

k.x; s/ D �.s/Œf .x; s/C jsjp
��2s�C .1 � �.s//jsj��2s (3.2)

for all .x; s/ 2��R, where � is given in (H2) (ii). Note that, from (3.1) and (H2) (ii), we
get that

jk.x; s/j � c.1C jsj��1/ (3.3)

for a.a. x 2 � and for all s 2 R with some c > 0.
Next, we study the following auxiliary double phase Dirichlet problem

� div
�
jrujp�2ruC �.x/jrujq.x/�2ru

�
D k.x; u/ in �;

u D 0 on @�:
(3.4)
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Our aim is to show the existence of extremal constant sign solutions for problem (3.4).
We are going to need these extremal solutions in order to produce sign changing solutions
for problem (1.1).

Let �C and �� be the sets of positive and negative solutions of problem (3.4), respec-
tively.

Proposition 3.1. Let hypotheses (H1) and (H2) be satisfied. Then �C and �� are non-
empty subsets in W 1;H

0 .�/ \ L1.�/.

Proof. We start by proving that �C ¤ ; and denote by ˆCWW 1;H
0 .�/ ! R the C 1-

functional defined by

ˆC.u/ D

Z
�

�
1

p
jrujp C

�.x/

q.x/
jrujq.x/

�
dx �

Z
�

K.x; uC/ dx

for all u 2 W 1;H
0 .�/, where K.x; s/ D

R s
0
k.x; t/ dt . First, we have

ˆC.u/ �
1

p

Z
�

jrujp dx C
1

qC

Z
�

�.x/jrujq.x/ dx �
Z
�

K.x; uC/ dx

�
1

qC
�H .jruj/ �

Z
�

K.x; uC/ dx:

Combining this and (3.3) along with � < p (see (H2) (ii)) and Proposition 2.2 (iii), it
is clear that ˆC is coercive. In addition, thanks to the compactness of the embedding
W 1;H
0 .�/ ,! Lr. � /.�/ for any r 2 C.�/ with 1 � r.x/ < p� for all x 2 � (see Propo-

sition 2.1 (ii)), we conclude that the functional ˆC is sequentially weakly lower semicon-
tinuous. Then there exists u0 2 W 1;H

0 .�/ such that

ˆC.u0/ D infŒˆC.u/ W u 2 W 1;H
0 .�/�:

Let us prove that u0 is nontrivial. From hypothesis (H2) (iii), we can find for each � > 0
a number ı 2 .0;min¹�0

2
; 1º/ such that

F.x; s/ D

Z s

0

f .x; t/ dt �
�

p
jsjp for all jsj � ı: (3.5)

Further, we can take t 2 .0; 1/ small enough so that tu1;p.x/ 2 .0; ı� for all x 2 �, where
u1;p 2 int.C 10 .�/C/ is the Lp-normalized positive eigenfunction corresponding to �1;p
(see Section 2). Thus, we have, using (2.2),

ˆC.tu1;p/ D

Z
�

�
1

p
jr.tu1;p/j

p
C
�.x/

q.x/
jr.tu1;p/j

q.x/

�
dx �

Z
�

K.x; tu1;p/ dx

�
tp

p

Z
�

jru1;pj
p dx C

tq
�

q�

Z
�

�.x/jru1;pj
q.x/ dx �

Z
�

K.x; tu1;p/ dx

D
tp

p
�1;p C

tq
�

q�

Z
�

�.x/jru1;pj
q.x/ dx �

Z
�

K.x; tu1;p/ dx: (3.6)
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Since tu1;q 2 .0; ı� and ı 2 .0;min¹�0
2
; 1º/ from (3.1), we deduce that

k.x; tu1;p/ D f .x; tu1;p/C .tu1;p/
p��2tu1;p � f .x; tu1;p/: (3.7)

Then, using (3.5) and (3.7) in (3.6), we obtain

ˆC.tu1;p/ �
tp

p
�1;p C

tq
�

q�

Z
�

�.x/jru1;pj
q.x/ dx �

tp

p
�

D
tp

p
.�1;p � �/C

tq
�

q�

Z
�

�.x/jru1;pj
q.x/ dx:

If we choose � > �1;p , then �1;p � � < 0, and thus, for t > 0 sufficiently small, we have

tp

p
.�1;p � �/C

tq
�

q�

Z
�

�.x/jru1;pj
q.x/ dx < 0

since p < q�. Hence, we have ˆC.tu1;p/ < 0 D ˆC.0/ for t 2 .0; 1/ sufficiently small,
which implies that u0 ¤ 0.

Recall that u0 is a global minimizer of ˆC. Hence, ˆ0C.u0/ D 0, that is,Z
�

�
jru0j

p�2
ru0 C �.x/jru0j

q.x/�2
ru0

�
� rh dx

D

Z
�

k
�
x; .u0/C

�
h dx (3.8)

for all h 2 W 1;H
0 .�/. Note that ˙u˙ 2 W 1;H

0 .�/ for any u 2 W 1;H
0 .�/; see Crespo–

Blanco–Gasiński–Harjulehto–Winkert [8, Proposition 2.17]. So, if we choose hD�.u0/�
in (3.8), then we obtain that .u0/�D 0. This gives u0 � 0. Taking into account that u0¤ 0,
we conclude that u0 is a nontrivial positive weak solution of problem (3.4). Hence, it
follows that �C ¤ ;. From Crespo–Blanco–Winkert [9, Theorem 3.1], we know that u0 2
W 1;H
0 .�/ \ L1.�/.

In a similar way, we get the existence of a nontrivial negative weak solution of problem
(3.4). In this case, we work with the C 1-functional ˆ�WW 1;H

0 .�/! R defined by

ˆ�.u/ D

Z
�

�
1

p
jrujp C

�.x/

q.x/
jrujq.x/

�
dx �

Z
�

K.x;�u�/ dx

for all u 2 W 1;H
0 .�/ and show that it has a global minimizer which turns out to be

nontrivial and nonpositive. Hence, it must be a nontrivial negative weak solution of prob-
lem (3.4).

Now, we are going to prove the existence of extremal solution of (3.4), that is, the
existence of a smallest positive solution u� 2 �C and the existence of a largest negative
solution v� 2 ��.

Proposition 3.2. Let hypotheses (H1) and (H2) be satisfied. Then there exists u� 2 �C
such that u� � u for all u 2 �C and there exists v� 2 �� such that v� � v for all v 2 ��.
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Proof. We start by proving the existence of a smallest positive solution of (3.4). Similar
to the proof of [25, Proposition 7] by Papageorgiou–Rădulescu–Repovš, we can show that
�C is downward directed. Then, from Hu–Papageorgiou [17, Lemma 3.10, p. 178], we
know that we can find a decreasing sequence ¹unºn2N � �C such that

inf
n2N

un D inf �C:

Also, since un 2 �C, we haveZ
�

�
jrunj

p�2
run C �.x/jrunj

q.x/�2
run

�
� rh dx D

Z
�

k.x; un/h dx (3.9)

for all h 2 W 1;H
0 .�/ and for all n 2 N. If we take h D un in (3.9), using (3.3) and

0 � un � u1, we get that

�H .run/ D

Z
�

jrunj
p dx C

Z
�

�.x/jrunj
q.x/ dx < c1

for some c1 > 0 and for all n 2 N. From this and Proposition 2.2, we deduce that

¹unºn2N � W
1;H
0 .�/

is bounded. Moreover, due to hypothesis (H2), we have � < p2

N�p
C 1, which implies

that N
p
.� � 1/ < p�. Now, we choose s > N

p
such that s.� � 1/ < p�. Then, taking into

account that ¹unºn2N � W
1;H
0 .�/ is bounded, we can assume that

un * u� in W 1;H
0 .�/ and un ! u� in Ls.��1/.�/:

From (3.1), (3.2) and hypothesis (H2) (i), it follows that

jk.x; s/j � b1jsj
��1 (3.10)

for a.a. x 2 �, for all s 2 R and for some b1 > 0. Then, from (3.9) and (3.10) along
with a Moser-iteration type argument as it was explained by Colasuonno–Squassina [7,
Section 3.2], we obtain, as s > N

p
, that

kunk1 � b2kunk
��1
p�1

s.��1/

for some b2 > 0 and for all n 2 N.
Suppose now u� D 0; then kunk1 ! 0 as n! C1. This implies the existence of

n0 2 N such that
0 < un.x/ � ı

for a.a. x 2 � and for all n � n0, where ı 2 .0;min¹�0
2
; 1º/. Hence, in view of (3.1) and

(3.2), it follows that

k.x; un.x// D f .x; un.x//C un.x/
p��1 (3.11)
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for a.a. x 2 � and for all n � n0. Now, we put yn D un
kunk

for all n 2 N; then kynk D 1
and yn � 0 for all n 2 N. We may assume that

yn * y in W 1;H
0 .�/ and yn ! y in Lp.�/

with y � 0. From (3.9) and (3.11), we getZ
�

�
kunk

p�1
jrynj

p�2
ryn C �.x/kunk

q.x/�1
jrynj

q.x/�2
ryn

�
� rh dx

D

Z
�

kunk
p�1

�
f .x; un/

u
p�1
n

C up
��p
n

�
yp�1n h dx

for all h 2 W 1;H
0 .�/ and for all n � n0, which can be equivalently written asZ

�

jrynj
p�2
ryn � rh dx C

Z
�

kunk
q.x/�p

jrynj
q.x/�2

ryn � rh dx

D

Z
�

�
f .x; un/

u
p�1
n

C up
��p
n

�
yp�1n h dx (3.12)

for all h 2 W 1;H
0 .�/ and for all n � n0. We point out that the left-hand side of (3.12) is

bounded for all h 2 W 1;H
0 .�/. From this, using hypothesis (H2) (ii), we infer

y D 0 and
f .x; un/

u
p�1
n

yp�1n ! 0 for a.a. x 2 �:

In addition, if we take h D yn in (3.12) and pass to the limit as n!C1, we obtain

lim
n!C1

Z
�

jrynj
p
D 0:

This implies, at least for a susequence, that ryn.x/! 0 for a.a. x 2 �, and hence we
deduce that H .ryn/! 0 for a.a. x 2�. Taking into account that ¹H .ryn/ºn2N �L

1.�/

is uniformly integrable by Vitali’s convergence theorem, we get that

�H .ryn/! 0 in W 1;H
0 .�/: (3.13)

Now, we recall that kynk D 1, and this implies that �H .ryn/ D 1 for all n 2 N; see
Proposition 2.2 (i). This gives a contradiction to (3.13). Therefore, u� ¤ 0, and so u� 2 �C
with u� being the smallest positive solution of (1.1) in �C. Proceeding in a similar way,
we can show that v� 2 �� such that v� D sup ��.

4. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2, that is, we prove the existence of a
sequence of sign changing solutions for problem (1.1), which converges to 0 inW 1;H

0 .�/

and in L1.�/. Our strategy is to use the extremal constant sign solutions u� and v�
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obtained in Proposition 3.2 and focus on the order interval

Œv�; u�� WD ¹u 2 W
1;H
0 .�/ W v�.x/ � u.x/ � u�.x/ for a.a. x 2 �º:

For this purpose, we use truncations of k.x; � / at v�.x/ and u�.x/, that is, we consider
the function k�W� �R! R defined by

k�.x; s/ WD

8̂̂<̂
:̂
k.x; v�.x// if s < v�.x/;

k.x; s/ if v�.x/ � s � u�.x/;

k.x; u�.x// if u�.x/ < s:

Then we introduce the C 1-functional ‰�WW 1;H
0 .�/! R by

‰�.u/ D

Z
�

�
1

p
jrujp C

�.x/

q.x/
jrujq.x/

�
dx �

Z
�

K�.x; u/ dx

for all u 2 W 1;H
0 .�/, where K�.x; s/ D

R s
0
k�.x; t/ dt .

First, we point out that K‰� D ¹u 2 W
1;H
0 .�/ W .‰�/

0.u/ D 0º is contained in the
order interval Œv�; u��. In fact, let u 2 K‰� n ¹u�; v�º; then we haveZ

�

�
jrujp�2ruC �.x/jrujq.x/�2ru

�
� rh dx

D

Z
�

k�.x; u/h dx for all h 2 W 1;H
0 .�/: (4.1)

Taking the function test h D .u � u�/C in (4.1), we getZ
�

�
jrujp�2ruC �.x/jrujq.x/�2ru

�
� r.u � u�/C dx

D

Z
�

k�.x; u/.u � u�/C dx

D

Z
�

k.x; u�/.u � u�/C dx

D

Z
�

�
jru�j

p�2
ru� C �.x/jru�j

q.x/�2
ru�

�
� r.u � u�/C dx

since u� 2 �C. This implies thatZ
�

.jrujp�2ru � jru�j
p�2
ru�/ � r.u � u�/C dx

C

Z
�

�.x/.jrujq.x/�2ru � jru�j
q.x/�2

ru�/ � r.u � u�/C dx D 0:

Hence, we deduce that u � u�. Similarly, if we choose the function test h D .v� � u/C
in (4.1), then we easily check that v� � u.

Let V � W 1;H
0 .�/ \ L1.�/ be a finite-dimensional subspace. Then we have the

following result.
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Proposition 4.1. Let hypotheses (H1) and (H2) be satisfied. Then we can find rV > 0 such
that

supŒ‰�.v/ W v 2 V; kvk D rV � < 0:

Proof. Since, V is finite-dimensional, all the norms on V are equivalent; see, for example,
Papageorgiou–Winkert [29, Proposition 3.1.17, p. 183]. This allows us to find rV > 0 such
that

v 2 V and kvk � rV imply jv.x/j � ı for a.a. x 2 �

with ı 2 .0;min¹�0
2
; 1º/. In particular, we have ı < �0

2
, which implies that �.v.x// D 1

for a.a. x 2 �; see (3.1). Taking this into account, for v 2 V with kvk � rV , we have

k�.x; v.x// D

8̂̂<̂
:̂
f .x; v�.x//C jv�.x/j

p��2v�.x/ if v.x/ < v�.x/;

f .x; v.x//C jv.x/jp
��2v.x/ if v�.x/ � v.x/ � u�.x/;

f .x; u�.x//C ju�.x/j
p��2u�.x/ if u�.x/ < v.x/:

We denote by f�W� �R! R the function given by

f�.x; v.x// D

8̂̂<̂
:̂
f .x; v�.x// if v.x/ < v�.x/;

f .x; v.x// if v�.x/ � v.x/ � u�.x/;

f .x; u�.x// if u�.x/ < v.x/

and put F�.x; s/ WD
R s
0
f�.x; t/ dt . We point out that, for v < v�, we have

F�.x; v/ D

Z v�

0

f�.x; s/ ds C
Z v

v�

f�.x; s/ ds

D

Z v�

0

f .x; s/ ds C
Z v

v�

f .x; v�/ ds

D F.x; v�/C f .x; v�/.v � v�/:

We recall that f .x; v�/ is negative (see Remark 1.1); hence, f .x; v�/.v � v�/ > 0. Using
this, we deduce

F.x; v/ � F�.x; v/ D F.x; v/ � F.x; v�/C f .x; v�/.v� � v/

� F.x; v/ � F.x; v�/;

where F.x; s/ WD
R s
0
f .x; t/ dt . Similarly, for u� < v, we have

F�.x; v/ D F.x; u�/C f .x; u�/.v � u�/;

which implies

F.x; v/ � F�.x; v/ D F.x; v/ � F.x; u�/C f .x; u�/.u� � v/

� F.x; v/ � F.x; u�/

since f .x; u�/.u� � v/ < 0; see Remark 1.1.
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On account of this, we can write

‰�.v/ D

Z
�

�
1

p
jrvjp C

�.x/

q.x/
jrvjq.x/

�
dx �

Z
�

K�.x; v/ dx

�
1

p

Z
�

jrvjp dx C
1

q�

Z
�

�.x/jrvjq.x/ dx

�

Z
¹v<v�º

�
F�.x; v/C

1

p�
jv�j

p�
�

dx

�

Z
¹v��v�u�º

�
F.x; v/C

1

p�
jvjp

�

�
dx

�

Z
¹u�<vº

�
F�.x; v/C

1

p�
ju�j

p�
�

dx

�
1

p

Z
�

jrvjp dx C
1

q�

Z
�

�.x/jrvjq.x/ dx �
Z
¹v<v�º

F�.x; v/ dx

�

Z
¹v��v�u�º

F.x; v/ dx �
Z
¹u�<vº

F�.x; v/ dx;

where we used the abbreviations

¹v < v�º WD ¹x 2 � W v.x/ < v�.x/º;

¹v� � v � u�º WD ¹x 2 � W v�.x/ � v.x/ � u�.x/º;

¹u� < vº WD ¹x 2 � W u�.x/ < v.x/º

and the fact that the terms

1

p�
jv�j

p� ;
1

p�
jvjp

�

and
1

p�
ju�j

p�

are positive. Furthermore, we have

‰�.v/ �
1

p

Z
�

jrvjp dx C
1

q�

Z
�

�.x/jrvjq.x/ dx �
Z
�

F.x; v/ dx

C

Z
¹v<v�º

ŒF .x; v/ � F�.x; v/� dx C
Z
¹u�<vº

ŒF .x; v/ � F�.x; v/� dx

�
1

p

Z
�

jrvjp dx C
1

q�

Z
�

�.x/jrvjq.x/ dx �
Z
�

F.x; v/ dx

C

Z
¹v<v�º

ŒF .x; v/ � F.x; v�/� dx C
Z
¹u�<vº

ŒF .x; v/ � F.x; u�/� dx:

Now, as f is odd and thanks to hypothesis (H2) (iii), we know that, for each � > 0, it
is possible to find ı 2 .0;min¹�0

2
; 1º/ such that

F.x; s/ �
�

p
jsjp for all jsj � ı:
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Consequently, choosing rV small enough so thatZ
¹v<v�º

ŒF .x; v/ � F.x; v�/� dx C
Z
¹u�<vº

ŒF .x; v/ � F.x; u�/� dx < ıp;

we then get

‰�.v/ �
1

p

Z
�

jrvjp dx C
1

q�

Z
�

�.x/jrvjq.x/ �
�

p

Z
�

jvjp dx C ıp:

Next, we remark thatZ
�

�.x/jrvjq.x/ dx � �H .rv/ � max¹kvkp; kvkq
C

º

due to Proposition 2.2 (ii), (iii). Also, we recall again that V is finite-dimensional, and so
all the norms on V are equivalent. On account of this, we know that there exist positive
constants c1; c2; c3, independent of ı, such that

‰�.v/ � c1kvk
p
1 C c2 max¹kvkp1; kvk

qC

1 º � � c3kvk
p
1 C ı

p:

Further, for v 2 V with kvk D rV , again using the equivalence of the norms, we get

‰�.v/ � c1ı
p
C c2 max¹ıp; ıq

C

º � �c3ı
p
C ıp

D c1ı
p
C .c2 � �c3 C 1/ı

p

as ı < 1. Therefore, if we choose � > c1Cc2C1
c3

, then we have that‰�.v/ < 0 for all v 2 V
with kvk D rV . This gives the assertion of the proposition.

Now, using Proposition 4.1, we can apply a generalized version of the symmetric
mountain pass theorem due to Kajikiya [18, Theorem 1] in order to give the proof of
Theorem 1.2.

Proof of Theorem 1.2. It is easy to see that the truncated functional ‰�WW 1;H
0 .�/! R

is even and coercive. This implies, in particular, that ‰� is bounded from below. In addi-
tion, we recall that ‰� satisfies the PS-condition; see Papageorgiou–Radulescu–Repovs
[26, Proposition 5.1.15]. On account of this and thanks to Proposition 4.1, we can apply
[18, Theorem 1] by Kajikiya, which implies the existence of a sequence ¹wnºn2N �

W 1;H
0 .�/ \ L1.�/ satisfying the following properties:

wn 2 K‰� � Œv�; u��; wn ¤ 0; ‰�.wn/ � 0 for all n 2 N

and
kwnk ! 0 as n!C1:

We point out that v� and u� are extremal solutions for problem (3.4). Thus, from
wn 2 K‰� � Œv�; u�� and wn ¤ 0 for all n 2 N, we deduce that wn is a nodal solu-
tion of problem (3.4) for all n 2 N. In addition, we recall the following estimate already
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mentioned in the proof of Proposition 3.2:

kwnk1 � dkwnk
��1
p�1

s.��1/

for some d > 0 and for all n 2 N with s > N
p

as well as s.� � 1/ < p�. Therefore, since
kwnk! 0, we can deduce that kwnk1! 0 as n!C1. Furthermore, we can find n0 2N
such that jwn.x/j �

�0
2

for a.a. x 2 � and for all n � n0. This implies that �.wn.x// D 1
for a.a. x 2 � and for all n � n0. Hence, we conclude that wn is a sign changing solution
of problem (1.1) for all n > n0.
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