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Abstract. In this paper we study a Dirichlet double phase problem with a

parametric superlinear right-hand side that has subcritical growth. Under very
general assumptions on the data, we prove the existence of at least two non-

trivial bounded weak solutions to such problem by using variational methods

and critical point theory. In contrast to other works we do not need to suppose
the Ambrosetti-Rabinowitz condition.

1. Introduction

In this paper we consider the following Dirichlet double phase problem

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
= λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊆ RN , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, 1 < p <
N , p < q < p∗ and 0 ≤ µ(·) ∈ L∞(Ω) with p∗ = Np

N−p , λ > 0 is a parameter and

f : Ω × R → R is a Carathéodory function that satisfies subcritical growth and a
certain behavior at ±∞.

The operator involved is the so-called double phase operator defined by

div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
for u ∈ W 1,H

0 (Ω) (1.2)

with W 1,H
0 (Ω) being an appropriate Musielak-Orlicz Sobolev space, see its Defini-

tion in Section 2. It is clear that (1.2) reduces to the p-Laplacian if µ ≡ 0 and
to the (q, p)-Laplacian if infΩ µ ≥ µ0 > 0. Moreover, the double phase operator is

related to the two-phase integral functional J : W 1,H
0 (Ω) → R given by

J(u) =

∫
Ω

(|∇u|p + µ(x)|∇u|q) dx. (1.3)

Zhikov [24] was the first who introduced and studied functionals of type (1.3) whose
integrands change their ellipticity according to a point in order to provide models for
strongly anisotropic materials. It is clear that the integrand of (1.3) has unbalanced
growth. The main characteristic of (1.3) is the change of ellipticity on the set where
the weight function is zero, that is, on the set {x ∈ Ω : µ(x) = 0}. In other words,
the energy density of (1.3) exhibits ellipticity in the gradient of order q on the points
x where µ(x) is positive and of order p on the points x where µ(x) vanishes. We also
refer to the book of Zhikov-Kozlov-Olĕınik [25]. Functionals of the form (1.3) have
been studied by several authors with respect to regularity of local minimizers, see,
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for example, the works of Baroni-Colombo-Mingione [1, 2, 3], Colombo-Mingione
[9, 10] and for nonautonomous integrals, the recent work of De Filippis-Mingione
[12].

The main objective of our work is to apply an abstract critical point theorem to
problem (1.1) in order to get two nontrivial bounded weak solutions with different
energy sign. In addition, we give a precise interval to which the solutions belong.
Our paper can be seen as an extension of a work of the first two authors recently
published in [22]. The differences to [22] are twofold: First, in [22] the operator is
the well-known (q, p)-Laplacian and so the function space is a usual Sobolev space.
Second, we are able to weaken the assumptions on f in our paper. Indeed, in
contrast to [22] and lots of other works in this direction we do not need to assume
that f fulfills the usual Ambrosetti-Rabinowitz condition, which says, that there
exist µ̃ > q and M > 0 such that

0 < µ̃F (x, s) ≤ f(x, s)s (AR)

for a. a.x ∈ Ω and for all |s| ≥ M . Instead of (AR) we suppose that the primitive
of f is q-superlinear at ±∞ (see (H2)(ii)) and we have another behavior near ±∞,
see (H2)(iii). Both conditions are weaker than (AR) and they also imply that f
is (q − 1)-superlinear at ±∞. Note that we do not need any behavior of f or its
primitive near the origin, see Theorem 3.4.

The abstract critical point theorem we used is due to Bonanno-D’Agùı [4, see
Theorem 2.1 and Remark 2.2] and was applied in the same paper to the p-Laplace
problem

−∆pu = λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.4)

in order to get two nontrivial solutions of (1.4).
Finally we would like to mention related works dealing with multiplicity re-

sults for (p, q)-Laplacians or double phase problems via different methods, like
truncation techniques, comparison principles, critical point theory, Nehari mani-
fold treatment and so on. We refer to the papers of Bonanno-D’Agùı-Livrea [5]
(general nonhomogeneous operators), Bonanno-D’Agùı-Winkert [6] (nondifferen-
tiable functions), Chinǹı-Sciammetta-Tornatore [7] (anisotropic (p, q)-equations),
Colasuonno-Squassina [8] (double phase eigenvalue problems), Gasiński-Winkert
[14, 15] (convection and superlinear problems), Liu-Dai [17] (Nehari manifold treat-
ment), Papageorgiou-Winkert [20] (subdiffusive and equidiffusive (p, q)-equations),
Perera-Squassina [21] (Morse theory for double phase problems), see also the refer-
ences therein.

The paper is organized as follows. In Section 2 we recall some facts about
Musielak-Orlicz Sobolev spaces and state the abstract critical point theorem men-
tioned above, see Theorem 2.4. Then, in Section 3 we formulate our hypotheses,
state and prove our main result, see Theorem 3.4 and we consider some conse-
quences for special cases of (1.1), see Corollaries 3.5 and 3.6, especially when f is
nonnegative and independent of x.

2. Preliminaries

In this section we recall some preliminary facts and tools which are needed in
the sequel. To this end, let Ω ⊆ RN , N ≥ 2 be a bounded domain with Lipschitz
boundary ∂Ω. For 1 ≤ r ≤ ∞ we denote by Lr(Ω) and Lr(Ω;RN ) the usual
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Lebesgue spaces equipped with the norm ∥ · ∥r and for 1 ≤ r < ∞, W 1,r(Ω)

and W 1,r
0 (Ω) stand for the Sobolev spaces endowed with the norms ∥ · ∥1,r and

∥ · ∥1,r,0 = ∥∇ · ∥r, respectively.
Let 1 < p < ∞. From the Sobolev embedding theorem we know that for any

ℓ ∈ [1, p∗] we have the continuous embedding W 1,p
0 (Ω) → Lℓ(Ω) with best constant

cℓ > 0, that is,

∥u∥ℓ ≤ cℓ∥∇u∥p for all u ∈ W 1,p
0 (Ω). (2.1)

It is clear that the embedding in (2.1) is compact if ℓ < p∗. Suppose that ℓ < p∗.
Then, from Hölder’s inequality and (2.1), we obtain

cℓ ≤ cp∗ |Ω|
p∗−ℓ
p∗ℓ (2.2)

with |Ω| being the Lebesgue measure of Ω in RN .
Let

R := sup
x∈Ω

dist(x, ∂Ω). (2.3)

Then we can find an element x0 ∈ Ω such that the ball with center x0 and radius
R > 0 belongs to Ω, that is,

B(x0, R) ⊆ Ω. (2.4)

We set

ωR := |B(x0, R)| = π
N
2

Γ(1 + N
2 )

RN (2.5)

and

K :=
cpp∗ωR(2

N − 1)

(2N−q)|Ω|
p
p∗

max

{
1

Rp
,
∥µ∥∞
Rq

}
. (2.6)

In the following we use the subsequent assumptions:

(H1) 1 < p < N , p < q < p∗ and 0 ≤ µ(·) ∈ L∞(Ω), where p∗ is the critical

Sobolev exponent to p given by p∗ = Np
N−p .

Let M(Ω) be the space of all measurable functions u : Ω → R and let H : Ω ×
[0,∞) → [0,∞) be the nonlinear function defined by

H(x, t) = tp + µ(x)tq.

Then, the Musielak-Orlicz space LH(Ω) is defined by

LH(Ω) = {u ∈ M(Ω) : ρH(u) < +∞}
equipped with the Luxemburg norm

∥u∥H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1
}
,

where the modular function ρH is given by

ρH(u) :=

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p + µ(x)|u|q

)
dx. (2.7)

Furthermore, we define the seminormed space

Lq
µ(Ω) =

{
u ∈ M(Ω) :

∫
Ω

µ(x)|u|q dx < +∞
}
,
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which is endowed with the seminorm

∥u∥q,µ =

(∫
Ω

µ(x)|u|q dx
) 1

q

.

The Musielak-Orlicz Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

∥u∥1,H = ∥∇u∥H + ∥u∥H,

where ∥∇u∥H = ∥ |∇u| ∥H. The completion of C∞
0 (Ω) in W 1,H(Ω) is denoted

by W 1,H
0 (Ω). We know that LH(Ω), W 1,H(Ω) and W 1,H

0 (Ω) are reflexive Banach

spaces and we can equip the space W 1,H
0 (Ω) with the equivalent norm

∥u∥ = ∥∇u∥H,

see Proposition 2.18(ii) of Crespo-Blanco-Gasiński-Harjulehto-Winkert [11].
The norm ∥ · ∥H and the modular function ρH are related as follows, see Liu-Dai

[17, Proposition 2.1].

Proposition 2.1. Let (H1) be satisfied, let y ∈ LH(Ω) and let ρH be defined by
(2.7). Then the following hold:

(i) If y ̸= 0, then ∥y∥H = λ if and only if ρH( yλ ) = 1;
(ii) ∥y∥H < 1 (resp.> 1, = 1) if and only if ρH(y) < 1 (resp.> 1, = 1);
(iii) If ∥y∥H < 1, then ∥y∥qH ≤ ρH(y) ≤ ∥y∥pH;
(iv) If ∥y∥H > 1, then ∥y∥pH ≤ ρH(y) ≤ ∥y∥qH;
(v) ∥y∥H → 0 if and only if ρH(y) → 0;
(vi) ∥y∥H → +∞ if and only if ρH(y) → +∞.

We have the following embedding results for the spaces LH(Ω) and W 1,H
0 (Ω),

see [11, Proposition 2.16].

Proposition 2.2. Let (H1) be satisfied. Then the following embeddings hold:

(i) LH(Ω) ↪→ Lr(Ω) and W 1,H
0 (Ω) ↪→ W 1,r

0 (Ω) are continuous for all r ∈ [1, p];

(ii) W 1,H
0 (Ω) ↪→ Lr(Ω) is continuous for all r ∈ [1, p∗];

(iii) W 1,H
0 (Ω) ↪→ Lr(Ω) is compact for all r ∈ [1, p∗);

(iv) LH(Ω) ↪→ Lq
µ(Ω) is continuous;

(v) Lq(Ω) ↪→ LH(Ω) is continuous.

Let A : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ be the nonlinear map defined by

⟨A(u), φ⟩ :=
∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇φdx (2.8)

for all u, φ ∈ W 1,H
0 (Ω), where ⟨ · , · ⟩ is the duality pairing between W 1,H

0 (Ω) and its

dual space W 1,H
0 (Ω)∗. The operator A : W 1,H

0 (Ω) → W 1,H
0 (Ω)∗ has the following

properties, see Liu-Dai [17].

Proposition 2.3. Let hypotheses (H1) be satisfied. Then, the operator A defined
in (2.8) is bounded, continuous, strictly monotone and of type (S+), that is,

un ⇀ u in W 1,H
0 (Ω) and lim sup

n→∞
⟨Aun, un − u⟩ ≤ 0,

imply un → u in W 1,H
0 (Ω).
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We refer to the books of Harjulehto-Hästö [16], Musielak [18] and the papers
of Colasuonno-Squassina [8], Crespo-Blanco-Gasiński-Harjulehto-Winkert [11] and
Liu-Dai [17] for more information about Musielak-Orlicz Sobolev spaces and double
phase operators.

LetX be a Banach space andX∗ its topological dual space. Given φ ∈ C1(X) we
say that φ satisfies the Cerami-condition (C-condition for short), if every sequence
{xn}n∈N ⊆ X such that {φ(un)}n≥1 ⊆ R is bounded and

(1 + ∥xn∥X)φ′(xn) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence.
The following theorem is used in our proofs and can be found in the paper of

Bonanno-D’Agùı [4, see Theorem 2.1 and Remark 2.2].

Theorem 2.4. Let X be a real Banach space and let Φ, Ψ: X → R be two func-
tionals of class C1 such that inf

X
Φ(u) = Φ(0) = Ψ(0) = 0. Assume that there are

r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

supu∈Φ−1(]−∞,r]) Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
, (2.9)

and, for each

λ ∈ Λ̃ =

]
Φ(ũ)

Ψ(ũ)
,

r

supu∈Φ−1(]−∞,r]) Ψ(u)

[
,

the functional Iλ = Φ−λΨ satisfies the C-condition and it is unbounded from below.
Moreover, Φ is supposed to be coercive.

Then, for each λ ∈ Λ̃, the functional Iλ admits at least two nontrivial critical
points uλ,1, uλ,2 ∈ X such that Iλ(uλ,1) < 0 < Iλ(uλ,2).

3. Main Result

In this section we formulate and prove our main results concerning the exis-
tence of nontrivial bounded weak solutions to problem (1.1). First, we state the
hypotheses on the nonlinearity f : Ω×R → R. We suppose the following conditions:

(H2) f : Ω×R → R is a Carathéodory function satisfying the following conditions:
(i) there exist ℓ ∈ (q, p∗) and constants κ1, κ2 > 0 such that

|f(x, s)| ≤ κ1 + κ2|s|ℓ−1

for a. a.x ∈ Ω and for all s ∈ R;

(ii) if F (x, s) =
∫ s

0
f(x, t) dt, then

lim
s→±∞

F (x, s)

|s|q
= +∞

uniformly for a. a.x ∈ Ω;

(iii) there exists

ζ ∈
(
(ℓ− p)

N

p
, p∗
)

such that

0 < ζ0 ≤ lim inf
s→±∞

f(x, s)s− qF (x, s)

|s|ζ
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uniformly for a. a.x ∈ Ω.

Remark 3.1. Note that (H2)(ii) and (H2)(iii) imply that

lim
s→±∞

f(x, s)

|s|q−2s
= +∞

uniformly for a. a.x ∈ Ω.

Remark 3.2. Due to Remark 3.1 we know that f(x, ·) is (q − 1)-superlinear at
±∞. Our conditions are weaker than the Ambrosetti-Rabinowitz condition (AR-
condition for short). Indeed, instead of the AR-condition, we suppose hypotheses
(H2)(ii) and (H2)(iii) which are less restrictive. Consider the function

f(s) =

{
|s|β1−2s if |s| ≤ 1,

|s|q−2s ln(|s|) + |s|β2−2s if 1 < |s|,

where 1 < β1 < p and 1 < β2 < q, then we see that f satisfies (H2) but fails to
satisfy the AR-condition.

The energy functional Iλ : W
1,H
0 (Ω) → R of (1.1) is given by

Iλ(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq,µ − λ

∫
Ω

F (x, u) dx

for all u ∈ W 1,H
0 (Ω). It is clear that Iλ ∈ C1 and the critical points of Iλ are the

weak solutions of (1.1). Next, we introduce the functionals Φ, Ψ: W 1,H
0 (Ω) → R

defined by

Φ(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq,µ and Ψ(u) =

∫
Ω

F (x, u) dx (3.1)

for all u ∈ W 1,H
0 (Ω). We have that Iλ = Φ(u)−λΨ(u) and all these functionals are

of class C1, where their derivatives are given by

⟨I ′λ(u), v⟩ =
∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx− λ

∫
Ω

f(x, u)v dx,

⟨Φ′(u), v⟩ =
∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx,

⟨Ψ′(u), v⟩ =
∫
Ω

f(x, u)v dx

for all u, v ∈ W 1,H
0 (Ω).

First, we obtain the following proposition.

Proposition 3.3. Let hypotheses (H1) and (H2) be satisfied. Then the functional

Iλ : W
1,H
0 (Ω) → R satisfies the C-condition.

Proof. Let {un}n∈N ⊆ W 1,H
0 (Ω) be a sequence such that

|Iλ(un)| ≤ c1 for some c1 > 0 and for all n ∈ N, (3.2)

(1 + ∥un∥) I ′λ(un) → 0 in W 1,H
0 (Ω)∗ as n → ∞. (3.3)

From (3.3) we get∣∣∣∣⟨A(un), h⟩ − λ

∫
Ω

f (x, un)hdx

∣∣∣∣ ≤ εn∥h∥
1 + ∥un∥

(3.4)
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for all h ∈ W 1,H
0 (Ω) with εn → 0+. Choosing h = un ∈ W 1,H

0 (Ω) in (3.4) gives

−∥∇un∥pp − ∥∇un∥qq,µ + λ

∫
Ω

f(x, un)un dx ≤ εn (3.5)

for all n ∈ N. From (3.2) we have

q

p
∥∇un∥pp + ∥∇un∥qq,µ − λ

∫
Ω

qF (x, un) dx ≤ qc1. (3.6)

Adding (3.5) and (3.6) and recalling that p < q, we derive

λ

∫
Ω

(f (x, un)un − qF (x, un)) dx ≤ c2 (3.7)

for some c2 > 0 and for all n ∈ N.
Hypotheses (H2)(i) and (H2)(iii) imply that we can find c3 ∈ (0, ζ0) and c4 > 0

such that

c3|s|ζ − c4 ≤ f(x, s)s− qF (x, s) (3.8)

for a. a.x ∈ Ω and for all s ∈ R. Using (3.8) in (3.7) leads to

∥un∥ζζ ≤ c5 for some c5 > 0 and for all n ∈ N.
Hence

{un}n∈N ⊆ Lζ(Ω) is bounded. (3.9)

Note that p < N . From hypothesis (H2)(iii) it is clear that we may assume that
ζ < ℓ < p∗. Then we can find t ∈ (0, 1) such that

1

ℓ
=

1− t

ζ
+

t

p∗
. (3.10)

Using the interpolation inequality (see Papageorgiou-Winkert [19, p. 116]), we have

∥un∥ℓ ≤ ∥un∥1−t
ζ ∥un∥tp∗ for all n ∈ N.

This combined with (3.9) and Proposition 2.2(ii) results in

∥un∥ℓℓ ≤ c6 ∥un∥tℓ for all n ∈ N (3.11)

with some c6 > 0. Testing (3.4) with h = un ∈ W 1,H
0 (Ω) we obtain

∥∇un∥pp + ∥∇un∥qq,µ − λ

∫
Ω

f(x, un)un dx ≤ εn for all n ∈ N.

From Proposition 2.1(iii), (iv) and (H2)(i) as well as (3.11) we arrive at

min {∥un∥p, ∥un∥q} ≤ λ

∫
Ω

f(x, un)un dx+ εn ≤ λc7
[
1 + ∥un∥tℓ

]
+ εn (3.12)

for some c7 > 0 and for all n ∈ N.
From (3.10) and (H2)(iii) it follows

tℓ =
p∗(ℓ− ζ)

p∗ − ζ
=

Np(ℓ− ζ)

Np−Nζ + ζp
<

Np(ℓ− ζ)

Np−Nζ + (ℓ− p)Np p
= p < q. (3.13)

Then, from (3.12) and (3.13) we obtain that

{un}n∈N ⊆ W 1,H
0 (Ω) is bounded.

Hence there exists a subsequence, not relabeled, such that

un ⇀ u in W 1,H
0 (Ω) and un → u in Lℓ(Ω). (3.14)
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If we use h = un − u ∈ W 1,H
0 (Ω) in (3.4), pass to the limit as n → ∞ and use

(3.14), we obtain

lim
n→∞

⟨A(un), un − u⟩ = 0.

The (S+)-property of A (see Proposition 2.3) implies that un → u in W 1,H
0 (Ω).

This shows that Iλ satisfies the C-condition. □

Now we are ready to formulate our main existence result.

Theorem 3.4. Let hypotheses (H1), (H2) be satisfied and let ξ, η > 0 be two
constants with ξ > η such that

F (x, s) ≥ 0 for a. a.x ∈ Ω and for all s ∈ [0, η], (3.15)

κ1ξ
1−p +

κ2

ℓ
ξℓ−p <

1

K|Ω|
·

∫
B(x0,

R
2 )

F (x, η) dx

ηp + ηq
, (3.16)

where κ1, κ2, ℓ, R and K are given in (H2)(i), (2.3) and (2.6), respectively. Then,
for each

λ ∈ Λ :=

K|Ω|
p
p∗

pcpp∗
· ηp + ηq∫

B(x0,
R
2 )

F (x, η) dx

,
1

pcpp∗ |Ω|
p
N

· 1

κ1ξ1−p +
κ2

ℓ
ξℓ−p

 ,

problem (1.1) has at least two nontrivial bounded weak solutions uλ, vλ ∈ W 1,H
0 (Ω)

such that Iλ(uλ) < 0 < Iλ(vλ).

Proof. Let Φ and Ψ be as given in (3.1). First we see that Ψ and Φ fulfill all the
required regularity properties in Theorem 2.4. Indeed, Φ is coercive due to Propo-
sition 2.1(iv) and the functional Iλ is unbounded from below because of (H2)(ii).
Also we see that

inf
u∈W 1,H

0 (Ω)
Ψ(u) = Ψ(0) = Φ(0).

It is clear that the interval Λ is nonempty due to assumption (3.16). Hence, we
can fix λ ∈ Λ and we set

r =
1

p

|Ω|
p
p∗

cpp∗
ξp, (3.17)

where cp∗ is the best constant of the embedding W 1,p
0 (Ω) ↪→ Lp∗

(Ω). Next, we
define the function

ũ(x) =


0 if x ∈ Ω \B (x0, R) ,

2η

R
(R− |x− x0|) if B (x0, R) \B

(
x0,

R
2

)
,

η if x ∈ B
(
x0,

R
2

)
,

(3.18)

where x0 ∈ Ω is such that B(x0, R) ⊆ Ω, see (2.4). It is easy to see that ũ ∈
W 1,H

0 (Ω).
Step 1: 0 < Φ(ũ) < r
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Using the representations of ωR in (2.5) and R in (2.6) we obtain

Φ (ũ)

=
1

p
∥∇ũ∥pp +

1

q
∥∇ũ∥qq,µ

=
1

p

∫
B(x0,R)\B(x0,

R
2 )

(
2η

R

)p

dx+
1

q

∫
B(x0,R)\B(x0,

R
2 )

µ(x)

(
2η

R

)q

dx

≤
[
1

p

(
2η

R

)p

+
∥µ∥∞
q

(
2η

R

)q]
·

[
π

N
2 RN

Γ
(
1 + N

2

) − π
N
2

Γ
(
1 + N

2

) (R

2

)N
]

≤ 1

p
(ηp + ηq)ωR

2N − 1

2N−q
max

{
1

Rp
,
∥µ∥∞
Rq

}
≤ K|Ω|

p
p∗

pcpp∗
(ηp + ηq) .

(3.19)

From the definition of r and (3.19) we see that we have to show that

K (ηp + ηq) < ξp. (3.20)

Assume (3.20) is not true, so let us suppose that

K (ηp + ηq) ≥ ξp. (3.21)

From the growth condition of f in (H2)(i) we derive that∫
B(x0,

R
2 )

F (x, η) dx ≤
∫
B(x0,

R
2 )

(
κ1η +

κ2

ℓ
ηℓ
)
dx ≤

(
κ1η +

κ2

ℓ
ηℓ
)
|Ω|. (3.22)

Using (3.21) and (3.22) along with ξ > η we have that

κ1ξ
1−p +

κ2

ℓ
ξℓ−p =

κ1ξ +
κ2

ℓ ξℓ

ξp
≥

κ1ξ +
κ2

ℓ ξℓ

K (ηp + ηq)
≥

|Ω|
(
κ1η + κ2

ℓ ηℓ
)

K|Ω| (ηp + ηq)

≥

∫
B(x0,

R
2 )

F (x, η) dx

K|Ω| (ηp + ηq)
.

This is a contradiction to (3.16). Therefore, (3.20) holds, so we have shown that
0 < Φ(ũ) < r.

Step 2: We need to verify the validity of condition (2.9) for r and ũ defined in
(3.17) and (3.18), respectively.

The representation of r in (3.17) gives

ξ =

(
cpp∗pr

|Ω|
p
p∗

) 1
p

. (3.23)
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From the growth condition in (H2)(i), (2.2) and (3.23) we derive that

supu∈Φ−1(]−∞,r]) Ψ(u)

r

≤
supu∈Φ−1(]−∞,r])

(
κ1∥u∥1 + κ2

ℓ ∥u∥ℓℓ
)

r

≤
supu∈Φ−1(]−∞,r])

(
κ1cp∗ |Ω|

p∗−1
p∗ ∥∇u∥p + κ2

ℓ cℓp∗ |Ω|
p∗−ℓ
p∗ ∥∇u∥ℓp

)
r

≤
κ1cp∗ |Ω|

p∗−1
p∗ (pr)

1
p + κ2

ℓ cℓp∗ |Ω|
p∗−ℓ
p∗ (pr)

ℓ
p

r

= pcpp∗ |Ω|
p∗−p
p∗

κ1

(
cpp∗pr

|Ω|
p
p∗

) 1−p
p

+
κ2

ℓ

(
cpp∗pr

|Ω|
p
p∗

) ℓ−p
p


= pcpp∗ |Ω|

p
N

[
κ1ξ

1−p +
κ2

ℓ
ξℓ−p

]
.

(3.24)

On the other hand, using (3.15), we get that

Ψ (ũ) =

∫
Ω

F (x, ũ) dx

=

∫
B(x0,R)\B(x0,

R
2 )

F

(
x,

2η

R
(R− |x− x0|)

)
dx

+

∫
B(x0,

R
2 )

F (x, η) dx

≥
∫
B(x0,

R
2 )

F (x, η) dx.

(3.25)

Combining (3.24), (3.16), (3.19) and (3.25) gives

supu∈Φ−1(]−∞,r]) Ψ(u)

r
≤ pcpp∗ |Ω|

p
N

[
κ1ξ

1−p +
κ2

ℓ
ξℓ−p

]

< pcpp∗ |Ω|
p
N

 1

K|Ω|
·

∫
B(x0,

R
2 )

F (x, η) dx

ηp + ηq



=

∫
B(x0,

R
2 )

F (x, η) dx

K|Ω|
p
p∗

pcp
p∗

(ηp + ηq)

≤ Ψ(ũ)

Φ (ũ)
.

This proves Step 2.
From Steps 1 and 2 and Proposition 3.3 we see that all the conditions in Theorem

2.4 are satisfied and so we conclude that problem (1.1) has at least two nontrivial

weak solutions uλ, vλ ∈ W 1,H
0 (Ω) such that Iλ(uλ) < 0 < Iλ(vλ). From Gasiński-

Winkert [13, Theorem 3.1] we know that uλ, vλ ∈ L∞(Ω). □
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Let us now consider the special case when f is nonnegative and independent of
x. We suppose the following conditions:

(H3) f : R → R is a continuous function with f(s) ≥ 0 for all s ∈ R satisfying
the following conditions:
(i) there exist ℓ ∈ (q, p∗) and constants κ1, κ2 > 0 such that

f(s) ≤ κ1 + κ2|s|ℓ−1

for all s ∈ R;

(ii) if F (s) =
∫ s

0
f(t) dt, then

lim
s→∞

F (s)

sq
= +∞;

(iii) there exists

ζ ∈
(
(ℓ− p)

N

p
, p∗
)

such that

0 < ζ0 ≤ lim inf
s→∞

f(s)s− qF (s)

sζ
.

The next result is a consequence of Theorem 3.4.

Corollary 3.5. Let hypotheses (H1), (H3) be satisfied and let ξ, η > 0 be two
constants with ξ > η such that

κ1ξ
1−p +

κ2

ℓ
ξℓ−p <

ωR

2NK|Ω|
· F (η)

ηp + ηq
, (3.26)

where κ1, κ2, ℓ, R and K are given in (H3)(i), (2.3) and (2.6), respectively. Then,
for each

λ ∈ Λ1 :=

2NK|Ω|
p
p∗

ωRpc
p
p∗

· η
p + ηq

F (η)
,

1

pcpp∗ |Ω|
p
N

· 1

κ1ξ1−p +
κ2

ℓ
ξℓ−p

 ,

problem (1.1) has at least two nontrivial bounded weak solutions uλ, vλ ∈ W 1,H
0 (Ω)

such that Iλ(uλ) < 0 < Iλ(vλ) and uλ, vλ ≥ 0.

Proof. We are going to apply Theorem 3.4. First, we point out that, since f is
nonnegative, we have F (t) ≥ 0 for all t ∈ R. So (3.15) is satisfied. In addition, we
know that ∫

B(x0,
R
2 )

F (η) dx =
π

N
2

Γ
(
1 + N

2

) RN

2N
F (η) =

ωR

2N
F (η), (3.27)

see (2.5). From (3.27) and (3.26) we see that (3.16) is fulfilled as well. Then,
applying Theorem 3.4, for each

λ ∈ Λ1 =

2NK|Ω|
p
p∗

ωRpc
p
p∗

· η
p + ηq

F (η)
,

1

pcpp∗ |Ω|
p
N

· 1

κ1ξ1−p +
κ2

ℓ
ξℓ−p

 ,

problem (1.1) has at least two nontrivial bounded weak solutions uλ, vλ ∈ W 1,H
0 (Ω)

such that Iλ(uλ) < 0 < Iλ(vλ). Testing the corresponding weak formulation with
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−u−
λ ∈ W 1,H

0 (Ω) and −v−λ ∈ W 1,H
0 (Ω), respectively, shows that both are nonnega-

tive, so uλ, vλ ≥ 0. □

We get another result for nonnegative functions f : R → R.

Corollary 3.6. Let hypotheses (H1), (H3) be satisfied and suppose that

lim sup
t→0+

F (t)

tp
= +∞. (3.28)

Then, for each

λ ∈ Λ2 =

0, 1

pcpp∗ |Ω|
p
N

· supξ>0

1

κ1ξ1−p +
κ2

ℓ
ξℓ−p

 ,

problem (1.1) has at least two nonnegative, nontrivial bounded weak solutions uλ, vλ
∈ W 1,H

0 (Ω) such that Iλ(uλ) < 0 < Iλ(vλ).

Proof. Let λ ∈ Λ2 be fixed. Then we can find ξ > 0 such that

λ <
1

pcpp∗ |Ω|
p
N

· 1

κ1ξ1−p +
κ2

ℓ
ξℓ−p

.

On the other hand condition (3.28) implies that

lim sup
t→0+

F (t)

tp + tq
= +∞.

Hence, we can find a number η ∈ (0, ξ) such that

1

λ
<

ωRpc
p
p∗

2NK|Ω|
p
p∗

· F (η)

ηp + ηq
.

Then the assertion of the theorem follows from Corollary 3.5. □

Finally, we want to give a concrete example for a function which fits in our
setting.

Example 3.7. Let p = 3, N = 4 and q = 4, then 1 < p < N and p < q < p∗ = 12.

Let Ω = B
(
0, 3

1
8

)
⊂ R4. Then

∣∣∣B (0, 3 1
8

)∣∣∣ = 3
1
2

2
π2. We consider the function

f(t) = (1 + t)
3
[4 ln(1 + t) + 1] for t ≥ 0.

Then we have

F (s) =

∫ s

0

f(t) dt =

∫ s

0

(1 + t)
3
[4 ln(1 + t) + 1] dt = (1 + s)

4
ln(1 + s).

For each

λ ∈

]
0,

2 · 5 1
4 · π 3

4

36

[
,

the problem

−div
(
|∇u|p−2∇u+

√
x2 + y2 + z2 + w2|∇u|q−2∇u

)
= λf(u) in Ω,

u = 0 on ∂Ω,

admits at least two nonnegative, nontrivial bounded weak solutions.
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Indeed, if we put κ1 = 15, κ2 = 20, ℓ = 5 and ξ =
(
15
4

) 1
4 we observe that (H3)

and (3.28) are satisfied. Moreover, due to Talenti [23], one has that

cp∗ ≤ π− 1
2 4−

1
3 2

2
3

(
Γ(3)Γ(4)

Γ
(
4
3

)
Γ
(
11
3

)) 1
4

=

(
3

11
2

23 · 5 · π3

) 1
4

,

This gives
1

pcpp∗ |Ω|
p
N

sup
ξ>0

1

k1ξ1−p +
k2
l
ξl−p

=
2 · 5 1

4 · π 3
4

36
.

Then, the assertion follows from Corollary 3.6.
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