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Abstract. We consider a Dirichlet problem driven by the sum of a p-Laplacian

and a Laplacian (known as a (p, 2)-equation) and with a nonlinearity which ex-
hibits asymmetric behavior as s→ ±∞. More precisely, it is (p−1)-superlinear

near +∞ (but without satisfying the Ambrosetti-Rabinowitz condition) and it

is (p − 1)-sublinear near −∞ and possibly resonant with respect to the prin-
cipal eigenvalue of the p-Laplacian. Using variational tools along with Morse

theory we prove a multiplicity theorem generating five nontrivial solutions (one

is negative, two are positive, one is nodal and for the the fifth we do not have
any information about its sign).

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we
study the following nonlinear nonhomogeneous Dirichlet problem (a (p, 2)-equation)

−∆pu−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where 2 < p <∞ and ∆p denotes the p-Laplace differential operator defined by

∆pu = div
(
|∇u|p−2∇u

)
for all u ∈W 1,p

0 (Ω).

The nonlinearity f : Ω×R→ R is a measurable function which is C1 in the second
variable, that is f(x, ·) ∈ C1(R) for a.a.x ∈ Ω. Moreover, we assume that f(x, ·)
exhibits an asymmetric behavior as s→ ±∞. To be more precise, we suppose that
f(x, ·) is (p − 1)-sublinear as s → −∞ and resonance is possible with respect to
the principal eigenvalue of the Dirichlet p-Laplacian. On the other hand, f(x, ·)
is (p − 1)-superlinear as s → +∞ but without satisfying the usual Ambrosetti-
Rabinowitz condition (AR-condition for short). Instead we use a weaker condition
which incorporates in our framework also superlinear nonlinearities with slower
growth near +∞ which fail to satisfy the AR-condition.

Our work here was motivated by the recent paper of Recova-Rumbos [38] who
study a semilinear Dirichlet problem driven by the Laplacian that has a right-hand
side nonlinearity f ∈ C1

(
Ω× R

)
which has an analogous asymmetric behavior as

s → ±∞. However, the superlinearity in the positive direction is expressed using
the AR-condition and the overall hypotheses on f are more restrictive. Related
results can also be found in the works of Arcoya-Villegas [6], Cuesta-de Figueiredo-
Srikanth [12], de-Figueiredo-Ruf [16], de Paiva-Presoto [27], Motreanu-Motreanu-
Papageorgiou [23], [24], Perera [35] and Recova-Rumbos [37].
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We point out that (p, 2)-equations arise in many physical applications. We
mention the works of Benci-D’Avenia-Fortunato-Pisani [7] (quantum physics) and
Cherfils-Il′yasov [9] (plasma physics). Recently there have been some existence and
multiplicity results for such equations but all for problems with a symmetric non-
linearity. We mention, for example, the works of Aizicovici-Papageorgiou-Staicu
[2], Cingolani-Degiovanni [10], Papageorgiou-Rădulescu [30], Papageorgiou-Smyrlis
[31], Papageorgiou-Winkert [32], [33], Sun [39], Sun-Zhang-Su [40].

Our approach uses and combines tools from critical point theory along with
Morse theory in terms of critical groups. The main goal of our paper is to present a
multiplicity theorem which states the existence of at least five nontrivial solutions
of (1.1) including sign information about the solutions obtained. Indeed, we can
show that one is negative, two are positive and one is nodal (i.e. has changing sign).
For the the fifth solution we do not have any information about its sign. To the best
of our knowledge, our work is the first establishing the existence of nodal solutions
for such asymmetric problems.

2. Preliminaries

Let X be a Banach space and X∗ its topological dual while 〈·, ·〉 denotes the
duality brackets to the pair (X∗, X). We have the following definition.

Definition 2.1. The functional ϕ ∈ C1(X,R) fulfills the Cerami condition (the
C-condition for short) if the following holds: every sequence (un)n≥1 ⊆ X such
that (ϕ(un))n≥1 is bounded in R and (1 + ‖un‖X)ϕ′(un) → 0 in X∗ as n → ∞,
admits a strongly convergent subsequence.

This is a compactness-type condition on the functional ϕ which is more general
than the usual Palais-Smale condition. It leads to a deformation theorem from
which one can derive the minimax theory of the critical values of ϕ. Central in that
theory is the well-known mountain pass theorem due to Ambrosetti-Rabinowitz [4]
which we recall here in a slightly more general form (see, for example, Gasiński-
Papageorgiou [18]).

Theorem 2.2. Let ϕ ∈ C1(X) be a functional satisfying the C-condition and let
u1, u2 ∈ X, ‖u2 − u1‖X > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf{ϕ(u) : ‖u− u1‖X = ρ} =: mρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)) with Γ = {γ ∈ C ([0, 1], X) : γ(0) = u1, γ(1) =
u2}. Then c ≥ mρ with c being a critical value of ϕ.

By Lp(Ω)
(
or Lp

(
Ω;RN

))
and W 1,p

0 (Ω) we denote the usual Lebesgue and
Sobolev spaces with their norms ‖ · ‖p and ‖ · ‖. Thanks to the Poincaré inequality
we have

‖u‖ = ‖∇u‖p for all u ∈W 1,p
0 (Ω).

The norm of RN is denoted by ‖·‖RN and (·, ·)RN stands for the inner product in RN .

For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,p
0 (Ω) we define u±(·) = u(·)±.

It is well known that

u± ∈W 1,p
0 (Ω), |u| = u+ + u−, u = u+ − u−.
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The Lebesgue measure on RN is denoted by | · |N and for a measurable function
h : Ω × R → R (for example, a Carathéodory function), we define the Nemytskij
operator corresponding to the function h by

Nh(u)(·) = h(·, u(·)) for all u ∈W 1,p
0 (Ω).

Evidently, x 7→ Nh(u)(x) is measurable.

In addition to the Sobolev space W 1,p
0 (Ω) we will also use the ordered Banach

space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u

∣∣
∂Ω

= 0
}

and its positive cone

C1
0 (Ω)+ =

{
u ∈ C1

0 (Ω) : u(x) ≥ 0 for all x ∈ Ω
}
.

This cone has a nonempty interior given by

int
(
C1

0 (Ω)+

)
=

{
u ∈ C1

0 (Ω)+ : u(x) > 0 for all x ∈ Ω,
∂u

∂n
(x) < 0 for all x ∈ ∂Ω

}
,

where n(·) stands for the outward unit normal on ∂Ω.
Now, let f0 : Ω × R → R be a Carathéodory function satisfying the subcritical

polynomial growth condition

|f0(x, s)| ≤ a0(x)
(
1 + |s|r−1

)
for a.a.x ∈ Ω and for all s ∈ R,

with a0 ∈ L∞(Ω)+ and 1 < r < p∗, where p∗ is the critical exponent of p given by

p∗ =

{
Np
N−p if p < N,

+∞ if p ≥ N.

Setting F0(x, s) =
∫ s

0
f0(x, t)dt we define the C1-functional ϕ0 : W 1,p

0 (Ω)→ R by

ϕ0(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

F0(x, u)dx.

The next result is a particular case of a more general result developed by Gasiński-
Papageorgiou [19] (see also Winkert [41] for nonsmooth functionals). The result is
actually an outgrowth of the nonlinear regularity theory of Lieberman [22].

Proposition 2.3. If u0 ∈W 1,p
0 (Ω) is a local C1

0 (Ω)-minimizer of ϕ0, that is, there
exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1
0 (Ω) with ‖h‖C1

0 (Ω) ≤ ρ0,

then u0 ∈ C1,α
0 (Ω) for some α ∈ (0, 1) and u0 is also a local W 1,p

0 (Ω)-minimizer of
ϕ0, that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p
0 (Ω) with ‖h‖ ≤ ρ1.

Given 1 < r < ∞, we denote by −∆r : W 1,r
0 (Ω) → W−1,r′(Ω) with 1

r + 1
r′ = 1

the negative r-Laplacian defined by

〈−∆ru, v〉 =

∫
Ω

‖∇u‖r−2
RN (∇u,∇v)RNdx for all u, v ∈W 1,r

0 (Ω). (2.1)

If r = 2, then ∆r = ∆ becomes the well-known Laplace operator and we have
∆ ∈ L

(
H1

0 (Ω), H−1(Ω)
)
, where L

(
H1

0 (Ω), H−1(Ω)
)

denotes the vector space of all

bounded linear operators from H1
0 (Ω) into H−1(Ω). For the general case, we have

the following result (see, Motreanu-Motreanu-Papageorgiou [25, p. 40]).



4 N. S. PAPAGEORGIOU AND P. WINKERT

Proposition 2.4. The map −∆r : W 1,r
0 (Ω) → W−1,r′(Ω), defined in (2.1), is

continuous, strictly monotone (hence maximal monotone) and of type (S)+, that

is, if un ⇀ u in W 1,p
0 (Ω) and lim supn→∞ 〈−∆run, un − u〉 ≤ 0, then un → u in

W 1,p
0 (Ω).

Next we present some basic facts about the spectra of
(
−∆r,W

1,r
0 (Ω)

)
for 1 <

r < ∞ and of
(
−∆, H1

0 (Ω)
)
. So, we consider the following nonlinear eigenvalue

problem (linear if r = 2)

−∆ru = λ|u|r−2u in Ω,

u = 0 on ∂Ω.
(2.2)

We say that a number λ̂ ∈ R is an eigenvalue of
(
−∆r,W

1,r
0 (Ω)

)
if problem (2.2)

possesses a nontrivial solution û ∈ W 1,r
0 (Ω) which is said to be an eigenfunction

corresponding to the eigenvalue λ̂. The set of all eigenvalues of (2.2) is denoted by

σ̂(r) and it is known that σ̂(r) has a smallest element λ̂1(r) which has the following
properties:

• λ̂1(r) is positive;

• λ̂1(r) is isolated, that is, there exists ε > 0 such that
(
λ̂1(r), λ̂1(r) + ε

)
∩

σ̂(r) = ∅;
• λ̂1(r) is simple, that is, if u, v are two eigenfunctions corresponding to λ̂1(r),

then u = kv for some k ∈ R \ {0};
•

λ̂1(r) = inf

[
‖∇u‖rr
‖u‖rr

: u ∈W 1,r
0 (Ω), u 6= 0

]
. (2.3)

The infimum in (2.3) is realized on the one-dimensional eigenspace correspond-

ing to λ̂1(r) > 0. From (2.3) it is clear that the elements of this eigenspace do
not change sign. In what follows we denote by û1(r) the positive Lr-normalized

eigenfunction (i.e. ‖û1(r)‖r = 1) associated to λ̂1(r). The nonlinear regularity the-
ory (see Lieberman [22]) and the nonlinear maximum principle (see, for example,

Gasiński-Papageorgiou [18]) imply û1(r) ∈ int
(
C1

0 (Ω)+

)
. The isolation of λ̂1(r) > 0

and since the set σ̂(r) ⊆ (0,+∞) is closed, lead to a straightforward definition of

the second eigenvalue λ̂2(r) given by

λ̂2(r) = inf
[
λ̂ ∈ σ̂(r) : λ̂ > λ̂1(r)

]
.

In addition, the Lusternik-Schnirelmann minimax scheme gives a whole strictly

increasing sequence
(
λ̂k(r)

)
k≥1
⊆ σ̂(r) such that λ̂k(r) → +∞ as k → +∞. We

do not know if this sequence exhausts the whole spectrum of
(
−∆r,W

1,r
0 (Ω)

)
but

in case N = 1 (ordinary differential equations) or r = 2 (linear eigenvalue problem)

the answer is positive. We mention that λ̂1(r) > 0 is the only eigenvalue with
eigenfunctions of constant sign. All the other eigenvalues have eigenfunctions being
nodal.
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In the linear case r = 2 we have σ̂(2) =
(
λ̂k(2)

)
k≥1

and the corresponding

eigenspaces E
(
λ̂k(2)

)
are linear spaces satisfying

H1
0 (Ω) =

⊕
k≥1

E
(
λ̂k(2)

)
.

These eigenspaces have the so-called unique continuation property (ucp for short)

meaning that if u ∈ E
(
λ̂k(2)

)
, k ≥ 1 vanishes on a set of positive Lebesgue

measure, then u(x) ≡ 0 (see de Figueiredo-Gossez [15]). Standard regularity theory

implies that E
(
λ̂k(2)

)
⊆ C1

0 (Ω) for all k ≥ 1. For m ∈ N let

Hm =

m⊕
k=1

E
(
λ̂k(2)

)
and Ĥm =

⊕
k≥m

E
(
λ̂k(2)

)
.

Using these spaces we can have precise variational characterizations for all eigen-
values. Therefore, we have

λ̂1(2) = inf

[
‖∇u‖22
‖u‖22

: u ∈ H1
0 (Ω), u 6= 0

]
(2.4)

and for m ≥ 2

λ̂m(2) = max

[
‖∇u‖22
‖u‖22

: u ∈ Hm, u 6= 0

]
= min

[
‖∇u‖22
‖u‖22

: u ∈ Ĥm, u 6= 0

]
.

(2.5)

Evidently, (2.4) is a particular case of (2.3) (when r = 2) and the infimum is

realized on E
(
λ̂1(2)

)
. In (2.5) both the maximum and the minimum are realized

on E
(
λ̂m(2)

)
.

All the above facts lead to the following useful inequalities (see Papageorgiou-
Kyritsi [29, pp. 356, 365]).

Proposition 2.5. Let ϑ ∈ L∞(Ω)+ be such that ϑ(x) ≤ λ̂1(r) for a.a.x ∈ Ω and
the inequality is strict on a set of positive measure. Then there exists a number
ĉ0 > 0 such that

‖∇u‖rr −
∫

Ω

ϑ(x)|u|rdx ≥ ĉ0‖u‖r for all u ∈W 1,r
0 (Ω).

Proposition 2.6.

(1) Let ϑ ∈ L∞(Ω)+ and ϑ(x) ≥ λ̂m(2) for a.a.x ∈ Ω with strict inequality on
a set of positive measure, then there exists a number ĉ1 > 0 such that

‖∇u‖22 −
∫

Ω

ϑ(x)|u|2dx ≤ −ĉ1‖u‖2H1
0 (Ω) for all u ∈ Hm.

(2) Let ϑ ∈ L∞(Ω)+ and ϑ(x) ≤ λ̂m(2) for a.a.x ∈ Ω with strict inequality on
a set of positive measure, then there exists a number ĉ2 > 0 such that

‖∇u‖22 −
∫

Ω

ϑ(x)|u|2dx ≥ ĉ2‖u‖2H1
0 (Ω) for all u ∈ Ĥm.
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We will also use the weighted version of the linear (i.e. r = 2) eigenvalue problem
stated in (2.2):

−∆u = λ̂m(x)u in Ω,

u = 0 on ∂Ω,
(2.6)

where m ∈ L∞(Ω),m(x) ≥ 0 for a.a.x ∈ Ω and the inequality is strict on a set of

positive measure. Then the spectrum of (2.6) consists of a sequence
(
λ̂k(2,m)

)
k≥1

of distinct eigenvalues which satisfy

0 < λ̂1(2,m) < λ̂2(2,m) < . . . < λ̂k(2,m)→ +∞ as k → +∞.

These eigenvalues and the corresponding eigenfunctions as well as the eigenspaces
have the same properties as before. In this case the Rayleigh quotient involved

in the variational characterizations of the eigenvalues is given by
‖∇u‖22∫

Ω
m(x)u2dx

.

Then, exploiting the ucp of the eigenspaces, we have the following strict mono-

tonicity property for the map m→ λ̂k(2,m) for all k ∈ N (see Motreanu-Motreanu-
Papageorgiou [25, p. 252]).

Proposition 2.7. If m,m′ ∈ L∞(Ω) \ {0},m 6= m′ and 0 ≤ m(x) ≤ m′(x) for

a.a.x ∈ Ω, then 0 < λ̂k(2,m′) < λ̂k(2,m) for all k ∈ N.

Next, let us recall some basic definitions and facts about Morse theory which
will need in the sequel. Let X be a Banach space and let (Y1, Y2) be a topological
pair such that Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0 the term Hk(Y1, Y2) stands

for the k
th
=-relative singular homology group with integer coefficients. Recall that

Hk(Y1, Y2) = Zk(Y1, Y2)
/
Bk(Y1, Y2) for all k ∈ N0,

where Zk(Y1, Y2) is the group of relative singular k-cycles of Y1 mod Y2 (that is,
Zk(Y1, Y2) = ker ∂k with ∂k being the boundary homomorphism) and Bk(Y1, Y2)
is the group of relative singular k-boundaries of Y1 mod Y2 (that is, Bk(Y1, Y2) =
im ∂k+1). We know that ∂k−1 ◦ ∂k = 0 for all k ∈ N, hence Bk(Y1, Y2) ⊆ Zk(Y1, Y2)
and so the quotient

Zk(Y1, Y2)
/
Bk(Y1, Y2)

makes sense.
Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c} (the sublevel set of ϕ at c),

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).

For every isolated critical point u ∈ Kc
ϕ the critical groups of ϕ at u ∈ Kc

ϕ are
defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U \ {u}) for all k ≥ 0,

where U is a neighborhood of u such that Kϕ∩ϕc∩U = {u}. The excision property
of singular homology theory implies that the definition of critical groups above is
independent of the particular choice of the neighborhood U .
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Suppose that ϕ ∈ C1(X) satisfies the C-condition and that inf ϕ(Kϕ) > −∞.
Let c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0.

This definition is independent of the choice of the level c < inf ϕ(Kϕ). This is
a consequence of the second deformation theorem (see, for example, Gasiński-
Papageorgiou [18, p. 628]).

We now assume that Kϕ is finite and introduce the following series in t ∈ R:

M(t, u) =
∑
k≥0

rankCk(ϕ, u)tk for all u ∈ Kϕ,

P (t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk.

The Morse relation says that∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R, (2.7)

with Q(t) =
∑
k≥0 βkt

k being a formal series in t ∈ R with nonnegative integer
coefficients.

Suppose next that X = H is a Hilbert space and let U be a neighborhood of a
given point u ∈ H. We further assume that ϕ ∈ C2(U), Kϕ is finite and u ∈ Kϕ.
The Morse index of u, denoted by µ = µ(u), is defined to be the supremum of the
dimensions of the vector subspaces of H on which ϕ′′(u) ∈ L(H) is negative definite.
The nullity of u, denoted by ν = ν(u), is defined to be the dimension of kerϕ′′(u).
We say that u ∈ Kϕ is nondegenerate if ϕ′′(u) is invertible, that is, ν = ν(u) = 0.
The inverse function theorem implies that a nondegenerate critical point is always
isolated. If the nullity of u is finite, then ϕ′′(u) ∈ L(H) is a Fredholm operator of
index zero. More details on critical groups and related topics can be found in the
books of Ambrosetti-Malchiodi [3] and Motreanu-Motreanu-Papageorgiou [25].

3. Solutions of constant sign

In this section we prove the existence of constant sign solutions for problem (1.1).
We impose the following conditions on the nonlinearity f : Ω× R→ R.

(H) f : Ω × R → R is a measurable function such that f(x, 0) = 0, f(x, ·) ∈
C1(R) for a.a.x ∈ Ω and
(i) there holds

|f ′s(x, s)| ≤ a(x)
(
1 + |s|r−2

)
for a.a.x ∈ Ω and for all s ∈ R;

with a ∈ L∞(Ω)+ and p < r < p∗;

(ii) if F (x, s) =

∫ s

0

f(x, t)dt, then

lim
s→+∞

F (x, s)

sp
= +∞ uniformly for a.a.x ∈ Ω;

there exist τ ∈
(

(r − p) max
{
N
p , 1

}
, p∗
)

and ξ0 > 0 such that

0 < ξ0 ≤ lim inf
s→+∞

f(x, s)s− pF (x, s)

sτ
uniformly for a.a.x ∈ Ω;

(iii) there exist a function w+ ∈ W 1,p(Ω) ∩ C(Ω) and a constant c+ > 0
such that
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• 0 < c+ ≤ w+(x) for all x ∈ Ω;
• f(x,w+(x)) ≤ 0 for a.a.x ∈ Ω;

• 0 ≤ −∆p(w+)−∆(w+) in W−1,p′(Ω) =
(
W 1,p

0 (Ω)
)∗

;

(iv) there exist ξ1, c0 > 0 such that

• −ξ1 ≤ lim inf
s→−∞

f(x, s)

|s|p−2s
≤ lim sup

s→−∞

f(x, s)

|s|p−2s
≤ λ̂1(p) uniformly for

a.a.x ∈ Ω;
• −c0 ≤ f(x, s)s− pF (x, s) for a.a.x ∈ Ω and for all s ≤ 0;

(v) there exists m ∈ N,m ≥ 2 such that

• f ′s(x, 0) = lim
s→0

f(x, s)

s
uniformly for a.a.x ∈ Ω;

• λ̂m(2) ≤ f ′s(x, 0) ≤ λ̂m+1(2) for a.a.x ∈ Ω and the two inequali-
ties are strict on sets (not necessarily the same) of positive mea-
sure.

Remark 3.1. Hypothesis (H)(ii) implies that f(x, ·) is (p − 1)-superlinear near
+∞ for a.a.x ∈ Ω. Note that we do not use the AR-condition which says in its
unilateral version that we can find numbers q > p and M > 0 such that

• 0 < qF (x, s) ≤ f(x, s)s for a.a.x ∈ Ω and for all s ≥M ; (3.1)

• ess inf
Ω

F (·,M) > 0, (3.2)

see Ambrosetti-Rabinowitz [4] and Mugnai [26]. Integrating (3.1) and using (3.2)
gives the following weaker condition

c1s
q ≤ F (x, s) for a.a.x ∈ Ω, for all s ≥M with c1 > 0. (3.3)

From (3.3) it follows the much weaker condition on F (x, ·) which says that

lim
s→+∞

F (x, s)

sp
= +∞ uniformly for a.a.x ∈ Ω. (3.4)

Next we employ condition (3.4), which expresses the p-superlinearity of the primi-
tive, along with the second statement in (H)(ii). These two conditions lead to the
(p− 1)-superlinearity of f(x, ·)

∣∣
R+

, that is

lim
s→+∞

f(x, s)

sp−1
= +∞ uniformly for a.a.x ∈ Ω.

Hypothesis (H)(ii) is weaker than the AR-condition (see (3.1), (3.2)). In fact we

may assume in (3.1) that q > (r− p) max
{
N
p , 1

}
, then, assuming (3.1) and (3.2),

gives

f(x, s)s− pF (x, s)

sq
=
f(x, s)s− qF (x, s)

sq
+ (q − p)F (x, s)

sq

≥ (q − p)F (x, s)

sq

≥ (q − p)c1 for a.a.x ∈ Ω, for all s ≥M.

Thus,

lim inf
s→+∞

f(x, s)s− pF (x, s)

sq
= ξ0 = (q − p)c1 > 0 uniformly for a.a.x ∈ Ω.

Therefore, hypothesis (H)(ii) is satisfied.
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Consider now a function defined in the positive semiaxis R+ = [0,+∞) (for the
sake of simplicity we drop the x-dependence) that has the form

f(s) =

{
ηs if 0 ≤ s ≤ 1,

η
(
sp−1 ln(s) + 1

)
if s > 1,

where η ∈
(
λ̂m, λ̂m+1

)
for some m ≥ 2. Then f ∈ C1(0,∞) satisfies hypothesis

(H)(ii) but fails to satisfy the AR-condition.
The third inequality in Hypothesis (H)(iii) means that

0 ≤
∫

Ω

‖∇w+‖p−2
RN (∇w+,∇h)RN dx+

∫
Ω

(∇w+,∇h)RN dx

for all h ∈ W 1,p(Ω), h ≥ 0. Hypothesis (H)(iii) is satisfied if, for example, there
exists c+ > 0 such that

f(x, c+) ≤ 0 for a.a.x ∈ Ω.

Combined with hypothesis (H)(v) it dictates a kind of oscillatory behavior near
zero. Hypothesis (H)(iv) implies that f(x, ·) is (p − 1)-sublinear near −∞ for
a.a.x ∈ Ω and allows the occurrence of resonance with respect to the principal

eigenvalue λ̂1(p) > 0. Finally, hypothesis (H)(v) implies that we stay strictly above

the principal eigenvalue λ̂1(2) > 0 at zero and only nonuniform nonresonance is
possible.

Let ϕ : W 1,p
0 (Ω)→ R be the energy functional of problem (1.1) defined by

ϕ(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

F (x, u)dx.

Proposition 3.2. If hypotheses (H) are satisfied, then the functional ϕ fulfills the
C-condition.

Proof. Let (un)n≥1 ⊆W 1,p
0 (Ω) be a sequence such that

|ϕ(un)| ≤M1 for all n ≥ 1 (3.5)

with some M1 > 0 and

(1 + ‖un‖)ϕ′(un)→ 0 in W−1,p′(Ω) =
(
W 1,p

0 (Ω)
)∗
. (3.6)

By means of (3.6) we obtain∣∣∣∣〈−∆pun, h〉+ 〈−∆un, h〉 −
∫

Ω

f(x, un)hdx

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

(3.7)

for all h ∈ W 1,p
0 (Ω) with εn → 0+. We claim that (un)n≥1 ⊆ W 1,p

0 (Ω) is bounded.

Arguing indirectly, suppose that ‖u−n ‖ → ∞. We set yn =
u−n
‖u−n ‖ for all n ≥ 1.

Then ‖yn‖ = 1, yn ≥ 0 for all n ≥ 1 and so we may assume that

yn ⇀ y in W 1,p
0 (Ω) and yn → y in Lp(Ω), y ≥ 0. (3.8)

Choosing h = −u−n ∈W
1,p
0 (Ω) in (3.7) results in∥∥∇u−n ∥∥pp +

∥∥∇u−n ∥∥2

2
−
∫

Ω

f
(
x,−u−n

) (
−u−n

)
dx ≤ εn for all n ∈ N,
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which gives

‖∇yn‖pp +
1∥∥u−n ∥∥p−2 ‖∇yn‖

2
2 −

∫
Ω

Nf (−u−n )∥∥u−n ∥∥p−1 (−yn) dx ≤ εn∥∥u−n ∥∥p (3.9)

for all n ∈ N. Hypotheses (H)(i),(iv) imply that

|f(x, s)| ≤ c2
(
1 + |s|p−1

)
for a.a.x ∈ Ω, for all s ≤ 0 and some c2 > 0.

Therefore, (
Nf (−u−n )∥∥u−n ∥∥p−1

)
n≥1

⊆ Lp
′
(Ω) is bounded. (3.10)

Note that u−n (x) → +∞ for a.a.x ∈ {y > 0}. Using this fact along with (3.10) as
well as hypothesis (H)(iv) and by passing to a suitable subsequence if necessary, we
obtain

Nf (−u−n )∥∥u−n ∥∥p−1 ⇀ −ξyp−1 in Lp
′
(Ω) (3.11)

with ξ ∈ L∞(Ω), ξ(x) ≤ λ̂1(p) for a.a.x ∈ Ω (see Aizicovici-Papageorgiou-Staicu
[1, Proposition 16]). Thus, if we pass in (3.9) to the limit as n → ∞ by applying
(3.8), (3.11) and recalling p > 2, we have

‖∇y‖pp ≤
∫

Ω

ξ(x)ypdx. (3.12)

If ξ 6= λ̂1(p), then from (3.12) and Proposition 2.5 it follows that ĉ0 ‖y‖p ≤ 0,

which means y = 0. Hence, due to (3.9), yn → 0 in W 1,p
0 (Ω), a contradiction to the

fact that ‖yn‖ = 1 for all n ∈ N.

If ξ = λ̂1(p) for a.a.x ∈ Ω, then (3.12) and (2.3) imply ‖∇y‖pp = λ̂1(p) ‖y‖pp and

so, by means of (3.8), y = c3û1(p) for some c3 ≥ 0. If c3 = 0, then y = 0 and we
reach a contradiction as above. Hence, c3 > 0 meaning y ∈ int

(
C1

0 (Ω)+

)
. Then

u−n (x)→ +∞ for a.a.x ∈ Ω. (3.13)

Because of (3.5), we have

1

p

∥∥∇u+
n

∥∥p
p

+
1

2

∥∥∇u+
n

∥∥2

2

=
1

p
‖∇un‖pp +

1

2
‖∇un‖22 −

1

p

∥∥∇u−n ∥∥pp − 1

2

∥∥∇u−n ∥∥2

2

+

∫
Ω

F (x, un) dx−
∫

Ω

F (x, un) dx

= ϕ (un)− 1

p

∥∥∇u−n ∥∥pp − 1

2

∥∥∇u−n ∥∥2

2
+

∫
Ω

F (x, un) dx

≤M1 +
1

p

[∫
Ω

pF (x, un) dx−
∥∥∇u−n ∥∥pp − p

2

∥∥∇u−n ∥∥2

2

]
(3.14)

for all n ∈ N. Now, we set h = −u−n ∈W
1,p
0 (Ω) in (3.7) to get∣∣∣∣∥∥∇u−n ∥∥pp +

∥∥∇u−n ∥∥2

2
−
∫

Ω

f
(
x,−u−n

) (
−u−n

)
dx

∣∣∣∣ ≤ εn,
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hence

−
∥∥∇u−n ∥∥pp − ∥∥∇u−n ∥∥2

2
≤ εn −

∫
Ω

f
(
x,−u−n

) (
−u−n

)
dx for all n ∈ N. (3.15)

Using (3.15) in (3.14) and recalling p > 2 yields

1

p

∥∥∇u+
n

∥∥p
p

+
1

2

∥∥∇u+
n

∥∥2

2

≤M2 +
1

p

[∫
Ω

pF (x, un) dx−
∫

Ω

f
(
x,−u−n

) (
−u−n

)
dx

] (3.16)

for some M2 > 0 and for all n ∈ N. Note that

pF (x, un) = pF
(
x, u+

n

)
+ pF

(
x, u−n

)
for all n ∈ N. (3.17)

In addition, hypothesis (H)(iv) implies

pF
(
x,−u−n

)
− f

(
x,−u−n

) (
−u−n

)
≤ c0 for a.a.x ∈ Ω and for all n ∈ N. (3.18)

Returning to (3.16) and using (3.17), (3.18) gives

1

p

∥∥∇u+
n

∥∥p
p

+
1

2

∥∥∇u+
n

∥∥2

2
≤M3 +

∫
Ω

F
(
x, u+

n

)
dx

for some M3 > 0 and for all n ∈ N. Therefore,

ϕ
(
u+
n

)
≤M3 for all n ∈ N.

From this bound and (3.5) it follows that

ϕ
(
−u−n

)
≤M4 for some M4 > 0 and for all n ∈ N.

Then, taking (2.3) into account, we derive

λ̂1(p)

p

∥∥u−n ∥∥pp − ∫
Ω

F
(
x,−u−n

)
dx+

1

2

∥∥∇u−n ∥∥2

2
≤M4 for all n ∈ N. (3.19)

Moreover, thanks to hypothesis (H)(iv), we have, for a.a.x ∈ Ω and for all s ≤ 0,

d

ds

(
F (x, s)

|s|p

)
=
f(x, s)|s|p − p|s|p−2sF (x, s)

|s|2p

=
|s|p−2s [f(x, s)s− pF (x, s)]

|s|2p

=
f(x, s)s− pF (x, s)

|s|ps

≥ −c0
|s|ps

,

which shows that

F (x, t)

|t|p
− F (x, s)

|s|p
≥ c0

p

[
1

|t|p
− 1

|s|p

]
(3.20)

for a.a.x ∈ Ω and for all t < s < 0. Furthermore, hypothesis (H)(iv) implies that

lim sup
s→−∞

pF (x, s)

|s|p
≤ λ̂1(p) uniformly for a.a.x ∈ Ω.
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So, if we let in (3.20) t→ −∞, then

λ̂1(p)

p
− F (x, s)

|s|p
≥ −c0

p

1

|s|p
for a.a.x ∈ Ω and for all s < 0.

Hence,

λ̂1(p)|s|p − pF (x, s) ≥ −c0 for a.a.x ∈ Ω and for all s ≤ 0. (3.21)

Returning to (3.19) and using (3.21) results in

1

2

∥∥∇u−n ∥∥2

2
≤M5 for some M5 > 0 and for all n ∈ N,

which implies, due to the representation in (2.4), that

λ̂1(2)

2

∫
Ω

(
u−n
)2
dx ≤M5 for all n ∈ N. (3.22)

Taking (3.13) and Fatou’s lemma into account we have∫
Ω

(
u−n
)2
dx→ +∞ as n→ +∞. (3.23)

Comparing (3.22) and (3.23) we reach a contradiction. So, we have proved that(
u−n
)
n≥1
⊆W 1,p

0 (Ω) is bounded. (3.24)

Next we are going to show that (u+
n )n≥1 ⊆ W 1,p

0 (Ω) is bounded. To this end,

we argue again by contradiction and suppose that ‖u+
n ‖ → ∞ as n → ∞. We set

vn =
u+
n

‖u+
n‖ for all n ≥ 1. Then, ‖vn‖ = 1, vn ≥ 0 for all n ≥ 1 and we may assume

that

vn ⇀ v in W 1,p
0 (Ω) and vn → v in Lr(Ω), v ≥ 0.

Choosing h = u+
n ∈W

1,p
0 (Ω) in (3.7) yields

−
∥∥∇u+

n

∥∥p
p
−
∥∥∇u+

n

∥∥2

2
+

∫
Ω

f
(
x, u+

n

)
u+
n dx ≤ εn for all n ∈ N. (3.25)

On the other hand, from (3.5) and (3.24), we obtain∥∥∇u+
n

∥∥p
p

+
p

2

∥∥∇u+
n

∥∥2

2
−
∫

Ω

pF
(
x, u+

n

)
dx ≤M6 for all n ∈ N (3.26)

and for some M6 > 0. Adding (3.25) and (3.26) gives(p
2
− 1
)∥∥∇u+

n

∥∥2

2
+

∫
Ω

[
f
(
x, u+

n

)
u+
n − pF

(
x, u+

n

)]
dx ≤M7

for some M7 > 0 and for all n ∈ N. Since p > 2 it results in∫
Ω

[
f
(
x, u+

n

)
u+
n + pF

(
x, u+

n

)]
dx ≤M7 for all n ∈ N. (3.27)

Hypotheses (H)(i),(ii) imply the existence of ξ2 ∈ (0, ξ0) and c4 > 0 such that

ξ2s
τ − c4 ≤ f(x, s)s− pF (x, s) for a.a.x ∈ Ω and for all s ≥ 0. (3.28)

Using (3.28) in (3.27) yields

ξ2
∥∥u+

n

∥∥τ
τ
≤M8 for some M8 > 0 and for all n ∈ N.
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Therefore (
u+
n

)
n≥1
⊆ Lτ (Ω) is bounded. (3.29)

Let us first suppose that N 6= p. Because of hypothesis (H)(ii) it is clear that,
without any loss of generality, we may assume that τ < r < p∗. So, we can find
t ∈ (0, 1) such that

1

r
=

1− t
τ

+
t

p∗
.

Applying the interpolation inequality (see, for example Gasiński-Papageorgiou [18,
p. 905]) we have ∥∥u+

n

∥∥
r
≤
∥∥u+

n

∥∥1−t
τ

∥∥u+
n

∥∥t
p∗
,

which by (3.29) and the Sobolev embedding theorem results in∥∥u+
n

∥∥r
r
≤M9

∥∥u+
n

∥∥tr with some M9 > 0 and for all n ∈ N. (3.30)

Choosing h = u+
n ∈W

1,p
0 (Ω) in (3.7) gives∥∥∇u+

n

∥∥p
p

+
∥∥∇u+

n

∥∥2

2
−
∫

Ω

f
(
x, u+

n

)
u+
n dx ≤ εn for all n ∈ N.

Then, from hypothesis (H)(i) along with (3.30) we have∥∥∇u+
n

∥∥p
p
≤ c5

(
1 +

∥∥u+
n

∥∥r
r

)
≤ c6

(
1 +

∥∥u+
n

∥∥tr) (3.31)

for some c5, c6 > 0 and for all n ∈ N. Since the hypothesis on τ (see (H)(ii)) implies
tr < p, we conclude from (3.31) that(

u+
n

)
n≥1
⊆W 1,p

0 (Ω) is bounded,

which in combination with (3.24) finally gives

(un)n≥1 ⊆W
1,p
0 (Ω) is bounded. (3.32)

Let us now consider the case p = N . Here, p∗ = +∞ and the Sobolev embedding
theorem yields that

W 1,p
0 (Ω) ↪→ Lq(Ω) is compact for all 1 ≤ q < p∗ = +∞.

So, for the argument above to work, we need to replace p∗ = +∞ by q > r > τ .
Again, we choose t ∈ (0, 1) such that

1

r
=

1− t
τ

+
t

q

to obtain

tr =
q(r − τ)

q − τ
. (3.33)

We see that q(r−τ)
q−τ → r − τ as q → p∗ = +∞, but by hypothesis (H)(ii) we have

r − τ < p. Therefore for q > r large enough, we will have tr < p (see (3.33)) and
then the previous argument works and we reach (3.32).

Because of (3.32) we may assume that

un ⇀ u in W 1,p
0 (Ω) and un → u in Lr(Ω). (3.34)
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Taking h = un − u ∈ W 1,p
0 (Ω) in (3.7), passing to the limit as n → ∞ and using

(3.34) yields

lim
n→∞

[〈−∆pun, un − u〉+ 〈−∆un, un − u〉] = 0,

which implies due to the monotonicity of the negative Laplacian −∆ that

lim sup
n→∞

[〈−∆pun, un − u〉+ 〈−∆u, un − u〉] ≤ 0.

Taking again (3.34) into account, this leads to

lim sup
n→∞

〈−∆pun, un − u〉 ≤ 0.

From this in combination with (3.34) and the fact that −∆p fulfills the (S)+-
property (see Proposition (2.4)), we derive

un → u in W 1,p
0 (Ω).

This proves that ϕ satisfies the C-condition. �

Let f−(x, s) denote the negative truncation of the nonlinearity f(x, ·), that is
f−(x, s) = f (x,−s−) which is known to be a Carathéodory function. We set

F−(x, s) =
∫ s

0
f−(x, t)dt and consider the C1-functional ϕ− : W 1,p

0 (Ω)→ R defined
by

ϕ−(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

F−(x, u)dx.

Proposition 3.3. If hypotheses (H) are fulfilled, then the functional ϕ− is coercive.

Proof. We argue by contradiction and may assume that ϕ− is not coercive. Then

there exist a sequence (un)n≥1 ⊆W
1,p
0 (Ω) and a number M10 > 0 such that

‖un‖ → ∞ and ϕ− (un) ≤M10 for all n ∈ N. (3.35)

The second assertion in (3.35) reads as

1

p
‖∇un‖pp +

1

2
‖∇un‖22 −

∫
Ω

F−(x, un)dx ≤M10 for all n ∈ N. (3.36)

Let yn = un
‖un‖ for all n ∈ N. Then ‖yn‖ = 1 for all n ∈ N and so we may assume

that

yn ⇀ y in W 1,p
0 (Ω) and yn → y in Lr(Ω). (3.37)

Using the representation of yn, (3.36) can be rewritten as

1

p
‖∇yn‖pp +

1

2 ‖un‖p−2 ‖∇yn‖
2
2 −

∫
Ω

F−(x,−u−n )

‖un‖p
dx ≤ M10

‖un‖p
(3.38)

for all n ∈ N. Hypotheses (H)(i),(iv) imply that

|F (x, s)| ≤ c7 (1 + |s|p) for a.a.x ∈ Ω, for all s ≤ 0 and some c7 > 0. (3.39)

Then, from (3.37) and (3.39) it follows that(
F (·,−u−n (·))
‖un‖p

)
n≥1

⊆ L1(Ω) is uniformly integrable.
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So, by the Dunford-Pettis theorem and by passing to a subsequence if necessary,
we may assume that

F (·,−u−n (·))
‖un‖p

⇀ γ in L1(Ω). (3.40)

Note that hypothesis (H)(iv) implies that

−ξ1 ≤ lim inf
s→−∞

pF (x, s)

|s|p
≤ lim sup

s→−∞

pF (x, s)

|s|p
≤ λ̂1(p)

uniformly for a.a.x ∈ Ω. Then, from (3.35) it follows that

γ =
1

p
g
(
y−
)p

with − ξ1 ≤ g(x) ≤ λ̂1(p) for a.a.x ∈ Ω, (3.41)

see Aizicovici-Papageorgiou-Staicu [1, proof of Proposition 14]. So, if we pass to
the limit as n→∞ in (3.38) and apply (3.37), (3.40) as well as (3.41), then

‖∇y‖pp ≤
∫

Ω

g(x)
(
y−
)p
dx, (3.42)

where p > 2 was taken into account as well. In particular, it holds∥∥∇y−∥∥p
p
≤
∫

Ω

g(x)
(
y−
)p
dx. (3.43)

Recall that g(x) ≤ λ̂1(p) for a.a.x ∈ Ω, see (3.41). If this inequality is strict on a
set of positive measure, then from (3.43) and Proposition 2.5 we obtain

ĉ0
∥∥y−∥∥p ≤ 0,

which implies

y− = 0. (3.44)

Combining (3.42) and (3.44) we have y+ = 0 and so y = 0. Hence, (3.38) implies
that

yn → 0 in W 1,p
0 (Ω),

a contradiction to the fact that ‖yn‖ = 1 for all n ∈ N.

Next suppose that g(x) = λ̂1(p) for a.a.x ∈ Ω. By means of (3.43) and (2.3) it
follows that ∥∥∇y−∥∥p

p
= λ̂1(p)

∥∥y−∥∥p
p
,

which gives

y− = kû1(p) for some k ≥ 0.

If k = 0, then y− = 0 and as above we obtain a contradiction. If k > 0, then
y− ∈ int

(
C1

0 (Ω)+

)
and so y = −y− ∈ − int

(
C1

0 (Ω)+

)
. We have

un(x) = −u−n (x)→ −∞ for a.a.x ∈ Ω. (3.45)

Recall that

λ̂1(p)|s|p − pF (x, s) ≥ −c0 for a.a.x ∈ Ω and for all s ≤ 0, (3.46)

see (3.21). Returning to (3.36) we have

1

2

∥∥∇u−n ∥∥2

2
≤M10 −

1

p

∫
Ω

[
λ̂1(p)

(
u−n
)p − pF (x,−u−n )] dx,
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which results in, due to (2.4) and (3.46), that

λ̂1(2)

2

∫
Ω

(
u−n
)2
dx ≤M10 + c0 for all n ∈ N. (3.47)

On the other side, Fatou’s Lemma and (3.45) imply∫
Ω

(
u−n
)2
dx→ +∞ as n→∞,

which contradicts (3.47). Therefore we conclude that ϕ must be coercive. �

Now we can prove the existence of a nontrivial negative solution of problem (1.1).

Proposition 3.4. If hypotheses (H) hold, then problem (1.1) admits a negative
solution u0 ∈ − int

(
C1

0 (Ω)+

)
which is a local minimizer of the energy functional ϕ.

Proof. From Proposition 3.3 we know that ϕ− is coercive and taking the Sobolev
embedding theorem into account, we can show that ϕ− is also sequentially weakly
lower semicontinuous. Therefore, by the Weierstrass theorem, there exists u0 ∈
W 1,p

0 (Ω) such that

ϕ− (u0) = inf
[
ϕ−(u) : u ∈W 1,p

0 (Ω)
]
. (3.48)

Hypothesis (H)(v) implies that we can find δ > 0 small enough and η > λ̂1(2) such
that

F (x, s) ≥ η

2
|s|2 for a.a.x ∈ Ω and for all |s| ≤ δ. (3.49)

Since û1(2) ∈ int
(
C1

0 (Ω)+

)
, let t ∈ (0, 1) be small enough such that

tû1(2)(x) ∈ [0, δ] for all x ∈ Ω. (3.50)

Then, applying (3.49) and (3.50) we derive

ϕ− (−tû1(2)) ≤ tp

p
‖∇û1(2)‖pp +

t2

2

[
λ̂1(2)− η

]
.

Since t ∈ (0, 1), 2 < p and η > λ̂1(2), by choosing t ∈ (0, 1) even smaller if necessary,
we have ϕ− (−tû1(2)) < 0. This gives, due to (3.48), that

ϕ−(u0) < 0 = ϕ−(0)

and so u0 6= 0.
Relation (3.48) reads as ϕ′−(u0) = 0 which means

−∆pu0 −∆u0 = Nf−(u0). (3.51)

Taking u+
0 ∈W

1,p
0 (Ω) as test function in (3.51) yields∥∥∇u+

0

∥∥p
p

+
∥∥∇u+

0

∥∥2

2
= 0,

which implies u+
0 = 0 and so u0 ≤ 0, u0 6= 0. Hence, equation (3.51) becomes

−∆pu0 −∆u0 = Nf (u0),

which means that u0 is a solution to our original problem

−∆pu−∆u = f(x, u) in Ω,

u = 0 on ∂Ω.
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By means of the boundedness results of Ladyzhenskaya-Ural′tseva [21, Theorem
7.1, p. 286] we have u0 ∈ L∞(Ω).

Now let ρ = ‖u0‖∞. Taking hypotheses (H)(i), (v) into account we may find

ξ̂ρ > 0 such that

f(x, s)s+ ξ̂ρ|s|p ≥ 0 for a.a.x ∈ Ω and for all |s| ≤ ρ. (3.52)

Using (3.52) in (3.51) implies

∆p(−u0)(x) + ∆(−u0)(x) + ξ̂ρ|u0(x)|p−2u0(x) ≤ 0 for a.a.x ∈ Ω

respectively,

∆p(−u0)(x) + ∆(−u0)(x) ≤ ξ̂ρ(−u0(x))p−1 for a.a.x ∈ Ω. (3.53)

Let a(ξ) = ‖ξ‖p−2
RN ξ + ξ for all ξ ∈ RN . Then

div a(∇u) = ∆pu+ ∆u for all u ∈W 1,p
0 (Ω)

and

∇a(ξ) = ‖ξ‖p−2
RN

(
I + (p− 2)

ξ ⊗ ξ
‖ξ‖2RN

)
+ I for all ξ ∈ RN .

This implies

(∇a(ξ)y, y)RN ≥ ‖y‖
2
RN for all ξ, y ∈ RN .

Therefore, we may use the tangency principle of Pucci-Serrin [36, p. 35] and infer
that u0(x) < 0 for all x ∈ Ω. Then, from (3.53) and the boundary point theorem
of Pucci-Serrin [36, p. 120], we conclude that u0 ∈ − int

(
C1

0 (Ω)+

)
.

Note that ϕ
∣∣
−C1

0 (Ω)+
= ϕ−

∣∣
−C1

0 (Ω)+
and so u0 is a local C1

0 (Ω)-minimizer of ϕ.

Invoking Proposition 2.3 we infer that u0 is also a local W 1,p
0 (Ω)-minimizer of the

energy functional ϕ. �

Proposition 3.5. Let hypotheses (H) be satisfied. Then problem (1.1) admits at
least two positive solutions

û, ũ ∈ int
(
C1

0 (Ω)+

)
, ũ− û ∈ C1

0 (Ω)+ \ {0},

with û being a local minimizer of the energy functional ϕ.

Proof. Using w+ ∈ W 1,p(Ω) ∩ C(Ω) from hypothesis (H)(iii), we introduce the
following Carathéodory function

g(x, s) =


0 if s < 0,

f(x, s) if 0 ≤ s ≤ w+(x),

f (x,w+(x)) if w+(x) < s.

(3.54)

We set G(x, s) =
∫ s

0
g(x, t)dt and consider the C1-functional ψ : W 1,p

0 (Ω) → R
defined by

ψ(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

G(x, u)dx.
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It is clear that ψ is coercive, due to the truncation defined in (3.54), and it is also
sequentially weakly lower semicontinuous. Hence, the Weierstrass theorem implies
the existence of û ∈W 1,p

0 (Ω) such that

ψ (û) = inf
[
ψ(u) : u ∈W 1,p

0 (Ω)
]

= m̂. (3.55)

As in the proof of Proposition 3.4, using hypothesis (H)(v), we can show that for
t ∈ (0, 1) small enough (at least such that tû1(2) ≤ w+), we have ψ (tû1(2)) < 0
implying ψ (û) = m̂ < 0 = ψ(0). Hence, û 6= 0.

From (3.55) we have ψ′ (û) = 0 which reads as

−∆pû−∆û = Ng (û) . (3.56)

Taking −û− ∈W 1,p
0 (Ω) as test function in (3.56) gives∥∥∇û−∥∥p

p
+
∥∥∇û−∥∥2

2
= 0,

which implies û ≥ 0, û 6= 0. Next, choosing (û− w+)
+ ∈ W 1,p

0 (Ω) as test function
in (3.56) and using the definition of the truncation defined in (3.54) as well as
hypothesis (H)(iii), we obtain〈

−∆pû, (û− w+)
+
〉

+
〈
−∆û, (û− w+)

+
〉

=

∫
Ω

f (x,w+) (û− w+)
+
dx

≤
〈
−∆pw+, (û− w+)

+
〉

+
〈
−∆w+, (û− w+)

+
〉
.

Thus 〈
−∆pû+ ∆pw+, (û− w+)

+
〉

+
〈
−∆û+ ∆w+, (û− w+)

+
〉
≤ 0,

meaning û ≤ w+. So, we have proved that

û ∈ [0, w+] =
{
u ∈W 1,p

0 (Ω) : 0 ≤ u(x) ≤ w+(x) for a.a.x ∈ Ω
}
. (3.57)

Then, by means of (3.54) and (3.57), we see that (3.56) becomes

−∆pû−∆û = Nf (û) ,

meaning that
−∆pû−∆û = f (x, û) in Ω,

u = 0 on ∂Ω.
(3.58)

It is clear that û ∈ L∞(Ω) (see Ladyzhenskaya-Ural′tseva [21, Theorem 7.1, p. 286])
and the regularity results of Lieberman [22, Theorem 1.1] imply û ∈ C1

0 (Ω)+ \ {0}.
Now, for ρ = ‖û‖∞, let ξ̂ρ > 0 be as postulated by (3.52). Using this and (3.58) it
follows

∆pû(x) + ∆û(x) ≤ ξ̂ρû(x)p−1 for a.a.x ∈ Ω.

Then as in the proof of Proposition 3.4, first using the tangency principle of Pucci-
Serrin [36, p. 35] we have that û(x) > 0 for all x ∈ Ω and then the boundary point
theorem of Pucci-Serrin [36, p. 120] implies that

û ∈ int
(
C1

0 (Ω)+

)
. (3.59)
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Moreover, hypothesis (H)(iii) and the tangency principle of Pucci-Serrin [36, p. 35]
lead to

û(x) < w+(x) for all x ∈ Ω. (3.60)

Hence, from (3.59) and (3.60), we conclude that

û ∈ int
C1

0 (Ω)
[0, w+] . (3.61)

Note that ψ
∣∣
[0,w+]

= ϕ
∣∣
[0,w+]

which due to (3.61) implies that û is a local C1
0 (Ω)-

minimizer of ϕ. Invoking Proposition 2.3 gives

û is a local W 1,p
0 (Ω)-minimizer of ϕ.

Next we introduce the Carathéodory function k : Ω× R→ R defined by

k(x, s) =

{
f (x, û(x)) if s < û(x),

f(x, s) if û(x) ≤ s.
(3.62)

We set K(x, s) =
∫ s

0
k(x, t)dt and consider the C1-functional ψ̂ : W 1,p

0 (Ω) → R
defined by

ψ̂(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

K(x, u)dx.

As it was done for û, using the definition of the truncation in (3.62), we can show
that

Kψ̂ ⊆ [û,∞) =
{
u ∈W 1,p

0 (Ω) : û(x) ≤ u(x) for a.a.x ∈ Ω
}
. (3.63)

Without loss of generality we may assume that

Kψ̂ ∩ [û, w+] = {û} , (3.64)

otherwise, because of (3.63), we already have a second positive solution of (1.1)
bounded below by û. Furthermore, with straightforward minor changes in the
proof of Proposition 3.2 we can show that

ψ̂ satisfies the C-condition. (3.65)

Claim: û is a local minimizer of ψ̂.
Consider the Carathéodory function k̃ : Ω× R→ R defined by

k̃(x, s) =

{
k(x, s) if s < w+(x),

k (x,w+(x)) if w+(x) ≤ s.
(3.66)

We define the C1-functional ψ̃ : W 1,p
0 (Ω)→ R by

ψ̃(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

K̃(x, u)dx,

where K̃(x, s) =
∫ s

0
k̃(x, t)dt. As before we can check that

Kψ̃ ⊆ [û, w+] . (3.67)
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Taking (3.66) into account it is clear that ψ̃ is coercive and the Sobolev embed-
ding theorem implies that it is sequentially weakly lower semicontinuous as well.
Therefore, we find û0 ∈W 1,p

0 (Ω) such that

ψ̃ (û0) = inf
[
ψ̃(u) : u ∈W 1,p

0 (Ω)
]
.

Thanks to (3.67) we have û0 ∈ [û, w+]. Owing to (3.66) it holds ψ̂′
∣∣
[û,w+]

=

ψ̃′
∣∣
[û,w+]

. Thus, û0 ∈ Kψ̂ and so, regarding (3.64), û0 = û. But from (3.66) it is

clear that

ψ̂
∣∣
[0,w+]

= ψ̃
∣∣
[0,w+]

.

Because of (3.61) this implies that û ∈ int
(
C1

0 (Ω)+

)
is a local C1

0 (Ω)-minimizer of

ψ̂. As before, applying Proposition 2.3 we infer that û ∈ int
(
C1

0 (Ω)+

)
is a local

W 1,p
0 (Ω)-minimizer of ψ̂. This proves the Claim.
Now we assume that Kψ̂ is finite, otherwise we would have found a whole se-

quence of distinct positive solutions of (1.1) bounded below by û and so we would
be done. Because of the Claim, we can find ρ ∈ (0, 1) small enough such that

ψ̂ (û) < inf
[
ψ̂(u) : ‖u− û‖ = ρ

]
= mρ, (3.68)

see Aizicovici-Papageorgiou-Staicu [1, proof of Proposition 29]. Moreover, hypoth-
esis (H)(ii) implies that for every u ∈ int

(
C1

0 (Ω)+

)
there holds

ψ̂(tu)→ −∞ as t→ +∞. (3.69)

Then (3.65), (3.68) and (3.69) permit the usage of the mountain pass theorem

stated as Theorem 2.2. Hence, we find ũ ∈W 1,p
0 (Ω) such that

ũ ∈ Kψ̂ and mρ ≤ ψ̂ (ũ) . (3.70)

From (3.68) and (3.70) we see that û 6= ũ. In addition, thanks to (3.62), (3.63)
and (3.70) we conclude that ũ is a positive solution of (1.1), ũ− û ∈ C1

0 (Ω)+ \ {0}
and as before the nonlinear regularity theory of Lieberman [22] gives that ũ ∈
int
(
C1

0 (Ω)+

)
. �

4. Nodal solutions – Multiplicity Theorem

In this section we are going to prove the existence of nodal (sign-changing)
solutions for problem (1.1) and then we state the complete multiplicity theorem for
problem (1.1). To do this, we first show the existence of extremal constant sign
solutions, that is, the smallest positive solution u∗ ∈ int

(
C1

0 (Ω)+

)
and the greatest

negative solution v∗ ∈ − int
(
C1

0 (Ω)+

)
for problem (1.1). Then concentrating on

the order interval

[v∗, u∗] =
{
u ∈W 1,p

0 (Ω) : v∗(x) ≤ u(x) ≤ u∗(x) for a.a.x ∈ Ω
}
,

and applying variational tools combined with Morse theory, we can show the ex-
istence of a nontrivial solution y0 ∈ intC1

0 (Ω) [v∗, u∗]. Evidently, y0 must be nodal.

Finally we use Morse theory to generate a fifth nontrivial solution.
Now, let S+ (resp.S−) be the set of positive (resp. negative) solutions for problem

(1.1). From the results of Section 3 we know that

∅ ⊆ S+ ⊆ int
(
C1

0 (Ω)+

)
and ∅ ⊆ S− ⊆ − int

(
C1

0 (Ω)+

)
.
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Moreover, as in Filippakis-Kristály-Papageorgiou [17], exploiting the monotonicity
of the map u → −∆pu − ∆u, we have that S+ is downward directed, that is, if
u1, u2 ∈ S+, then there exists u ∈ S+ such that u ≤ u1 and u ≤ u2. Analogously,
it is known that S− is upward directed, that is, if v1, v2 ∈ S−, then there exists
v ∈ S− such that v1 ≤ v and v2 ≤ v.

First, we will prove the existence of lower (resp. upper) bounds for S+ (resp.S−).
To this end, note that for a given ε > 0 we can find c8 = c8(ε) > 0 such that

f(x, s)s ≥ (f ′s(x, 0)− ε) s2 − c8|s|r for a.a.x ∈ Ω and for all s ∈ R. (4.1)

This unilateral growth estimate on the nonlinearity leads to the consideration of
the following auxiliary Dirichlet problem

−∆pu−∆u = (f ′s(·, 0)− ε)u− c8|u|r−2u in Ω,

u = 0 on ∂Ω.
(4.2)

Proposition 4.1. For every ε > 0 small enough problem (4.2) has a unique positive
solution u ∈ int

(
C1

0 (Ω)+

)
and since (4.2) is odd, v = −u ∈ − int

(
C1

0 (Ω)+

)
is the

unique negative solution.

Proof. Let σ+ : W 1,p
0 (Ω)→ R be the C1-functional defined by

σ+(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 +

c8
r

∥∥u+
∥∥r
r
− 1

2

∫
Ω

(f ′s(·, 0)− ε)
(
u+
)2
dx

Obviously σ+ is coercive since r > p > 2 and sequentially weakly lower semicontin-

uous. Therefore we can find u ∈W 1,p
0 (Ω) such that

σ+ (u) = inf
[
σ+(u) : u ∈W 1,p

0 (Ω)
]
. (4.3)

Using ‖û1(2)‖2 = 1 and hypothesis (H)(v) we have for t > 0

σ+ (tû1(2)) ≤ tp

p
‖∇û1(2)‖pp +

t2

2

(
λ̂1(2)− λ̂m(2) + ε

)
+
tr

r
c8 ‖û1(2)‖rr . (4.4)

Recalling m ≥ 2, let ε ∈
(

0, λ̂m(2)− λ̂1(2)
)

. Then, since 2 < p < r, choosing

t ∈ (0, 1) small enough, (4.4) implies

σ+ (tû1(2)) < 0,

which shows, due to (4.3), that σ+ (u) < 0 = σ+(0). Hence, u 6= 0.
Since u is a critical point of σ+ there holds σ′+ (u) = 0 meaning that

−∆pu−∆u = (f ′s(·, 0)− ε)u+ − c8
(
u+
)r−1

. (4.5)

Acting on (4.5) with −u− ∈W 1,p
0 (Ω) yields∥∥∇u−∥∥p

p
+
∥∥∇u−∥∥2

2
= 0,

which gives u ≥ 0, u 6= 0. Therefore, (4.5) becomes

−∆pu−∆u = (f ′s(·, 0)− ε)u− c8 (u)
r−1

in Ω,

u = 0 on ∂Ω.

As before, applying the regularity results of Lieberman [22, Theorem 1.1] implies
that u ∈ C1

0 (Ω)+ \ {0} is a positive solution of (4.2).
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Moreover, we have

∆pu(x) + ∆u(x) ≤ c8 ‖u‖r−p∞ u(x)p−1 for a.a.x ∈ Ω.

Then, due to Pucci-Serrin [36, pp. 35 or 111 and 120], we obtain u ∈ int
(
C1

0 (Ω)+

)
.

Next, we will show the uniqueness of this positive solution. For this purpose, let
G0 : R+ = [0,∞)→ R+ be defined by

G0(t) =
1

p
tp +

1

2
t2.

Then, G0 ∈ C2 (R+,R+) is strictly increasing and strictly convex. Additionally,

t → G0

(
t
1
2

)
is convex as well. We set G(ξ) = G0 (‖ξ‖RN ) for all ξ ∈ RN and

consider the integral functional I+ : L1(Ω)→ R = R ∪ {+∞} defined by

I+(u) =


∫

Ω

G
(
∇u 1

2

)
dx if u ≥ 0, u

1
2 ∈W 1,p

0 (Ω),

+∞ otherwise.

Let u1, u2 ∈ dom I+ =
{
u ∈ L1(Ω) : I+(u) < +∞

}
being the effective domain of

I+. We set w1 = u
1
2
1 , w2 = u

1
2
2 and by definition, we have w1, w2 ∈ W 1,p

0 (Ω). We
define

w = (tu1 + (1− t)u2)
1
2

with t ∈ [0, 1]. Using Lemma 1 of Dı́az-Saá [13] (see also Benguria-Brézis-Lieb [8]),
we obtain

‖∇w(x)‖RN ≤
(
t ‖∇w1(x)‖2RN + (1− t) ‖∇w2(x)‖2

) 1
2

for a.a.x ∈ Ω.

Hence

G0 (‖∇w(x)‖RN ) ≤ G0

((
t ‖∇w1(x)‖2RN + (1− t) ‖∇w2(x)‖2RN

) 1
2

)
≤ tG0 (‖∇w1(x)‖RN ) + (1− t)G0 (‖∇w2(x)‖RN ) ,

since G0 is increasing and t → G0

(
t
1
2

)
is convex. As G(ξ) = G0 (‖ξ‖RN ) for all

ξ ∈ RN , it follows that

G(∇w(x)) ≤ tG (∇w1(x)) + (1− t)G (∇w2(x)) for a.a.x ∈ Ω.

Therefore, I+ is convex. Furthermore, using Fatou’s Lemma, we see that I+ is
lower semicontinuous.

If u ∈ W 1,p
0 (Ω) is a positive solution of problem (4.2), then from the first part

of the proof we know that u ∈ int
(
C1

0 (Ω)+

)
, hence u2 ∈ dom I+. Then, for every

h ∈ C1
0 (Ω) and for |t| > 0 small enough, we have u2 + th ∈ dom I+.

Using this fact and the chain rule we see that the Gateaux derivative of I+ at
u2 in the direction h exists and is equal to

I ′+
(
u2
)

(h) =
1

2

∫
Ω

−∆pu−∆u

u
hdx.
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Suppose now that v ∈W 1,p
0 (Ω) is another positive solution of (4.2). As before, we

obtain v ∈ int
(
C1

0 (Ω)+

)
, v2 ∈ dom I+ and

I ′+
(
v2
)

(h) =
1

2

∫
Ω

−∆pv −∆v

v
hdx for all h ∈ C1

0 (Ω).

The convexity of I+ implies that I ′+ is monotone. Thus

0 ≤
〈
I ′+
(
u2
)
− I ′+

(
v2
)
, u2 − v2

〉
L1(Ω)

=
1

2

∫
Ω

(
−∆pu−∆u

u
− −∆pv −∆v

v

)(
u2 − v2

)
dx

=
1

2

∫
Ω

c8
(
vr−1 − ur−1

) (
u2 − v2

)
dx.

Since s → sr−1 is strictly increasing on R+, we have u = v. This proves the
uniqueness of the positive solution u ∈ int

(
C1

0 (Ω)+

)
.

Since (4.2) is odd, v = −u ∈ − int
(
C1

0 (Ω)+

)
is the unique negative solution of

problem (4.2). �

Now we can use the solutions of Proposition 4.1 to create bounds for the elements
of S+ and S−.

Proposition 4.2. If hypotheses (H) hold, then u ≤ u for all u ∈ S+ and v ≤ v for
all v ∈ S− with u, v being the nontrivial unique constant sign solutions of problem
(4.2) obtained in Proposition 4.1.

Proof. We will do the proof only the elements of S+, the proof for the elements of
S− works similar.

Let ε > 0 be small enough as postulated by Proposition 4.1 and let u ∈ S+. We
introduce the Carathéodory function e : Ω× R→ R defined by

e(x, s) =


0 if s < 0,

(f ′s(x, 0)− ε) s− c8sr−1 if 0 ≤ s ≤ u(x),

(f ′s(x, 0)− ε)u(x)− c8u(x)r−1 if u(x) < s.

(4.6)

We set E(x, s) =
∫ s

0
e(x, t)dt and consider the C1-functional χ : W 1,p

0 (Ω) → R
defined by

χ(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

E(x, u)dx.

Due to the truncation defined in (4.6), it is clear that χ is coercive and as before

it is also sequentially weakly lower semicontinuous. Hence, we find u0 ∈ W 1,p
0 (Ω)

such that

χ (u0) = inf
[
χ(u) : u ∈W 1,p

0 (Ω)
]
.

Since u ∈ S+ ⊆ int
(
C1

0 (Ω)+

)
, using Lemma 3.3 of Filippakis-Kristály-Papageorgiou

[17], we can find t ∈ (0, 1) small enough such that tû1(p) ≤ u. Moreover, since
2 < p < r by taking t ∈ (0, 1) even smaller if necessary, we have χ (tû1(2)) < 0 and
so χ (u0) < 0 = χ(0). Hence, u0 6= 0.

Since u0 is the global minimizer of χ, there holds χ′ (u0) = 0 which reads as

−∆pu0 −∆u0 = Ne (u0) . (4.7)
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First, we choose −u−0 ∈W
1,p
0 (Ω) as test function in (4.7). This gives∥∥∇u−0 ∥∥pp +

∥∥∇u−0 ∥∥2

2
= 0

and so u0 ≥ 0, u0 6= 0. Next, we act with (u0 − u)
+ ∈W 1,p

0 (Ω) on (4.7). This leads
to, based on (4.1), (4.6) and u ∈ S+,〈

−∆pu0, (u0 − u)
+
〉

+
〈
−∆u0, (u0 − u)

+
〉

=

∫
Ω

e (x, u0) (u0 − u)
+
dx

=

∫
Ω

(
(f ′s(x, 0)− ε)u− c8ur−1

)
(u0 − u)

+
dx

≤
∫

Ω

f(x, u) (u0 − u)
+
dx

=
〈
−∆pu, (u0 − u)

+
〉

+
〈
−∆u, (u0 − u)

+
〉
,

from which we infer that〈
−∆pu0 + ∆pu, (u0 − u)

+
〉

+
∥∥∥∇ (u0 − u)

+
∥∥∥2

2
≤ 0.

Therefore, u0 ≤ u. So, we have proved that

u0 ∈ [0, u] =
{
y ∈W 1,p

0 (Ω) : 0 ≤ y(x) ≤ u(x) for a.a.x ∈ Ω
}
. (4.8)

Taking (4.6) and (4.8) into account we see that equation (4.7) becomes

−∆pu0 −∆u0 = (f ′s(·, 0)− ε)u0 − c8ur−1
0 ,

which implies, due to Proposition 4.1, that u0 = u ∈ int
(
C1

0 (Ω)+

)
. Hence, u ≤ u.

Since u ∈ S+ is arbitrary, we have the conclusion of the proposition for the set
S+. Similarly, we show that v ≤ v for all v ∈ S. �

These bounds lead to the existence of extremal constant sign solutions for prob-
lem (1.1) stated in the next proposition.

Proposition 4.3. Let hypotheses (H) be satisfied. Then problem (1.1) has a
smallest positive solution u∗ ∈ int

(
C1

0 (Ω)+

)
and a greatest negative solution v∗ ∈

− int
(
C1

0 (Ω)+

)
.

Proof. By applying Lemma 3.10 on p. 178 of Hu-Papageorgiou [20] there exists a
decreasing sequence (un)n≥1 ⊆ S+ such that

inf S+ = inf
n≥1

un.

Since un ∈ S+ for every n ∈ N, we have

−∆pun −∆un = Nf (un) . (4.9)

Thanks to hypothesis (H)(i) we easily check that (un)n≥1 ⊆ W 1,p
0 (Ω) is bounded.

So, we may assume that

un ⇀ u∗ in W 1,p
0 (Ω) and un → u∗ in Lp(Ω). (4.10)

Owing to Proposition 4.2 we know that u ≤ un for all n ∈ N. Hence,

u ≤ u∗ 6= 0.
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Acting on (4.9) with un − u∗ ∈W 1,p
0 (Ω), passing to the limit as n→∞ and using

(4.10) yields

lim
n→∞

[〈−∆pun, un − u∗〉+ 〈−∆un, un − u∗〉] = 0,

which in view of the monotonicity of −∆ results in

lim sup
n→∞

[〈−∆pun, un − u∗〉+ 〈−∆u∗, un − u∗〉] ≤ 0.

Thanks to the convergence properties in (4.10) the second term above goes to zero
and so we derive

lim sup
n→∞

〈−∆pun, un − u∗〉 ≤ 0,

which implies, due to Proposition 2.4 along with (4.10) that

un → u∗ in W 1,p
0 (Ω). (4.11)

So, if we pass in (4.9) to the limit as n→∞ and use (4.11), then

−∆pu∗ −∆u∗ = Nf (u∗) .

Hence, u∗ ∈ S∗ and u∗ = inf S+.
Similarly we generate v∗ ∈ − int

(
C1

0 (Ω)+

)
being the greatest negative solution

of (1.1). �

Following the approach outlined in the beginning of this section, we focus now on
the order interval [v∗, u∗] looking for a nontrivial solution of (1.1) different from u∗
and v∗. Such a solution necessarily must be nodal. In order to show the existence
of such a solution, we will combine variational tools with Morse theory in terms of
critical groups. We start by computing the critical groups of ϕ at the origin.

Proposition 4.4. If hypotheses (H) hold, then Ck (ϕ, 0) = δk,dmZ for all k ∈ N0

with dm = dimHm ≥ 2 and Hm =
⊕m

i=1E
(
λ̂i(2)

)
.

Proof. Regarding hypothesis (H)(i) we have that m(x) := f ′s(x, 0) ∈ L∞(Ω). Let
us consider the C2-functional ψ : H1

0 (Ω)→ R defined by

ψ(u) =
1

2
‖∇u‖22 −

1

2

∫
Ω

m(x)u2dx.

We claim that Kψ = {0}. Indeed, if u ∈ Kψ, then

−∆u = m(x)u in Ω,

u = 0 on ∂Ω.
(4.12)

Hypothesis (H)(v) and Proposition 2.7 yield

λ̂m (2,m) < λ̂m

(
2, λ̂m(2)

)
= 1, 1 = λ̂m+1

(
2, λ̂m+1(2)

)
< λ̂m+1(2,m). (4.13)

Hence, (4.12) and (4.13) imply that Kψ = {0}. Moreover, since

〈ψ′′(0)v, h〉 =

∫
Ω

(∇v,∇h)RN dx−
∫

Ω

m(x)vhdx for all v, h ∈ H1
0 (Ω),
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from the argument above and using Proposition 2.6, we infer that u = 0 is a nonde-

generate critical point of ψ with Morse index dm = dimHm, Hm =
⊕m

i=1E
(
λ̂i(2)

)
.

It follows that

Ck (ψ, 0) = δk,dmZ for all k ∈ N0. (4.14)

Let ψ0 = ψ
∣∣
W 1,p

0 (Ω)
. Since W 1,p

0 (Ω) is dense in H1
0 (Ω), from Palais [28], we have

Ck (ψ0, 0) = Ck (ψ, 0) for all k ∈ N0,

which gives, due to (4.14),

Ck (ψ0, 0) = δk,dmZ for all k ∈ N0. (4.15)

We consider the homotopy h : [0, 1]×W 1,p
0 (Ω)→ R defined by

h(t, u) = tϕ(u) + (1− t)ψ0(u).

Suppose that we can find (tn)n≥1 ⊆ [0, 1] and (un)n≥1 ⊆W
1,p
0 (Ω) such that

tn → t ∈ [0, 1], un → 0 in W 1,p
0 (Ω) and h′u (tn, un) = 0 for all n ∈ N0. (4.16)

The last assertion in (4.16) reads as

tn (−∆pun)−∆un = tnNf (un) + (1− tn)mun for all m ∈ N. (4.17)

We set yn = un
‖un‖ for all n ∈ N. Then ‖yn‖ = 1 for all n ∈ N and (4.17) yields

tn ‖un‖p−2
(−∆pyn)−∆yn = tn

Nf (un)

‖un‖
+ (1− tn)myn (4.18)

for all n ∈ N. We have that

(−∆pyn)n≥1 ⊆W
−1,p′(Ω) =

(
W 1,p

0 (Ω)
)∗

is bounded. (4.19)

Passing to a subsequence if necessary we may assume that

yn ⇀ y in W 1,p
0 (Ω) and yn → y in L2(Ω). (4.20)

Hypotheses (H)(i), (v) imply that

|f(x, s)| ≤ c9
(
|s|+ |s|r−1

)
for a.a.x ∈ Ω, for all s ∈ R

and for some c9 > 0. This gives∣∣∣∣f (x, un(x))

‖un‖

∣∣∣∣ ≤ c9 (1 + ‖un‖r−2
)
|yn(x)| for a.a.x ∈ Ω (4.21)

and for all n ∈ N. Due to (4.20) we conclude that(
Nf (un)

‖un‖

)
n≥1

⊆ L2(Ω) is bounded.

This fact, hypothesis (H)(v) and by passing to a subsequence if necessary, imply
that

Nf (un)

‖un‖
⇀my in L2(Ω) (4.22)
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see, for example Aizicovici-Papageorgiou-Staicu [1]. We return to (4.18), pass to
the limit as n→∞ and use (4.16), (4.19), (4.20) and (4.22) to obtain −∆y = my
meaning that

−∆y = m(x)y in Ω,

y = 0 on ∂Ω.

As before, using hypothesis (H)(v) and Proposition 2.7, we infer that

y = 0. (4.23)

On the other hand from (4.18), (4.21) and Theorem 7.1 of Ladyzhenskaya-Ural′tseva
[21] (with m = 2), we know that there exists M12 > 0 such that

yn ∈ L∞(Ω) and ‖yn‖∞ ≤M12 for all n ∈ N.

But then Theorem 1 of Lieberman [22] (with m = 2) implies that there exist
β ∈ (0, 1) and M13 > 0 such that

yn ∈ C1,β
0 (Ω) and ‖yn‖C1,β

0 (Ω) ≤M13 for all n ∈ N.

Exploiting the compact embedding of C1,β
0 (Ω) into C1

0 (Ω) and using (4.20), we have

yn → y in C1
0 (Ω),

which gives

yn → y in W 1,p
0 (Ω).

Therefore ‖y‖ = 1 which contradicts (4.23). This means that (4.16) can not happen
and then using the homotopy invariance property of critical groups, we get

Ck (h(0, ·), 0) = Ck (h(1, ·), 0) for all k ∈ N0,

which implies

Ck (ψ0, 0) = Ck (ϕ, 0) for all k ∈ N0.

Finally, due to (4.15), it follows

Ck (ϕ, 0) = δk,dmZ for all k ∈ N0.

�

Remark 4.5. An alternative proof of this result can be based on the following

argument. Let ψ̂0 : W 1,p
0 (Ω)→ R be the C2-functional defined by

ψ̂0(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

1

2

∫
Ω

m(x)u2dx.

Note that ∣∣∣ψ̂0(u)− ψ0(u)
∣∣∣ =

1

p
‖∇u‖pp for all u ∈W 1,p

0 (Ω).

Moreover, there holds, for all u, h ∈W 1,p
0 (Ω),∣∣∣〈ψ̂′0(u)− ψ′0(u), h

〉∣∣∣ = |〈−∆pu, h〉| ≤ ‖∇u‖p−1
p ‖h‖ .

From these estimates and Theorem 5.1 of Corvellec-Hantoute [11] (continuity of
the critical groups in the C1-norm), we derive

Ck

(
ψ̂0, 0

)
= Ck (ψ0, 0) for all k ∈ N0,
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which in view of (4.15) gives

Ck

(
ψ̂0, 0

)
= δk,dmZ for all k ∈ N0.

Note that hypothesis (H)(v) implies that for a given ε > 0 we can find δ = δ(ε) > 0
such that

|f(x, s)−m(x)s| ≤ ε and

∣∣∣∣F (x, s)− 1

2
m(x)s2

∣∣∣∣ ≤ ε
for a.a.x ∈ Ω and for all |s| ≤ δ. Then, we have∣∣∣ψ̂0(u)− ϕ(u)

∣∣∣ ≤ ∫
Ω

∣∣∣∣F (x, u)− 1

2
m(x)u2

∣∣∣∣ dx
and ∣∣∣〈ψ̂′0(u)− ϕ′(u), h

〉∣∣∣ ≤ ∫
Ω

|f(x, u)−m(x)u| dx.

Hence,

Ck

(
ψ̂0

∣∣
C1

0 (Ω)
, 0
)

= Ck

(
ϕ
∣∣
C1

0 (Ω)
, 0
)

which implies Ck

(
ψ̂0, 0

)
= Ck (ϕ, 0) for all k ∈ N0, see Palais [28]. Therefore, we

conclude that

Ck (ϕ, 0) = δk,dmZ for all k ∈ N0.

In what follows u∗ ∈ int
(
C1

0 (Ω)+

)
and v∗ ∈ − int

(
C1

0 (Ω)+

)
are the two extremal

constant sign solutions of problem (1.1) obtained in Proposition 4.3.

Proposition 4.6. Let hypotheses (H) be satisfied. Then problem (1.1) admits a
nodal solution y0 ∈ intC1

0 (Ω) [v∗, u∗].

Proof. First, we introduce the following truncation of the nonlinearity f : Ω×R→ R

f∗(x, s) =


f (x, v∗(x)) if s < v∗(x),

f (x, s) if v∗(x) ≤ s ≤ u∗(x),

f (x, u∗(x)) if u∗(x) < s,

(4.24)

which is clearly a Carathéodory function. We set F∗(x, s) =
∫ s

0
f∗(x, t)dt and

consider the C1-functional ψ∗ : W 1,p
0 (Ω)→ R defined by

ψ∗(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

F∗(x, u)dx.

Furthermore, we define the Carathéodory functions

f+
∗ (x, s) = f∗

(
x, s+

)
and f−∗ (x, s) = f∗

(
x,−s−

)
.

We set F±∗ (x, s) =
∫ s

0
f±∗ (x, t)dt and consider the C1-functionals ψ±∗ : W 1,p

0 (Ω)→ R
defined by

ψ±∗ (u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

F±∗ (x, u)dx.

Reasoning as in the proof of Proposition 3.5 we can show that

Kψ∗ ⊆ [v∗, u∗] , Kψ+
∗
⊆ [0, u∗] , Kψ−∗

⊆ [v∗, 0] ,
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where

[0, u∗] =
{
u ∈W 1,p

0 (Ω) : 0 ≤ u(x) ≤ u∗(x) for a.a.x ∈ Ω
}
,

[v∗, 0] =
{
u ∈W 1,p

0 (Ω) : v∗(x) ≤ u(x) ≤ 0 for a.a.x ∈ Ω
}
.

The extremality of u∗ ∈ int
(
C1

0 (Ω)+

)
and v∗ ∈ − int

(
C1

0 (Ω)+

)
implies that

Kψ∗ ⊆ [v∗, u∗] , Kψ+
∗

= {0, u∗} , Kψ−∗
= {0, v∗} . (4.25)

Next we show that u∗ and v∗ are local minimizers of ψ∗. From (4.24) it is clear
that ψ+

∗ is coercive and because of the Sobolev embedding theorem it is sequentially

weakly lower semicontinuous as well. Thus, there exists û∗ ∈W 1,p
0 (Ω) such that

ψ+
∗ (û∗) = inf

[
ψ+
∗ (u) : u ∈W 1,p

0 (Ω)
]
. (4.26)

Since m ≥ 2, u∗ ∈ int
(
C1

0 (Ω)+

)
and 2 < p we can choose t ∈ (0, 1) small enough

such that

tû1(2) ≤ u∗ and ψ+
∗ (tû1(2)) < 0,

see hypotheses (H)(v) and use Lemma 3.3 of Filippakis-Kristály-Papageorgiou [17].
Then, from (4.26) it follows that ψ+

∗ (û∗) < 0 = ψ+
∗ (0) meaning that

û∗ 6= 0.

Because of (4.25) and since û∗ is a nontrivial critical point of ψ+
∗ we know that

û∗ = u∗. Note that ψ∗
∣∣
C1

0 (Ω)+
= ψ+

∗
∣∣
C1

0 (Ω)+
and u∗ ∈ int

(
C1

0 (Ω)+

)
. Hence, u∗ is a

local C1
0 (Ω)-minimizer of ψ∗ and by means of Proposition 2.3 it is also a W 1,p

0 (Ω)-
minimizer of ψ∗. Similarly we can show this for v∗ working with the functional
ψ−∗ .

Without any loss of generality we may assume that ψ∗ (v∗) ≤ ψ∗ (u∗), the analy-
sis is similar if the opposite inequality holds. Moreover we may assume that Kψ∗ is
finite, otherwise (4.25) implies the existence of a whole sequence of distinct nodal
solutions.

Recall that v∗ ∈ int
(
C1

0 (Ω)+

)
is a local minimizer of ψ∗. Hence, we can find

ρ ∈ (0, 1) small enough such that ‖v∗ − u∗‖ > ρ and

ψ∗ (v∗) ≤ ψ∗ (u∗) < inf [ψ∗(u) : ‖u− u∗‖ = ρ] = mρ, (4.27)

see Aizicovici-Papageorgiou-Staicu [1, proof of Proposition 29]. We know that ψ∗ is
coercive and so it satisfies the C-condition, see Papageorgiou-Winkert [32, Propo-
sition 3.2]. This fact and (4.27) permit the usage of the mountain pass theorem

stated as Theorem 2.2. Therefore, we find y0 ∈W 1,p
0 (Ω) such that

y0 ∈ Kψ∗ and mρ ≤ ψ∗ (y0) . (4.28)

From (4.25), (4.27) (4.28) and the nonlinear regularity theory of Lieberman [22] it
follows

y0 ∈ [v∗, u∗] ∩ C1
0 (Ω), y0 6∈ {v∗, u∗} . (4.29)

Since y0 is a critical point of mountain pass type for the functional ψ∗ there holds

C1 (ψ∗, y0) 6= 0, (4.30)

see Motreanu-Motreanu-Papageorgiou [25, p. 176].
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We need to show that y0 is nontrivial in order to conclude that it is nodal. To
this end, we compute the critical groups of ψ∗ at u = 0 in order to compare them
with (4.30).

Claim: Ck (ψ∗, 0) = δk,dmZ for all k ∈ N0 with dm = dimHm and Hm =⊕m
i=1E

(
λ̂i(2)

)
.

Consider the homotopy ĥ : [0, 1]×W 1,p
0 (Ω)→ R defined by

ĥ(t, u) = tϕ(u) + (1− t)ψ∗(u).

Suppose that we can find (tn)n≥1 ⊆ [0, 1] and (un)n≥1 ⊆W
1,p
0 (Ω) such that

tn → t ∈ [0, 1], ‖un‖ → 0 and ĥ′u (tn, un) = 0 for all n ∈ N. (4.31)

The last assertion in (4.31) reads as

−∆pun −∆un = tnNf (un) + (1− tn)Nf∗ (un) for all n ∈ N

meaning that

−∆pun −∆un = tnf (x, un) + (1− tn) f∗ (x, un) in Ω,

un = 0 on ∂Ω.

Theorem 7.1 of Ladyzhenskaya-Ural′tseva [21] implies that we can find M14 > 0
such that

un ∈ L∞(Ω) and ‖un‖∞ ≤M14 for all n ∈ N. (4.32)

Then, (4.32) and Theorem 1 of Lieberman [22] imply the existence of α ∈ (0, 1)
and M15 > 0 such that

un ∈ C1,α
0 (Ω) and ‖un‖C1,α

0 (Ω) ≤M15 for all n ∈ N. (4.33)

From (4.31), (4.33) and because C1,α
0 (Ω) is compactly embedded into C1

0 (Ω) we
obtain

un → 0 in C1
0 (Ω) as n→∞.

Thus, we find a number n0 such that un ∈ [v∗, u∗] for all n ≥ n0. Then, due to
(4.25), (un)n≥n0

⊆ Kψ∗ . But this contradicts our hypothesis that Kψ∗ is finite.

Therefore, (4.31) can not occur and then exploiting the homotopy invariance of
critical groups it holds

Ck (ϕ, 0) = Ck (ψ∗, 0) for all k ∈ N0,

which, by virtue of Proposition 4.4, gives

Ck (ψ∗, 0) = δk,dmZ for all k ∈ N0.

This proves the claim.
Combining the Claim with (4.30) we see that y0 6= 0. Then, (4.29) implies that

y0 ∈ C1
0 (Ω) is a nodal solution of (1.1).

Now, let ρ = max {‖v∗‖∞ , ‖u∗‖∞}. The differentiability of f(x, ·) and hypothe-

ses (H)(i),(iv) imply the existence of ξ̂ρ > 0 such that

s→ f(x, s) + ξ̂ρ|s|p−2s is nondecreasing on [−ρ, ρ] for a.a.x ∈ Ω.
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From this and y0 ≤ u∗ it follows

−∆py0 −∆y0 + ξ̂ρ |y0|p−2
y0 = f (x, y0) + ξ̂ρ|y0|p−2y0

≤ f (x, u∗) + ξ̂ρu
p−1
∗

= −∆pu∗ −∆u+ + ξ̂ρu
p−1
∗

(4.34)

Applying the tangency principle of Pucci-Serrin [36, p. 35] yields

y0(x) < u∗(x) for all x ∈ Ω.

Then, for every compact set K ⊆ Ω, we can find ε = ε(K) > 0 such that

f (x, y0) + ξ̂ρ |y0|p−2
y0 + ε ≤ f (x, u∗) + ξ̂ρu

p−1
∗ for a.a.x ∈ K.

So, from (4.34) and the strong comparison principle (see Arcoya-Ruiz [5] and
Papageorgiou-Winkert [34]), we have

u∗ − y0 ∈ int
(
C1

0 (Ω)+

)
. (4.35)

In the same way we can show that

y0 − v∗ ∈ int
(
C1

0 (Ω)+

)
. (4.36)

From (4.35) and (4.36) we conclude that

y0 ∈ int
C1

0 (Ω)
[v∗, u∗] .

�

Proposition 4.7. If hypotheses (H) hold, then Ck (ϕ, y0) = δk,1Z for all k ∈ N0.

Proof. As in the proof of Proposition 4.6, using the homotopy invariance of crit-
ical groups, the nonlinear regularity results of Ladyzhenskaya-Ural′tseva [21] and
Lieberman [22] as well as the fact that y0 ∈ intC1

0 (Ω) [v∗, u∗] (see Proposition 4.6),

we establish that

Ck (ϕ, y0) = Ck (ψ∗, y0) for all k ∈ N0, (4.37)

whereby we recall that by hypothesis Kϕ is finite. From (4.30) and (4.37) it follows
that

C1 (ϕ, y0) 6= 0.

But ϕ ∈ C2
(
W 1,p

0 (Ω)
)

. So, from Papageorgiou-Smyrlis [31] (see also Papageorgiou-

Rădulescu [30]), we conclude that

Ck (ϕ, y0) = δk,1Z for all k ∈ N0.

�

Proposition 4.8. If hypotheses (H) hold and Kϕ is finite, then Ck (ϕ,∞) = 0 for
all k ∈ N0.

Proof. Let ∂B+
1 =

{
u ∈W 1,p

0 (Ω) : ‖u‖ = 1, u+ 6= 0
}

and consider the deformation

h : [0, 1]× ∂B+
1 → ∂B+

1 defined by

h(t, u) =
(1− t)u+ tû1(p)

‖(1− t)u+ tû1(p)‖
.
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Note that

h(0, ·)
∣∣
∂B+

1
= id

∣∣
∂B+

1
and h(1, u) =

û1(p)

‖û1(p)‖
∈ ∂B+

1 for all u ∈ ∂B+
1 .

This shows that ∂B+
1 is contractible.

From hypothesis (H)(ii) we see that for any given η > 0 we can find M16 =
M16(η) > 0 such that

F (x, s) ≥ η

p
sp for a.a.x ∈ Ω and for all s ≥M16. (4.38)

Hypothesis (H)(iv) implies that we can find c10 > 0 and M̂16 > 0 such that

−c10

p
|s|p ≤ F (x, s) for a.a.x ∈ Ω and for all s ≤ −M̂16. (4.39)

Finally, hypothesis (H)(i) implies the existence of c11 > 0 such that

|F (x, s)| ≤ c11 for a.a.x ∈ Ω and for all s ∈
[
M̂16,M16

]
. (4.40)

Now let u ∈ ∂B+
1 , t ≥ 1 and define

Ω+ := {x ∈ Ω : tu(x) ≥M16} , Ω− :=
{
x ∈ Ω : tu(x) ≤ −M̂16

}
,

Ω−+ :=
{
x ∈ Ω : −M̂16 < tu(x) < M16

}
.

Using (4.38), (4.39), (4.40) and the fact that ‖u‖ = 1 yields

ϕ(tu) =
tp

p
‖∇u‖pp +

t2

2
‖∇u‖22 −

∫
Ω

F (x, tu)dx

=
tp

p
‖∇u‖pp +

t2

2
‖∇u‖22 −

∫
Ω+

F (x, tu)dx−
∫

Ω−
F (x, tu)dx

−
∫

Ω−+

F (x, tu)dx

≤ tp

p
‖∇u‖pp +

t2

2
‖∇u‖22 −

tp

p
η

∫
Ω+

updx+
tp

p
c10

∫
Ω−
|u|pdx

+ c11|Ω|N

≤ tp

p

[
c12 − η

∫
Ω+

updx

]
+
t2

2
‖∇u‖22 + c11|Ω|N

(4.41)

for some c12 > 0. Since u ∈ ∂B+
1 we know that u+ 6= 0. Hence, we can find

numbers t0 > 0 and ξ0 > 0 such that∫
Ω+

updx ≥ ξ0 for all t ≥ t0. (4.42)

Using (4.42) in (4.41) results in

ϕ(tu) ≤ tp

p
[c12 − ηξ0] +

t2

2
‖∇u‖22 + c11|Ω|N for all t ≥ t0. (4.43)

Recall that η > 0 is arbitrary, so we can choose η > 0 large enough such that
ηξ0 > c12. Then, from (4.43) and since 2 < p we have

ϕ(tu)→ −∞ as t→ +∞. (4.44)
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Hypotheses (H)(i),(ii), (iv) imply the existence of c13 > 0 such that

−c13 +

∫
Ω

pF (x, u)dx ≤
∫

Ω

f(x, u)udx. (4.45)

Then, using the chain rule, (4.45) and recall p > 2, we obtain

d

dt
ϕ(tu) = 〈ϕ′(tu), u〉

=
1

t
〈ϕ′(tu), tu〉

=
1

t

[
‖∇u‖pp + ‖∇u‖22 −

∫
Ω

f(x, tu)tudx

]
≤ 1

t
[pϕ(tu) + c13] .

Using (4.44) we see that for t ≥ 1 large enough we have

d

dt
ϕ(tu) < 0.

Let ϑ < min
{
c13
p , inf

B
+
1
ϕ
}

. By the implicit function theorem we see that there

exists an unique k ∈ C
(
∂B+

1

)
, k ≥ 1 such that

ϕ(tu) =


> ϑ if t ∈ [0, k(u)),

= ϑ if t = k(u),

< ϑ if t > k(u).

(4.46)

Due to the choice of ϑ and (4.46) we have

ϕϑ ⊆
{
tu : u ∈ ∂B+

1 , t ≥ k(u)
}
.

Let D+ =
{
tu : u ∈ ∂B+

1 , t ≥ 1
}

. Then ϕϑ ⊆ D+. We consider the deformation
h0 : [0, 1]×D+ → D+ defined by

h0(s, tu) =

{
(1− s)tu+ sk(u)u if t ∈ [1, k(u)],

tu if t > k(u).

Then

h0 (1, D+) ⊆ ϕϑ and h+(s, ·)
∣∣
ϕϑ

= id
∣∣
ϕϑ

for all s ∈ [0, 1].

Therefore, ϕϑ is a strong deformation retract of D+. Using the radial retraction and
Theorem 6.5 of Dugundji [14], we see that D+ and ∂B+

1 are homotopy equivalent.
So, we have

Hk

(
W 1,p

0 (Ω), ϕϑ
)

= Hk

(
W 1,p

0 (Ω), D+

)
= Hk

(
W 1,p

0 (Ω), ∂B+
1

)
for all k ∈ N0,

see Motreanu-Motreanu-Papageorgiou [25, p. 143]. Recall that ∂B+
1 is contractible,

thus

Hk

(
W 1,p

0 (Ω), ∂B+
1

)
= 0 for all k ∈ N0,

see Motreanu-Motreanu-Papageorgiou [25, p. 147], which gives

Hk

(
W 1,p

0 (Ω), ϕϑ
)

= 0 for all k ∈ N0.
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Taking ϑ < 0 even more negative if necessary, we conclude that

Ck (ϕ,∞) = 0 for all k ∈ N0.

�

Now we are ready to state and prove the complete multiplicity theorem for
problem (1.1).

Theorem 4.9. Let hypotheses (H) be satisfied. Then problem (1.1) has at least
five nontrivial solutions, namely

• u0 ∈ − int
(
C1

0 (Ω)+

)
, û, ũ ∈ int

(
C1

0 (Ω)+

)
with ũ− û ∈ int

(
C1

0 (Ω)+

)
,

• y0 ∈ int
C1

0 (Ω)
[u0, û] nodal,

• ŷ ∈ C1
0 (Ω).

Proof. From Proposition 3.4 we have a negative solution u0 ∈ − int
(
C1

0 (Ω)+

)
being

a local minimizer of the energy functional ϕ. Hence

Ck (ϕ, u0) = δk,0Z for all k ∈ N0. (4.47)

Proposition 3.5 provides two positive solutions û, ũ ∈ int
(
C1

0 (Ω)+

)
with û ∈

int
(
C1

0 (Ω)+

)
being a local minimizer of ϕ. Therefore

Ck (ϕ, û) = δk,0Z for all k ∈ N0. (4.48)

In addition, Proposition 3.5 gives û ≤ ũ. Let ρ = ‖ũ‖∞. From the proof of

Proposition 4.6 we know that we can find ξ̂ρ > 0 such that s→ f(x, s) + ξ̂ρs
p−1 is

nondecreasing on [0, ρ]. Using this it results in

−∆pû−∆û+ ξ̂ρû
p−1 = f (x, û) + ξ̂ρû

p−1

≤ f (x, ũ) + ξ̂ρũ
p−1

= −∆pũ−∆ũ+ ξ̂ρũ
p−1 for a.a.x ∈ Ω.

(4.49)

As before, see the proof of Proposition 4.6, the tangency principle of Pucci-Serrin
[36, p. 35] implies that

û(x) < ũ(x) for all x ∈ Ω,

which yields

f (x, û) + ξ̂ρû
p−1 < f (x, ũ) + ξ̂ρũ

p−1 for a.a.x ∈ Ω.

Then, from (4.49) and the strong comparison principle (see Arcoya-Ruiz [5] and
Papageorgiou-Winkert [34]) we obtain

ũ− û ∈ int
(
C1

0 (Ω)+

)
. (4.50)

We assume that Kϕ is finite, otherwise we already have infinitely many solutions.

Let ψ̂ ∈ C1
(
W 1,p

0 (Ω),R
)

be as in the proof of Proposition 3.5. Consider the

homotopy

h̃(t, u) = tϕ(u) + (1− t)ψ̂



35

and reasoning as in the proof of Proposition 4.6, via the homotopy invariance of
critical groups and (4.50), we establish that

Ck (ϕ, ũ) = Ck

(
ψ̂, ũ

)
for all k ∈ N0. (4.51)

From the proof of Proposition 3.5 we know that ũ ∈ int
(
C1

0 (Ω)+

)
is a critical point

of ψ̂ of mountain pass type. Thus,

C1

(
ψ̂, ũ

)
6= 0,

which gives, due to (4.51), that

C1 (ϕ, ũ) 6= 0.

Then, from Papageorgiou-Smyrlis [31], we have

Ck (ϕ, ũ) = δk,1Z for all k ∈ N0. (4.52)

In Proposition 4.6 we have shown that

y0 ∈ int
C1

0 (Ω)
[u0, û]

is a nodal solution of (1.1) and Proposition 4.7 says that

Ck (ϕ, y0) = δk,1Z for all k ∈ N0. (4.53)

Finally, from Propositions 4.4 and 4.8, we have

Ck (ϕ, 0) = δk,dmZ for all k ∈ N0, (4.54)

Ck (ϕ,∞) = 0 for all k ∈ N0. (4.55)

Let us now suppose that Kϕ = {0, u0, û, ũ, y0}. Then, by applying (4.47), (4.48),
(4.52), (4.53), (4.54), (4.55) and the Morse relation stated in (2.7) with t = −1, it
follows

2(−1)0 + 2(−1)1 + (−1)dm = 0,

which implies (−1)dm = 0, a contradiction. Hence, there exists ŷ ∈ Kϕ with
ŷ 6∈ {0, u0, û, ũ, y0}. As before, the nonlinear regularity theory shows that ŷ ∈
C1

0 (Ω). �

Remark 4.10. We mention that Recova-Rumbos [38] proved the existence of only
three solutions, under similar conditions but with considerably more restrictive hy-
potheses on the nonlinearity, for semilinear Dirichlet problems driven by the Lapla-
cian, see Theorem 1.2 in [38].
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tiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math.305 (1987), no. 12, 521–524.

[14] J. Dugundji, “Topology”, Allyn and Bacon, Inc., Boston, Mass., 1966.

[15] D. G. de Figueiredo, J.-P. Gossez, Strict monotonicity of eigenvalues and unique continuation,
Comm. Partial Differential Equations 17 (1992), no. 1-2, 339–346.

[16] D. G. de Figueiredo, B. Ruf, On a superlinear Sturm-Liouville equation and a related bouncing

problem, J. Reine Angew. Math.421 (1991), 1–22.
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