MULTIPLE SIGN-CHANGING SOLUTIONS FOR SUPERLINEAR
(p,¢)-EQUATIONS IN SYMMETRICAL EXPANDING DOMAINS

WULONG LIU, GUOWEI DAI, AND PATRICK WINKERT

ABSTRACT. In this paper we study quasilinear elliptic equations defined on symmetrical ex-
panding domains driven by the (p, ¢)-Laplacian and with a superlinear right-hand side. Based
on the Lusternik-Schnirelmann category we prove the existence of at least y(2y \ {0}) pairs
(£u) of odd weak solutions with precisely two nodal domains, where ~ stands for the genus.

1. INTRODUCTION

Let @ C RN, N > 2, be a bounded domain with Lipschitz boundary 9 and let 2y := A2 be
an expanding domain, where X is a positive parameter. In this paper we consider the following
problem

—Apu — pAgu = f(u) — [uP"2u  in Qy,
u=0 on 0%y, (1.1)
u(—z) = —u(x) for a.a.z € Q,,
where we suppose the following assumptions:
(Hl) p>0and 1 <g<p< N.

(H2) f:R — R is a continuous and odd function with primitive F(s) = [ f(t)dt satisfying
the following conditions:
(i) there exist r € (p, p*) and a constant C' > 0 such that

If(s)| <C(1+|s|""") forall s €R,

Np

where p* = s

(i) lim 7(s)

s—0 |s|q*25 o

F
i) lim L)
|s|—+o0 |S|p

f(s)

|s|P=1

is the critical Sobolev exponent to p;

= +00;

(iv)

A function u € WP (€,) is said to be a weak solution of problem (1.1) if u(—z) = —u(z) for
a.a.x € Q) and if

/ <|Vu|p_2Vu+ u|Vu|q_2Vu) -Vodz = / (f(u) = [ulP~?u) vdz
Q)\ QA

is strictly increasing on (—oo,0) and on (0, c0).

is satisfied for all v € Wy (Qy). The corresponding energy functional Jy: Wy () — R for
problem (1.1) is given by

1
Ta(w) = 3l + 29l —/ Flu)de for all ue WP(0Qy). (12)
Qx
Under the assumptions in (H1) and (H2), it is clear that Jy is well-defined and of class C*.

The following theorem is our main result.
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Theorem 1.1. Let hypotheses (H1) and (H2) be satisfied and let Q be symmetric with respect
to the origin, that is, = —Q. Then there exists \* > 0 such that, for any A > \*, problem
(1.1) has at least v(Qx\ {0}) pairs (£u) of odd weak solutions with precisely two nodal domains,
where v stands for the genus.

The proof of Theorem 1.1 relies on the Lusternik-Schnirelmann category in combination with
the odd symmetry invariant Nehari submanifold. As far as we know this is the first work
dealing with a superlinear (p, ¢)-equation in expanding domains that has multiple sign-changing
solutions obtained via the Lusternik-Schnirelmann category.

A starting point in the direct application of the Lusternik-Schnirelmann category to elliptic
equations was the work of Benci-Cerami [11] who studied the problem

—Au+ = uP? in Q,
u>0 in Q, (1.3)
u=20 on 02,

where p € (2,2%). It is shown that problem (1.3) has at least cat(2) solutions when p is close
to 2*, where cat(2) denotes the Lusternik-Schnirelmann category of Q. Motivated by this work
and its used methods, Bartsch-Wang [9] treated nonlinear Schrodinger equations of the form

—Au+ (Ma(z) + Du=uP, u>0 inRY, (1.4)

with 1 < p < 2* — 1 and showed the existence of at least cat({2) solutions of (1.4) when the
parameter A > 0 is large enough, see also [8] of the same authors. Afterwards, the Lusternik-
Schnirelmann category has been applied to several type of problems. We mention, for example,
the works of Alves [2] for p-Laplace equations with expanding domains, Alves-Ding [3] for
critical p-Laplace equations, Alves-Figueiredo-Furtado [4] for multiple solutions for nonlinear
Schrodinger equations with magnetic fields, Benci-Bonanno-Micheletti [10] for elliptic equations
on Riemannian manifolds, Cingolani [16] for nonlinear Schrédinger equations with an external
magnetic field, Cingolani-Lazzo [17] for nonlinear Schrodinger equations, Figueiredo-Pimenta-
Siciliano [20] for fractional Laplacian in expanding domains, Figueiredo-Siciliano [21] for frac-
tional Schrédinger equations in RY and Wang-Tian-Xu-Zhang [26] for Kirchhoff type problems,
see also the references therein. All these works are dealing with constant sign solutions.

For sign-changing solutions via the Lusternik-Schnirelmann category we refer to the paper of
Castro-Clapp [14] in which the problem

AuA4du+ |u)> "2u=0 in ,
u=0 on 01, (1.5)
u(rx) = —u(x) for all z € Q

was studied where 7 is a nontrivial orthogonal involution. For A > 0 to be small, the exis-
tence of pairs of sign-changing solutions which change the sign exactly once has been shown
for problem (1.5). These results have been improved by Cano-Clapp [13]. Finally, we men-
tion some results concerning problems with expanding domains, see, for example the papers of
Ackermann-Clapp-Pacella [1] for alternating sign multibump solutions in expanding tubular do-
mains, Alves-Figueiredo-Furtado [5] for complex equations, Bartsch-Clapp-Grossi-Pacella [7] for
asymptotically radial solutions in expanding domains, Byeon-Tanaka [12] for multibump posi-
tive solutions in expanding tubular domains, Catrina-Wang [15] for Dirichlet Laplace problems
in an expanding annulus, Dancer-Yan [18] for multibump solutions and Feireisl-Necasova-Sun
[19] for inviscid incompressible limits on expanding domains.

The paper is organized as follows. In Section 2 we recall some basic definitions and investigate
the relation between the unit sphere and the odd symmetry invariant Nehari manifold. Section
3 is devoted to the (PS)-condition property and some needed estimates and in Section 4 we
prove Theorem 1.1. Our results are combining ideas from the work of Alves [2], Castro-Clapp
[11] and Catrina-Wang [15].
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2. THE MAPPING BETWEEN S$ AND N3

We denote by L*(Q2) (resp. L*(Q;RY)) and L*(Qy) (resp. L¥(Qx;RY)) the usual Lebesgue
spaces equipped with the norm || - ||s for every 1 < s < co. For 1 < s < oo, W1#(Q) and

W, () stand for the Sobolev spaces endowed with the norm || - | 1s-
Let X be a Banach space and let A be the class of all closed subsets B of X \ {0} which are
symmetric, that is, v € B implies —u € B.

Definition 2.1. Let B € A. The genus y(B) of B is defined as the least integer n such that
there exists ¢ € C(X,R™) such that ¢ is odd and p(z) # 0 for all x € B. We set y(B) = +00
if there are no integers with the above property and ~v(0) = 0.

Remark 2.2. An equivalent way to define v(B) is to take the minimal integer n such that there
exists an odd map ¢ € C(B,R"\ {0}).

For a function w, from now on, we denote by u™ (resp.u™) the positive (resp. negative) part
of u, that is

ut =max (u,0), u~ = min(u,0). (2.1)

Let
Wyt ())° = {u e Wy P(0): u(—z) = —u(w)} .
We denote the Nehari manifold corresponding to (1.1) by
Ny i= {w e WP @)\ {0} : (J4(w),u) = 0}

and the odd symmetry invariant Nehari submanifold by

NY ={ueNy: u(—z) =—u(z)}.
It is clear that

Y =Ny N WP ()°.

Note that Jy: Wy?(Q2,)° — R is an even functional with (Jy(—u))’ = —J}(u). Therefore,
if Jy € C2, then the nontrivial solutions of (1.1) are the critical points of the restriction of
Jx to the odd symmetry invariant Nehari submanifold NY. However, we only assume that f
is continuous. This leads to Jy € C! and the non-differentiability of N v. To overcome these
difficulties, we need the following two lemmas.

We write

S° = {u €Wy P(0)° |l = 1}, Sy ={uF:ue 8} and Ny = {u* :ueNJ}.
Then we can set up a one-to-one correspondence between S$ and N3 as follows.

Lemma 2.3. Let hypotheses (H1) and (H2) be satisfied.
(i) For each w € Wy (2))°\ {0}, set hy=(t) = Jx(twE) for t > 0. Then there exists a
unique t,+ > 0 such that h o (t) >0 if 0 <t <t,+ and h] . (t) <0 if t > t,=, that is,

max = (t) s achieved at t = t,+ and t,=w® € N3.
te[0,400)

(ii) There exists 0 > 0 such that t,,+ > 6 for w € 8 and for each compact subset W° C S
there exists a constant Cyyo such that t,+ < Cyo for all w € W°.
Proof. (i) Let w € Wy (€2,)° \ {0} be fixed and define hy: (t) = Jy(tw™) on [0,00). It is clear
that h,+(0) = 0. From (H2)(i) and (H2)(ii) we know that for given € > 0 we can find C. > 0
such that

|[F(s)] <e|s|?+ Ccls|” for a.a.x € Q and for all s € R. (2.2)

Using (2.2) and the embedding W, %(2y) — L%(2) with embedding constant C, > 0 we get
fort >0

P utd
s (0) = Tn(t®) = St + vt - [ ) s
A
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%

P utd
I + v - / (et9 0|7 + Cot”fwt[") da

A

P I
> Dt ( - cgs) Vw1 — Ot
p q
= Cyt? + Cot? — Cst” for 0 < e < —
qu

with C1,Csy, C3 > 0. Hence, for ¢t > 0 small enough we see that h,+(t) > 0 due to g < p < 7.
From hypothesis (H2)(iii) there exists for any M > 0 a number Th; > 0 such that

F(s) > M|s|P for a.a.xz € Q and for all |s| > Th. (2.3)

Taking (2.3) into account, we have for ¢ > 0 large
P 4
s () = Ta(tw*) < D, + 22 Vet - M [ et s
p ’ q N
= C1t? + Cot? — Cs MtP
Ch

< —COytP + Cot? for M > —,
Cs

with Cq,Co,C3,Cy > 0. This implies that h,+(t) < 0 for ¢ large enough. Hence there exists
ty+ > 0 such that h! . (t,+) = 0. Note that

— 4 — 4 4 4
0= hlpa () = P wH||7 + ptt=} | Va9 — /Q f(tw®yw* da
A
implies tw* € N§ and

™

fwE wE

z;p:/ A L | Vw® |2

> tp_l q
Qx

tP—a
ftwt)w” 1
o dr = Ve, (2.4)

fw )w™ p
e e I

25¢

ax
where
Q5 ={z € Q) : w(x) >0},
Qs ={z e : w(z) <0}

and w™T (resp.w™) is the positive (resp.negative) part of w, given in (2.1). By (H2)(iv), the

right-hand side of (2.4) is a strictly increasing function in ¢. It follows that h,+ (¢) has a unique

critical point. Therefore r[nax )hwj: (t) is achieved at the unique point ¢t = t,+ > 0 so that
te[0,+00

! +(tws) =0 and tprwt € N2,
(ii) First, we prove that there exists 6 > 0 such that t,+ > ¢ for any w € §S. From (H2)(i)
and (H2)(ii) we know that for given € > 0 we can find C. > 0 such that

1f(s)| <els|9™t + C.|s|"™! for a.a.z € Q and for all s € R. (2.5)

Let w* € 82. Using t,+w® € N2, (2.5) and the embeddings W, 4(Qy) — LI(Qy), Wy P (Qy) —
L™(£2y) with embedding constants Cy, C), > 0 we obtain

LR e / F(busw®) e w* da
Qx

§5tz}i/ |wi|qdz+C’5trwi/ lwE|" da
Q)\ Q/\

< Clet? , |Vt + CpCtr, o |w™|] .
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Choosing ¢ € (0, &7) and using the fact that lwE |1, = 1/2, it follows that

P, o,

1

We take § = 2 (ﬁ) """ > 0 in order to get the desired assertion.
P €

Next, let W° C S be compact. Suppose by contradiction that there is a sequence {wF}nen C

W? such that ¢, :=t + — 4o00. By (i), we know that In(tpawt) = r[nax )JA(twrf) > 0.
n te[0,400

Using || - |1, < Cpqll - I, along with (H2)(iii), we deduce that
I(tows) 1 pC F(tow
0< )‘(Zw")<,+'u pq_/ (npwn)d$—>_oo as n — 0o,
tn P q Q, tn
which yields a contradiction. Thus there exists Cyyo such that t,+ < Cyye. O
We define

Ay : {wi Cw € WEP(9,)°\ {0}} SND, wE e s (wh) = tew®,

where t,,+ is defined in Lemma 2.3. For simplification we write my := rhi|5;. Next, we are
going to prove that my is a one-to-one correspondence between S and N3.

Lemma 2.4. Let hypotheses (H1) and (H2) be satisfied.
(i) The mapping my is continuous.
(ii) The mapping my is a homeomorphism between S and N3 and the inverse of my is
given by
ut
mit(ut) = ——— forallu € N3
1
Proof. (i) Assume that w} — w®. From Lemma 2.3 (ii) it follows that {ty= tnen is uniformly
bounded. Hence, there exists a subsequence of {tw;_zr }nen, not relabeled, which converges to a
limit ¢. From (2.4) we conclude that tg = t,,«. But then Lt = Lyt Thus m4+ is continuous.
(ii) From (i) we know that m4 (S$) is a bounded set in W, *(2)) and for any u® € m(S3) C
N3, there exists § > 0 such that |[u®|]; , > . Indeed, similar to the proof of Lemma 2.3 (i), by
using u € N? C Ny, (2.3) and the embeddings Wy 9(Qy) — LI(Qy), Wy P () — L7 () with
embedding constants Cy, C), > 0 we have

[, + | Vet (g = / Flutptde < / wtrde + o [ Jt] de
Qi Qx Qx5

< Clel|Vu™[|g + CyCellu™ |1,
Choosing ¢ > 0 small enough, we obtain from this
(17, < IuIf, + (1 — Ce) [Va™ [l < G [lu|[7 .

1
Taking § = 2 (ﬁ """ > 0 we have ||u*||; , > §. From the continuity of 724 and its definition,
we know that the map my: 8§ — N3 is continuous and one-to-one. It is clear that the inverse

+
function of m. is given by mi* (u*) = W for any u* € M. To reach the desired conclusion,
3P

it is enough to show that mZ"' is continuous. Indeed, we have

H 1/, & 1/, + H u® vt
) = mg o), = | -
Tl 7= Pt == o
et e oE (et — et
Ty T le®lpl® iy |,

20w — v 1,

2
< Sl = oy,
[u*l1p 9 .
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that is, mf is Lipschitz continuous. O

We write ¥(w®) := Jy (4 (wF)). In the next lemma, we are going to show that the problem
of finding critical points of \i/| s3 1s equivalent to the problem of finding critical points of J. Al Ne-
Recall that a sequence {up}neny € M is called a (PS).-sequence if J(u,) — ¢ and J'(u,) — 0.
We say that Jy satisfies the (PS)-condition on M, if every (PS).-sequence has a converging
subsequence.

Lemma 2.5. Let hypotheses (H1) and (H2) be satisfied.
(i) ¥ et ({wi Cw e WEP(9Q,)°\ {0}} ,R) and

<\i/’(wi),z> = (J5(mx(w®)), |me(w*)|1p2) for all w* € SS and for all z € T,+(S3),

where T+ (SS.) denote the tangent space to S at w*.

(ii) If {wElnen C S is a (PS)c-sequence for W, then {ms(wE)}neny € NS is a (PS).-
sequence for Jx. If {untnen C NS is a bounded (PS).-sequence for Jy, then
{mZ (un)Ynen C 83 is a (PS).-sequence for U.

(iii) w¥ € 8 is a critical point of U if and only if ms(wF)

€ N2 is a nontrivial critical
point of Jx. Moreover, infse ¥ = infyre J.

(iv) If Jy is even, then so is W.

Proof. The lemma follows from Szulkin-Weth [25, Proposition 9 and Corollary 10] and Lemmas
2.3 and 2.4. We omit the details. O
Remark 2.6.

(i) Set

°(Qy) = inf Jy(u).
() ot A(u)
Then it follows from Lemma 2.5 (iii) that

c® () = wlg‘go U(w).

From Lemmas 2.3 and 2./ it is easy to see that ¢°(2y\) has the following minimax
characterization:

° Q = i f J t = i f J t .
<) wEW P (2,)\ (0} 150 A(tw) = inf masJx(tw)

We know from the proof of Lemma 2.3 that there exists a unique t,, > 0 such that
max Ir(tw) = J (tyw) for w € §°. Lemma 2.3 (ii) implies that there exists 6 > 0 such
>

that t,, = & uniformly for w € §°. Thus, for any w € §°, we have

J (tyw) = max Iy (tw) = o,

for some o > 0 independent of w and consequently

inf max Jy(tw) > o,
weS° t>0

that is
c®(Qy) =20 >0.
(ii) Set
c(fh) = ulel}\f& Ia(u). (2.6)

By an argument similar to that of (i), we can show that ¢(Qy) > 0. We can also show
that c®(Q2\) > 2¢(Qy). It is similar to the proof of Lemma 3.2 and we omit it.
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3. (PS)-CONDITION AND SOME ESTIMATES

Our first result is that W satisfies the (PS)-condition on S3. We set
1
D) = ulf, + EIvuly and Ka(w) = [ P
b q Qx

Then Jy(u) = In(u) — Kx(u). We denote the derivative operator of I in the weak sense by Aj.
Tt is well known that the operator Ay is of type (S;). We also denote by 9S3 the boundary of
S3.
Lemma 3.1. Let hypotheses (H1) and (H2) be satisfied.

(i) Let {wF}nen € S be a sequence such that dist(wE,08%) — 0 as n — +oo. Then

[m(w)|| = +o00 and ¥(wE) = +oo as n — +oo.
(i) For any A >0, U satisfies the (PS)-condition on S3..

Proof. (i) Recall that we denote u™ (resp.u™) the positive (resp.negative) part of u, given in
(2.1) and write

Si:{ui:ueso}.
Let w € 8 and v € [1,p*]. By the embedding theorem, we have
o s 0y = nt [ =vllscon) < _int = vllascon
<C, veig‘fﬂ |w—vl|1,, = C, dist (w, S2) .
Here we denote by S the closure of S3.
Similarly, it holds
[w™ L0y < Cy dist (w, 0S3) .
Let {wp, nen C 8% be a sequence such that dist(wy,,dSS) — 0 as n — +oo and let
Q3 ={z € Q) : wy(z) >0},
Qs ={z € 0 : w,(z) <0},
QF ={z € Q : wy(z) =0}.
For every t > 0, using (2.2), we have

(B (twn)] =
Q

/Q< F(twn)dm—i—/ﬂ> F(twn)d$+/ F(tw,) dz

F(twrf)dx—i—/ F(tw,)dz
Qx

Qx
< et (szﬂiq(m) + H"U;Hiq(m» +Cet” (Hw:{HZT(Q)\) + |w| ZT(QA))
< C [t (dist(wy, 082))? + ¢ (dist(wy, 0S3))"] — 0 as n — +oo.

Note that for any ¢ > 1,

1 C 1 tP
(p n “q) el + 1) 2 (e 2 S 2, = [Kaftwn)] = 5 = K e

Consequently
. . 1 ,U/Cpq p . . 2 . .
liminf | — + == | [|m(wy)[]f , > liminf W(w,) > liminf Jy(tw,) >
n—+oo \ P q ’ n—-+oo n—-+o0o
for every ¢ > 1. Hence, |[m(w,)| — +oo and ¥(w,) — +00 as n — +o0.
(ii) For any ¢ > 0, let {w}},en € S be a (PS).-sequence for U. Let ulf := my(w}) for
all n € N. Tt follows from Lemma 2.5 that {ul},en € N2 is a (PS).-sequence for Jy. First
we will prove that {uf}neN is bounded. Let us assume this is not the case, so there exists a

P
p
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+
subsequence (still denoted by uf) such that ||uf|;, — +oo. We define v} := HuuT\ , then
n [|1,p

|vE|1,, = 1. Thus we may assume that
vE ot in WP ().
If v* = 0, then it follows from Lemma 2.3 and Remark 2.6 that
c+o(1) = Ja(ug) = Ja(t,zvi) = Jx(tvy) forall t > 0.

Recalling that K is weakly continuous, we have that

1 1
Ia(tvE) > =P —/ F(tvE)dz — =t asn — 4o0.
p Qx p

Choosing t > 2(pc)% yields a contradiction. If v # 0, then we know from (H2)(iii) that

Jx(u 1 C F(||lut +
< )\:‘(:uz) S o K rg (Hun:tnlz;iﬂvn) dr = —0c0 asn — +00.
Junlly, P 4 o lluwlly,

This is again a contradiction. Hence {u;}}, ey is bounded in W1P(2,) and so there exists a
subsequence of {u},cn (not relabeled) such that

ur —u® i Wy P(Qy).
It is clear that K} (u;) — K} (u®), see Liu-Dai [22]. Since
Ji(u) = Az(ud) — K\ (uf) - 0 asn — 4oo,
one has
Ax(ut) = K\ (ut) asn — +oo.
+

Therefore, we conclude that u;r — u™ since A, is a mapping of type (S;). Consequently,
mi'(ut) — mI'(u®) by Lemma 2.4, that is, wr — w*. Therefore, ¥ satisfies the (PS),.-

n n
condition on S%. O

+

We say that u changes sign m times if the set {z € Q) : u(z) # 0} has m + 1 connected
components. It is clear that a solution of problem (1.1) changes sign an odd number of times.
Following the ideas of Castro-Clapp [14], we can show the following energy estimate.

Lemma 3.2. Let hypotheses (H1) and (H2) be satisfied. If u is a solution of problem (1.1)
which changes sign 2m — 1 times, then Jx(u) > mc®(2y).

Proof. From the assumptions we know that the set {z € Q : u(z) > 0} has m connect compo-
nents 21,0, ,Q,,. Let

() u(z), ifxe—Q,uQ,,
U (T) =
0, otherwise.

Since u is a solution of problem (1.1), it is a critical point of Jy. This gives
0= (J5(u), u;)

= / (IVulP>Vu - Vu; + [u|Puw;) dz + u/ |Vu|?"2Vu - Vu,; dz — (u)u; dx
Qx Qx Qx

sl + pl Ve, — / F(usyus da,
A

which implies that u; € Ny for all i =1,2,--- ,m. Consequently
J)\(U) = J)\(Ul) + J)\(UQ) + -+ J,\(um) > mCO(Q)\).
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We denote the limiting energy functional by
1 1 o
Joo(u) := —|Vu|’ + —|ulP + =|Vul? — F(u) | da.
RN \P p q

The corresponding Nehari manifold is
N = {u € WEPEN)\ {0} (i (u).u) = 0}
where
WEP(RYN) = {ue WLP(RYN) : u is radially symmetric} .
The least energy level is given by

Ny L
0<c(RY):= ugjl\;x Joo(1).

Lemma 3.3. Let hypotheses (H1) and (H2) be satisfied. Then c(RY) is achieved by a positive
radially symmetric function.

Proof. We define

0 it <0,

fr) = :

f(@) ift>0

with primitive F*(s) = [ fT(t) dt. We set
1 1
JE(u) = / (Vup + = [ulP + B vy - F+(u)> dz for all u € WHP(RM).
RN \P p q
It is clear that (H2) remain valid for f* and F*. Similar to the proof of Lemma 2.3, we can
define
o WEP RN\ {0} = N,  w = m(w) 1= ty,w,

where t,, is similar to the definition in the proof of Lemma 2.3. We set m := i|s and can show
that m is a one-to-one correspondence between S and N, where

S={weWRN) : |lw]i,=1}.

Setting U (w) := JI (m(w)) we can show that Wl satisfies the (PS)-condition on S as in

Lemma 3.1(ii), since WIP(RY) — LY(RY) is compact for all v € (p,p*). Therefore, it follows
from Theorem 1 in Szulkin-Weth [25] that igf U7 is attained by a function w € WP (RN). Just

like Lemma 2.5 (iii), we are able to show that inf UF, = inf J% | that is, inf J% is attained by
S Neo Noo

m(w), which is obviously radially symmetric. By an argument similar to that in the proof of
Theorem 1.4 of the first two authors [23], we can also prove that m(w) is positive. O

We also need the auxiliary functional which is defined as in (1.2) replacing Qy by Bg := Bg(0)
with R > 0, that is,

1 1
Jr(u) = / (|Vu|p + —|ul? + H|Vu|q — F(u)) dz.
Br \P p q
The corresponding Nehari manifold is denoted by
N = {u e WEP(Br)\ {0} : (Jh(u),u) = o}.

We write

¢(BgR) := uiel}\f/R Jr(u). (3.1)

Then ¢ (Bg) is achieved by a positive radially symmetric function ¥g. Indeed, similar to the
proof of Lemma 3.3, we can show that ¢ (Bg) is attained by a positive function v € Wy (Bg).
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Let v* be the Schwartz symmetrization of v, then we have that v* € W, (Bg) and

1 1
/ <|vu*|p+ “vu*rf) dz g/ (|Vv”+ “|vy|q> dz,
Br \P q Br \P q

1 1
/ f|v*|pdx:/ —|v|P dz,
Br P Br P

F(v*) dz = F(v)dx
Br Br

are satisfied.

Just as in the proof of Lemma 2.3, we can show that there exists a unique ¢, > 0 such that
ty,«v* € Ng. Moreover,

¢(Br) < Jg (ty=v") < Jg (ty=v) < r?aXJR(tv) = Jr(v) = c(BR).

Setting W g := t,«v*, then it has all the required properties. Furthermore, we can determine the
asymptotic behavior of ¢ (Bg).

Lemma 3.4. Let hypotheses (H1) and (H2) be satisfied and let ¢ (Br) and ¢ (§2)) be defined as
in (3.1) and (2.6), respectively. Then it holds
li Bg) =c(RY li Q) =c(RY).
R_l}IEOOC( r)=c(RY) and )\—1>I-ir-looc( A) = c(RY)

Proof. We only prove the second equality, the other works very similarly. 3

We follow the ideas of Alves [2] who studied the p-Laplacian equation. To this end, fix A > 0
and R > 0 such that B C Q5. Let ng: [0,+00) = R be a smooth, nonincreasing cut-off
function such that

nr(t) =1 if0§t§§,
), where w € N such that Jo(w) = ¢(RY). Let tg > 0 be such

nr(t)=0 ift>R, 0<nr<1 and [nR(t)| <2
We write wr(z) = nr(x)w(x
that tpwr € Ny. Then

c(Qy) < Jy (tgwg) for all A > A.
Passing to the limit as A — +o00 we obtain

limsup ¢ (Qy) < Joo (tRWER) -

A——+oo
As in the proof of Lemma 2.3 we can show that tg — 1 as R — 400. Then we have J (tgwgr) —
Joo(w) = ¢ (RY) as R — +oo. Therefore,

limsupe () < ¢ (RY). (3.2)

A—ro00
On the other hand, from the definition of ¢ (2,) and ¢ (RY) it follows that
c(RY) <c(Qy) forall A >0,
which implies that
¢ (RY) < liminfe(Qy). (3.3)

A——+oo

From (3.2) and (3.3) we get the assertion. O

4. PROOF OF THEOREM 1.1

Now we are ready to prove Theorem 1.1. In what follows, without any loss of generality,
we shall assume that 0 € 2. Moreover, we choose R > diam(£2) and R > R > 0 such that
Br(0) € Q C Bj(0) and the sets

Qf = {zeRY : dist(z,Q) <R} and Qp:={ze€Q: dist(z,002U{0}) > R}
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are homotopically equivalent to Q. For A > 0, let ¥\r € Nyg be given as in Section 3 satisfying
J)\R(\I/)\R) = C(BAR). We define @) : )‘QITE — N/{) by

_JtaWar(Jz =€) = Var (lz +£])], if 2 € Bar(E),
@) () = {0, e o
where t) > 0 is such that ®,(§) € N. Note that
@A) (~2) = — [Bx(O)] (1) and Bx(~€) = ~Bx(€).

Hence ®,(£)* € N3.
Then we have the following lemma.

Lemma 4.1. Let hypotheses (H1) and (H2) be satisfied. Then we have
li P5(6)F) =c (RY
Jim Iy (@a()7) = ¢ (RY)
uniformly in £ € AQp.

Proof. For any £ € AQp, by the definition of AQy, we have || > AR and | — {| > AR, and so
|€ — (=&)| > 2A\R. Following the same arguments as in the proofs of Lemmas 2.3 and 3.2 as well
as Remark 2.6, it is easy to see that

I (AT x—
(1) < Ty (@2(O)%) = { Ji E_Atkj;:; (o —f)g)m
= T (ta U (1)) < I (¥ar () = (Ban)

Here we have used translation invariance of the Lebesgue integral the in second equality. From
Lemma 3.4 we then deduce that

lim ¢(Bxg) = )\EIEOOC(QA) =c(R"V)

A—4o00
Hence the assertion of the lemma follows. O
Given § € A, we set
h(A) = |Jx (PA(O)F) — ¢ (RY)].
From Lemma 4.1 we conclude that h(A) — 0 as A — +00. We define the sublevel set
N = {ue NS : Ja(u) <c(RY)+h(N)}.

It is clear that ®)(&)* € /\fE which implies /\7?{’ # () for any A > 0.
For uw € WHP(RY) with compact support in Bz (0), we define the barycenter map

xlut(z) P da
BJr: Wl)p(RN) \ {0} - RN; ﬁJr(u) = /RN s

[ et @ s

/ zju” (z)|P dz
B_: WHP(RM)\ {0} = RY, B_(u) = LB .
/ (= (2)|P da
RN
Proof of Theorem 1.1. From Lemmas 4.1 and 2.5 we know that
lim ¥ (m™* (2r(8)F)) = Jim J (2A(O)F) = c(RV)

A——+oco

(4.1)

uniformly in § € AQ2,. We set

gi:: {uGSi : \i/(u)gc(RN)+h()\)},
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where h is given in the definition of //\fvf[ It is clear that 83 # () since m5 ! (®(£)*) € S3.
From Lemma 3.1 and Krasnosel’skii’s genus theory, see for example Ambrosetti-Malchiodi [6,
Theorem 10.9], it follows that ¥ has at least v(S$) pairs of critical points on S3.

We claim that 'y(S':"t) > 2v(2 \ {0}). Indeed, suppose that 7(§i) = 2n. For a set A, we
denote A* = {(z, —z) : x € A}. From Theorem 3.9 of Rabinowitz [24] it follows that

'y(gi) = cat(yyir )\ (0})" Si .
Therefore, there exists a smallest positive integer n such that
8¢ C DL, UDL, U UDL,,
where D%, i =1,2,--- ,n are closed and contractible in (W, (2)) \ {0})*, that is, there exist
rr e C (10,1 x DL, (W37 (@) {0})*) fori=1,2--,n
such that
RE(0,u®) = (ut, —u®) for all (ut, —ut) € DY,
B ) = (0, —wf) € (WeP(9)\ {0})* for all (uF, —u*) € DL,.

Here we have used the fact that —u™(x) = uT(—z) € D%,.
Let

D; = {ui e Wy P(Q) = (ut, —ut) e D:‘}
Then there exists a homotopy
hi € C (10,1 % Dy, (W3 () \ {0}) )

such that h;(0,-) = id, hi(1,-) = wE or —wF and hy(t,u®) = —h(t, —u®).
We define @3 = (®F, —@%): (\Qp)" — (WV2)" b

[@X(¢, )] (2) = ([®X (O] (2), = [8X(O)] (@) = ([2A(E)*] (@), [A(=E)T] (2)) -
Note that for any (£, =€) € ()\QE)* we have
B (2A(O)F) =¢ and By (@A(=9T) = ¢,

that is,

B (@A), —2A(6)F) = (B (PA(O)F) . Bx (BA(=O)T)) = (¢, -€),
where 5*(-,-) = (B+(-), B%(-)) and Sy is given in (4.1). We set
KL= (@3)7" (m" (PL)).
where m*(+,-) = (m4(-),m+(-)). It is clear that K}, are closed subsets of (A5 \ {0})* and

(A2 \ {O})* C K3, U---UK%,. Moreover, for i =1,...,n, K%, is contractible in (R \ {0})*
by using the deformation b;: [0,1] x K1, — (RV '\ {0})* defined by

bi(t, ) = (87 b) (£, (m") ™ (@3(6,—9))) -
From Lemma 4.1 and the definition of % we conclude that
i € € ([0,1] x K, (RN \ {0})*) 7
) (0.m") 7 (@3(6,-€))) = (€,=€) for all (¢, —¢) € K,
bi(1,) = (5" o h) (1 L(@3(¢.-9)))
=B (wff, —wf) = ( &) € (RV\{0})" forall (¢, —€) € KL,

h;(0,2) = (8" o h)
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Hence
Y (2 \ {0}) = catra (op- (2 \ {0} = caten (o) (AQz \ {0}) " < n,

which implies that gi contains at least 2v(Qy \ {0}) pairs of critical points of ¥. Thus we
conclude from Lemma 2.5 that there exist at least 2y(Qy \ {0}) pairs (u*, —u®) of critical
points of Jy. It is clear that u = u®™ 4+ u~ is odd, and is also the critical point of Jy, that is,
problem (1.1) has at least v(£2) \ {0}) pairs of odd solutions. O
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