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Abstract. In this paper, we investigate the inverse problem of identification of a discontinuous
parameter and a discontinuous boundary datum to an elliptic inclusion problem involving a double

phase differential operator, a multivalued convection term (a multivalued reaction term depending

on the gradient), a multivalued boundary condition and an obstacle constraint. First, we apply a
surjectivity theorem for multivalued mappings which is formulated by the sum of a maximal monotone

multivalued operator and a multivalued pseudomonotone mapping to examine the existence of a
nontrivial solution to the double phase obstacle problem, which exactly relies on the first eigenvalue

of the Steklov eigenvalue problem for the p-Laplacian. Then, a nonlinear inverse problem driven by

the double phase obstacle equation is considered. Finally, by introducing the parameter-to-solution-
map, we establish a continuous result of Kuratowski type and prove the solvability of the inverse

problem.

1. Introduction

The aim of this paper is to study an inverse problem to an elliptic differential inclusion problem
involving a double phase differential operator, a multivalued convection term (dependence on the
gradient of the solution), a multivalued boundary condition and an obstacle constraint. To this end,
let Ω be a bounded domain in RN (N ≥ 2) with Lipschitz boundary Γ := ∂Ω such that Γ is divided
into three mutually disjoint parts Γ1, Γ2, and Γ3 with Γ1 having positive Lebesgue measure. We study
the problem

− div
(
a(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ g(x, u) + µ(x)|u|q−2u ∈ f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
= h(x) on Γ2,

∂u

∂νa
∈ U(x, u) on Γ3,

u(x) ≤ Φ(x) in Ω,

(1.1)

where 1 < p < N , p < q, µ : Ω→ [0,∞) is a bounded function,

∂u

∂νa
:=
(
a(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ν,

with ν being the outward unit normal vector on Γ, f : Ω×R×RN → 2R and U : Γ3×R→ 2R are two
given multivalued functions, Φ: Ω → R is an obstacle function and a : Ω → (0,+∞), h : Γ2 → R are
two possibly discontinuous parameters.

The main contribution of the paper is twofold. The first intention of the paper is to establish the
nonemptiness, boundedness and closedness of the solution set to problem (1.1) (in the weak sense), in
which our main methods are based on a surjectivity theorem for multivalued mappings which is for-
mulated by the sum of a maximal monotone multivalued operator and a multivalued pseudomonotone
mapping, the theory of nonsmooth analysis and the properties of the Steklov eigenvalue problem for
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the p-Laplacian. The second contribution of the paper is to develop a general framework for studying
the inverse problem under consideration and to establish the solvability for such inverse problems. To
the best of our knowledge, this is the first work studying the identification of discontinuous parame-
ters for such general nonlinear elliptic equations. The problem under consideration combines several
interesting phenomena such as double phase operators, multivalued right-hand sides, mixed boundary
conditions and obstacle constraints.

First we point out that, motivated by several applications, the inverse problem of parameter iden-
tification in partial differential equations is an important field in mathematics and even though such
problems in form of equations and inequalities have been studied a lot, there are still several open
problems to be solved. Our work is motivated by the paper of Migórski-Khan-Zeng [39] who studied
the inverse problem of mixed quasi-variational inequalities of the form

〈T (a, u), v − u〉+ ϕ(v)− ϕ(u) ≥ 〈m, v − u〉 for all v ∈ K(u),

where K : C → 2C is a set-valued map, T : B × V → V ∗ is a nonlinear map, ϕ : V → R ∪ {+∞} is a
functional and m ∈ V ∗, while V is a real reflexive Banach space, B is another Banach space and C is a
nonempty, closed, convex subset of V . Their abstract result applies to p-Laplacian inequalities, see also
[38] for hemivariational inequalities. We also mention the works of Clason-Khan-Sama-Tammer [10]
for noncoercive variational problems, Gwinner [27] for variational inequalities of second kind, Gwinner-
Jadamba-Khan-Sama [28] for an optimization setting and Migórski-Ochal [40] for nonlinear parabolic
problems, see also the references therein. In addition we refer to the recent work of Papageorgiou-Vetro
[45] about existence and relaxation theorems for different types of problems which can be applied to
variational inequalities and control systems.

A second interesting phenomenon is the occurrence of the weighted double phase operator, namely,

div
(
a(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
for u ∈W 1,H(Ω). (1.2)

For a ≡ 1, this operator corresponds to the energy functional given by∫
Ω

(
|∇u|p + µ(x)|∇u|q

)
dx. (1.3)

Functionals of the form (1.3) have been initially introduced by Zhikov [56] in 1986 in order to describe
models for strongly anisotropic materials and it also turned out its relevance in the study of duality
theory as well as in the context of the Lavrentiev phenomenon, see Zhikov [57]. Observe that the
energy density in (1.3) changes its ellipticity and growth properties according to the point in the
domain. In general, double phase differential operators and corresponding energy functionals interpret
various comprehensive natural phenomena, and model several problems in Mechanics, Physics and
Engineering Sciences. For example, in the elasticity theory, the modulating coefficient µ(·) dictates
the geometry of composites made of two different materials with distinct power hardening exponents
p and q, see Zhikov [58]. Functionals given in (1.3) have been intensively studied in the last years
concerning regularity of local minimizers. We mention the famous works of Baroni-Colombo-Mingione
[2, 3], Byun-Oh [7], Colombo-Mingione [12, 13], Marcellini [36, 37] and Ragusa-Tachikawa [49].

A third interesting phenomenon is not only the multivalued right-hand side which is motivated by
several physical applications (see, for example, Panagiotopoulos [42, 43], Carl-Le [8] and the refer-
ences therein) but also its dependence on the gradient of the solutions often called convection term.
The main difficulty in the study of gradient dependent right-hand sides is their nonvariational char-
acter, that is, the standard variational tools to corresponding energy functionals are not applica-
ble. In the past years several interesting works has been published with convection terms, we refer
to the papers of El Manouni-Marino-Winkert [16], Faraci-Motreanu-Puglisi [17], Faraci-Puglisi [18],
Figueiredo-Madeira [20], Gasiński-Papageorgiou [23], Liu-Motreanu-Zeng [32], Liu-Papageorgiou [33],
Marano-Winkert [35], Papageorgiou-Rădulescu-Repovš [44] and Zeng-Papageorgiou [55].

Finally, we mention some existence results on the recent topic of double phase operators published
within the last years. We refer to Bahrouni-Rădulescu-Winkert [1], Benslimane-Aberqi-Bennouna
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[4], Biagi-Esposito-Vecchi [5], Colasuonno-Squassina [11], Fiscella [21], Farkas-Winkert [19], Gasiński-
Papageorgiou [22], Gasiński-Winkert [24, 25, 26], Liu-Dai [31], Liu-Winkert [34], Papageorgiou-Vetro-
Vetro [46], Perera-Squassina [48], Stegliński [51] and Zeng-Bai-Gasiński-Winkert [52, 53, 54].

The paper is organized as follows. Section 2 recalls preliminary material including Musielak-Orlicz
Lebesgue and Musielak-Orlicz Sobolev spaces, the p-Laplacian eigenvalue problem with Steklov bound-
ary condition, pseudomonotone operators and a surjectivity theorem for multivalued mappings. Under
very general assumptions on the data, Section 3 proves the nonemptiness and compactness of the so-
lution set to problem (1.1). In Section 4, we present a new existence result to the inverse problem of
(1.1).

2. Preliminaries

The section is devoted to recall some basic definitions and preliminaries which will be used in the
next sections to derive the main results of the paper. To this end, let Ω ⊂ RN be a bounded domain
with Lipschitz boundary Γ := ∂Ω such that Γ is decomposed into three mutually disjoint parts Γ1, Γ2

and Γ3 with Γ1 having positive Lebesgue measure. In what follows, we denote by M(Ω) the space of all
measurable functions u : Ω → R. As usual, we identify two functions which differ on a Lebesgue-null
set. Let r ∈ [1,∞) and D be a nonempty subset of Ω. We denote the usual Lebesgue spaces by
Lr(D) := Lr(D;R) and Lr(D;RN ) equipped with the standard r-norm ‖ · ‖r,D and Lr(Γ) stands for
the boundary Lebesgue spaces with norm ‖ · ‖r,Γ.

Let Lr(D)+ := {u ∈ Lr(D) : u(x) ≥ 0 for a. a.x ∈ Ω} . By W 1,r(Ω) we define the corresponding
Sobolev space endowed with the norm ‖ · ‖1,r,Ω given by

‖u‖1,r,Ω := ‖u‖r,Ω + ‖∇u‖r,Ω for all u ∈W 1,r(Ω).

For any fixed s > 1, the conjugate of s is defined by s′ > 1 such that 1
s + 1

s′ = 1. Moreover, we use
the symbols s∗ and s∗ to represent the critical exponents to s in the domain and on the boundary,
respectively, given by

s∗ =

{
Ns
N−s if s < N,

+∞ if s ≥ N,
and s∗ =

{
(N−1)s
N−s if s < N,

+∞ if s ≥ N.
(2.1)

Let us comment on the r-Laplacian eigenvalue problem with Steklov boundary condition given by

−∆ru = −|u|r−2u in Ω,

|u|r−2u · ν = λ|u|r−2u on Γ,
(2.2)

for 1 < r < ∞. From Lê [30] we know that (2.2) has a smallest eigenvalue λS1,r > 0 which is isolated

and simple. Besides, we know that λS1,r > 0 can be characterized by

λS1,r = inf
u∈W 1,r(Ω)\{0}

‖∇u‖rr,Ω + ‖u‖rr,Ω
‖u‖rr,Γ

. (2.3)

The following assumptions are supposed in the entire paper:

1 < p < N, p < q < p∗ and 0 ≤ µ(·) ∈ L∞(Ω). (2.4)

Now we define the nonlinear function H : Ω× [0,∞)→ [0,∞) given by

H(x, t) = tp + µ(x)tq for all (x, t) ∈ Ω× [0,∞).

Then, the Musielak-Orlicz Lebesgue space LH(Ω) driven by the function H is given by

LH(Ω) = {u ∈M(Ω) : ρH(u) < +∞}

equipped with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1
}
.
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Here, the modular function is given by

ρH(u) :=

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p + µ(x)|u|q

)
dx.

We know that LH(Ω) is uniformly convex and so a reflexive Banach space. Moreover, we introduce
the seminormed space Lqµ(Ω)

Lqµ(Ω) =

{
u ∈M(Ω) :

∫
Ω

µ(x)|u|q dx < +∞
}

endowed with the seminorm

‖u‖q,µ =

(∫
Ω

µ(x)|u|q dx

) 1
q

.

The Musielak-Orlicz Sobolev space W 1,H(Ω) is given by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. As before, it is known that W 1,H(Ω) is a reflexive Banach space.
Next, we introduce a closed subspace V of W 1,H(Ω) given by

V :=
{
u ∈W 1,H(Ω) : u = 0 on Γ1

}
endowed with the norm ‖u‖V = ‖u‖1,H for all u ∈ V . Of course, V is also a reflexive Banach space.
In the following we denote the norm of the dual space V ∗ of V by ‖ · ‖V ∗ .

Let us recall some embedding results for the spaces LH(Ω) and W 1,H(Ω), see Gasiński-Winkert [26]
or Crespo-Blanco-Gasiński-Harjulehto-Winkert [14].

Proposition 2.1. Let (2.4) be satisfied and denote by p∗, p∗ the critical exponents to p as given in
(2.1) for s = p.

(i) LH(Ω) ↪→ Lr(Ω) and W 1,H(Ω) ↪→W 1,r(Ω) are continuous for all r ∈ [1, p];
(ii) W 1,H(Ω) ↪→ Lr(Ω) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);
(iii) W 1,H(Ω) ↪→ Lr(Γ) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);
(iv) LH(Ω) ↪→ Lqµ(Ω) is continuous;

(v) Lq(Ω) ↪→ LH(Ω) is continuous.

We point out that if we replace the space W 1,H(Ω) by V in Proposition 2.1, then the embeddings
(ii) and (iii) remain valid.

The following proposition is due to Liu-Dai [31, Proposition 2.1].

Proposition 2.2. Let (2.4) be satisfied and let y ∈ LH(Ω). Then the following hold:

(i) if y 6= 0, then ‖y‖H = λ if and only if ρH
(
y
λ

)
= 1;

(ii) ‖y‖H < 1 (resp. > 1 and = 1) if and only if ρH(y) < 1 (resp. > 1 and = 1);
(iii) if ‖y‖H < 1, then ‖y‖qH ≤ ρH(y) ≤ ‖y‖pH;
(iv) if ‖y‖H > 1, then ‖y‖pH ≤ ρH(y) ≤ ‖y‖qH;
(v) ‖y‖H → 0 if and only if ρH(y)→ 0;
(vi) ‖y‖H → +∞ if and only if ρH(y)→ +∞.

We suppose that

a ∈ L∞(Ω) such that inf
x∈Ω

a(x) > 0. (2.5)
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Next, we introduce the nonlinear operator F : V → V ∗ given by

〈F (u), v〉 :=

∫
Ω

(
a(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx

+

∫
Ω

(
|u|p−2u+ µ(x)|u|q−2u

)
v dx,

(2.6)

for u, v ∈ V with 〈·, ·〉 being the duality pairing between V and its dual space V ∗. The following
proposition states the main properties of F : V → V ∗. We refer to Liu-Dai [31, Proposition 3.1] or
Crespo-Blanco-Gasiński-Harjulehto-Winkert [14, Proposition 3.4] for its proof.

Proposition 2.3. Let the hypotheses (2.4) and (2.5) be satisfied. Then, the operator F defined by
(2.6) is bounded, continuous, monotone (hence maximal monotone) and of type (S+), that is,

un
w−→ u in V and lim sup

n→∞
〈Fun, un − u〉 ≤ 0,

imply un → u in V .

We now recall some notions and results concerning nonsmooth analysis and multivalued analysis.

Throughout the paper the symbols ”
w−→ ” and ”→” stand for the weak and the strong convergence, re-

spectively, in various spaces. Moreover, let us recall the notions of pseudomonotonicity and generalized
pseudomonotonicity in the sense of Brézis for multivalued operators (see, e.g., Migórski-Ochal-Sofonea
[41, Definition 3.57]) which will be useful in the sequel.

Definition 2.4. Let X be a reflexive real Banach space. The operator A : X → 2X
∗

is called

(a) pseudomonotone (in the sense of Brézis) if the following conditions hold:
(i) the set A(u) is nonempty, bounded, closed and convex for all u ∈ X;
(ii) A is upper semicontinuous from each finite-dimensional subspace of X to the weak topology

on X∗;

(iii) if {un} ⊂ X with un
w−→ u in X and u∗n ∈ A(un) are such that

lim sup
n→∞

〈u∗n, un − u〉X∗×X ≤ 0,

then to each element v ∈ X, there exists u∗(v) ∈ A(u) with

〈u∗(v), u− v〉X∗×X ≤ lim inf
n→∞

〈u∗n, un − v〉X∗×X .

(b) generalized pseudomonotone (in the sense of Brézis) if the following holds: Let {un} ⊂ X and

{u∗n} ⊂ X∗ with u∗n ∈ A(un). If un
w−→ u in X and u∗n

w−→ u∗ in X∗ and

lim sup
n→∞

〈u∗n, un − u〉X∗×X ≤ 0,

then the element u∗ lies in A(u) and

〈u∗n, un〉X∗×X → 〈u
∗, u〉X∗×X .

It is not difficult to see that every pseudomonotone operator is generalized pseudomonotone, see,
e.g., Carl-Le-Motreanu [9, Proposition 2.122]. Also, under an additional assumption of boundedness,
we obtain the converse statement, see, e.g., Carl-Le-Motreanu [9, Proposition 2.123].

Proposition 2.5. Let X be a reflexive real Banach space and assume that A : X → 2X
∗

satisfies the
following conditions:

(i) for each u ∈ X we have that A(u) is a nonempty, closed and convex subset of X∗.
(ii) A : X → 2X

∗
is bounded.

(iii) A is generalized pseudomonotone, i.e., if un
w−→ u in X and u∗n

w−→ u∗ in X∗ with
u∗n ∈ A(un) and

lim sup
n→∞

〈u∗n, un − u〉X∗×X ≤ 0,
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then u∗ ∈ A(u) and

〈u∗n, un〉X∗×X → 〈u
∗, u〉X∗×X .

Then the operator A : X → 2X
∗

is pseudomonotone.

Let us now recall the definition of Kuratowski limits, see, for example, Papageorgiou-Winkert [47,
Definition 6.7.4].

Definition 2.6. Let (X, τ) be a Hausdorff topological space and let {An}n∈N ⊂ 2X be a sequence of
sets. We define the τ -Kuratowski lower limit of the sets An by

τ - lim inf
n→∞

An :=
{
x ∈ X : x = τ - lim

n→∞
xn, xn ∈ An for all n ≥ 1

}
,

and the τ -Kuratowski upper limit of the sets An

τ - lim sup
n→∞

An :=

{
x ∈ X : x = τ - lim

k→∞
xnk , xnk ∈ Ank , n1 < n2 < . . . < nk < . . .

}
.

If

A = τ - lim inf
n→∞

An = τ - lim sup
n→∞

An,

then A is called τ -Kuratowski limit of the sets An.

Finally, we recall the following surjectivity theorem for multivalued mappings which is formulated
by the sum of a maximal monotone multivalued operator and a bounded multivalued pseudomonotone
mapping, see Le [29, Theorem 2.2].

Theorem 2.7. Let X be a real reflexive Banach space, let G : D(G) ⊂ X → 2X
∗

be a maximal
monotone operator, let F : D(F) = X → 2X

∗
be a bounded multivalued pseudomonotone operator, let

L ∈ X∗ and let BR(0) := {u ∈ X : ‖u‖X < R}. Assume that there exist u0 ∈ X and R ≥ ‖u0‖X such
that D(G) ∩BR(0) 6= ∅ and

〈ξ + η − L, u− u0〉X∗×X > 0 (2.7)

for all u ∈ D(G) with ‖u‖X = R, for all ξ ∈ G(u) and for all η ∈ F(u). Then the inclusion

F(u) + G(u) 3 L

has a solution in D(G).

Obviously, if

lim
‖u‖X→+∞
u∈D(G)

〈ξ + η, u− u0〉X∗×X
‖u‖X

= +∞, (2.8)

is satisfied, then the estimate in (2.7) holds automatically for some R large enough.

3. Double phase elliptic obstacle inclusion problem

In this section, we are interested in the study of the existence of a solution to the double phase
elliptic obstacle inclusion problem (1.1) and in deriving some relevant properties of the solution set to
problem (1.1). More precisely, we are going to apply a surjectivity theorem for multivalued mappings,
which is formulated by the sum of a maximal monotone multivalued operator and a multivalued
pseudomonotone operator, to examine the solvability of problem (1.1).

First, we formulate the hypotheses on the data of problem (1.1).

H(f): The multivalued convection mapping f : Ω × R × RN → 2R has nonempty, bounded, closed
and convex values and

(i) the multivalued mapping x 7→ f(x, s, ξ) is measurable in Ω for all (s, ξ) ∈ R× RN ;
(ii) the multivalued mapping (s, ξ) 7→ f(x, s, ξ) is upper semicontinuous for a. a.x ∈ Ω;
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(iii) there exist αf ∈ L
r
r−1 (Ω)+ and af , bf ≥ 0 such that

|η| ≤ af |ξ|
p(r−1)
r + bf |s|r−1 + αf (x),

for all η ∈ f(x, s, ξ), for all s ∈ R, for all ξ ∈ RN and for a. a.x ∈ Ω, where 1 < r < p∗

with the critical exponent p∗ in the domain Ω given in (2.1) for s = p;
(iv) there exist βf ∈ L1(Ω)+ and constants cf , df ≥ 0 such that

ηs ≤ cf |ξ|p + df |s|p + βf (x),

for all η ∈ f(x, s, ξ), for all s ∈ R, for all ξ ∈ RN and for a. a.x ∈ Ω.

H(g): The function g : Ω× R→ R is such that
(i) for all s ∈ R, the function x 7→ g(x, s) is measurable;
(ii) for a. a.x ∈ Ω, the function s 7→ g(x, s) is continuous;
(iii) there exist ag > 0 and bg ∈ L1(Ω) such that

g(x, s)s ≥ ag|s|ς − bg(x),

for all s ∈ R and for a. a.x ∈ Ω, where p < ς < p∗;
(iv) for any u, v ∈ Lp∗(Ω), the function x 7→ g(x, u(x))v(x) belongs to L1(Ω).

H(Φ): The function Φ: Ω→ [0,∞) is measurable, that is, Φ ∈M(Ω).

H(U): U : Γ3 × R→ 2R satisfies the following conditions:
(i) U(x, s) is a nonempty, bounded, closed and convex set in R for a. a.x ∈ Γ3 and for all

s ∈ R;
(ii) x 7→ U(x, s) is measurable on Γ3 for all s ∈ R;
(iii) s 7→ U(x, s) is u.s.c.;

(iv) there exist αU ∈ Lδ
′
(Γ3)+ and aU ≥ 0 such that

|U(x, s)| ≤ αU (x) + aU |s|δ−1

for a. a.x ∈ Γ3 and for all s ∈ R, where 1 < δ < p∗ with the critical exponent p∗ on the
boundary Γ given in (2.1);

(v) there exist βU ∈ L1(Γ3)+ and bU ≥ 0 such that

ξs ≤ bU |s|p + βU (x)

for all ξ ∈ U(x, s), for all s ∈ R and for a. a.x ∈ Γ3.

H(0): a ∈ L∞(Ω) is such that infx∈Ω a(x) ≥ cΛ > 0 and h ∈ Lp′(Γ2).

H(1): The inequality holds

cΛ − cf − bU
(
λS1,p

)−1
> 0,

where λS1,p is the first eigenvalue of the p-Laplacian with Steklov boundary condition, see (2.2)
and (2.3).

Remark 3.1. It should be mentioned that if hypotheses H(f)(iv) and H(U)(v) are replaced by the
following conditions

H(f)(iv)’: there exist βf ∈ L1(Ω)+ and constants cf , df ≥ 0 such that

ηs ≤ cf |ξ|%1 + df |s|p + βf (x)

for all η ∈ f(x, s, ξ), for all s ∈ R, for all ξ ∈ RN and for a. a.x ∈ Ω, where 1 < %1 < p;
H(U)(v)’: there exist βU ∈ L1(Γ3)+ and bU ≥ 0 such that

ξs ≤ bU |s|%2 + βU (x)

for all ξ ∈ U(x, s), for all s ∈ R and for a. a.x ∈ Γ3, where 1 < %2 < p,
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then hypothesis H(1) can be removed. Indeed, it follows from Young’s inequality with ε > 0 that

ηs ≤ cf |ξ|%1 + df |s|p + βf (y) ≤ ε|ξ|p + c1(ε) + df |s|p + βf (y)

ξs ≤ bU |s|%2 + βU (x) ≤ ε|s|p + c2(ε) + βU (x)

for all η ∈ f(y, s, ξ), for all ξ ∈ U(x, s), for all s ∈ R, for all ξ ∈ RN , for a. a. y ∈ Ω and for

a. a.x ∈ Γ3 with some c1(ε), c2(ε) > 0. If we choose ε ∈
(

0, cΛ

1+(λS1,p)
−1

)
, then the inequality in H(1)

holds automatically.

Let K be a subset of V given by

K := {v ∈ V : v ≤ Φ in Ω} . (3.1)

Under H(Φ) we see that the set K is a nonempty, closed and convex subset of V . In fact, from H(Φ)
(that is, Φ(x) ≥ 0 for a. a.x ∈ Ω), we know that 0 ∈ K, i. e., K 6= ∅. Furthermore, it is clear that K
is convex. For the closedness, let {un}n∈N ⊂ K be a sequence such that un → u in V for some u ∈ V .
The continuity of V into Lp(Ω) implies that un → u in Lp(Ω). Passing to a subsequence if necessary,
we may suppose that un(x)→ u(x) for a. a.x ∈ Ω. Therefore,

Φ(x) ≥ lim
n→∞

un(x) = u(x) for a. a.x ∈ Ω.

Hence, u ∈ K and so K is closed.
Next, we state the definition of a weak solution to problem (1.1).

Definition 3.2. A function u ∈ K is said to be a weak solution of problem (1.1), if there exist

functions η ∈ Lr′(Ω) and ξ ∈ Lδ′(Γ3) with η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω, ξ(x) ∈ U(x, u(x))
for a. a.x ∈ Γ3 and the equality∫

Ω

(
a(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇(v − u) dx

+

∫
Ω

g(x, u)(v − u) dx+

∫
Ω

µ(x)|u|q−2u(v − u) dx

≥
∫

Ω

η(x)(v − u) dx+

∫
Γ2

h(x)(v − u) dΓ +

∫
Γ3

ξ(x)(v − u) dΓ

is satisfied for all v ∈ K, where the set K is defined by (3.1).

The following theorem which is the main result in this section shows that for each pair (a, h) ∈
L∞(Ω)+×Lp

′
(Γ2) satisfying H(0), the solution set to problem (1.1), denoted by S(a, h), is nonempty,

bounded, and weakly closed.

Theorem 3.3. Let the hypotheses (2.4), H(f), H(g), H(Φ), H(U), H(0) and H(1) be satisfied. Then,
the solution set of problem (1.1) is nonempty, bounded and weakly closed (hence, weakly compact).

Proof. We divide the proof into three parts.
I Existence:
First, we consider the following nonlinear functions F : V → V ∗, G : V ⊂ Lς(Ω) → Lς

′
(Ω) and

L : Lp(Ω)→ Lp
′
(Ω) defined by

〈Fu, v〉 :=

∫
Ω

(
a(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx

+

∫
Ω

(
|u|p−2u+ µ(x)|u|q−2u

)
v dx,

〈Gu,w〉Lς′ (Ω)×Lς(Ω) :=

∫
Ω

g(x, u)w dx

〈Ly, z〉Lp′ (Ω)×Lp(Ω) :=

∫
Ω

|y|p−2yz dx
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for all u, v ∈ V , for all w ∈ Lς(Ω) and for all y, z ∈ Lp(Ω).
Let u ∈ V be fixed. By the Yankov-von Neumann-Aumann selection theorem (see e. g. Papageor-

giou-Winkert [47, Theorem 2.7.25]) and assumptions H(f)(i) and (ii), we know that the multivalued
function x 7→ f(x, u(x),∇u(x)) admits a measurable selection. Let η : Ω→ R be a measurable selection
of x 7→ f(x, u(x),∇u(x)), that is, η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω. From H(f)(iii) and the
inequality

(|r1|+ |r2|)s ≤ 2s−1 (|r1|s + |r2|s) for all r1, r2 ∈ R with s ≥ 1,

it follows that there exist constants M1,M2 > 0 satisfying∫
Ω

|η(x)|r
′
dx ≤

∫
Ω

(
af |∇u|

p
r′ + bf |u|r−1 + αf (x)

)r′
dx

≤M1

∫
Ω

(
|∇u|p + |u|r + αf (x)r

′
)

dx

= M1

(
‖∇u‖pp,Ω + ‖u‖rr,Ω + ‖αf‖r

′

r′,Ω

)
≤M2

(
‖u‖pV + ‖u‖rV + ‖αf‖r

′

r′,Ω

)
,

(3.2)

where we have used the fact that the embeddings of V into W 1,p(Ω) and of V into Lr(Ω) are continuous.

Hence, η ∈ Lr′(Ω). This permits us to consider the Nemytskij operator Nf : V ⊂ Lr(Ω) → 2L
r′ (Ω)

associated to the multivalued mapping f defined by

Nf (u) :=
{
η ∈ Lr

′
(Ω) : η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω

}
for all u ∈ V . Similarly, because of hypotheses H(U)(i), (ii) and (iii), for each u ∈ Lδ(Γ3) fixed, we are
able to find a measurable function ξ : Γ3 → R satisfying ξ(x) ∈ U(x, u(x)) for a. a.x ∈ Γ3 and

‖ξ‖δ
′

δ′,Γ3
=

∫
Γ3

|ξ(x)|δ
′
dΓ

≤
∫

Γ3

(
αU (x) + aU |u|δ−1

)δ′
dΓ

≤M3

∫
Γ3

(
αU (x)δ

′
+ |u|δ

)
dΓ

= M3

(
‖αU‖δ

′

δ′,Γ3
+ ‖u‖δδ,Γ3

)
(3.3)

for some M3 > 0. Therefore, in what follows, we denote by NU : Lδ(Γ3) → 2L
δ′ (Γ3) the Nemytskij

operator corresponding to the multivalued mapping U defined by

NU (u) :=
{
η ∈ Lδ

′
(Γ3) : η(x) ∈ U(x, u(x)) for a. a.x ∈ Γ3

}
for all u ∈ Lδ(Γ3).

Let ι : V → Lr(Ω), ω : V → Lς(Ω) and β : V → Lp(Ω) be the embedding operators of V to Lr(Ω), V

to Lς(Ω) and V to Lp(Ω), respectively, with its adjoint operators ι∗ : Lr
′
(Ω)→ V ∗, ω∗ : Lς

′
(Ω)→ V ∗

and β∗ : Lp
′
(Ω) → V ∗, respectively. Also, we denote by γ : V → Lδ(Γ3) the trace operator of V into

Lδ(Γ3) with its adjoint operator γ∗ : Lδ
′
(Γ3) → V ∗. Consider the indicator function of the set K

formulated as

IK(u) :=

{
0 if u ∈ K,
+∞ if u 6∈ K.

Under the definitions above, we could use a standard procedure for variation calculus to obtain that
u ∈ K is a weak solution of problem (1.1) if and only if it solves the following nonlinear inclusion
problem:

Fu+ ω∗Gu− β∗Lu− ι∗Nf (u)− γ∗NU (u) + ∂cIK(u) 3 h in V ∗,
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where ∂cIK is the convex subdifferential operator of IK .
Observe that the functions F , G and L are bounded. The latter combined with (3.2), (3.3) and

hypotheses H(f) and H(U) implies that for each u ∈ V the set

H(u) := Fu+ ω∗Gu− β∗Lu− ι∗Nf (u)− γ∗NU (u)

is nonempty, bounded, closed and convex. We show that H is a pseudomonotone operator. Let
{un}n∈N ⊂ V , {ζn}n∈N ⊂ V ∗ be sequences and let (u, ζ) ∈ V × V ∗ be such that

ζn ∈ H(un) for each n ∈ N, ζn
w−→ ζ and lim sup

n→∞
〈ζn, un − u〉 ≤ 0. (3.4)

Then, for every n ∈ N, there are ηn ∈ Nf (un) and ξn ∈ NU (un) such that

ζn = Fun + ω∗Gun − β∗Lun − ι∗ηn − γ∗ξn for all n ∈ N.

Taking (3.2) and (3.3) into account, we can see that the sequences {ηn}n∈N ⊂ Lr
′
(Ω) and {ξn}n∈N ⊂

Lδ
′
(Γ3) are both bounded. Without any loss of generality, we may assume that there exist functions

(η, ξ) ∈ Lr′(Ω)× Lδ′(Γ3) such that

ηn
w−→ η in Lr

′
(Ω) and ξn

w−→ ξ in Lδ
′
(Γ3).

Recall that V is embedded compactly into Lς(Ω), Lr(Ω) and Lp(Ω), respectively, and γ : V → Lδ(Γ3)
is compact. Using this we have

lim
n→∞

〈ω∗Gun, un − u〉 = lim
n→∞

〈Gun, ω(un − u)〉Lς′ (Ω)×Lς(Ω) = 0,

lim
n→∞

〈β∗Lun, un − u〉 = lim
n→∞

〈Lun, β(un − u)〉Lp′ (Ω)×Lp(Ω) = 0,

lim
n→∞

〈ι∗ηn, un − u〉 = lim
n→∞

〈ηn, ι(un − u)〉Lr′ (Ω)×Lr(Ω) = 0,

lim
n→∞

〈γ∗ξn, un − u〉 = lim
n→∞

〈ξn, γ(un − u)〉Lδ′ (Γ3)×Lδ(Γ3) = 0.

(3.5)

Inserting (3.5) into the inequality in (3.4) yields

0 ≥ lim sup
n→∞

〈ζn, un − u〉

≥ lim sup
n→∞

〈Fun, un − u〉+ lim inf
n→∞

〈ω∗Gun, un − u〉 − lim sup
n→∞

〈β∗Lun, u− un〉

+ lim inf
n→∞

〈ι∗ηn, u− un〉+ lim inf
n→∞

〈γ∗ξn, u− un〉

≥ lim sup
n→∞

〈Fun, un − u〉.

From Proposition 2.3 we know that F is of type (S+). Therefore,

un → u in V.

Passing to a subsequence if necessary, we may assume that

un(x)→ u(x) and ∇un(x)→ ∇u(x) for a. a.x ∈ Ω. (3.6)

Applying Mazur’s Theorem there exists a sequence {χn}n∈N of convex combinations to {ηn}n∈N sat-
isfying

χn → η in Lr
′
(Ω).

Therefore, we can suppose that χn(x)→ η(x) for a. a.x ∈ Ω. Due to the convexity of f we see that

χn(x) ∈ f(x, un(x),∇un(x)) for a. a.x ∈ Ω.

Recall that f is u.s.c. and has nonempty, bounded, closed and convex values (see hypotheses H(f)(i)
and (ii)). So, we can use Proposition 4.1.9 of Denkowski-Migórski-Papageorgiou [15] to infer that the
graph of (s, ξ) 7→ f(x, s, ξ) is closed for a. a.x ∈ Ω. Taking the convergence properties in (3.6) and
χn(x)→ η(x) for a. a.x ∈ Ω into account, we obtain

η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω.
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This shows that η ∈ Nf (u). Applying the same arguments as we did before, we conclude that ξ ∈
NU (u). Recall that F , G and L are continuous. So we can use the the convergence (3.4) in order to
get

ζn = Fun + ω∗Gun − β∗Lun − ι∗ηn − γ∗ξn
w−→ Fu+ ω∗Gu− β∗Lu− ι∗η − γ∗ξ = ζ in V ∗.

This implies that ζ ∈ H(u). Hence, we have

lim
n→∞

〈ζn, un〉

= lim
n→∞

〈Fun + ω∗Gun − β∗Lun − ι∗ηn − γ∗ξn, un〉

= lim
n→∞

〈Fun + ω∗Gun − β∗Lun, un〉 − lim
n→∞

〈ηn, ιun〉Lr′ (Ω)×Lr(Ω) − lim
n→∞

〈ξn, γun〉Lδ′ (Γ3)×Lδ(Γ3)

= 〈Fu+ ω∗Gu− β∗Lu− ι∗η − γ∗ξ, u〉 = 〈ζ, u〉.

This shows that H is a generalized pseudomonotone operator. Employing Proposition 2.5, we conclude
that H is pseudomonotone.

Next, we show the coercivity of H . To this end, we introduce a subspace W of W 1,p(Ω) defined by

W :=
{
u ∈W 1,p(Ω) : u = 0 on Γ1

}
. (3.7)

Because Γ1 has positive measure, it is not difficult to prove that W endowed with the norm

‖u‖W := ‖∇u‖p,Ω for all u ∈W

is a reflexive and separable Banach space. Moreover, since the embedding of V into W is continuous,
there exists a constant CVW > 0 such that

‖u‖W ≤ CVW ‖u‖V for all u ∈ V.

Let u ∈ V and ζ ∈ H(u) be arbitrary. Then, we can find functions η ∈ Nf (u) and ξ ∈ NU (u) such
that ζ = Fu+ ω∗Gu− β∗Lu− ι∗η − γ∗ξ and

〈ζ, u〉 = 〈Fu, u〉+ 〈ω∗Gu− β∗Lu, u〉 − 〈η, u〉Lr′ (Ω)×Lr(Ω) − 〈ξ, u〉Lδ′ (Γ3)×Lδ(Γ3)

≥ cΛ‖∇u‖pp,Ω + ‖∇u‖qq,µ + ‖u‖qq,µ −
∫

Ω

cf |∇u|p + df |u|p + βf (x) dx

−
∫

Γ3

bU |u|p + βU (x) dΓ +

∫
Ω

ag|u|ς − bg(x) dx

≥ (cΛ − cf ) ‖∇u‖pp,Ω + ‖∇u‖qq,µ + ag‖u‖ςς,Ω + ‖u‖qq,µ − ‖bg‖1,Ω
− df‖u‖pp,Ω − ‖βf‖1,Ω − bU‖u‖

p
p,Γ3
− ‖βU‖1,Γ3

.

(3.8)

We set

ε =
ag

2
((
λS1,p

)−1
bU + df + 1

) .
Keeping in mind that ς > p, it follows from Young’s Inequality and the eigenvalue problem of the
p-Laplacian with Steklov boundary condition (see (2.2) and (2.3)) that the following inequalities hold

bU‖u‖pp,Γ3
≤ bU

(
λS1,p

)−1
(
‖∇u‖pp,Ω + ‖u‖pp,Ω

)
(3.9)

and

‖u‖pp,Ω =

∫
Ω

|u|p dx ≤ ε
∫

Ω

|u|ς dx+ c(ε) = ε‖u‖ςς,Ω + c(ε) (3.10)
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with some c(ε) > 0. Using (3.9) and (3.10) in (3.8), we get

〈ζ, u〉 ≥
(
cΛ − cf − bU

(
λS1,p

)−1
)
‖∇u‖pp,Ω + ‖∇u‖qq,µ +

ag
2
‖u‖ςς,Ω + ‖u‖pp,Ω + ‖u‖qq,µ

− ‖bg‖1,Ω − ‖βf‖1,Ω − ‖βU‖1,Γ3
− c(ε)

≥ M̂0

(
‖∇u‖pp,Ω + ‖∇u‖qq,µ + ‖u‖pp,Ω + ‖u‖qq,µ

)
+
ag
2
‖u‖ςς,Ω − ‖bg‖1,Ω

− ‖βf‖1,Ω − ‖βU‖1,Γ3
− c(ε)

= M̂0%H(u) +
ag
2
‖u‖ςς,Ω − ‖bg‖1,Ω − ‖βf‖1,Ω − ‖βU‖1,Γ3

− c(ε)

≥ M̂0 min {‖u‖pV , ‖u‖
q
V }+

ag
2
‖u‖ςς,Ω − ‖bg‖1,Ω − ‖βf‖1,Ω − ‖βU‖1,Γ3

− c(ε),

(3.11)

where M̂0 > 0 is defined by

M̂0 := min
{
cΛ − cf − bU

(
λS1,p

)−1
, 1
}
.

Since cΛ − cf − bU
(
λS1,p

)−1
> 0, we deduce that H is coercive.

It is well-known that IK is a proper, convex and l.s.c. function. Note that (see e.g., Proposition 1.10
of Brézis [6])

IK(u) ≥ αK‖u‖V for all u ∈ V with some αK < 0.

So, we have

〈κ, u〉 ≥ IK(u)− IK(0) ≥ αK‖u‖V for all κ ∈ ∂cIK(u) and for all u ∈ K,
where we have used the fact that 0 ∈ K. Combining the inequality above and (3.11) gives

〈ζ + κ− h, u〉

≥ M̂0 min {‖u‖pV , ‖u‖
q
V }+

ag
2
‖u‖ςς,Ω − ‖bg‖1,Ω − ‖βf‖1,Ω

− ‖βU‖1,Γ3
− c(ε)− |αK |‖u‖V −M4‖h‖p′,Γ2

‖u‖V
for all ζ ∈ H(u) and for all κ ∈ ∂cIK(u) with some M4 > 0. Therefore, we infer that (2.8) is
satisfied with u0 = 0, G = ∂cIK and F = H. Thus, all conditions of Theorem 2.7 are verified. Using
this theorem, we conclude that problem (1.1) has at least one weak solution u ∈ K. Recalling that
f(x, 0, 0) 6= {0}, u turns out to be a nontrivial weak solution of problem (1.1).

II Boundedness:
Suppose that the solution set S(a, h) is unbounded. Then, without loss of generality, there exists a

sequence {un}n∈N ⊂ S(a, h) such that

‖un‖V → +∞ as n→∞.
Employing the same arguments as in the proof of the first part, we get the estimate

0 ≥M̂0 min (‖un‖pV , ‖un‖
q
V ) +

ag
2
‖un‖ςς,Ω − ‖bg‖1,Ω − ‖βf‖1,Ω

− ‖βU‖1,Γ3
−M5‖h‖p′,Γ2

‖un‖V −M5

(3.12)

for all n ∈ N and for some M5 > 0. Letting n → ∞ in the inequality above, we get a contradiction.
Therefore, the solution set S(a, h) is bounded in V .

III Closedness:
Let {un}n∈N ⊂ S(a, h) be a sequence such that

un
w−→ u in V

for some u ∈ K. Then, there exist functions ηn ∈ Nf (un) and ξn ∈ NU (un) such that

〈Fun + ω∗Gun − β∗Lun, v − un〉

≥
∫

Ω

ηn(v − un) dx+

∫
Γ2

h(x)(v − un) dΓ +

∫
Γ3

ξn(v − un) dΓ
(3.13)
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for all v ∈ K. Due to the boundedness of the operators Nf and NU we may suppose that there are

functions η ∈ Lr′(Ω) and ξ ∈ Lδ′(Γ3) satisfying

ηn
w−→ η in Lr

′
(Ω) and ξn

w−→ ξ in Lδ
′
(Γ3).

Taking v = u in (3.13) and passing to the upper limit as n→∞ in the resulting inequality, we get

lim sup
n→∞

〈Fun, un − u〉

≤ lim
n→∞

∫
Ω

(
ηn + |un|p−2un + g(x, un)

)
(u− un) dx+ lim

n→∞

∫
Γ2

h(x)(u− un) dΓ

+ lim
n→∞

∫
Γ3

ξn(u− un) dΓ

≤ 0.

Applying Proposition 2.3 we obtain that un → u in V . Using the upper semicontinuity of f and U ,
one has η ∈ Nf (u) and ξ ∈ NU (u). Passing to the upper limit as n→∞ in equality (3.13), we derive
that u ∈ S(a, h) and so, S(a, h) is weakly closed. This completes the proof. �

4. An inverse problem for double phase elliptic obstacle inclusion systems

The section is concerned with the study of an inverse problem to identify a discontinuous parameter
in the domain and a discontinuous boundary datum for the double phase elliptic obstacle problem
given in (1.1).

For any g ∈ L1(Ω) fixed, in what follows, we denote by TV(g) the total variation of the function g
given by

TV(g) := sup
ϕ∈C1(Ω;RN )

{∫
Ω

g(x) divϕ(x) dx : |ϕ(x)| ≤ 1 for all x ∈ Ω

}
.

By BV(Ω), we denote the function space of all integrable functions with bounded variation, namely,

BV(Ω) :=
{
g ∈ L1(Ω) : TV(g) < +∞

}
.

It is well-known that BV(Ω) endowed with the norm

‖g‖BV(Ω) := ‖g‖1,Ω + TV(g) for all g ∈ BV(Ω)

is a Banach space.
In the sequel, let H be a nonempty, closed and convex subset of Lp

′
(Γ3). Given positive constants cΛ

and dΛ, we denote by Λ the set of all admissible parameters for the double phase differential operator
given in (1.2) defined by

Λ := {a ∈ BV(Ω) : 0 < cΛ ≤ a(x) ≤ dΛ for a. a.x ∈ Ω} .

Obviously, we see that the admissible set Λ is a closed and convex subset of both BV(Ω) and L∞(Ω).
Given two regularization parameters κ > 0 and τ > 0 and the known observed or measured datum

z ∈ Lp(Ω;RN ), we consider the inverse problem formulated in the following regularized optimal control
framework:

Problem 4.1. Find a∗ ∈ Λ and h∗ ∈ H such that

inf
a∈Λ and h∈H

C(a, h) = C(a∗, h∗), (4.1)

where the cost functional C : Λ×H → R is given by

C(a, h) := min
u∈S(a,h)

‖∇u− z‖Lp(Ω;RN ) + κTV(a) + τ ‖h‖p′,Γ2
, (4.2)

and S(a, h) stands for the solution set of the double phase elliptic obstacle problem (1.1) with respect

to a ∈ L∞(Ω) and h ∈ Lp′(Γ2).
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The main result in this section is the following existence result for the regularized optimal control
problem given in Problem 4.1.

Theorem 4.2. Assume that all conditions of Theorem 3.3 are satisfied. Then the solution set of
Problem 4.1 is nonempty and weakly compact.

Proof. The proof of this theorem is divided into four steps.
Step 1: The functional C defined in (4.2) is well-defined.
We only need to verify that for (a, h) ∈ Λ×H fixed, the optimal problem

min
u∈S(a,h)

‖∇u− z‖Lp(Ω;RN )

is solvable. Suppose that {un}n∈N ⊂ S(a, h) is a minimizing sequence of the problem infu∈S(a,h) ‖∇u−
z‖Lp(Ω;RN ), that is,

inf
u∈S(a,h)

‖∇u− z‖Lp(Ω;RN ) = lim
n→∞

‖∇un − z‖Lp(Ω;RN ).

From Theorem 3.3 we know that {un}n∈N is bounded in V . Passing to a subsequence if necessary,

we can assume that un
w−→ u∗ in V for some u∗ ∈ V . This fact along with the weak closedness

of S(a, h) ensures that u∗ ∈ S(a, h). On the other hand, the weak lower semicontinuity of the norm
‖ · ‖Lp(Ω;RN ) implies that

inf
u∈S(a,h)

‖∇u− z‖Lp(Ω;RN ) = lim inf
n→∞

‖∇un − z‖Lp(Ω;RN )

≥ ‖∇u∗ − z‖Lp(Ω;RN )

≥ inf
u∈S(a,h)

‖∇u− z‖Lp(Ω;RN ).

This means that for each (a, h) ∈ Λ×H there exists u∗ ∈ S(a, h) such that

inf
u∈S(a,h)

‖∇u− z‖Lp(Ω;RN ) = ‖∇u∗ − z‖Lp(Ω;RN ).

Hence, C is well-defined.
For any (a, h) ∈ Λ×H and u ∈ S(a, h) fixed, it follows from (3.12) that

0 ≥M̂0 min {‖u‖pV , ‖u‖
q
V }+

ag
2
‖u‖ςς,Ω − ‖bg‖1,Ω − ‖βf‖1,Ω

− ‖βU‖1,Γ3
−M6‖h‖p′,Γ2

‖u‖V −M6

for some M6 > 0. Therefore, we conclude that S maps bounded sets of Λ×H ⊂ BV(Ω)×Lp′(Γ2) into
bounded sets of K.

Step 2: If {(an, hn)}n∈N ⊂ Λ×H is a sequence such that {an}n∈N is bounded in BV(Ω), an → a

in L1(Ω) and hn
w−→ h in H for some (a, h) ∈ L1(Ω)×H, then a ∈ Λ and one has

∅ 6= w– lim sup
n→∞

S(an, hn) ⊂ S(a, h). (4.3)

Let {(an, hn)}n∈N ⊂ Λ×H be a sequence such that an → a in L1(Ω) and hn
w−→ h in H for some

(a, h) ∈ L1(Ω)×H. By the properties of Λ (that is, Λ is nonempty, closed and convex in BV(Ω) and
L1(Ω)), one has (a, h) ∈ Λ ×H. Moreover, the boundedness of {an}n∈N ⊂ BV(Ω) ∩ L∞(Ω) and the
map S implies that ∪n≥1S(an, hn) is bounded in K. Also, the reflexivity of V guarantees that the set
w– lim supn→∞ S(an, hn) is nonempty.

For any u ∈ w– lim supn→∞ S(an, hn), passing to a subsequence if necessary, there exists a sequence
{un}n∈N ⊂ K such that

un ∈ S(an, hn) and un
w−→ u in V.
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Hence, for every n ∈ N, we are able to find functions ηn ∈ Nf (un) and ξn ∈ NU (un) such that∫
Ω

(
an(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(v − un) dx

+

∫
Ω

µ(x)|un|q−2un(v − un) dx+

∫
Ω

g(x, un)(v − un) dx

≥
∫

Ω

ηn(x)(v − un) dx+

∫
Γ2

hn(x)(v − un) dΓ +

∫
Γ3

ξn(x)(v − un) dΓ

(4.4)

for all v ∈ K. Taking v = u in (4.4) gives∫
Ω

(
an(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(u− un) dx

+

∫
Ω

µ(x)|un|q−2un(u− un) dx+

∫
Ω

g(x, un)(u− un) dx

≥
∫

Ω

ηn(x)(u− un) dx+

∫
Γ2

hn(x)(u− un) dΓ +

∫
Γ3

ξn(x)(u− un) dΓ.

(4.5)

Hypotheses H(f)(iii) and H(U)(iv) imply that the sequences {ηn}n∈N and {ξn}n∈N are bounded in

Lr
′
(Ω) and Lδ

′
(Γ3), respectively. Since the embeddings of V to Lς(Ω) and Lr(Ω) are compact, we

obtain

lim
n→∞

∫
Ω

µ(x)|un|q−2un(un − u) dx = 0,

lim
n→∞

∫
Ω

g(x, un)(u− un) dx = 0,

lim
n→∞

∫
Ω

ηn(x)(u− un) dx = 0,

lim
n→∞

∫
Γ2

hn(x)(u− un) dΓ = 0,

lim
n→∞

∫
Γ3

ξn(x)(u− un) dΓ = 0,

(4.6)

where we have also used the compactness of V ↪→ Lp(Γ2) and V ↪→ Lδ(Γ3).
From Simon [50, formula (2.2)] we have the well-known inequalities

Ms|ξ − η|s ≤
(
|ξ|s−2ξ − |η|s−2η

)
· (ξ − η), if s ≥ 2, (4.7)

Ms|ξ − η|2 ≤
(
|ξ|s−2ξ − |η|s−2η

)
· (ξ − η) (|ξ|s + |η|s)

2−s
s , if 1 ≤ s ≤ 2, (4.8)

for all ξ, η ∈ RN with some constants Ms, Ms > 0 independent of ξ, η ∈ RN .
Next, we consider the following cases: 1 < p < 2 and p ≥ 2. If p ≥ 2, then we use (4.7) in order to

get ∫
Ω

an(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx ≥ cΛMp‖un − u‖pW ,

where the function space W is given in (3.7). Consider the sets

Ωn = {x ∈ Ω : ∇un 6= 0} ∪ {x ∈ Ω : ∇u 6= 0},
Σn = {x ∈ Ω : ∇u = ∇un = 0}.

We observe that Ω = Ωn ∪ Σn and Ωn ∩ Σn = ∅.
By the absolute continuity of the Lebesgue integral, one has∫

Σn

an(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx = 0.
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Hence, we have ∫
Ω

an(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx

=

∫
Ωn

an(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx

+

∫
Σn

an(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx

=

∫
Ωn

an(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx.

When 1 < p < 2, we can apply (4.8) and get∫
Ω

an(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx

=

∫
Ωn

an(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u)

(|∇un|p + |∇un|p)
2−p
p

(|∇un|p + |∇un|p)
2−p
p

dx

≥Mp

∫
Ωn

an(x) |∇un −∇u|2 (|∇un|p + |∇un|p)
p−2
p dx

≥ cΛMp

∫
Ωn

|∇un −∇u|2 (|∇un|p + |∇un|p)
p−2
p dx.

(4.9)

Due to 1 < p < 2, one has 2
p > 1. Using this and Hölder’s Inequality yields∫

Ω

|∇un −∇u|p dx =

∫
Ω

|∇un −∇u|2·
p
2 dx

=

∫
Ω

(
|∇un −∇u|2 (|∇un|p + |∇u|p)

p−2
p

) p
2

(|∇un|p + |∇u|p)
2−p

2 dx

≤
(∫

Ω

|∇un −∇u|2 (|∇un|p + |∇u|p)
p−2
p dx

) p
2

×
(∫

Ω

(|∇un|p + |∇u|p) dx

) 2−p
2

.

This means that ∫
Ω

|∇un −∇u|2 (|∇un|p + |∇un|p)
p−2
p dx

≥
(∫

Ω

|∇un −∇u|p dx

) 2
p
(∫

Ω

(|∇un|p + |∇un|p) dx

)− 2−p
p

.

Combining the inequality above and (4.9), we obtain∫
Ω

an(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx

≥ cΛMp

(∫
Ω

|∇un −∇u|p dx

) 2
p
(∫

Ω

(|∇un|p + |∇u|p) dx

)− 2−p
p

≥M7cΛMp

(∫
Ω

|∇un −∇u|p dx

) 2
p

,

(4.10)

where M7 > 0 is such that (‖un‖pW + ‖u‖pW )
− 2−p

p ≥ M7 owing to the boundedness of {un}n∈N in V
and the continuity of embedding from V to W .

Next, we apply Hölder’s Inequality to get∫
Ω

(
(an(x)− a(x))|∇u|p−2∇u

)
· ∇(un − u) dx
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≥ −
∫

Ω

|an(x)− a(x)||∇u|p−1|∇(un − u)|dx

= −
∫

Ω

|an(x)− a(x)|
p−1
p |∇u|p−1|an(x)− a(x)|

1
p |∇(un − u)|dx

≥ −
(∫

Ω

|an(x)− a(x)||∇u|p dx

) p−1
p
(∫

Ω

|an(x)− a(x)||∇(un − u)|p dx

) 1
p

≥ − (2cΛ)
1
p ‖un − u‖W

(∫
Ω

|an(x)− a(x)||∇u|p dx

) p−1
p

.

Since an → a in L1(Ω), without loss of generality, we may assume that an(x) → a(x) for a. a.x ∈ Ω.
Passing to the limit as n → ∞ in the last estimate and using Lebesgue’s Dominated Convergence
Theorem as well as the boundedness of {un}n∈N in W yields

lim
n→∞

∫
Ω

(
(an(x)− a(x))|∇u|p−2∇u

)
· ∇(un − u) dx

≥ lim
n→∞

[
−2cΛ‖un − u‖W

(∫
Ω

|an(x)− a(x)||∇u|p dx

) p−1
p

]
= 0.

(4.11)

Therefore, we have∫
Ω

(
an(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − u) dx

=

∫
Ω

an(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
(an(x)− a(x))|∇u|p−2∇u

)
· ∇(un − u) dx+

∫
Ω

(
a(x)|∇u|p−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
µ(x)|∇un|q−2∇un

)
· ∇(un − u) dx.

Passing to the upper limit as n→∞ in (4.5) and using (4.6), (4.10), (4.11) as well as

lim
n→∞

∫
Ω

(
a(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇(un − u) dx = 0,∫

Ω

(
µ(x)

(
|∇un|q−2∇un − |∇u|q−2∇u

))
· ∇(un − u) dx ≥ 0,

we obtain for p ≥ 2

lim sup
n→∞

cΛMp‖un − u‖pW ≤ 0

and for 1 < p < 2

lim sup
n→∞

Mp‖u− un‖2W ≤ 0.

We conclude that un → u in W .
Moreover, the boundedness of {ηn}n∈N and {ξn}n∈N, as well as the reflexivity of Lr

′
(Ω) and Lδ

′
(Γ3)

permit us to find functions η ∈ Lr
′
(Ω) and ξ ∈ Lδ

′
(Γ3) such that, by passing to a subsequence if

necessary,

ηn
w−→ η in Lr

′
(Ω) and ξn

w−→ ξ in Lδ
′
(Γ3).

Arguing as in the proof of Theorem 3.3, we obtain η ∈ Nf (u) and ξ ∈ NU (u). Without loss of
generality, we may assume that ∇un(x) → ∇u(x) for a. a.x ∈ Ω. Applying Lebesgue’s Dominated
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Convergence Theorem, we have

lim
n→∞

∫
Ω

(
an(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(v − un) dx

=

∫
Ω

lim
n→∞

(
an(x)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(v − un) dx

=

∫
Ω

(
a(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇(v − u) dx.

Letting n→∞ in equality (4.4) and using the convergence properties above we obtain∫
Ω

(
a(x)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇(v − u) dx

+

∫
Ω

µ(x)|u|q−2u(v − u) dx+

∫
Ω

g(x, u)(v − u) dx

≥
∫

Ω

η(x)(v − u) dx+

∫
Γ2

h(x)(v − u) dΓ +

∫
Γ3

ξ(x)(v − u) dΓ

for all v ∈ K. Therefore, we can observe that u ∈ K is a solution of problem (1.1) corresponding to
(a, h) ∈ Λ×H, that is, u ∈ S(a, h). Hence w– lim supn→∞ S(an, hn) ⊂ S(a, h) and so we have proved
(4.3).

Step 3: If {(an, hn)}n∈N ⊂ Λ × H is such that {an}n∈N is bounded in BV(Ω), an → a in L1(Ω)

and hn
w−→ h in Lp

′
(Γ2) for some (a, h) ∈ L1(Ω)×H, then the inequality

C(a, h) ≤ lim inf
n→∞

C(an, hn) (4.12)

holds.
Let {(an, hn)}n∈N ⊂ Λ × H be such that an → a in L1(Ω) and hn

w−→ h in Lp
′
(Γ2) for some

(a, h) ∈ L1(Ω)×H. From Step 2 one has a ∈ Λ. Let {un}n∈N ⊂ K be a sequence such that

un ∈ S(an, hn) and inf
u∈S(an,hn)

‖∇u− z‖Lp(Ω;RN ) = ‖∇un − z‖Lp(Ω;RN ) (4.13)

for each n ∈ N.
Recalling that ∪n≥1S(an, hn) is bounded, passing to a subsequence if necessary, we have un

w−→ u∗

in V for some u∗ ∈ K, that is, u∗ ∈ w– lim supn→∞ S(an, hn). Applying again Step 2, we conclude that
u∗ ∈ S(a, h). Therefore, from the lower semicontinuity of the function L1(Ω) 3 a 7→ TV(a) ∈ R and

the weak lower semicontinuity of W 3 u 7→ ‖∇u− z‖Lp(Ω;RN ) ∈ R and Lp
′
(Γ2) 3 h 7→ ‖h‖p′,Γ2

∈ R, it
follows that

lim inf
n→∞

C(an, hn)

= lim inf
n→∞

[
‖∇un − z‖Lp(Ω;RN ) + κTV(an) + τ‖hn‖p′,Γ2

]
≥ lim inf

n→∞
‖∇un − z‖Lp(Ω;RN ) + lim inf

n→∞
κTV(an) + lim inf

n→∞
τ‖hn‖p′,Γ2

≥ ‖∇u∗ − z‖Lp(Ω;RN ) + κTV(a) + τ‖h‖p′,Γ2

≥ inf
u∈S(a,h)

‖∇u− z‖Lp(Ω;RN ) + κTV(a) + τ‖h‖p′,Γ2

= C(a, h).

Hence (4.12) follows.
Step 4: The solution set of Problem 4.1 is nonempty and weakly compact.
By the definition of C, we see that C is bounded from below. Let {(an, hn)}n∈N ⊂ Λ × H be a

minimizing sequence of 4.1, namely,

inf
a∈Λ and h∈H

C(a, h) = lim
n→∞

C(an, hn). (4.14)
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This indicates that the sequences {an}n∈N ⊂ Λ and {hn}n∈N ⊂ Lp
′
(Γ2) are bounded in BV(Ω) and

Lp
′
(Γ2), respectively. Passing to a subsequence if necessary we have

an → a∗ in L1(Ω) and hn
w−→ h∗ in Lp

′
(Γ2) (4.15)

for some (a∗, h∗) ∈ Λ×Lp′(Γ2), where we have used the closedness of Λ in L1(Ω) and the compactness
of the embedding BV(Ω) to L1(Ω).

Let us consider a sequence {un}n∈N ⊂ K satisfying (4.13). Employing the convergence (4.15) and
the boundedness of S, it implies that {un}n∈N is bounded in V . So, we are able to select a subsequence

of {un}n∈N, not relabeled, such that un
w−→ u∗ in V for some u∗ ∈ K. From Step 2 it is clear that

u∗ ∈ S(a∗, h∗). Therefore, we have

lim inf
n→∞

C(an, hn)

= lim inf
n→∞

[
‖∇un − z‖Lp(Ω;RN ) + κ TV(an) + τ ‖hn‖p′,Γ2

]
≥ lim inf

n→∞
‖∇un − z‖Lp(Ω;RN ) + κ lim inf

n→∞
TV(an) + τ lim inf

n→∞
‖hn‖p′,Γ2

≥ ‖∇u∗ − z‖Lp(Ω;RN ) + κTV(a∗) + τ‖h∗‖p′,Γ2

≥ inf
u∈S(a∗,h∗)

‖∇u− z‖Lp(Ω;RN ) + κTV(a∗) + τ‖h∗‖p′,Γ2

= C(a∗, h∗)

≥ inf
a∈Λ and h∈H

C(a, h).

(4.16)

The latter combined with (4.14) implies that (a∗, h∗) ∈ Λ×H is a solution of Problem 4.1.
Finally, we prove the weak compactness of the solution set to Problem 4.1. To this end, let

{(an, hn)}n∈N be a sequence of solutions to Problem 4.1. It is obvious that {an}n∈N ⊂ Λ is bounded

in BV(Ω) and {hn}n∈N is bounded in Lp
′
(Γ2). Using the same arguments, we may assume that (4.15)

holds with some (a∗, h∗) ∈ Λ×Lp′(Γ2). Similarly, there exists a sequence {un}n∈N such that (4.13) is

fulfilled and un
w−→ u∗ in V for some u∗ ∈ S(a∗, h∗). As done before, we can prove the validity of

(4.16). This means that (a∗, h∗) ∈ Λ ×H is a solution of Problem 4.1. Therefore, the solution set of
Problem 4.1 is weakly compact. This completes the proof. �

Remark 4.3. The results of this section remain valid if the functional (4.2) is replaced by the following
regularized cost functional

C(a, h) = min
u∈S(a,h)

‖∇u− z‖ω1

Lp(Ω;RN )
+ κ TV(a) + τ ‖h‖

ω2

p′,Γ2
,

where 1 < ω1 ≤ p and 1 < ω2 ≤ p′. The latter for ω1 = ω2 = 2 is the most popular and commonly
used the output least-squares objective functional utilized in the numerical approaches.
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Conf. Besançon, 1977), Springer, Berlin 665 (1978), 205–227.
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