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Abstract. This paper is devoted to the study of a double phase problem
with variable exponents and Dirichlet boundary condition. Based on an ab-

stract critical point theorem, we establish existence results under very general

assumptions on the nonlinear term, such as a subcritical growth and a super-
linear condition. In particular, we prove the existence of two bounded weak

solutions with opposite energy sign and we state some special cases in which

they turn out to be nonnegative.

1. Introduction

This paper deals with the following boundary value problem with a nonlinear
differential equation involving the double phase operator with variable exponents
and Dirichlet boundary condition

−div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
= λf(x, u) in Ω,

u = 0 on ∂Ω,
(Pλ)

where Ω ⊆ RN , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, p, q ∈
C(Ω) such that

1 < p(x) < N, p(x) < q(x) < p∗(x) for all x ∈ Ω,

with p∗(x) = Np(x)
N−p(x) for all x ∈ Ω, 0 ≤ µ(·) ∈ L∞(Ω), λ > 0 is a parameter and

f : Ω × R → R is a Carathéodory function that satisfies subcritical growth and a
certain behavior at ±∞, see assumptions (Hf ) in Section 2.

Problems of this type are widely studied in the literature because of their appli-
cation in several topics. The double phase operator, i.e.

div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
, u ∈ W 1,H

0 (Ω),

is related to the following two-phase integral functional

u →
∫
Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
dx, u ∈ W 1,H

0 (Ω),

where W 1,H
0 (Ω) denotes a Musielak-Orlicz Sobolev space that will be introduced

in an appropriate way in Section 2. This functional changes ellipticity depending
on the set where the weight function µ(·) is zero, shifting in two different phases of
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elliptic behavior. Zhikov [35] was the first who studied this functional for constant
exponents to describe the behavior of strongly anisotropic materials; indeed, in the
elasticity theory, µ(·) contains the information on the geometry of composites made
of two different materials with power hardening exponents p(·) and q(·), see also
Zikhov [36]. Furthermore, the double phase operator has several applications also in
mathematical topics, as the Lavrentiev gap phenomenon and the duality theory. A
first mathematical treatment of such two-phase integrals has been done by Baroni-
Colombo-Mingione [3, 4, 5], Colombo-Mingione [12, 13] and Ragusa-Tachikawa [30],
see also the work of De Filippis-Mingione [16] for nonautonomous integrals.

Many authors have shown existence and multiplicity results for double phase
problems with constant exponents, see, for example, the papers of Biagi-Esposito-
Vecchi [6], Colasuonno-Squassina [11], Gasiński-Winkert [20], Gasiński-Papageorgiou
[19], Liu-Dai [24], Papageorgiou-Rădulescu-Repovš [27], Perera-Squassina [29], Zeng-
Bai-Gasiński-Winkert [33] and the references therein. Whereas, in the variable
exponent case there are only few results, we refer to Aberqi-Bennouna-Benslimane-
Ragusa [1], Bahrouni-Rădulescu-Winkert [2], Cen-Kim-Kim-Zeng [9], Crespo-Blanco-
Gasiński-Harjulehto-Winkert [14], Leonardi-Papageorgiou [23], Liu-Pucci [25], Kim-
Kim-Oh-Zeng [22], Vetro-Winkert [32] and Zeng-Rădulescu-Winkert [34].

Motivated by the large interest on this differential operator in the current lite-
rature, our aim is to apply a two critical point theorem due to Bonanno-D’Agùı
[8] to a more general class of problems. We observe that Theorem 2.1 of [8] gives
the existence of two nontrivial critical points, one of local minimum type and the
other of mountain pass type, without using standard techniques such as upper
and lower methods and regularity theory. Our work extends the recent papers of
Chinǹı-Sciammetta-Tornatore [10] if µ ≡ 1 and of Sciammetta-Tornatore-Winkert
[31] if the exponents p and q are constants. Indeed, if infΩ µ > 0, the double phase
operator reduces to the (p(·), q(·))-Laplacian and if µ ≡ 0 to the p(·)-Laplacian.
Moreover, instead of supposing the typical Ambrosetti-Rabinowitz condition on
the function f as required in [10], we only assume that the nonlinear term on the
right-hand side of (Pλ) is (q+ − 1)-superlinear at ±∞ (see (Hf )(iii)) and satisfies
another appropriate behavior at ±∞. However, these conditions are weaker than
the Ambrosetti-Rabinowitz condition. Under these assumptions, we are going to
prove the existence of two weak solutions for problem (Pλ) that have opposite
energy sign and belong to L∞(Ω), namely they are bounded.
We also point out that the exponents p(·) and q(·) do not need to verify a condition
of the type

q(·)
p(·)

< 1 +
1

N
(1.1)

as it was needed, for example, in Kim-Kim-Oh-Zeng [22] or in Colasuonno-Squassina
[11] and Liu-Dai [24] for the constant exponent case. Indeed, we only require as-
sumption (H) (see Section 2), since Crespo-Blanco-Gasiński-Harjulehto-Winkert in

[14, Proposition 2.19] recently proved that our function space W 1,H
0 (Ω) can be

equipped with the equivalent norm ∥∇ · ∥H without supposing (1.1).

The paper is organized as follows. In Section 2 we recall the main properties of
the Musielak-Orlicz Sobolev spaces and the double phase operator, we present the
variational framework and we formulate our assumptions. In Section 3 we present
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our main result (Theorem 3.2) on the existence of two nontrivial bounded weak
solutions for problem (Pλ), we consider other hypotheses in order to get nonnegative
solutions (Corollary 3.3 and Theorem 3.4) and we also provide an example.

2. Variational framework and preliminaries

In this section we present the main preliminaries in order to study problem (Pλ)
and recall first the main results concerning variable exponent Lebesgue and Sobolev
spaces as well as properties of Musielak-Orlicz Sobolev space and the corresponding
double phase operator. These results can be mainly found in the books of Diening-
Harjulehto-Hästö-Růžička [17], Harjulehto-Hästö [21] and Musielak [26], see also the
papers of Colasuonno-Squassina [11], Crespo-Blanco-Gasiński-Harjulehto- Winkert
[14] and Liu-Dai [24]. To this end, let Ω ⊆ RN , N ≥ 2 be a bounded domain
with Lipschitz boundary ∂Ω. For 1 ≤ r ≤ ∞ we denote by Lr(Ω) the usual
Lebesgue spaces endowed with the norm ∥ · ∥r and for 1 ≤ r < ∞, W 1,r(Ω) and

W 1,r
0 (Ω) indicate the Sobolev spaces endowed with the usual norms ∥ · ∥1,r and

∥·∥1,r,0 = ∥∇·∥r, respectively. First, we introduce the Lebesgue and Sobolev spaces
with variable exponents and some properties that will be useful in the sequel. For
any r ∈ C(Ω), we put

r+ := max
x∈Ω

r(x) and r− := min
x∈Ω

r(x),

and we define

C+(Ω) = {r ∈ C(Ω) : r− > 1}.

For any r ∈ C+(Ω), we define the modular by

ρr(·)(u) =

∫
Ω

|u|r(x) dx,

and the variable exponent Lebesgue space is given by

Lr(·)(Ω) = {u : Ω → R measurable | ρr(·)(u) < ∞},
equipped with the related Luxemburg norm

∥u∥r(·) = inf
{
τ > 0 : ρr(·)

(u
τ

)
≤ 1
}
.

We can also introduce, for any r ∈ C+(Ω), the corresponding Sobolev space with
variable exponent, denoted by

W 1,r(·)(Ω) =
{
u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)

}
,

endowed with the usual norm

∥u∥1,r(·) = ∥u∥r(·) + ∥∇u∥r(·),

where ∥∇u∥r(·) = ∥ |∇u| ∥r(·). Furthermore, we denote by W
1,r(·)
0 (Ω) the closure of

C∞
0 (Ω) in W 1,r(·)(Ω) for which we know that a Poincaré inequality holds and we

can equip the space with the equivalent norm ∥u∥1,r(·),0 = ∥∇u∥r(·). In particular,
these spaces are uniformly convex, separable and reflexive Banach spaces and we
refer to Diening-Harjulehto-Hästö-Růžička [17, Theorems 3.2.7, 3.4.7, 3.4.9, 8.1.6,
8.1.13 and Corollary 3.4.5]

Next, we recall some properties about the relation between the norm and the
corresponding modular that will be needed in the sequel, see Fan-Zhao[18].
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Proposition 2.1. Let r ∈ C+(Ω), u ∈ Lr(·)(Ω) and λ ∈ R. Then the following
hold:

(i) If u ̸= 0, then ∥u∥r(·) = λ ⇐⇒ ρr(·)(
u
λ ) = 1;

(ii) ∥u∥r(·) < 1 (resp.> 1, = 1) ⇐⇒ ρr(·)(u) < 1 (resp.> 1, = 1);

(iii) If ∥u∥r(·) < 1 =⇒ ∥u∥r+r(·) ≤ ρr(·)(u) ≤ ∥u∥r−r(·);
(iv) If ∥u∥r(·) > 1 =⇒ ∥u∥r−r(·) ≤ ρr(·)(u) ≤ ∥u∥r+r(·);
(v) ∥u∥r(·) → 0 ⇐⇒ ρr(·)(u) → 0;
(vi) ∥u∥r(·) → +∞ ⇐⇒ ρr(·)(u) → +∞.

Now, we introduce the Musielak-Orlicz space, the Musielak-Orlicz Sobolev space
and the double phase operator, recalling some main and useful properties. We
assume the following hypotheses:

(H) p, q ∈ C(Ω) such that 1 < p(x) < N and p(x) < q(x) < p∗(x) for all

x ∈ Ω, where p∗(·) = Np(·)
N−p(·) is the critical Sobolev exponent to p(·), and

µ ∈ L∞(Ω), with µ(·) ≥ 0.

Let H : Ω× [0,∞[→ [0,∞[ be the nonlinear function defined by

H(x, t) = tp(x) + µ(x)tq(x) for all (x, t) ∈ Ω× [0,∞[,

and let ρH(·) be the corresponding modular defined by

ρH(u) =

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx.

Then, we denote by LH(Ω) the Musielak-Orlicz space, given by

LH(Ω) = {u : Ω → R measurable | ρH(u) < +∞} ,
endowed with the Luxemburg norm

∥u∥H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1
}
.

Similar to Proposition 2.1, we have a certain relationship between the modular
ρH(·) and the norm ∥ · ∥H, see Crespo-Blanco-Gasiński-Harjulehto-Winkert [14,
Proposition 2.13] for a detailed proof.

Proposition 2.2. Let (H) be satisfied, u ∈ LH(Ω) and λ ∈ R. Then the following
hold:

(i) If u ̸= 0, then ∥u∥H = λ ⇐⇒ ρH(uλ ) = 1;
(ii) ∥u∥H < 1 (resp.> 1, = 1) ⇐⇒ ρH(u) < 1 (resp.> 1, = 1);
(iii) If ∥u∥H < 1 =⇒ ∥u∥q+H ≤ ρH(u) ≤ ∥u∥p−

H ;
(iv) If ∥u∥H > 1 =⇒ ∥u∥p−

H ≤ ρH(u) ≤ ∥u∥q+H ;
(v) ∥u∥H → 0 ⇐⇒ ρH(u) → 0;
(vi) ∥u∥H → +∞ ⇐⇒ ρH(u) → +∞;
(vii) ∥u∥H → 1 ⇐⇒ ρH(u) → 1;
(viii) If un → u in LH(Ω), then ρH(un) → ρH(u).

We denote by W 1,H(Ω) the Musielak-Orlicz Sobolev space defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
,

equipped with the norm

∥u∥1,H = ∥∇u∥H + ∥u∥H,
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with ∥∇u∥H = ∥ |∇u| ∥H and by W 1,H
0 (Ω) we indicate the completion of C∞

0 (Ω) in
W 1,H(Ω). In [14, Proposition 2.12] the authors prove that LH(Ω), W 1,H(Ω) and

W 1,H
0 (Ω) are uniformly convex, so reflexive Banach spaces. Moreover, the following

embedding results can be found in Crespo-Blanco-Gasiński-Harjulehto-Winkert [14,
Proposition 2.16].

Proposition 2.3. Let (H) be satisfied. Then the following embeddings hold:

(i) LH(Ω) ↪→ Lr(·)(Ω), W 1,H
0 (Ω) ↪→ W

1,r(·)
0 (Ω) are continuous for all r ∈ C(Ω)

with 1 ≤ r(x) ≤ p(x) for all x ∈ Ω;

(ii) W 1,H
0 (Ω) ↪→ Lr(·)(Ω) is compact for all r ∈ C(Ω) with 1 ≤ r(x) < p∗(x) for

all x ∈ Ω.

Moreover, from Proposition 2.18 in [14], we have that W 1,H
0 (Ω) is compactly

embedded in LH(Ω), so we can equip the space W 1,H
0 (Ω) with the equivalent norm

∥u∥1,H,0 = ∥∇u∥H.

Now, for any r ∈ C(Ω) for which the continuous embeddingW 1,H
0 (Ω) ↪→ Lr(·)(Ω)

hold (see Proposition 2.3), we denote by c̃r the best constant for which one has

∥u∥r(·) ≤ c̃r∥u∥1,H,0. (2.1)

Finally, we introduce the assumptions on the perturbation in problem (Pλ) and
suppose the following hypotheses:

(Hf ) Let f : Ω × R → R and F (x, t) =
∫ t

0
f(x, s) ds be such that the following

hold:
(i) f is a Carathéodory function, that is, x → f(x, t) is measurable for all

t ∈ R and t → f(x, t) is continuous for almost all (a.a.) x ∈ Ω;

(ii) there exist ℓ ∈ C+(Ω) with ℓ+ < (p−)
∗ and κ1 > 0 such that

|f(x, t)| ≤ κ1

(
1 + |t|ℓ(x)−1

)
for a.a.x ∈ Ω and for all t ∈ R;

(iii)

lim
t→±∞

F (x, t)

|t|q+
= +∞

uniformly for a.a.x ∈ Ω;

(iv) there exists ζ ∈ C+(Ω) with

ζ− ∈
(
(ℓ+ − p−)

N

p−
, ℓ+

)
and ζ0 > 0 such that

0 < ζ0 ≤ lim inf
t→±∞

f(x, t)t− q+F (x, t)

|t|ζ(x)

uniformly for a.a.x ∈ Ω.

Remark 2.4. It should be noted that the condition on ζ in (Hf )(iv) is well defined
since from (Hf )(ii) we have ℓ+ < (p−)

∗ and so it holds

(ℓ+ − p−)
N

p−
= ℓ+

N

p−
− (p−)

∗N − p−
p−

< ℓ+
N

p−
− ℓ+

N − p−
p−

= ℓ+.
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The differential operator in (Pλ) is the so-called double phase operator with
variable exponents given by

−div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
for u ∈ W 1,H

0 (Ω).

It is well known that u ∈ W 1,H
0 (Ω) is called a weak solution of problem (Pλ) if∫

Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx = λ

∫
Ω

f(x, u)v dx, (2.2)

for all v ∈ W 1,H
0 (Ω). In order to establish results on the existence of two nontrivial

weak solution for (Pλ), we define the functionals Φ,Ψ, Iλ : W
1,H
0 (Ω) → R by

Φ(u) =

∫
Ω

(
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)
dx, Ψ(u) =

∫
Ω

F (x, u(x)) dx,

and

Iλ(u) = Φ(u)− λΨ(u),

where Iλ is the so-called energy functional. We know that Φ and Ψ are Gâteaux
differentiable with its derivatives

⟨Φ′(u), v⟩ =
∫
Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx,

⟨Ψ′(u), v⟩ =
∫
Ω

f(x, u)v dx,

⟨I ′λ(u), v⟩ =
∫
Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx− λ

∫
Ω

f(x, u)v dx,

for all u, v ∈ W 1,H
0 (Ω), where ⟨ · , · ⟩ is the duality pairing between W 1,H

0 (Ω) and its

dual space W 1,H
0 (Ω)∗. Hence, from (2.2) it follows that u is a weak solution of (Pλ)

if and only if u is a critical point of Iλ, i.e., ⟨I ′λ(u), v⟩ = 0 for all v ∈ W 1,H
0 (Ω). In

the next proposition we summarize the properties of the operator Φ′ : W 1,H
0 (Ω) →

W 1,H
0 (Ω)∗, see [14, Theorem 3.3] which is a generalization of [24, Proposition 3.1]

in the variable exponent case.

Proposition 2.5. Let hypotheses (H) be satisfied. Then, the operator Φ′ is bounded,
continuous, strictly monotone and of type (S+), that is,

if un ⇀ u in W 1,H
0 (Ω) and lim sup

n→∞
⟨Φ′(un), un − u⟩ ≤ 0,

then un → u in W 1,H
0 (Ω).

The main tool of our investigation is a two critical point theorem established
by Bonanno-D’Agùı in [8, Theorem 2.1 and Remark 2.2], which is a nontrivial
consequence of a local minimum theorem due to Bonanno [7, Theorem 2.3] in com-
bination with the Ambrosetti-Rabinowitz Theorem. Here we recall the definition of
the Cerami condition that will be needed. In the following, for X being a Banach
space, we denote by X∗ its topological dual space.

Definition 2.6. Given L ∈ C1(X), we say that L satisfies the Cerami-condition,
(C)-condition for short, if every sequence {un}n∈N ⊆ X such that

(C1) {L(un)}n≥1 ⊆ R is bounded,
(C2) (1 + ∥un∥X)L′(un) → 0 in X∗ as n → ∞,
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admits a strongly convergent subsequence in X.

For the reader’s convenience, we restate Theorem 2.1 [8] taking into account
Remark 2.2 [8].

Theorem 2.7. Let X be a real Banach space and let Φ,Ψ: X → R be two contin-
uously Gâteaux differentiable functionals such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Assume that Φ is coercive and there exist r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r,
such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
(2.3)

and, for each λ ∈

]
Φ(ũ)
Ψ(ũ) ,

r
sup

u∈Φ−1(]−∞,r])

Ψ(u)

[
, the functional Iλ = Φ − λΨ sa-

tisfies the (C)-condition and it is unbounded from below. Then, for each λ ∈]
Φ(ũ)
Ψ(ũ) ,

r
sup

u∈Φ−1(]−∞,r])

Ψ(u)

[
, the functional Iλ admits at least two nontrivial critical

points uλ,1, uλ,2 such that Iλ(uλ,1) < 0 < Iλ(uλ,2).

3. Main Result

In this section, we present our main result on the existence of two nontrivial
solutions for the Dirichlet double phase problem with variational exponents given
in (Pλ). For this purpose, let

R := sup
x∈Ω

dist(x, ∂Ω).

Then there exists x0 ∈ Ω such that the ball with center x0 and radius R > 0 belongs
to Ω, that is,

B(x0, R) ⊆ Ω.

We indicate with ωR the the Lebesgue measure of B(x0, R) in RN given by

ωR := |B(x0, R)| = π
N
2

Γ(1 + N
2 )

RN ,

and we put

δ :=
min {Rp− , Rq+} p−

max {1, ∥µ∥∞} ωR (2N − 1)2q++1−N
.

Furthermore, for any r, η ∈ R+, we define

α(r) := κ1

c̃1 max
{
(q+r)

1
p− , (q+r)

1
q+

}
+ c̄ℓ max

{
(q+r)

ℓ+
p− , (q+r)

ℓ−
q+

}
r

, (3.1)

β(η) := δ

∫
B(x0,

R
2 )

F (x, η) dx

max {ηp− , ηq+}
, (3.2)
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where c̄ℓ = max
{
c̃
ℓ−
ℓ , c̃

ℓ+
ℓ

}
and c̃1, c̃ℓ, κ1, ℓ are given in (2.1) and (Hf )(ii), respec-

tively. From now on, we put

X = W 1,H
0 (Ω) and ∥ · ∥X = ∥ · ∥1,H,0 = ∥∇ · ∥H.

First, we present the following Lemma that we will use in the proof of the main
result.

Lemma 3.1. Let the assumptions (H) and (Hf ) be satisfied. Then, the functional
Iλ satisfies the (C)-condition for all λ > 0.

Proof. Let {un}n∈N ⊆ W 1,H
0 (Ω) be a sequence such that (C1) and (C2) from Defi-

nition 2.6 hold. We provide the proof in three steps.
Claim 1. {un}n∈N is bounded in Lζ−(Ω).
First, it is easy to show that using (Hf )(i), (ii) and (iv) we get that

f(x, t)t− q+F (x, t) ≥ c1|t|ζ− − c2 for a.a.x ∈ Ω and for all t ∈ R, (3.3)

with some constants c1, c2 > 0. Moreover, from (C1) we have that there exists a
constant M > 0 such that for all n ∈ N one has |Iλ(un)| ≤ M , so∣∣∣∣∫

Ω

(
|∇un|p(x)

p(x)
+ µ(x)

|∇un|q(x)

q(x)

)
dx− λ

∫
Ω

F (x, un) dx

∣∣∣∣ ≤ M,

which, multiplying by q+, leads to

ρH(∇un)− λ

∫
Ω

q+F (x, un) dx ≤ c3, (3.4)

for some c3 > 0 and for all n ∈ N. Besides, from (C2), there exists {εn}n∈N with
εn → 0+ such that

|⟨I ′λ(un), v⟩| ≤
εn∥v∥X

1 + ∥un∥X
for all n ∈ N and for all v ∈ X. (3.5)

Choosing v = un, one has∣∣∣∣∫
Ω

(
|∇un|p(x) + µ(x)|∇un|q(x)

)
dx− λ

∫
Ω

f(x, un)un dx

∣∣∣∣ < εn,

which implies

−ρH(∇un) + λ

∫
Ω

f(x, un)un dx < εn (3.6)

for all n ∈ N. Adding (3.4) and (3.6) we obtain∫
Ω

(f(x, un)un − q+F (x, un)) dx < c4

for all n ∈ N with some constant c4 > 0. Using this along with (3.3) we derive∫
Ω

(
c1|un|ζ− − c2

)
dx < c4,

which gives

∥un∥ζ−ζ− < c5 for all n ∈ N

with some c5 > 0. Hence, {un}n∈N is bounded in Lζ−(Ω) and so Claim 1 is proved.
Claim 2. {un}n∈N is bounded in X.



DIRICHLET DOUBLE PHASE PROBLEMS WITH VARIABLE EXPONENTS 9

From (Hf )(ii) and (iv), we have that

ζ− < ℓ+ < (p−)
∗.

Hence, there exists s ∈ (0, 1) such that

1

ℓ+
=

s

(p−)∗
+

1− s

ζ−
, (3.7)

and using the interpolation inequality, see Papageorgiou-Winkert [28, Proposition
2.3.17 p.116], one has

∥un∥ℓ+ ≤ ∥un∥s(p−)∗∥un∥1−s
ζ−

for all n ∈ N.

From Claim 1, it follows that

∥un∥ℓ+ ≤ c6∥un∥s(p−)∗ (3.8)

for some c6 > 0 and for all n ∈ N. Again, from (3.5) with v = un, we get

ρH(∇un)− λ

∫
Ω

f(x, un)un dx < εn. (3.9)

We may assume ∥un∥X ≥ 1 for all n ∈ N, otherwise we are done. Then, using
Proposition 2.2(iv), (3.9), (Hf )(ii) and (3.8), we derive that

∥un∥p−
X ≤ ρH(∇un) < εn + λ

∫
Ω

f(x, un)un dx

≤ λκ1

(
∥un∥1 + ρℓ(·)(un)

)
+ εn

≤ c7

(
1 + c

ℓ+
6 ∥un∥sℓ+(p−)∗

)
+ εn

with c7 > 0. Hence, taking the embedding X ↪→ L(p−)∗(Ω) into account, we have

∥un∥p−
X ≤ c8

(
1 + ∥un∥sℓ+X

)
+ εn,

for all n ∈ N and for some c8 > 0. From (3.7) and (Hf )(iv), it follows that

sℓ+ =
(p−)

∗(ℓ+ − ζ−)

(p−)∗ − ζ−
=

Np−(ℓ+ − ζ−)

Np− −Nζ− + ζ−p−

<
Np−(ℓ+ − ζ−)

Np− −Nζ− + p−(ℓ+ − p−)
N
p−

= p−,

and this shows our second claim.
Claim 3. un → u in X up to a subsequence.
Since {un}n∈N ⊂ X is bounded (Claim 2) and X is a reflexive space, there exists

a subsequence, not relabeled, that converges weakly in X and strongly in Lℓ+(Ω),
that is,

un ⇀ u in X and un → u in Lℓ+(Ω).

Using this to (3.5) with v = un − u and passing to the limit as n → ∞, we obtain

⟨Φ′(un), un − u⟩ → 0 as n → ∞.

Since Φ′ satisfies the (S+)-property, see Proposition 2.5, the proof is complete. □

Now, we state our main result.
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Theorem 3.2. Assume that (H) and (Hf ) hold. Furthermore, suppose that there
exist two positive constants r, η satisfying

max {ηp− , ηq+} < δr , (3.10)

such that

(H1) F (x, t) ≥ 0 for a.a.x ∈ Ω and for all t ∈ [0, η];

(H2) α(r) < β(η),

as defined in (3.1) and (3.2). Then, for each λ ∈ Λ, where

Λ :=

]
1

β(η)
,

1

α(r)

[
,

problem (Pλ) admits at least two nontrivial bounded weak solutions uλ,1, uλ,2 ∈
W 1,H

0 (Ω) with opposite energy sign.

Proof. Our aim is to apply Theorem 2.7. Let (X, ∥ · ∥X),Φ,Ψ be as in Section 2
and note that they already fulfill the required assumptions needed in Theorem 2.7.
In particular, from Proposition 2.2(vi) and (Hf )(iii) follows that Φ is coercive and
Iλ is unbounded from below, respectively.

Now, fix λ ∈ Λ, which is nonempty because of (H2), and consider ũ ∈ X defined
by

ũ(x) =


0 if x ∈ Ω \B(x0, R),

2η

R
(R− |x− x0|) if x ∈ B(x0, R) \B

(
x0,

R
2

)
,

η if x ∈ B
(
x0,

R
2

)
.

Clearly, ũ ∈ X. We show that 0 < Φ(ũ) < r. Indeed, using (3.10), it follows

Φ(ũ) =

∫
B(x0,R)\B(x0,

R
2 )

(
1

p(x)

(
2η

R

)p(x)

+
µ(x)

q(x)

(
2η

R

)q(x)
)

dx

≤ 2q+

p−

∫
B(x0,R)\B(x0,

R
2 )

(( η

R

)p(x)
+ µ(x)

( η

R

)q(x))
dx

≤ 2q+

p−

max {1, ∥µ∥∞}
min {Rp− , Rq+}

max {ηp− , ηq+} · 2 ·
(
ωR − ωR

2

)
=

1

δ
max {ηp− , ηq+} < r.

Now, we prove (2.3). From assumption (H1), we obtain

Ψ(ũ) =

∫
B(x0,

R
2 )

F (x, η) dx +

∫
B(x0,R)\B(x0,

R
2 )

F

(
x,

2η

R
(R− |x− x0|)

)
dx

≥
∫
B(x0,

R
2 )

F (x, η) dx.

Hence,

Ψ(ũ)

Φ(ũ)
≥ δ

∫
B(x0,

R
2 )

F (x, η) dx

max {ηp− , ηq+}
. (3.11)
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On the other hand, fix u ∈ X such that Φ(u) ≤ r. Then, one has

q+r ≥ q+Φ(u) > ρH(∇u) ≥ min
{
∥u∥p−

X , ∥u∥q+X
}
,

which implies that

Φ−1 (]−∞, r]) ⊆
{
u ∈ X : ∥u∥X < max

{
(q+r)

1
p− , (q+r)

1
q+

}}
.

Furthermore, we have

sup
u∈Φ−1(]−∞,r])

Ψ(u)

≤ sup
u∈Φ−1(]−∞,r])

κ1

∫
Ω

(
|u|+ |u|ℓ(x)

)
dx

= sup
u∈Φ−1(]−∞,r])

κ1

(
∥u∥1 + ρℓ(·)(u)

)
≤ sup

u∈Φ−1(]−∞,r])

κ1

(
∥u∥1 +max

{
∥u∥ℓ−ℓ(·), ∥u∥

ℓ+
ℓ(·)

})
≤ sup

u∈Φ−1(]−∞,r])

κ1

(
c̃1∥u∥X +max

{
c̃
ℓ−
ℓ , c̃

ℓ+
ℓ

}
max

{
∥u∥ℓ−X , ∥u∥ℓ+X

})
≤ κ1

(
c̃1 max

{
(q+r)

1
p− , (q+r)

1
q+

}
+ c̄ℓ max

{
(q+r)

ℓ+
p− , (q+r)

ℓ−
q+

})
.

Then, taking (H2) and (3.11) into account, we get

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r

≤
κ1

(
c̃1 max

{
(q+r)

1
p− , (q+r)

1
q+

}
+ c̄ℓ max

{
(q+r)

ℓ+
p− , (q+r)

ℓ−
q+

})
r

< δ

∫
B(x0,

R
2 )

F (x, η) dx

max {ηp− , ηq+}
≤ Ψ(ũ)

Φ(ũ)
,

namely hypothesis (2.3) is satisfied. Hence, along with Lemma 3.1, Theorem 2.7

ensures the existence of two nontrivial weak solutions uλ,1, uλ,2 ∈ W 1,H
0 (Ω) such

that Iλ(uλ,1) < 0 < Iλ(uλ,2). Finally, from Crespo-Blanco-Winkert [15, Theorem
3.1] it follows that uλ,1, uλ,2 belong to L∞(Ω). This finishes the proof. □

Corollary 3.3. Suppose that all assumptions of Theorem 3.2 are satisfied. More-
over, assume that f(x, 0) ≥ 0 and f(x, t) = f(x, 0) for a.a.x ∈ Ω and for all t < 0.
Then, problem (Pλ) admits at least two nontrivial and nonnegative bounded weak

solutions uλ,1, uλ,2 ∈ W 1,H
0 (Ω) with opposite energy sign.

Proof. Since all the assumptions are satisfied, we can apply Theorem 3.2. We only
need to prove that the solutions uλ,1, uλ,2 are nonnegative. Since uλ,1 is a weak
solution of (Pλ), from (2.2) one has ⟨I ′λ(uλ,1), v⟩ = 0 for every v ∈ X. Choosing

v = −u−
λ,1 = −max{−uλ,1, 0} ∈ W 1,H

0 (Ω), see [14, Proposition 2.17(iii)], we have∫
Ω

(
|∇uλ,1|p(x)−2∇uλ,1 + µ(x)|∇uλ,1|q(x)−2∇uλ,1

)
· ∇
(
−u−

λ,1

)
dx
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= λ

∫
Ω

f(x, uλ,1)
(
−u−

λ,1

)
dx,

which leads to

−ρH(∇u−
λ,1) ≥ 0.

But the previous inequality implies that

min
{
∥u−

λ,1∥
p−
X , ∥u−

λ,1∥
q+
X

}
≤ ρH(∇u−

λ,1) ≤ 0,

which gives ∥u−
λ,1∥X = 0. Then, u−

λ,1 = 0 and uλ,1 ≥ 0. With the same argument
we obtain uλ,2 ≥ 0 and the proof is complete. □

Now we consider the special case when the nonlinear term is nonnegative.

Theorem 3.4. Assume that (H) and (Hf ) hold. Furthermore, suppose that f is
nonnegative and

lim sup
t→0+

inf
x∈Ω

F (x, t)

tp−
= +∞. (H3)

Then, for each λ ∈]0, λ∗[, with

λ∗ = sup
r>0

1

α(r)
,

where α(r) is given in (3.1), problem (Pλ) admits at least two nontrivial and non-

negative bounded weak solutions uλ,1, uλ,2 ∈ W 1,H
0 (Ω) with opposite energy sign.

Proof. We observe that (H3) implies that

lim sup
η→0+

β(η) = lim sup
η→0+

δ

∫
B(x0,

R
2 )

F (x, η) dx

max {ηp− , ηq+}

≥ δ ωR
2
lim sup
η→0+

inf
x∈Ω

F (x, η)

ηp−
= +∞.

(3.12)

Then, fixing λ ∈]0, λ∗[, there exists r > 0 such that

λ <
1

α(r)
=

r

κ1

(
c̃1 max

{
(q+r)

1
p− , (q+r)

1
q+

}
+ c̄ℓ max

{
(q+r)

ℓ+
p− , (q+r)

ℓ−
q+

}) .

Moreover, from (3.12), there is η > 0 small enough such that

δ ωR
2

inf
x∈Ω

F (x, η)

ηp−
>

1

λ
,

implying that α(r) < β(η). Applying Theorem 3.2 and arguing as in the proof of
Corollary 3.3, we achieve our goal. □

Finally, we provide an example of a function that satisfies our assumptions.
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Example 3.5. Consider f : Ω× R → R defined by

f(x, t) =

{
|t|α(x)−2t if |t| < 1,

|t|β(x)−2t (log |t|+ 1) if |t| ≥ 1,

where α, β ∈ C(Ω) such that q+ < β(x) < (p−)
∗ for all x ∈ Ω and

β+

p−
− β−

N
< 1.

Then, f satisfies assumptions (Hf ) with ζ(x) = β(x) for all x ∈ Ω and ℓ(x) =

β(x) + σ for all x ∈ Ω, with σ > 0 small enough such that

ℓ+ < (p−)
∗,

ℓ+
p−

− β−

N
< 1.

Moreover, we can apply Theorem 3.4 at f+(x, t) = |f(x, t)| for every (x, t) ∈ Ω×R,
requiring also that α(x) < p− for all x ∈ Ω.
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