BOUNDEDNESS, EXISTENCE AND UNIQUENESS RESULTS
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WITH NONLINEAR BOUNDARY CONDITION
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ABSTRACT. In this paper we study coupled elliptic systems with gradient de-
pendent right-hand sides and nonlinear boundary conditions, where the left-
hand sides are driven by so-called double phase operators. Applying a sur-
jectivity result for pseudomonotone operators along with an equivalent norm
in the function space, we prove that the system has at least one nontrivial
solution under very general assumptions on the data. Under slightly stronger
conditions we are also able to show that this solution is unique. As a result
of independent interest, we further prove the boundedness of solutions to such
elliptic systems by employing Moser’s iteration scheme.

1. INTRODUCTION

Given a bounded domain Q@ C RN, N > 1, with Lipschitz boundary 0<, in this
paper we consider coupled elliptic systems of the form

—div (Dp, ¢y, (1)) = f1(x, w1, u2, Vur, Vug) in Q,

—div (Dp21q27/—"2(u2)) = fQ(‘raulaUQavuhqu) in Q7 (1 1)
Dy, qr,pa (u1) -0 = g1(x, w1, u2) on 0}, '
Dy go oz (U2) -9 = ga(x,u1,u2) on 0f,

where 1 < p; < N, p; < ¢; < pf, 0 < p;(+) € L*(Q) and Carathéodory functions
fii QxRxRxRY xRV 5 R, g;: 02 x RxR — R for i = 1,2 that satisfy
appropriate growth and coercivity properties, see hypotheses (H1) and (H2) in
Sections 3 and 4, respectively. Moreover, we denote by ¥: 9 — RY the outer unit
normal vector field of Q and div (D, q,,.,) stands for the double phase operator,
whereby

Dipigiopus (i) = [V [P 72 Vg + i (2) [V | 72 Vg
for a suitable measurable function u;: € — R, see Section 2 for details on the
Musielak-Orlicz Sobolev space W1#(Q).
The main goal of this paper is to establish sufficient conditions in order to prove
the existence of at least one nontrivial weak solution of problem (1.1). The assump-

tions on the data are very general and easy to verify for concrete problems. The
idea in the proof is the combination of a surjectivity result for pseudomonotone
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operators along with an equivalent norm in W*(Q) and the properties of appro-
priate eigenvalue problems for the p;-Laplacian for i = 1,2. More precisely, we use
the first eigenvalues and corresponding estimates of the Robin and Steklov eigen-
value problems for the p;-Laplacian for ¢ = 1,2. Under slightly stronger conditions
we are also going to prove the uniqueness of the solution of system (1.1) by using
again suitable eigenvalue problems. As a result of independent interest, we further
show the boundedness of any weak solution to more general elliptic systems than
in (1.1) by applying Moser’s iteration techniques. The novelty in our work is the
fact that we combine a fully coupled gradient dependent double phase system with
a coupled nonlinear boundary condition. It should be noted that the operators in
(1.1) reduce to the p;-Laplacians if p; = 0 and to the (g;, p;)-Laplacians if inf p; > 0
for ¢ = 1, 2, respectively.

Consider the double phase operator div (Dp, ) for 1 < p < gand 0 < u(-) €
L>(Q), then the corresponding energy functional is given by

J:iu— / <1|Vu|p + MVUP) dx. (1.2)
Q\P q

The functional J in (1.2) changes its ellipticity on the set {z €  : p(z) = 0}, so the
operator shifts between two different phases. Thanks to this change of ellipticity,
the double phase operator qualifies for modeling the behavior of inhomogeneous
materials. Indeed, suppose our domain €2 consists of two different materials, then
we can choose p according to the geometry of the domain. Several mathematical
applications can be found in elasticity theory or in the study of duality theory as well
as the Lavrentiev gap phenomenon, see, for example, Zhikov [41, 42]. Functionals
of the form (1.2) have been considered for the first time in Zhikov [40]. Note that
the integrand R(z,&) = %|£\” + %m)Iﬂq for all (z,£) € Q x R of J has unbalanced
growth, that is,

il < Liep + @mq < eollallo (1 + 1€19)

for a.a.z € Q and for all ¢ € RV with ¢1,cy > 0. This new class of functionals can
be used to provide models for strongly anisotropic materials, so materials whose
properties depend on the direction of the strain, like wood for example.

Besides the double phase operator, problem (1.1) has nonlinear boundary condi-
tions and nonlinear, gradient dependent right-hand sides. Functions, which depend
on the gradient of the solution, are also called convection term. The difficulty in the
study of such terms is their nonvariational character, that is, standard variational
tools cannot be applied, even in the scalar case. In the past years several interest-
ing works for single equations with convection terms have been published, we refer

to the papers of Ajagjal-Meskine [1], de Araujo-Faria [10], El Manouni-Marino-
Winkert [12], Faraci-Motreanu-Puglisi [13], Faraci-Puglisi [141], Figueiredo-Madeira
[16], Gasinski-Papageorgiou [17], Gasiriski-Winkert [18], Liu-Motreanu-Zeng [25],
Marano-Winkert [27], Papageorgiou-Radulescu-Repovs [35], and Pucci-Temperini

[38]-

For double phase systems there are only the works of Guarnotta-Livrea-Winkert
[19], Liu-Nguyen-Winkert-Zeng [26] and Marino-Winkert [28]. The methods used
in these papers are based on appropriate enclosure results in terms of trapping
regions formed by pairs of sup- and supersolutions and pseudomonotonicity argu-
ments. But also without double phase operator, there exists only few works for
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coupled elliptic systems with convection terms, we refer to the papers of Faria-
Miyagaki-Pereira [15], Guarnotta-Marano [20, 21], Guarnotta-Marano-Moussaoui
[22], Motreanu-Vetro-Vetro [31, 32] and Toscano-Vetro-Wardowski [39]. In the di-
rection of coupled systems without gradient dependence we mention the works of
Alves-Soares [2], Boccardo-de Figueiredo [3], Carl-Motreanu [4, 5], Chabrowski [6],
de Godoi-Miyagaki-Rodrigues [11].

Our paper is motivated by the works of Marino-Winkert [28] and El Manouni-

Marino-Winkert [12]. In [28] existence and uniqueness results for coupled systems
with homogeneous Dirichlet boundary condition has been proven for the first time.
On the other hand, in [12] the authors prove existence results for single-valued

equations with nonlinear boundary condition via suitable eigenvalue problems. In
our paper, we combine the ideas from both papers to show existence and uniqueness
results for the coupled system with nonlinear boundary conditions given in (1.1).

The paper is organized as follows. In Section 2 we recall the properties of the
Musielak-Orlicz Sobolev space W1 (), introduce our function space for problem
(1.1) and present an equivalent definition of pseudomonotonicity for bounded op-
erators, see Proposition 2.3. In Section 3 we consider system (1.1) with a certain
growth and prove that any weak solution of this system is bounded by applying a
suitable version of Moser’s iteration method, see Theorem 3.2. Finally, in Section
4 we state and prove our main existence result (Theorem 4.2) using a surjectiv-
ity result for pseudomonotone operators and we give sufficient conditions for the
uniqueness of this solution, see Theorem 4.3.

2. PRELIMINARIES

Throughout this paper we denote by |- | the Euclidean norm and by - the inner
product in RY. If X is a real Banach space, then X* stands for its dual space
and (-, -)x for the dual pairing between X and X*. Furthermore, we will use the
notation s = max{s,0} and s~ = max{—s,0} for s € R. Therefore, the positive
and the negative part of a function u:  — R are described by u™(-) = u(-)* and
u” () =u(-)", respectively.

Let 1 < r < oo. Then, we denote by (L"(),]-|) and (L"(;RN), |- ||,-) the
Lebesgue spaces on  and by (WH"(Q), | -||1,-) the corresponding Sobolev spaces
while the norms are given by

1
T 1
l[ullr = (/QWde) and |lvll1,r = ([lvll7 + [Voll7)"

for u € L™(Q) and v € WHT(Q). In addition, we will consider the space L>°(£2)
with the norm

|u|loo = esssup |ul
Q

for u € L (Q).

Moreover, we will use the boundary Lebesgue spaces (L"(99), ]| - ||r,00) for 1 <
r < oo, which are defined by the (N — 1)-dimensional Hausdorff surface measure
on the boundary 92 of 2. We have

r
lr00 = (/ |u|rdo> and  ||v]|oo,00 = esssup |v|
Ele) a0

[[u
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for u € L"(09) with 1 < r < oo and v € L*(012). In the following, we write |02
for the Hausdorff measure of 99, whereas || stands for the Lebesgue measure of
Q. If we use Holder’s inequality throughout this paper, we will write s’ := 25 for
the conjugated exponent of s € R with 1 < s < oo.
From now on, let i € {1,2}. We choose 1 < p; < N and define
_ Np;
N —p;
as the critical exponent of p;, i.e., the embedding
WPi(Q) — L"(Q)
is compact for 1 <r < p? and continuous for r = p}. Analogously, let
_ (N -1)pi

P =N,
be the critical exponent for the embedding into L™ (92). This holds, since the linear
trace operator y: W1Pi(Q) — L"(9Q) is continuous for 1 < r < p;, and compact
for 1 <r < p;,, see Necas [34, Section 2.4]. For simplicity of the notation, we will
write u instead of v(u), if we consider u € W1Pi(Q2) on 9.

Now, we suppose the following hypotheses:
(HO) 1<p; < N,p; <¢q <pfand0< p ()€ L>Q)fori=1,2.
Under the conditions in (HO) we introduce the mapping
H;: Qx[0,00) = [0,00), (x,t)— tP" 4 p(x)t?

*

p;:

and consider the modular function

o) = [ Halafud = [ (Ju

for a function v € M(Q) with M () being the set of all measurable functions on
Q. The Musielak-Orlicz space L*i(Q) is defined by

LHi(Q) :={u € M(Q) : pu,(u) < oo},
equipped with the Luxemburg norm
. u
[lw||3, := inf {7‘ >0 py, (;) < 1}.
Now, the corresponding Musielak-Orlicz Sobolev space is defined by
WhHi(Q) = {u e L™ (Q) : |[Vu| € L™ (Q)}

endowed with the norm

P ()

%) da

[l = IVl + llulla,

where ||[Vull, = || |Vul||3,;. From Colasuonno-Squassina [7, Proposition 2.14] we
know that L*i(Q) and W17 (Q) are reflexive Banach spaces, see also the mono-
graphs of Harjulehto-H&sto [23] and Musielak [33]. Furthermore, we have the fol-
lowing useful embeddings, which are proved in Crespo-Blanco-Gasinski-Harjulehto-
Winkert [3, Proposition 2.16].

Proposition 2.1. Let assumptions (HO) be satisfied. Then the following embed-
dings hold:

(i) LM:(Q) < L"(Q) and WEHi(Q) — W (Q) are continuous for 1 <r < p;;
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(i) WLHi(Q) — L™(Q) is continuous for 1 < r < p¥ and compact for 1 <r <
pi;

(iii) WhHi(Q) < L™(99Q) is continuous for 1 < r < p;, and compact for 1 <
T < Piy-

We equip the space W1 (Q) with the norm defined by

it =i {0 [ oy (T)" 4 [ (1))

for u € WHHi(Q), which is equivalent to the standard one defined above, see
Crespo-Blanco-Papageorgiou-Winkert [9, Proposition 2.2]. The corresponding mod-
ular is given by

P () = / (ValP* + o) [Tl + ™) do.

Taking Proposition 2.3 in Crespo-Blanco-Papageorgiou-Winkert [9] into account,
we obtain the estimates

)" (lu

min{(||u|

)" < ot ()

‘ 2.1
< max { ([lull{ 2,)" , (Ju] =

* qi
177'[1:) }
for all w € WHHi(Q)

Next, we recall some basis properties of the Robin and Steklov eigenvalue prob-
lems for the p-Laplacian for p € (1,00). The Robin eigenvalue problem is given
by

—div(|Vu|P~2Vu) = MuP~?u in Q,

|VulP~2Vu - v = —BlulP"2u  on 99,

where 8 > 0 is a fixed number. Referring to Lé [24], the first (i.e., the smallest)
eigenvalue )\f% g of (2.2) is positive, isolated, simple and can be characterized by

)‘f:pﬁ =inf{/|Vupdx+ﬁ/ |ul? do : /|u‘pdx: 1}.
Q a0 Q

This leads to

(2.2)

Mpsllully < IVull} + Bllull} o,

which can be equivalently written as
-1
lully < (A 0) ™ (1970l + Bllul? o) (2.3)

for u € WHP(Q).
Furthermore, we consider the Steklov eigenvalue problem for the p-Laplacian,

which is defined by

—div(|VulP2Vu) = —|ulP~?u in Q,
) ) (2.4)
[VulP™*Vu - v = Au|’" u on Of.

Again, the first eigenvalue /\f)p of (2.4) is positive, isolated, simple and can be
represented by

)\fpinf{/Vu|pd:c+/|u”dz :/ |u|pd01},
’ Q Q a0
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see Chapter 5 in Lé [24]. From that we obtain the inequality
~1
lully oq < (ATp) (IVullh + [lull?) (2.5)

for u € WHP(Q).
Let us now recall the definition of pseudomonotonicity and the surjectivity result
for pseudomonotone operators.

Definition 2.2. Let X be a reflexive Banach space and A: X — X*. Then A is
called

(i) bounded if A maps bounded sets to bounded sets;
(ii) pseudomonotone if up, — u in X and limsup,, . (Aty, u, —u) < 0 imply
liminf,, 00 (Atp, uy — w) > (Au,u — w) for all w € X;
(iil) to satisfy the (S )-property if uy, — win X andlimsup,,_, . (A, uy,—u) <
0 imply u, — uw in X;
(iv) coercive if
(Au,u)

lim
lull—oo [l

holds.

Since we consider bounded operators, we can use the following equivalent defini-
tion of pseudomonotonicity. As we did not find any reference for this known result,
we present the proof here.

Proposition 2.3. Let A: X — X* be bounded. Then the following two conditions
are equivalent:

(i) A is pseudomonotone.
(ii) From u, — u in X and limsup,,_, ., (Aup,u, —u) < 0 we have Au, — Au
in X* and (Aup, un) = (Au,u).
Proof. Let A be pseudomonotone and {u,}ney € X with u, — u € X and
lim sup,,_, oo (Atp, u, — u) < 0. Due to the pseudomonotonicity of A we have
lim (A, u, —u) =0. (2.6)

n—oQ

By the boundedness of A, we obtain the boundedness of {Auy, }nen. Hence, there
exists a subsequence {Au, }nen of {Au,}bneny and b € X* with

Aun/ —b in X*.
By the definition of pseudomonotonicity and (2.6), it follows that
0 < liminf (Auys, up — w) — (Au, u — w)

n—oo

= liminf ((Aup, up —u) + (Aty, u —w) — (Au,u — w))
n—oo

= liminf (Au, — Au,u — w)
n—oo

=(b— Au,u—w) forallweX.

Therefore, we have Au = b and Au,, — Auwu for the original sequence. Furthermore,
this implies

(Aup, up) = (Auy, uy — u) + (Auy, u) = (Au,u) as n — 0o,

where we have used (2.6) again.
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Now, let A satisfy the condition (ii). We consider {uy }neny C X with u, — u €
X and limsup,,_, . (Aty, un, —u) < 0. Then we have Au,, = Au and (Auy, u,) —
(Awu, u), which yields

liminf (Awu,, u, — w) = liminf {(Awu,,u,) — liminf (Au,, w) = (Au,u — w),
n—00 n—00 n—00

for all w € X. Hence, A is pseudomonotone. (Il

The following surjectivity result for pseudomonotone operators will be useful
for our existence result in Section 4. The proof can be found, for example, in
Papageorgiou-Winkert [36, Theorem 6.1.57].

Theorem 2.4. Let X be a real, reflexive Banach space, let A: X — X* be a
pseudomonotone, bounded and coercive operator and let b € X*. Then, a solution
of the equation Au = b exists.

Finally, let V := WH71(Q) x W1Hz2(Q) equipped with the norm

(w1, ug)l[v = [lua

T T lluzlli 5,

for (ui,us) € V. Obviously, V is a reflexive Banach space. Moreover, let A: V —
V* be the operator given by

(Aur,u2), (o1, 92))v
- / (|VU1|p1*2VU1 + ul(x)|Vu1\’“72Vu1) -V da
Q
. . (2.7)
+ / (|VU2|p2 VUQ + ﬂQ(%)|V’LL2|q2 VUQ) . V(PQ dx
Q

+ / luy|P* ~2u oy da + / [us|P? 2 ugps da
Q Q
for (’LL]_, u2)7 ((1017 %02) eV.
Then, A fulfills the following useful properties.

Lemma 2.5. Let (HO) be satisfied and let A: V. — V* be the operator defined by
(2.7). Then, A is well-defined, bounded, continuous, monotone and of type (Si).

This can be proved analogously to the proof of Proposition 3.4 in Crespo-Blanco-
Gasitiski-Harjulehto-Winkert [8] with slight modifications.

3. BOUNDEDNESS RESULTS

In this section, we show that weak solutions of systems like (1.1) are bounded, i.e.,
for any weak solution (u1,u2) € V of (1.1) we already have u; € L>°(Q) N L>(052)
for i € {1,2}. First, we state the following assumptions on the data of (1.1):

(H1) The functions f;: @ x R x R x RY x RY — R and g;: 00 x R x R — R
(i € {1,2}) are Carathéodory functions such that the following hold:
(i) there exist constants Aj, B; > 0 for j € {1,...,7} and exponents
a by >0forle {1,...,8} with

(@, s,t,&m)| < Ay|s|™ + Agft]® + Ag|s|® [t|™ 4+ Ay|¢]
+ As|n|® + Ag|¢|%7|n|% + Aq,

folw, s, t.6,m)] < Bals|™ + Balt]® + Bs|s|™ [t + Bale|'
+ Bslnl’s + Bslé|”7 > + B
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for a.a.z € €, for all s, € R and for all £,7 € RY such that the
conditions below are satisfied:

(E1) a1 <pj—1, (E2) ay < - Plps
P
(B3) S M PP gy as <1
1 P2 D1
(B5) g < DLy, (B6) T2 P
P1 P1 P2 D1
E7) b< 22 (BS) by <pj—1,
2
bs b £ _ . . _
(By) 2424 P2 P2 (E10) by < 22-P2p
V21 y2) Da Do
- b, b X
(E11) bg < po —1, (E12) L4 28 P2— P2

pP1 P2 Y2
(i) there exist constants Cj,D; > 0 for j € {1,...,4} and exponents
¢, dp > 0forl e {1,...,4} with
|lg1(z, 5,t)] < Cyls|™ + Colt|® + Css|® [t|* + C4
\g2(x, 5,t)| < Dy|s|™ + Dylt|® + Ds|s|®[t|% + Dy,
for a.a.z € 90 and for all s,t € R such that the conditions below are

satisfied:
(F1) & <pi, —1, (F2) & < 2Py
D1y
(F3) %4 L <P B (F4) o< PRy,
D1y D2 D1y D2«
y i d _
(F5) dy < pa, — 1, (F6) LB 4 4 P27 P2
Pl Do D2

A solution of (1.1) is understood in the weak sense in the following way.

Definition 3.1. A function (u1,uz) € V is called a weak solution of problem (1.1)

if
/ (|Vu1\p172Vu1 + pl(x)|Vu1|q172Vu1) -V da
Q
(3.1)
= / fi(z,u1, ue, Vuy, Vug)pr de + / g1 (z,ur,u2)pr do
Q o0
and
/ (|Vu2\p272VuQ + p2(2)|Vua |22 Vuy) - Vo d
@ (3.2)

:/fg(x,ul,uQ,Vul,Vug)wgdx—F/ g2(x,ur, ug)ps do
Q a0

are satisfied for all (p1,p2) € V.
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Based on the assumptions in (H1), it is clear that the definition of a weak solution
is well-defined since all integrals in (3.1) and (3.2) are finite.

The following result, which gives us the boundedness of weak solutions, is mainly
based on ideas in Theorems 3.1 and 3.2 of Marino-Winkert [29], where Moser’s
iteration scheme is used for the proof.

Theorem 3.2. Let hypotheses (HO) and (H1) be satisfied. Then, we have the
following assertions:

(i) (u1,u2) € (L"(Q) NL™(ON)) x (L™(Q) N L™ (9N)) for all r € (1,00);

(ii) (ug,u2) € (L=°(2) N L>®(0N)) x (L°(Q) N L>(9NQ))
for every weak solution (u1,u2) € V' of problem (1.1).

Proof. (i) Let (u1,u2) € V be a weak solution of (1.1) and r € (1, 00). We will prove
only uy € L™ (Q) N L"(09), since the claim for ug follows analogously. Without loss
of generality, we assume u1,us > 0, because otherwise we would consider u;” u;

)
for ¢ € {1,2}. Furthermore, we will denote by M;, i € N5 constants, which
will be used throughout the proof and may depend on the Lebesgue norms of
Ui, uz, Vul, VUQ.

Let h > 0 and £ > 0. We define uy j, := min{us, h} and fix 1 := wyuy?}. First of
all, we compute 7

-1
Vi1 = u'{”f)hl Vuq + nplulu'i(fl )Vul,h.

Since p; € WH1(Q), we can choose ¢; as test function in (3.1) and obtain

/ (|Vu1|p172Vu1 + ,ul(x)\Vuﬂ‘“JVul) . (u'ffohqul + /ﬁplului(}fl_l)Vul,h) dx
Q

K K
= / fl(gc,ul,uQ,Vul,VuQ)ululf’hl d:c+/ gl(x,ul,uz)ululf’,; do.
Q a0

As p11(2)|Vur |92V - (uih Vg +/<;p1u1u'f(£1_1)Vu1,h) > 0 for a.a.x € Q, we can
estimate

/|vul|plul1{ph1 dz + HP1/ (|Vu1|p172Vu1 . Vul,h) ulu'f(}’;l—l) da
Q ’ Q

)

K K
§/fl(:z?,ul,uQ,V”LLl,VuQ)ululfgh1 d:ch/ gl(:c,ul,ug)ululf’h1 do.
Q o0

Next, since uy,;, = u1 and Vuy p, = Vug on {z € Q : u(x) < h}, this leads to

/ |Vu1|P1u’ff’}L1 dx + kp1 / \Vu1|l’1u’fﬁzl dx
Q {zeQ:u(z)<h}

< /Qfl(x,ul,ug, Vuq, Vug)ulu'ipl dx + /asz g1 (z, uq, ug)ulu'fﬁll do.
According to (H1)(i), we can estimate the right-hand side and achieve
/Qfl(x,ul,ug,Vul,Vug)ulu'ff;j dx
< /Q (Arfur [ + Agfual® + Aghun [ ual™ + Ay s (33)

+A5|V’LL2‘65 + A6|vu1|é7|vu2|&s + A?) Uluiz;ll dx.
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Analogously, we have

/ g1 (x, u1,u2)u1u1 W do
o0 (3.4)

< / (Cq|u1|51 + Colua|® + Calu [ ug|™ + 6’4) uuyhy do
o0

for the second term by using hypothesis (H1)(ii).
Now, we examine (3.3) more precisely. By (E1) the exponent a; satisfies @, <

— 1 and therefore we know that u{* ™ u/bt < 1+ uf ulphl a.e.in Q and finally

/L/ al“u'fphl dngll/ ( + u'fphl> dx
Q Q

A,

ul) u'fphl dz + A,|Q).

@\»

Moreover, Holder’s inequality yields
1

1212/ uSPuy Pt dae < Ay (/ ud2s dac) h (/ (uruyfy )™ dx) S
Q ’ Q Q

NP1||
s

e

= Ag||us |2 [Juru
< My (14 unut 122, )

where we choose 51 = % and s; > 1 holds due to (E2). Note, that we have ujuf’' <
(ulu'ﬁh)pl + 1 a.e.in Q. Similarly, Holder’s inequality with three components leads
to

Ag/ uftugtug il dz
Q

1 1 1
~ ~ ] ~ Y1 Z1
< Ag (/ uyse dx) (/ ug*?t dsc) (/ (ulu'fﬁll)zl dx>
Q Q Q
as
1

— A Gy Kp1
= A3 pi lua ) Iz,
P1
< M2 ( plzl) ’
where 77 = 24y = 22 and L =1 - L — L Thanks to (E3) this choice is
as’ aq 21 1 Y1

admissible. Applying Young’s inequality with g—; > 1 we obtain

144/|Vul|‘15u1u'ff"h1 dz
Q

_ 1 5
i () ) ()
Q 244
<A4/—\Vu1|p1 “pldx—i—A /(
Q
)

/|Vu1\p1u“p1 dz + Ay (

E\m

ulu'f(fl ) | dg

a
“pi—as P1
p1—as . KP1
Uq uyy, do

<Q|+/u1 uyty d:c)
Q

1
|Vu PrufPt da + M (1 + uzf*u'fﬁj dx) :
Q

24,
o
.
1

P

24,

I /\
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Next, Holder’s inequality gives us

|~

1

145 |Vu2‘&6u1unp1 dr < A5 < ‘VU2|&652 dx) 52 (/ (u1ul;€;)sg dx)
Q Q

Q

s

o~

= As|[Vua g8 urufh |1«

< My (1+ g2, )

where sy = g—z > 1 by (E5). Again, we use Holder’s inequality such that zo =

— b2 1 _ 1 1
=2 and = =1— =+ — =— W
y2=¢ a d o 25 — 75 SO we get

AG/‘VU1|a7|vu2|dSU1quhl dx
o ,

< Ag (/ |V 2772 dx) " (/ | Vg |®8¥2 dm) - </ (ulu'{”zﬁ)z2 dx) ’
Q Q

Kp1
z2

= Ag||Vu [|37 | V|35 [ug uyh;

< Ms (14 [Juaufl1512,) -
Note that zo > 0 by (E6). Finally, estimating the constant term yields

;17/Qu1u1hdx<A7/Q ufPt da 4 A7|Q).
Now, we can turn to (3.4). By (F1) we have for the first term
C'l/ uf”‘l hido < Cl/ (ufl*u'fphl 1) do
o9 o9
=0 /ag u’fl*u'fp,; do + C1]09

Applying Holder’s inequality with t; = %* > 1 according to (F2) leads to

1 1
~ - t1 /
Cg/ u2 ulu'fphl do < (/ uyh da) </ (ulu ) da>
a0 ble) ble)
= Collually?  pollurui® Ml 00
< Mg (1+ el o)
In order to deal with the next term, we need Holder’s inequality with three com-

ponents again to obtain

S 3,,C4
Cs /8Qu1 U u1u1 ndo

1 a1 a
< Cy </ ufss do) ’ (/ usHos da) ’ (/ (urufhy ) dcr) ’
o9 o9 o9

= Csllually;  oalluzllyy, slluautly |00

< Mo (14 a1 00)
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where the choice x3 = 2= yg = 22+ and - =1 — L — L is permitted in (F3).

és é4 23 z3 y ’
Finally, we get

6'4/ “1U1h da<C4/ ul da—l—C'4|8§2|
a0 o0

According to (E2), (E5) and (F2) we know that

p]. / pl*
s,sh <= and t| <
! 2 Y41 ! D1
and by (E3), (E6) and (F3) also
21,720 < Pl and 23 < Ple
Y41 P1

Therefore, we can set

*
s 1= max{s}, 55, 21,22} € <1, ?)
1

t := max{t}, z3} € (1, pl*) .
p1
Summarizing, these estimates result in

1
- / ‘Vu1|l71u'1§121 dz + kp1 / |Vu1‘P1u'fi"h1 dx
2 Ja (2€Q: uy (z)<h} ’
< (;11 + M3 + 1217) / uzflu'fphl da + (C’l + C~’4) / u‘fl*u'fphl do (3.5)

Q o0

+ Ms pls+M9||u1ul h” pit, SQ+M10(K+1)'
The left-hand side of (3.5) can be simplified to

1
f/|Vu1|p1u"””p1 d!L‘—l—FLpl/ |Vuq [Prufh! da
2 (2€Q: ui (w)<h} ’

Kkp1 +1
= W/|V ulul h)|P1 dz.
This can be found in Marino-Winkert [30], see the inequality after (3.7). Now,
using this in (3.5) yields
kp1 + 1
WHV( vt p)lp:

<M11(/-§p1+1)/u11u'{"}21 dI’+M12/ pl*u'fphl do
Q o

+ Ms|lurug p |5t s + Mylluruf 112", 50 + Mio(k + 1).

From now on, we can argue analogously to Marino-Winkert [29, Theorem 3.1]
starting with (3.12). Note the slightly different notation. Here, the exponents are
denoted by p, ¢ instead of p1,ps and the variables by (u,v) in place of (ug,us).

(ii) The statement can be proved analogous to Marino-Winkert [29, Theorem
3.2]. O
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4. EXISTENCE AND UNIQUENESS RESULTS

In this section, we are going to prove that problem (1.1) has at least one nontrivial
weak solution under certain conditions for the right-hand sides of (1.1).

To this end, let h;: QX R xR xRY xRY - Rand k;: 02 x Rx R — R be
Carathéodory functions for ¢ € {1,2} such that

fi(w,s,t,6,m) = ha(
fa(x, st f n) = ha(z,s,t,&,n) — [t|P>72t  for a.a.x € Q,

g1z, s,t) = ki(z,s,t) — Bi|s|P* s for a.a.x € 09,
g2(z,8,t) = ko(x,8,) — Bo|t|P2 2t for a.a.x € 09,

for all s, € R, for all £,7 € RN and for 31,32 > 0. Then, problem (1.1) becomes

z,8,t,6,m) — |s[P*72%s for a.a.x € Q,

—div (Dp, g1, (1)) = ha(x, ur, ug, Vuq, Vug) — lug|P* 2wy in Q,

— div (Dpy o .10 (U2)) = ho(w,u1,uz, Vur, Vug) — |ug[?? 2uy  in 0, 1)
Dy, qug (u1) -0 = ky(x,ur,uz) — Bulug [P~ 2uy on 09, ’
Doy gops (U2) - 0 = ko, w1, u2) — Balua|P> 2us on ON.

We assume the following assumptions on the functions hq, ho, k1, k2.

(H2) hi: QxRxRxRY xRY — R and k;: 9Q x R x R — R are Carathéodory
functions with h;(z,0,0,0,0) # 0 for a.a.z € Q and ¢ € {1,2} such that
the following hold:

(i) There exists a; € L™ (Q), a; > 0, i € {1,2} with

hi(z, 5,t,6,m)| < Aq|s|® + Ao|t]®2 + Ag|s|® [t|% + Ag|¢|%
+ Asln|% + Ag|€|¥7|n|% + aq (2),

o (@, 5,6, &, m)| < Bals|® + Balt|? + Ba|s|®[t[> + Bal¢|
+ Bslnle + B¢ [P [l + as(2)

for a.a.z € Q, for all s, € R, for all £, € RY with constants Aj, Bj >
0forje{l,...,6} and 1 < r; < pf for ¢ € {1,2}. The exponents
g, by > 0 for I € {1,...8} fulfill the conditions listed below:

1
(E1) 4 <r —1, (E2) ap < 2"y,
T1
N dg d4 T — 1 s R T — 1
(E3) —+—< , (E4)) a5 < D1,
T1 T2 T1 T1
ri—1 a a ry—1
(E5) a6 < ———pa, (B6) — 4B <l
1 P1 D2 1
R -1 R
(E?’) b1 =~ 2 T, (E87) b2 S Tro — 17
T2
bs b -1 . -1
(By) 24270 (E10°) bs < 22— "p),
T1 T2 T2 T2
. -1 b b —1
(E11)) be < 2—po, (E12) X427

T2 P1 b2 T2
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(ii) There exists a; € L7 (9Q), &; > 0, i € {1,2} with
|1 (x,5,1)] < Chls|™ + Colt]® + Cals| [t + da (v)
ks (2,5, 8)| < Dufs|™ + Daft|* + Dals|™ [t + és(2)

for a.a.z € 092, for all s,t € R with constants C’j, Dj >0,j€{1,2,3}
and 1 < 7; < p;, for ¢ € {1,2}. The exponents ¢é;,d; > 0 for j €
{1,2, 3} satisfy the following conditions:

-1
(F1) & <7 -1, (F2) &< —fy,
1
s 63 64 fl -1 s 3 7:2 -1
(F3) =+ =< ——, (F4’) dy < ——71,
1 T2 1 T2
. ds d 1
(F5) dy <o — 1, (F) =42t < 2

1 T2 To
(iii) There exists wy € L'(Q2) and wy € L*(9N), such that
hi(z,s,t,&,n)s + ha(z, s, t,&,n)t
S A(EP 4 [nl72) + T (|s[” + [¢[7*) + wi (z)
for a.a.z € Q, for all s, € R, for all £,n € RY and
k1(z, s,t)s + ka(z, s,t)t
< @ (|s” + [t]72) + wa ()

for a.a.z € 002 and for all s,t € R, whereby A,T", ® > 0 are constants
that satisfies one of the two conditions (A) or (B):
(A) There holds

(i) A+I’max{()\ﬁphcl>_l , (Afmcz)_l} <1,

-1
(i) T (Aﬁphgl) G4 ® < fi,

-1
(iii) T (,\{{pm) Cot D < Bo;

(B) There holds
max {A,T'} + ® max { (/\154,1)_1 (A )_1} < 1.

1,p2

Here )‘ﬁpl,Q’)‘ﬁm,Cz denote the first eigenvalue of the p;-Laplacian
with Robin boundary condition given (2.2) and constants (1,(s > 0,
while \Y , . A7 stand for the first eigenvalues of the p;-Laplacian with
Steklov boundary condition given in (2.4).

Next, we state the definition of weak solutions of the system (4.1).
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Definition 4.1. A function (u1,u2) € V is called a weak solution of (4.1) if

/ (|Vur [P 2V + p1 (@) |V [ 72 Vuy ) - Vi dx+/|u1|p1_2ulap1 dz

Q Q

z/hl(:c,ul,uQ,Vul,Vuz)gol da:+/ k1 (2, u1, uz)pr do (4.2)
Q a0

-5 lut [P 211 do
20

and

/ (|Vua|P>"2Vus + po ()| Vua |22 *Vus) - Vo dz + / [u|P? 2 ug s da
Q Q

:/hg(x,ul,ug,Vul,Vuz)gogdx+/ ka(z, u1,usz)ps do (4.3)
Q 0

- 32/ |ug|”> " 2uzps do
a0
are satisfied for all (p1,p2) € V.

Obviously, the terms in (4.2) and (4.3) are well-defined under hypotheses (HO)
and (H2). Our main existence result reads as follows.

Theorem 4.2. Let hypotheses (HO) and (H2) be satisfied. Then, there exists a
nontrivial weak solution (ui,us) € V' of problem (4.1).

Proof. We first consider the Nemytskij operators associated to h := (hy, h2) and to
k := (k1,k2). They are defined by

Npp: WEHL(Q) x WEH2(Q) € L™ (Q) x L™(Q) — L™ (Q) x L™ (R),
Ny: L™ (99) x L™(0Q) — L™ (0Q) x L™ (69)
with
Ni(u,ug) = (ha( -, w1, ug, Vur, Vug), ho( -, u1, ug, Vur, Vus)),
Ny (ur,uz) = (ki( -, ur,uz), ka( -, ur, us)).

Due to the fact that 1 < r; < pf and 1 < 7; < p;, hold for i € {1,2}, we have the
compact embeddings

G WhH(Q) x WhH2(Q) — L™(Q) x L™ (%),
J: WhH(Q) x WhH2(Q) — L™ (9Q) x L™(99Q).
Furthermore, the adjoint operators are given by
5 L) x L2(Q) — (WhH(Q))" x (WhH2(Q))",
3 LT(0Q) x L™2(9Q) — (WHH(Q))" x (WhH2(Q))".
Now, we define Ny, := j* o N}, and N, := j* o Nj, o j. Taking the isomorphism
V= (W (Q) x W (Q))" = (WM ()" x (WhH2(Q))”
into account, we get

<Nh(u17u2)7(§017§02)>v
:/hl(x,ul,ug,Vul,Vuz)am d$+/h2($,U17U27VU17VU2)S@2d$
Q Q
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and

(Nk(u1, uz), (01, 2))v
= / k1 (2, u1,uz)pr do —|—/ ko(x,u1,uz)pe do
oQ o0

for Ny, N: V — V*. Moreover, we define the operator

Ny: LP1(99) x LP*(99) — LP1(09) x LP2(9K)
by

Ng(ul,uQ) = (B1|u1\p1*2u1,ﬁg|uQ|p2*2uQ).

In the same way as above we define Ng :=[* o B ol, where

1: WhH(Q) x WEH2(Q) — LP1(9Q) x LP2(9Q)
is the compact embedding and

"2 LPY(9Q) x LP2(9Q) — (W (Q))" x (WiH2(Q))"

its adjoint map. Then, Ng: V — V* is given by

(Nﬁ(u1,u2),(<ﬂ1,<P2)>v=/ 51|u1|p1_2u14p1d0+/ Baluz|P>~ugps do.
00 89

Now, we consider the operator A: V — V* given by
A::AhokaJrNg,

where A was defined in (2.7). By construction, a function (ui,us) € V is a weak
solution of (4.1) if and only if A(uq,us) = 0 holds.

In the following, we will apply Theorem 2.4 and show that A satisfies the as-
sumptions given in the theorem.
First, the operator A is bounded. This follows directly from Lemma 2.5 and hy-
potheses (H2)(i) and (ii).

Next, we are going to show that A is pseudomonotone. For this purpose, let
{(ud™ ul™)}en be an arbitrary sequence in V' such that

@™, u$M) = (uy,up) iV

and

lim sup <A(u§n),ug")), (ugn) — Uy, ug") —u2))y <0.

n—oo
In particular, we get u(ln) — wuy in WHH1(Q) and uén) — ug in WHH2(Q). As
r; < pi and 7; < p;, holds, we know that

WhH(Q) — L"(Q) and W'(Q) — L™ (0Q)

compactly for i € {1,2} due to Proposition 2.1(ii), (iii). Hence, there are subse-
quences, not relabeled, such that

ugn) —wu; in L™(Q) and uén) —ug in L™2(Q), (4.4)
ugn) —wup in L™(0Q) and ugn) — g in L™2(09Q). (4.5)

By a similar argument, we have
ugn) —wy  in LP1(92) and ug") — up in LP2(09),

since p; < p;, holds for i € {1,2}.
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We now prove that

lim sup <A(u§”), uén)), (ugn) —uq, uén) —ug))y

o (n)  (n) (n) (n) (4.6)
= limsup (A(uy ", uy "), (uy  —ug,uy ~ —u2))y <0,
n— 00

in order to use the (S )-property of A, see Lemma 2.5. Taking the growth condition
n (H2)(i) into account yields the estimate

hi(x, ugn) uén), Vu(ln), Vugn))(ugn) —up)dz
Q

< [ (Al Al + Aaful oo+ A9l
Q

+As| VS e 4 Ag Tl 47Tl % + s (@) ) fuf" — | de,

where we are going to show that the right-hand side converges to zero by (4.4). We
consider every term separately. Applying Holder’s inequality gives

1 1
A / ™ d < Ay (/|ugn>|am'dx) " </|u§"> _ul|m) .
Q Q

= A luf™ 2, luf” = w I,

for the first term. By (E1’) we have a7 < rq, so

1
1 < ([ (1) ar) <o (i)
Q

with C' > 0 is bounded for n € N and finally
Ay / = w|de < Afuf™ (2, uf™ =y, =0
as n — oo due to (4.4). Analogously, the condition (E2’) and (4.4) yield
a27‘

A / ud™ %2l — | da < Aol|us” )22, ul™ — wi |, — 0

as n — oo. Furthermore, Holder’s inequality with three components and (E3’) gives
us

As [Pl = o

< Aglluf™ (1, V1122, 1l = urlly, =0 asn — oo,
where we choose x1,¥y1,21 > 1 with
1 1 1 . N
—+—+—=1, z1=r1, azr1 <71y, asyr <.

L N A
To estimate the next term, we note that W1:%i(Q) — Wi (Q) holds for i € {1,2}.
Consequently, (E4’) and (E5’) as well as Holder’s inequality and (4.4) imply

As [ 19u o — ] do < A2 ol =l =0
A [ [V — ] do < s [V ol = ey =0
Q
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as n — oco. In addition, we get

AG/\Vu”)|“7|Vu 155 ™ — y| da

< Agl|Vui™ |27, IVus™ 12 a8 — ually, =0 asn— oo,
where we choose xa,ys2, 22 > 1 with (E6’) such that
1 1 1 . R
—+—+—=1, 29=r1, arxa <p1, agy2 <p2

T2 Y2 22
is satisfied. Finally, we obtain

Jlar@liut?” = uafdo < ol ~wrll, 0 as 0> o,
Q
since a; € L"1(Q). All in all, it follows that

lim [ hy(z, ugn) (m) Vugn) Vu(n))(ugn) —up)dz =0.

n—oo

The same conclusion can be done for hy by the help of (E7’) to (E12’) and (4.4),
so that we know

lim [ ho(x, uﬁ”), ugn), Vugn), Vugn))(uén) —ug)dx =0.

n—oo Q
We conclude that
Jim (Vi (o 5™, (" = g — )y = 0.
The boundary term can be handled in the same way, the only difference being in
the application of (H3)(ii) and (4.5). This leads to

(N (™ ul™), (@l — g, u§? — ug))y
- / ky (2, ul™  ud) (™ — uy) do
o0

—|—/ kg(x,ugn),uén))(uén) —ug)do — 0 asn — oo.
[219]

Furthermore, we have

<NB( (") (n)),( (n) —uy, u(n)_u2)>v
(

= [ Bl Pl o

" / Balug" [P ~ug (uy”) — us) do
onN

p1—1 1
< (") 1 d Pl (n) _ 1 d Pl
<h lug [Pt do uy w " do

o0 oQ

pa—1
+ B2 < |uén)|p2 da) ’ ( |u§n) — ug|P? d0> ’
o0 a9

-1
= Bullud™ 12 50 1™ — wsllpy 00 + Ballus” 122 56 1uS™ — usllpy 00

—0 asn— oo.

2
n) 1) do
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Hence, (4.6) holds. Since A fulfills the (S )-property, we conclude (u(ln) én)) —
(u1,usz) in V. Thus, the original sequence converges as well. By the continuity of

A, we have A(ugn (n)) — A(uq,uz2) in V*. In particular, this implies
A" u5") = Afun, u2)
and
(A ug"), (W )y = (Alw, uz), (u, uz)) v

So A is pseudomonotone.
It remains to show that A: V' — V* is coercive. For (u1, uz) € V we use (H2)(iii)
to estimate

<A(U1,U2), (Ul,U2)>V
= / (|Vu1|p1_2Vu1 + ,ul(x)\Vuﬂ‘“_QVul) -Vu; dz + / |ug [Pt da
Q Q
—|—/ (|Vua|P>"2Vuy + po(2)|Vue| 2 *Vus) - Vug dz + / |ug|P? dz
Q Q

—/ hi(x, w1, ug, Vug, Vug)ug dx—/ ha(x, w1, u, Vu, Vug)ug da
Q Q

f/ kl(I,Ul,UQ)UldO’*/ ko(xz,ur, ug)us do
o o0

Jrﬁl/ |y [P d0+52/ |uz|P? do
o0 onN
> / (Var P + pa ()| Vo[ ) d + / (Wl + pa(2) | Vug| ) d
Q Q
Tl 2+ gl
= [ AV +[Tua) 4 T (a4 fual?) + e (0)) o
Q

(4.7)

- /{m (@ (Jua [P + |u2|P?) + wa(x)) do + Billua s a0 + Balluzlly: o
= [[Vur |l + IVl iy + [Vualp2 + (1Vuall22 ., + ludllpr + [luzllp

— AV [y — A Vuz|[p2 = Tllud][r — Tljualp2 — llwillx

= ®llur[l}; o0 — Plluall?: oq — llwalliea + Billull}): o0 + Balluzlly? oq-

The following observation is divided into two different cases.

Case 1: Condition (A) of (H2)(iii) is satisfied. In this case we use the Robin
eigenvalue problem for the pi- and po-Laplacian given in (2.2), that is, inequality
(2.3) for p; and po reads as

lall < Ay, )™ (IVunll + Gl o) @ e WPH(Q),  (48)

luallz < (M) ™ (IVell22 + GolluallZz o), w2 € WH2(@). (49)
Combining (4.7) with (4.8) and (4.9), we get
(

(A(ur,uz), (u1,u2))v
2 ||vu1| + ||VU1‘ q1,M11

— AVurlg} = AVl T (A, o) (19wl +<1||u1||plm)

+ [[VualB2 + [[Vuallz ,, + [Jud|Br + [luz]P?



20 M.M. FRISCH AND P. WINKERT

T (M) (IVull2 + Glluall o0 ) = lwrll = @l o
- ‘I’||U2||p2 o0~

zawmnAHmewfmenOfA D))

ullpy o + Belluzlly: oo

1,p1

+0Ww|—wqumwawﬁ@—A P(Me) )
(51 ( pl,gl) §1 - ‘1’) HUIHEaQ
r(A

+ (82—
> pa, () (1= A =T (M, ) 7) + i (u2) (1= A =T (OF,, ) )

- ||W1||1 - Hw2||1,8ﬂa

1
Brnc)” G = ®) 022 5 — ln = sl 00

since §3; — ()\R

1,p:,Ci

—1
Ci=1-A-Tmax{(M,, ) (W0) )
Then, we know from (H2)(iii)(A) that C' > 0 and hence (2.1) yields
(Alu, ug), (u1, uz))v

-1
) G—®>0forie{1,2}. We fix

[ (w1, uz)llv
C (PT,Hl(Ul) + 01 3, (u2)) el + [Jwall1,00
- [l (w1, u2)[lv (| (w1, u2)llv

L Clmin (i 50)" (i ze, )™} min § (a.50,)" - (lualli 2,) ™ })
- * *
||u1||1,?-tl + HU2H1,H2

— oo for ||(u1,u 00
[l (wr, u2)||v [[(u1, u2)lv ,

because
willr + [lwall1,60
(| (w1, u2)llv

and p;,q; > 1 for i € {1,2}.
Case 2: Condition (B) of (H2)(iii) is satisfied. Now we consider the Steklov
eigenvalue problem (2.4) and use inequality (2.5) for py, ps which gives

a2 oo < (OF,) " (IVuallZ + ual2) . ua € WhPL(S),
\u2Hp2 o0 > ( ,Pz) ( |VU2H + HUQH ) 5 Uo € Wl,pz(Q).

As in the proof of Case 1, equation (4.7) gives

<-A(U1,U2) (ul,u2)>v
> (V[ + [[Vul[g) y + IVuallpz + [[VuallE .,
= Al[Vu |7} fAIIVuQH = Dllw|lp} = Tlluzllb

o (A7,) (||VU1H + lua]Br) — @ (A ,,) (||VU2|| + [Juz]b2)
— Jlwilli = llwz||1,00

> (IVun g + 1Vl + laliz) (1= max{a, T} - @ (3,,) )

+ uallfs + lluellp;
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—1
+ (IVu2llzz + [V |2, + ua2) (1 - max{A, T} - & (35,,) ")
= |lwrlly = [lwsll1,00

> (1 —max{A,I'} — (I)max{()‘f,pl)il

L8, 7 ) (00 (1) + 7 (12)

= [lwillr = llwsll1,00
where
s 1 s 1

1 — max{A,T'} — ® max { ()\14)1) , ()\14)2) } >0
holds by assumption. Again, the result is

<A(U1, Ug), (U1, U2)>V

([ (w1, u2)llv

Hence, the operator A is coercive. By Theorem 2.4, there exists (ui,u2) € V with

A(uy,uz) = 0. Moreover, h;(x,0,0,0,0) # 0 for a.a.z € Q, i € {1,2} implies
(u1,us) # 0. This finishes the proof of the theorem. O

— 00 as ||(u1,us)]lvy — oo.

Next, we prove a uniqueness result for problem (4.1) under some stronger as-
sumptions. To this end, we define

h: Q x R2 X (RN)Q — Rza h(.I,S,g) = (hl(’rvsag)th(x757£))
and
k: Q xR? = R? k(z,5) := (ki (x, 5), ka(z, 5))

for a.a.x € Q, for all s € R? and for all £ € (RN)Q. From now on we make the
following assumptions in addition to (H2):

(U1) There exists Gy > 0 such that
(h(.]?, 3,5) - h(xvtaf)) ' (S - t) < G1|8 - t|2
for a.a.z € Q, for all s,t € R? and for all £ € (RV)2.
(U2) There exists G2 > 0 such that
(k(z,s) —k(z,t))- (s —t) < Gols —t|?
for a.a.z € 00 and all s,t € R2.
(U3) There exist p = (p1,p2) with p; € L% (Q) for 1 < s; < pf, i € {1,2} and
G3 > 0 such that h(z,s, - ) — p(x) is linear on (RN)2 for a.a.z € Q and for
all s € R? and additionally we have

[h(z,s,8) — p(x)| < Gsl¢]
for a.a.x € Q, for all s € R? and for all £ € (RN)Q.
We obtain the following uniqueness results.
Theorem 4.3. Let hypotheses (HO0), (H2) and (U1)—~(U3) be satisfied with p; =
Gid+ Gomax {871, B} + GsV2h < 1 (4.10)
with \ := max {O‘{{,Z,ﬁl)_l’ (x\fzﬁg)_l} is satisfied, then there exists a unique non-

trivial weak solution of problem (4.1).
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Proof. By Theorem 4.2 and hypotheses (H2), there exists at least one nontrivial

weak solution of problem (4.1). Now, let u = (u1,uz2),v = (v1,v2) € V be two weak
solutions of (4.1). According to the weak formulation of the problem, we have

/ (Vul + ,ul(x)\Vuﬂ’“*QVul) -V, dz
Q

+ / (Vug + HQ($)|VU2‘q272VU2) - Vo dz
Q

+/u1<p1dx—|—/u2g02dz
Q Q

:/h(z,u,Vu)'gad:qu/ k(z,u) - pdo
Q [219)

— ﬂl/ 7.L1§01 dO’ — 52/ UQCPQ dU,
oN on

for ¢ = (¢1,p2) € V. Replacing u by v yields an analogous equation. Next, we
choose ¢ := u — v and subtract both equations, which leads to

/|V(u1 —v1)]?da +/ pa(z) (|Vur |2 ?Vuy — [Vor |2 7*Vuy) - V(g — vy) da
Q Q
+/|V(u2 —v)*dx
Q
+/ o () (|VuQ|q2_2Vu2 — |Vv2|q2_2va) -V (ug —vg) dx
Q
+ |u1—v1|2dx+/\u2—v2|2dx
Q Q

= / (h(z,u, Vu) — h(z,v, Vv)) - (u —v)dz —|—/ (k(z,u) — k(z,v)) - (u—v)do
Q

o0
_ﬂl/ |’U,1—’L)1|2d0'—52/ |U2—’Ug‘d0’.
oN o

Since & — [£]%72¢ is monotone and [, |u; — v;|*dz > 0 for i € {1,2}, we can
estimate

IV (ur = vn)lI3 + [V (uz = v2)[13 + Bullur = vill3 o0 + Balluz — v2l3 o0
:/|V(u1—v1)|2dx+/\V(ug—vg)|2dx
Q )
—l—ﬁ/ Uy — v 2d0+5/ ug — vo| do
1 aﬂ| 1= v 2 an' 2 — Uy (4.11)
< / (h(z,u, Vu) —h(z,v, Vv)) - (u —v) dz
Q

—|—/ (k(z,u) — k(x,v)) - (u—v)do.
[2]9]
Applying (U1)—(U3) to the right-hand side of (4.11) implies

/Q (h(z,u, Vu) — h(z,v, Vv)) - (u —v)da

+ /89 (k(z,u) — k(z,v)) - (u—v)do
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= / (h(z,u, Vu) — h(z,v,Vu)) - (u —v)da
Q
+ [ (00, V) = pla) By, T0) + pla) - (0= ) da
Q
Jr/ (k(z,u) — k(z,v)) - (u—v)do
E19)
< / G1lu —v|? d:c+/ Golu —v]* do
Q 1)
+ / hi(x,v1,v2, (U1 —v1)V(ug —v1), (ug — v1)V(ug —v2)) — p1(z) dz
Q

+/M@mmmmerWm—WHW-WWWrﬂﬂ—m@Nx
Q

< Gillu =]l + Gallu — v|3q.

M

+ G3/ (Jus — ] + fuz — val) (19 (w2 — o) + [Vt — 02)[2)? d
Q

< Gillu = v[l3 + Gallu = v|3q.

+ Gs (/ (luy — v1| + Jug — va))? d:c) (/ IV (uy —v1)|* + |V (ug — v2)|2dx>
Q Q
< Gillu =]l + Gallu = v|3q.
+G3V2 (Jur = o3 + [luz = vall3)* (1V (w1 = 01)|5 + [V (u2 = 02)[13)*

where we have used Holder’s inequality. In summary, the above estimates result in

/Q (h(z,u, Vu) — h(z,v, Vv)) - (u —v) dz

+/ (k(z,u) — k(z,v)) - (u—v)do
o9
< Gillu =[5 + Gzllu — v|3q.
1
+G3V2 ([Jur — 013 + [z — v2f3)”

< (IV(ur = o) 13 + [V (u2 = v2)[13) * -

Moreover, choosing py = pa =2 and {; = 5; > 0 for ¢ € {1,2} in (4.8) and (4.9)
leads to

(4.12)

~1
2113 < (Mas,) (IV2I3 + BillzalB o), 210 € WHH(Q), (4.13)
~1
l22ll3 < (Aa5,)  (IV22l3 + Ball22llf 00) , 22 € WHH(Q). (4.14)
Now, we combine (4.11), (4.12) with (4.13), (4.14) and obtain

IV (ur — v1) |13 + [V (uz — v2) |13 + Bullur — v1l13.90 + Balluz — v2ll3 00

< Gy (Hul — U1||% + |Jug — v2||§) + Go <||U1 — 'UIH%Q’Q + ||ug — v2||%g,2)
+G3V2 (lur — vilf3 + fluz — v2[I3)® (Vw1 —v1) I3 + [ V(w2 — v2)13)*
—1
<G (M) ™ (19 = o0)[3 + Bullur — w1 0)
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+ (M) (IV (2 = v2)l3 + Balluz — 0213 00) )
+Gomax {871,851} (Bullur — vill3 00 + Balluz — w23 90)
+GsV2 (M) (190 = vl + Bullun = w13 00)

3
300))
2 2 2 2 3
x (IV(ur — o)l 4 1V (uz — v2)[3 + Bullur — v1]|3. 50 + Balluz — v2ll3 50)

= (Gvmas { (M) ™ (M) '} + Gamax (57055

+G3v2 max { (M) ()\52752)_1};)
X ([IV(uy — v1) 13 + | V(w2 — v2)l13 + Billur — v1]l3 50 + Balluz — v213 o)
= (@A + Gamax {51,551} + Gy V2))

X (IV(u1 = o1) 13+ V(w2 = 02) |13 + Brllur = v1][3 o0 + B2llus — va3 50)

where ) is defined as above. Finally, we conclude
(IV(ur = v)[I3 + [V (uz = v2)ll3 + Billur = v113 00 + B2lluz — v2l3 o0)
x (1= (G + Gamax {87, 651} + Gs V22 ) ) <0

Taking (4.10) into account yields

IV (ur = v1) |13 + [V (uz = v2) |5 + Ballur — 013,00 + B2lluz — v2[[3 50 = 0.

We know from Pagageorgiou-Winkert [37] that || - ||, 2 given by

1
g2 = (IVull3 + Billull3 00) * , 7 € {1,2}

—1
+(My5) " (IV(uz —v2) |13 + Balluz — v

I
and || - || 2 are equivalent norms on W?(Q). Hence, we have u; = v and uy = va,
which completes the proof. ([l
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