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Abstract. In this paper we study an anisotropic implicit obstacle problem driven by the
(p(·), q(·))-Laplacian and an isotropic implicit obstacle problem involving a nonlinear con-

vection term (a reaction term depending on the gradient) which contain several interesting

and challenging untreated problems. These two implicit obstacle problems have both highly
nonlinear and nonlocal functions and three multivalued terms where two of them are appear-

ing on the boundary and the other one is formulated in the domain. Under very general
assumptions on the data, we develop general frameworks to examine the nonemptiness and

compactness of the set of weak solutions to the problems under consideration. The proofs of

our main results use the theory of nonsmooth analysis, Tychonoff’s fixed point theorem for
multivalued operators, the theory of pseudomonotone operators and variational approach.

1. Introduction

In this paper we study isotropic and anisotropic quasilinear implicit obstacle problems involv-
ing multivalued mappings and mixed boundary conditions. These classes of problems include
several interesting special cases which have not been treated largely in the literature to date.
Originally, the study of so-called obstacle problems is due the pioneering work by Stefan [41]
in which the temperature distribution in a homogeneous medium undergoing a phase change,
typically a body of ice at zero degrees centigrade submerged in water, was studied. In this
direction we also mention the renowned contribution of Lions [23] who studied the equilibrium
position of an elastic membrane which lies above a given obstacle and which turns out as the
unique solution of the Dirichlet energy functional minimized on the closed convex set driven by
the obstacle.

Let us formulate the two problems under consideration. To this end, let Ω be a bounded
domain in RN (N ≥ 2) with a Lipschitz boundary Γ := ∂Ω such that Γ is divided into three
mutually disjoint parts Γ1, Γ2, and Γ3 where Γ1 has positive Lebesgue measure. Note that Γ2

and Γ3 could be empty which means that Γ1 could be the whole boundary Γ1 = Γ. In this
paper, we are interested in the study of two implicit obstacle problems. The first problem of
this paper is formulated by the following anisotropic implicit obstacle problem given in the form

−a(u)∆p(·)u− b(u)∆q(·)u+ g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νn
∈ U2(x, u) on Γ2,

− ∂u

∂νn
∈ ∂cϕ(x, u) on Γ3,

L(u) ≤ J(u),

(1.1)
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where p, q : Ω → (1,+∞) are continuous functions, ∆p(·) is the p(·)-Laplace differential operator
defined by

∆p(·)u = div
(
|∇u|p(x)−2∇u

)
for all u ∈ W 1,p(·)(Ω),

and
∂u

∂νn
:=

(
a(u)|∇u|p(x)−2∇u+ b(u)|∇u|q(x)−2∇u

)
· ν, (1.2)

with ν being the unit normal vector on Γ. Furthermore, g : Ω×R → R is a Caratheódory func-
tion, ϕ : Γ3 × R → R is a convex function with respect to the second argument, a : Lp∗(·)(Ω) →
(0,+∞), b : Lp∗(·)(Ω) → [0,+∞) are two continuous functions and U1 : Ω × R → 2R as well as
U2 : Γ2 × R → 2R are two given multivalued functions. Also, ∂cϕ(x, u) is the convex subdif-
ferential of s 7→ ϕ(x, s), and L, J : W 1,p(·)(Ω) → R are given functions defined on the variable
exponent Sobolev space W 1,p(·)(Ω), see Section 2 for its precise definition.

The second goal of this paper is the study of the following isotropic implicit obstacle problem
involving a nonlinear convection function f : Ω× R× RN → R of the form

−a(u)∆pu− b(u)∆qu+ g(x, u) ∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νn
∈ U2(x, u) on Γ2,

− ∂u

∂νn
∈ ∂cϕ(x, u) on Γ3,

L(u) ≤ J(u),

(1.3)

where L, J : W 1,p(Ω) → R are two given functions and ∂u
∂νn

is defined by

∂u

∂νn
:=

(
a(u)|∇u|p−2∇u+ b(u)|∇u|q−2∇u

)
· ν. (1.4)

As mentioned above, problems (1.1) and (1.3) combine several interesting and challenging
phenomena which have not been treated in the literature so far. To be more precise, these
problems include

• a nonlinear, nonhomogeneous differential operator with different anisotropic/isotropic
growth;

• two highly nonlinear nonlocal terms a and b, where the function b can be degenerate;
• mixed boundary conditions;
• multivalued mappings in which one of them is formulated by the subdifferential operator
to a convex function;

• an implicit obstacle effect;
• a nonlinear convection term for the isotropic case.

The main goal of the paper is to develop general frameworks for determining the existence
of a (weak) solution to the nonlinear implicit obstacle problems (1.1) and (1.3) via Tychonoff’s
fixed point theorem for multivalued operators, the theory of nonsmooth analysis and variational
methods for pseudomonotone operators. In fact, to the best of our knowledge, this is the first
work which combines a nonlinear anisotropic/isotropic partial differential operator along with
two highly abstract nonlocal terms, an implicit obstacle constraint, a nonlinear convection term
for the isotropic case, mixed boundary conditions and multivalued mixed terms which include
a convex subdifferential operator and two abstract multivalued functions.

Such combination of an implicit obstacle effect with mixed boundary conditions along with
multivalued mappings (which include as special case Clarke’s generalized gradients, see Clarke
[10]) arise in several engineering and economic models, such as Nash equilibrium problems with
shared constraints and transport route optimization with feedback control. We refer to books
of Panagiotopoulos [36, 37] and Naniewicz-Panagiotopoulos [35] for more models related to
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nonsmooth mechanical problems. In general, equations driven by the sum of two differential
operators of different nature arise often in mathematical models of physical processes, see, for
example, the works of Bahrouni-Rădulescu-Repovš [4] for transonic flow problems, Cherfils-
Il’yasov [9] for reaction diffusion systems, Zhikov [49] for elasticity problems and Papageorgiou-
Vetro-Vetro [39] for least energy problems. For implicit obstacle effects involving Clarke’s
generalized gradient or general multivalued mappings but without nonlocal term we refer to
the papers of Alleche-Rădulescu [1], Aussel-Sultana-Vetrivel [3], Bonanno-Motreanu-Winkert
[5], Liu et al. [25], Carl-Le-Winkert [8], Iannizzotto-Papageorgiou [21], Migórski-Khan-Zeng
[30, 31], Liu-Migórski-Nguyen-Zeng [24], Zeng-Bai-Gasiński-Winkert [46, 47], Zeng-Rădulescu-
Winkert [48] and the references therein. We also mention the recent monograph of Carl-
Le [7] about multivalued variational inequalities and inclusions. For single-valued equations
with convection term we refer to the works of Faraci-Motreanu-Puglisi [13], Faraci-Puglisi
[14], Figueiredo-Madeira [15], Gasiński-Papageorgiou [18], Gasiński-Winkert [19], Liu-Motreanu-
Zeng [27], Marano-Winkert [29] and Papageorgiou-Rădulescu-Repovš [38]. We also mention the
overview articles of Rădulescu [42] about isotropic and anisotropic problems and of Mingione-
Rădulescu [33] about recent developments for problems with nonstandard growth and nonuni-
form ellipticity.

Let us comment on some relevant special cases of problems (1.1) and (1.3). To the best of
our knowledge, these problems have not been studied yet in the literature. We start with (1.1).

(i) Let j1 : Ω× R → R and j2 : Γ2 × R → R be two functions which are measurable in the
first argument and locally Lipschitz in the second one. Moreover, let r1, r2 : R → R be
two functions and denote by ∂ji Clarke’s generalized gradient of ji(x, ·) for i = 1, 2. If
U1 and U2 are defined by U1(x, s) = r1(s)∂j1(x, s) for a. a.x ∈ Ω, s ∈ R and U2(x, s) =
r2(s)∂j2(x, s) for a. a.x ∈ Γ2, s ∈ R, then problem (1.1) becomes

−a(u)∆p(·)u− b(u)∆q(·)u+ g(x, u) ∈ r1(u)∂j1(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νn
∈ r2(u)∂j2(x, u) on Γ2,

− ∂u

∂νn
∈ ∂cϕ(x, u) on Γ3,

L(u) ≤ J(u),

(1.5)

where ∂u
∂νn

is given in (1.2). We show in Theorem 3.13 that the solution set of (1.5) is
nonempty and compact which follows from Theorem 3.4.

(ii) If Γ2 = ∅ and Γ3 = ∅, i.e., Γ1 = Γ, then problem (1.1) reduces to the following implicit
obstacle inclusion problem with Dirichlet boundary condition

−a(u)∆p(·)u− b(u)∆q(·)u+ g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ,

L(u) ≤ J(u),

(1.6)

where ∂u
∂νn

is given in (1.2). As a direct consequence, Corollary 3.12 guarantees the

existence of a solution of (1.6).

(iii) Let Ψ: Ω → R be a given obstacle. When J(u) ≡ 0 and L(u) :=

∫
Ω

(u(x) − Ψ(x))+ dx

for all u ∈ W 1,p(·)(Ω), then our problem (1.1) can be rewritten to the following obstacle
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inclusion problem

−a(u)∆p(·)u− b(u)∆q(·)u+ g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νn
∈ U2(x, u) on Γ2,

− ∂u

∂νn
∈ ∂cϕ(x, u) on Γ3,

u(x) ≤ Ψ(x) in Ω,

(1.7)

where ∂u
∂νn

is given in (1.2). We can also suppose that Φ: Γa → R is a given obstacle
on the boundary Γa ⊂ Γ with Γa having positive Lebesgue measure. Then the last
inequality in (1.7) is replaced by u(x) ≤ Φ(x) on Γa. The main results to problem (1.7)
are given in Corollary 3.10.

(iv) Finally if J(u) ≡ +∞ or L(u) ≡ −∞ for all u ∈ W 1,p(·)(Ω), then problem (1.1) turns
into the following mixed boundary value problem without obstacle effect

−a(u)∆p(·)u− b(u)∆q(·)u+ g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νn
∈ U2(x, u) on Γ2,

− ∂u

∂νn
∈ ∂cϕ(x, u) on Γ3,

(1.8)

where ∂u
∂νn

is given in (1.2). We prove that there exists a weak solution of (1.8) and the

solution set of (1.8) is compact, see Corollary 3.11.

Next, we mention some special cases of problem (1.3).

(a) If U1 and U2 are defined by U1(x, s) = r1(s)∂j1(x, s) for a. a.x ∈ Ω, s ∈ R and U2(x, s) =
r2(s)∂j2(x, s) for a. a.x ∈ Γ2, s ∈ R, where j1, j2, r1, r2 are given in problem (1.5), then
problem (1.3) becomes the following implicit obstacle problem involving a nonlinear
convection term and generalized Clarke’s subgradients:

−a(u)∆pu− b(u)∆qu+ g(x, u) ∈ r1(u)∂j1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νn
∈ r2(u)∂j2(x, u) on Γ2,

− ∂u

∂νn
∈ ∂cϕ(x, u) on Γ3,

L(u) ≤ J(u),

(1.9)

where ∂u
∂νn

is given in (1.4). We also obtain the nonemptiness and compactness of the

solution set of problem (1.9), see Corollary 4.17. If f is independent of ∇u, then problem
(1.9) can be seemed as a special case of problem (1.5).

(b) If Γ2 = ∅ and Γ3 = ∅, i.e., Γ1 = Γ, problem (1.3) reduces to the following nonlin-
ear implicit obstacle problem with nonlinear convection term and Dirichlet boundary
condition:

−a(u)∆pu− b(u)∆qu+ g(x, u) ∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ,

L(u) ≤ J(u).

(1.10)

In this case, we obtain Corollary 4.10 getting one weak solution to problem (1.10).
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(c) If f is independent of ∇u, then problem (1.3) becomes the following problem:

−a(u)∆pu− b(u)∆qu+ g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ,

L(u) ≤ J(u).

(1.11)

This is exactly the particular case of problem (1.6) if the exponents p, q are constants.

(d) Let Ψ: Ω → R be a given obstacle. When J(u) ≡ 0 and L(u) :=

∫
Ω

(u(x)−Ψ(x))+ dx for

all u ∈ W 1,p(Ω), then problem (1.3) can be rewritten to the following obstacle inclusion
problem with nonlinear convection term:

−a(u)∆pu− b(u)∆qu+ g(x, u) ∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νn
∈ U2(x, u) on Γ2,

− ∂u

∂νn
∈ ∂cϕ(x, u) on Γ3,

u(x) ≤ Ψ(x) in Ω,

(1.12)

where ∂u
∂νn

is given in (1.4). In the case a, b to be independent of u ∈ W 1,p(Ω), i.e., a, b

are two nonnegative constants, problem (1.12) has been recently studied by Zeng-Bai-
Gasiński [45].

(e) If J(u) ≡ +∞ or L(u) ≡ −∞ for all u ∈ W 1,p(Ω), then problem (1.3) turns into the
following mixed boundary value problem with nonlinear convection term, but without
obstacle effect:

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νn
∈ U2(x, u) on Γ2,

− ∂u

∂νn
∈ ∂cϕ(x, u) on Γ3,

(1.13)

where ∂u
∂νn

is given in (1.4).
The paper is organized as follows. Section 2 presents a detailed overview about variable expo-

nent Lebesgue/Sobolev spaces, the eigenvalue problem of the p-Laplacian with Steklov boundary
condition and we state some results from nonsmooth analysis, the properties of Clarke’s gen-
eralized gradient and Tychonoff’s fixed point theorem for multivalued operators which will be
used in the next sections to establish the main results of this paper. In Section 3, in order to
establish the solvability of the anisotropic implicit obstacle problem (1.1), we first introduce an
auxiliary problem defined in (3.3) and apply an existence theorem for a class of mixed variational
inequalities involving coercive and monotone operators to prove the existence and uniqueness
of the auxiliary problem. Finally, we introduce two multivalued operators, which are proved to
be strongly-weakly u.s.c. and apply Tychonoff’s fixed point theorem for multivalued operators
along with the theory of nonsmooth analysis to examine the nonemptiness and compactness
of the solution set of problem (1.1). After that, in Section 4, we move our attention to prove
the solvability of the implicit obstacle problem (1.3) with nonlinear convection term. Lastly,
several special and interesting cases of our problem (1.3) are discussed and the corresponding
and extended existence results are obtained at the end of the paper.
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2. Preliminaries

In this section we present the main tools which are needed in the sequel. For this purpose, let
Ω ⊂ RN be a bounded domain with Lipschitz boundary Γ := ∂Ω, where Γ is divided into three
mutually disjoint parts Γ1, Γ2 and Γ3 with Γ1 having positive Lebesgue measure. For any fixed
r ∈ [1,∞) and for any subset D of Ω we denote the usual Lebesgue spaces by Lr(D) := Lr(D;R)
and Lr(D;RN ) equipped with the norm ∥ · ∥r,D given by

∥u∥r,D :=

(∫
D

|u|r dx
) 1

r

for all u ∈ Lr(D).

Moreover, we set Lr(D)+ := {u ∈ Lr(D) : u(x) ≥ 0 for a. a.x ∈ D}. By W 1,r(Ω) we define the
corresponding Sobolev space endowed with the norm ∥ · ∥1,r,Ω given by

∥u∥1,r,Ω := ∥u∥r,Ω + ∥∇u∥r,Ω for all u ∈ W 1,r(Ω).

In the entire paper, the symbols “
w−→ ” and “→” stand for the weak and the strong convergence,

respectively. Moreover, the conjugate of r > 1 is denoted by r′ > 1, e.g., 1
r +

1
r′ = 1. The critical

exponents of r > 1 in the domain and on the boundary, denoted by r∗ and r∗, are defined by

r∗ =

{
Nr
N−r if r < N,

+∞ if r ≥ N,
and r∗ =

{
(N−1)r
N−r if r < N,

+∞ if r ≥ N,
(2.1)

respectively. From Simon [44, formula (2.2)], we have the well-known inequality(
|x|r−2x− |y|r−2y

)
· (x− y) ≥ k(r)|x− y|r (2.2)

for r ≥ 2 and for all x, y ∈ RN , where k(r) is a positive constant.
The eigenvalue problem of the r-Laplacian (r > 1) with Steklov boundary condition is given

by

−∆ru = −|u|r−2u in Ω,

|u|r−2u · ν = λ|u|r−2u on Γ.
(2.3)

We know that problem (2.3) has a smallest eigenvalue λS
1,r > 0 that is isolated and simple, see

Lê [22]. Also, λS
1,r > 0 can be characterized by

λS
1,r = inf

u∈W 1,r(Ω)\{0}

∥∇u∥rr,Ω + ∥u∥rr,Ω
∥u∥rr,Γ

. (2.4)

In what follows, we denote by uS
1,r the first eigenfunction of problem (2.3) corresponding to the

first eigenvalue λS
1,r. It is clear that uS

1,r ∈ int
(
C1(Ω)+

)
, where int

(
C1(Ω)+

)
stands for the

interior of

C1(Ω)+ := {u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω},

that is

int
(
C1(Ω)+

)
=

{
u ∈ C1(Ω) : u(x) > 0 for all x ∈ Ω

}
.

Without any loss of generality, we suppose that
∥∥uS

1,r

∥∥
r,Γ

= 1.

Next, we introduce the subset C+(Ω) of C(Ω) defined by

C+(Ω) :=
{
s ∈ C(Ω) : 1 < s(x) for all x ∈ Ω

}
.

For any r ∈ C+(Ω), we define

r− := min
x∈Ω

r(x) and r+ := max
x∈Ω

r(x).
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Let p ∈ C+(Ω). In what follows, we denote by p′ ∈ C+(Ω) the conjugate variable exponent to
p, namely,

1

p(x)
+

1

p′(x)
= 1 for all x ∈ Ω.

Also, we denote by s∗ and s∗ the critical Sobolev variable exponents to s ∈ C+(Ω) in the domain
and on the boundary, respectively, given by

s∗(x) =

{
Ns(x)
N−s(x) if s(x) < N,

+∞ if s(x) ≥ N,
for all x ∈ Ω, (2.5)

and

s∗(x) =

{
(N−1)s(x)
N−s(x) if s(x) < N,

+∞ if s(x) ≥ N
for all x ∈ Ω, (2.6)

respectively.
By M(Ω) we denote the space of all measurable functions u : Ω → R. For r ∈ C+(Ω) the

variable exponent Lebesgue space Lr(·)(Ω) is defined by

Lr(·)(Ω) :=

{
u ∈ M(Ω) :

∫
Ω

|u|r(x) dx < +∞
}
.

It is well-known that Lr(·)(Ω) equipped with the Luxemburg norm given by

∥u∥r(·),Ω := inf

{
λ > 0 :

∫
Ω

(
|u|
λ

)r(x)

dx ≤ 1

}

is a separable and reflexive Banach space, the dual space of Lr(·)(Ω) is Lr′(·)(Ω) and the following
Hölder inequality holds:∫

Ω

|uv|dx ≤
[
1

r−
+

1

r′−

]
∥u∥r(·),Ω∥v∥r′(·),Ω ≤ 2∥u∥r(·),Ω∥v∥r′(·),Ω

for all u ∈ Lr(·)(Ω) and for all v ∈ Lr′(·)(Ω). Moreover, if r1, r2 ∈ C+(Ω) are such that
r1(x) ≤ r2(x) for all x ∈ Ω, then we have the continuous embedding

Lr2(·)(Ω) ↪→ Lr1(·)(Ω).

For any r ∈ C+(Ω), we consider the modular function ϱr(·),Ω : Lr(·)(Ω) → R+ := [0,+∞)
given by

ϱr(·),Ω(u) :=

∫
Ω

|u|r(x) dx for all u ∈ Lr(·)(Ω). (2.7)

The following proposition states some important relations between the norm of Lr(·)(Ω) and the
modular function ϱr(·),Ω defined in (2.7).

Proposition 2.1. If r ∈ C+(Ω) and u ∈ Lr(·)(Ω), then we have the following assertions:

(i) ∥u∥r(·),Ω = λ ⇐⇒ ϱr(·),Ω
(
u
λ

)
= 1 with u ̸= 0;

(ii) ∥u∥r(·),Ω < 1 (resp. = 1, > 1) ⇐⇒ ϱr(·),Ω(u) < 1 (resp. = 1, > 1);

(iii) ∥u∥r(·),Ω < 1 =⇒ ∥u∥r+r(·),Ω ≤ ϱr(·),Ω(u) ≤ ∥u∥r−r(·),Ω;
(iv) ∥u∥r(·),Ω > 1 =⇒ ∥u∥r−r(·),Ω ≤ ϱr(·),Ω(u) ≤ ∥u∥r+r(·),Ω;
(v) ∥u∥r(·),Ω → 0 ⇐⇒ ϱr(·),Ω(u) → 0;
(vi) ∥u∥r(·),Ω → +∞ ⇐⇒ ϱr(·),Ω(u) → +∞.
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Let D be a nonempty subset of Ω. In what follows, we denote by ∥ · ∥r(·),D the norm of the

variable exponent Lebesgue space Lr(·)(D). We set ϱr(·),D(u) =

∫
D

|u|r(x) dx for u ∈ Lr(·)(D).

Further, for r ∈ C+(Ω), we denote by W 1,r(·)(Ω) the variable exponent Sobolev space given
in

W 1,r(·)(Ω) :=
{
u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)

}
,

which is equipped with the norm

∥u∥1,r(·),Ω := ∥u∥r(·),Ω + ∥∇u∥r(·),Ω for all u ∈ W 1,r(·)(Ω),

to be a separable and reflexive Banach space, where ∥∇u∥r(·),Ω := ∥|∇u|∥r(·),Ω. Moreover we
define

W
1,r(·)
0 (Ω) = C∞

0 (Ω)
∥·∥1,r(·),Ω

.

with norm ∥ · ∥1,r(·),Ω. From Poincaré’s inequality, we know that we can endow the space

W
1,r(·)
0 (Ω) with the equivalent norm

∥u∥1,r(·),0,Ω = ∥∇u∥r(·),Ω for all u ∈ W
1,r(·)
0 (Ω).

Additionally, we introduce a closed subset V of W 1,p(·)(Ω) given by

V :=
{
u ∈ W 1,p(·)(Ω) : u = 0 for a. a.x ∈ Γ1

}
.

It is clear that V equipped with the norm V ∋ u 7→ ∥u∥1,r(·),Ω ∈ R becomes a reflexive Banach
space.

Employing Proposition 2.1, we also have the following proposition.

Proposition 2.2. Let r ∈ C+(Ω) and ιr(·),Ω : W 1,r(·)(Ω) → R+ := [0,+∞) be the modular
function given by

ιr(·),Ω(u) :=

∫
Ω

|∇u|r(x) dx+

∫
Ω

|u|r(x) dx for all u ∈ W 1,r(·)(Ω).

If u ∈ W 1,r(·)(Ω), then we have the following assertions:

(i) ∥u∥1,r(·),Ω = λ ⇐⇒ ιr(·),Ω
(
u
λ

)
= 1 with u ̸= 0;

(ii) ∥u∥1,r(·),Ω < 1 (resp. = 1, > 1) ⇐⇒ ιr(·),Ω(u) < 1 (resp. = 1, > 1);

(iii) ∥u∥1,r(·),Ω < 1 =⇒ ∥u∥r+1,r(·),Ω ≤ ιr(·),Ω(u) ≤ ∥u∥r−1,r(·),Ω;
(iv) ∥u∥1,r(·),Ω > 1 =⇒ ∥u∥r−1,r(·),Ω ≤ ιr(·),Ω(u) ≤ ∥u∥r+1,r(·),Ω;
(v) ∥u∥1,r(·),Ω → 0 ⇐⇒ ιr(·),Ω(u) → 0;
(vi) ∥u∥1,r(·),Ω → +∞ ⇐⇒ ιr(·),Ω(u) → +∞.

In the sequel, we denote by C0, 1
| log t| (Ω) the set of all functions r : Ω → R that are log-Hölder

continuous, namely, there is a constant C > 0 satisfying

|r(x)− r(y)| ≤ C

|log |x− y||
for all x, y ∈ Ω with |x− y| < 1

2
.

The following propositions give several important embeddings results, its detailed proof can be
founded in Diening-Harjulehto-Hästö-Ružička [11, Corollary 8.3.2] and Fan [12, Propositions 2.1
and 2.2].

Proposition 2.3.

(i) If r ∈ C0, 1
| log t| (Ω) ∩ C+(Ω) and s ∈ C(Ω) is such that

1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω,

then the embedding

W 1,r(·)(Ω) ↪→ Ls(·)(Ω)
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is continuous.
(ii) If s ∈ C+(Ω) is such that

1 ≤ s(x) < r∗(x) for all x ∈ Ω,

then the embedding

W 1,r(·)(Ω) ↪→ Ls(·)(Ω)

is compact.

Proposition 2.4.

(i) If r ∈ C+(Ω) ∩W 1,ς(Ω) for some ς > N and s ∈ C(Ω) is such that

1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω,

then the embedding

W 1,r(·)(Ω) ↪→ Ls(·)(∂Ω)

is continuous.
(ii) If s ∈ C+(Ω) is such that

1 ≤ s(x) < r∗(x) for all x ∈ Ω,

then the embedding

W 1,r(·)(Ω) ↪→ Ls(·)(∂Ω)

is compact.

Remark 2.5. The embeddings in Propositions 2.3 and 2.4 remain valid if we replace the space
W 1,r(·)(Ω) by V .

Next, we introduce the nonlinear operator F : V → V ∗ given by

⟨F (u), v⟩ :=
∫
Ω

|∇u|p(x)−2∇u · ∇v dx+

∫
Ω

|u|p(x)−2uv dx, (2.8)

for u, v ∈ V with ⟨·, ·⟩ being the duality pairing between V and its dual space V ∗. Arguing as
in the proof of Proposition 2.5 of Gasiński-Papageorgiou [17] or Rǎdulescu-Repovš [43, p. 40],
we have the following result which states the main properties of F : V → V ∗.

Proposition 2.6. The operator F defined by (2.8) is bounded, continuous, monotone (hence
maximal monotone) and of type (S+), that is,

un
w−→ u in V and lim sup

n→∞
⟨F (un), un − u⟩ ≤ 0,

imply un → u in V .

In the last part of this section we are going to recall some results from nonsmooth analysis
and multivalued analysis. First, we recall some definitions and properties of semicontinuous
multivalued operators.

Definition 2.7. Let Y and Z be topological spaces, let D ⊂ Y be a nonempty set, and let
G : Y → 2Z be a multivalued map.

(i) The map G is called upper semicontinuous (u.s.c. for short) at y ∈ Y, if for each open set
O ⊂ Z such that G(y) ⊂ O, there exists a neighborhood N(y) of y satisfying G(N(y)) :=
∪z∈N(y)G(z) ⊂ O. If it holds for each y ∈ D, then G is called to be upper semicontinuous
in D.
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(ii) The map G is closed at y ∈ Y , if for every sequence {(yn, zn)}n∈N ⊂ Gr(G) satisfying
(yn, zn) → (y, z) in Y × Z, it holds (y, z) ∈ Gr(G), where Gr(G) is the graph of G
defined by

Gr(G) := {(y, z) ∈ Y × Z | z ∈ G(y)} .
If it holds for each y ∈ Y , then G is called to be closed or G has a closed graph.

The next proposition gives equivalent characterizations of multivalued functions to be upper
semicontinuous.

Proposition 2.8. Let F : X → 2Y with X and Y being topological spaces. The following
statements are equivalent:

(i) F is upper semicontinuous.
(ii) For each closed set C ⊂ Y , F−(C) := {x ∈ X |F (x) ∩ C ̸= ∅} is closed in X.
(iii) For each open set O ⊂ Y , F+(O) := {x ∈ X |F (x) ⊂ O} is open in X.

In the following, let E be real Banach space with norm ∥ · ∥E . A function φ : E → R :=
R∪{+∞} is said to be proper, convex and lower semicontinuous, if the following conditions are
fulfilled:

• D(φ) := {u ∈ E : φ(u) < +∞} ≠ ∅;
• for any u, v ∈ E and t ∈ (0, 1), it holds φ(tu+ (1− t)v) ≤ tφ(u) + (1− t)φ(v);
• lim infn→∞ φ(un) ≥ φ(u) where the sequence {un}n∈N ⊂ E is such that un → u in E

as n → ∞ for some u ∈ E.

Let φ be a convex mapping. An element x∗ ∈ E∗ is said to be a subgradient of φ at u ∈ E if

⟨x∗, v − u⟩ ≤ φ(v)− φ(u) (2.9)

holds for all v ∈ E. The set of all elements x∗ ∈ E∗ which satisfies (2.9) is called the convex
subdifferential of φ at u and is denoted by ∂cφ(u).

Moreover, a function j : E → R is said to be locally Lipschitz at x ∈ E if there is a neighbor-
hood O(x) of x and a constant Lx > 0 such that

|j(y)− j(z)| ≤ Lx∥y − z∥E for all y, z ∈ O(x).

We denote by

j◦(x; y) := lim sup
z→x, λ↓0

j(z + λy)− j(z)

λ
,

the generalized directional derivative of j at the point x in the direction y and ∂j : E → 2E
∗

given by

∂j(x) := { ξ ∈ E∗ : j◦(x; y) ≥ ⟨ξ, y⟩E∗×E for all y ∈ E} for all x ∈ E

is the generalized gradient of j at x in the sense of Clarke.
The next proposition summarizes the properties of generalized gradients and generalized

directional derivatives of a locally Lipschitz function. We refer to Migórski-Ochal-Sofonea [32,
Proposition 3.23] for its proof.

Proposition 2.9. Let j : E → R be locally Lipschitz with Lipschitz constant Lx > 0 at x ∈ E.
Then we have the following:

(i) The function y 7→ j◦(x; y) is positively homogeneous, subadditive, and satisfies

|j◦(x; y)| ≤ Lx∥y∥E for all y ∈ E.

(ii) The function (x, y) 7→ j◦(x; y) is upper semicontinuous.
(iii) For each x ∈ E, ∂j(x) is a nonempty, convex, and weak∗ compact subset of E∗ with

∥ξ∥E∗ ≤ Lx for all ξ ∈ ∂j(x).
(iv) j◦(x; y) = max {⟨ξ, y⟩E∗×E | ξ ∈ ∂j(x)} for all y ∈ E.
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(v) The multivalued function E ∋ x 7→ ∂j(x) ⊂ E∗ is upper semicontinuous from E into
the subsets of E∗ with weak∗ topology.

Finally, we recall Tychonoff’s fixed point theorem for multivalued operators. The proof of
this result can be found in Granas-Dugundji [20, Theorem 8.6].

Theorem 2.10. Let D be a bounded, closed and convex subset of a reflexive Banach space E,
and Λ: D → 2D be a multivalued map such that

(i) Λ has bounded, closed and convex values,
(ii) Λ is weakly-weakly u.s.c.

Then Λ has a fixed point in D.

3. Anisotropic implicit obstacle problems

The main objective of this section is to develop a generalized framework for examining the
existence of weak solutions to the nonlinear implicit obstacle inclusion problem with multivalued
boundary conditions and nonlocal terms given by (1.1). Our method is based on the theory of
nonsmooth analysis, convex analysis, Tychonoff’s fixed point theorem for multivalued operators
and variational approach.

We start by imposing the precise assumptions on the data of problem (1.1).

H(0): p, q ∈ C+(Ω) are such that

q(x) < p(x) for all x ∈ Ω.

H(1): a : Lp∗(·)(Ω) → (0,+∞) and b : Lp∗(·)(Ω) → [0,+∞) are such that

(i) a is weakly continuous in V , i.e., if {un}n∈N ⊂ V ⊂ Lp∗(·)(Ω) is such that un
w−→ u

in V , then it holds

a(u) = lim
n→∞

a(un),

and there exists a constant ca > 0 satisfying

a(u) ≥ ca for all u ∈ V ,

where p∗ is the critical exponent of p in the domain Ω given in (2.5);
(ii) b is a weakly continuous in V .

H(g): The function g : Ω× R → R is such that
(i) the function x 7→ g(x, s) is measurable in Ω for all s ∈ R;
(ii) the function s 7→ g(x, s) is continuous for a. a.x ∈ Ω;

(iii) there exist a constant αg > 0 and a function βg ∈ Lδ′0(·)(Ω)+ such that

|g(x, s)| ≤ βg(x) + αg|s|δ0(x)−1

for a. a.x ∈ Ω and for all s ∈ R, where δ0 ∈ C+(Ω) is such that

δ0(x) < p∗(x) for all x ∈ Ω;

(iv) there exist a constant ag > 0 and a function bg ∈ L1(Ω) such that

g(x, s)s ≥ ag|s|ς(x) − bg(x)

for a. a.x ∈ Ω and for all s ∈ R, where ς ∈ C+(Ω) is such that

p(x) < ς(x) < p∗(x) for all x ∈ Ω;

(v) the function s 7→ g(x, s) is nondecreasing for a. a.x ∈ Ω, i.e.,

(g(x, s1)− g(x, s2))(s1 − s2) ≥ 0

for all s1, s2 ∈ R and for a. a.x ∈ Ω.

H(U1): The multivalued function U1 : Ω× R → 2R is such that
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(i) U1(x, s) is a nonempty, bounded, closed and convex set in R for a. a.x ∈ Ω and all
s ∈ R;

(ii) x 7→ U1(x, s) is measurable in Ω for all s ∈ R;
(iii) s 7→ U1(x, s) is u.s.c. for a. a.x ∈ Ω;

(iv) there exist a function αU1 ∈ Lδ′1(·)(Ω)+ and a constant aU1 ≥ 0 such that

|η| ≤ αU1
(x) + aU1

|s|δ1(x)−1

for all η ∈ U1(x, s), for a. a.x ∈ Ω and for all s ∈ R, where δ1 ∈ C+(Ω) is such that

δ1(x) < p(x) for all x ∈ Ω.

H(U2): The multivalued function U2 : Γ2 × R → 2R is such that
(i) U2(x, s) is a nonempty, bounded, closed and convex set in R for a. a.x ∈ Γ2 and all

s ∈ R;
(ii) x 7→ U2(x, s) is measurable on Γ2 for all s ∈ R;
(iii) s 7→ U2(x, s) is u.s.c. for a. a.x ∈ Γ2;

(iv) there exist a function αU2 ∈ Lδ′2(·)(Γ2)+ and a constant aU2 > 0 such that

|ξ| ≤ αU2
(x) + aU2

|s|δ2(x)−1

for all ξ ∈ U2(x, s), for a. a.x ∈ Γ2 and for all s ∈ R, where δ2 ∈ C+(Ω) is such that

δ2(x) < p(x) for all x ∈ Ω.

H(ϕ): The function ϕ : Γ3 × R → R is such that
(i) x 7→ ϕ(x, r) is measurable on Γ3 for all r ∈ R;
(ii) r 7→ ϕ(x, r) is convex and l.s.c. for a. a.x ∈ Γ3;
(iii) for each function u ∈ Lp∗(·)(Γ3) the function x 7→ ϕ(x, u(x)) belongs to L1(Γ3),

where p∗ is the critical exponent of p on the boundary Γ given in (2.6).

H(L): L : V → R is positively homogeneous and subadditive such that

L(u) ≤ lim sup
n→∞

L(un), (3.1)

whenever {un}n∈N ⊂ V is such that un
w−→ u in V for some u ∈ V .

H(J): J : V → (0,+∞) is weakly continuous, that is, for any sequence {un}n∈N ⊂ V such that

un
w−→ u for some u ∈ V , we have

J(un) → J(u).

Remark 3.1. From hypotheses H(L), we can observe that on the one hand, the homogeneity
and subadditivity of L guarantee the convexity of L and on the other hand, if L : V → R is weak
lower semicontinuous, then inequality (3.1) holds automatically.

Example 3.2. Given a constant ca > 0, the functions

a(u) = ca +

∫
Ω

|u|τ dx and b(u) =

k∏
i=1

∣∣∣∣∫
Ω

|u|τi dx− πi

∣∣∣∣ ,
satisfy hypotheses H(g), where τ, τ1, . . . , τk ∈ [1, p∗−) and π1, . . . , πk ∈ [0,+∞). Observe that the
function b given above is finite degenerate.

Let cg > 0 and ς0, ς ∈ C+(Ω) and βg ∈ Lς′(·)(Ω) be such that

ς0(x) ≤ p(x) < ς(x) < p∗(x) for all x ∈ Ω.

Then, the following function satisfies hypotheses H(g)

g(x, s) =

{
cg|s|ς0(x)−2s+ βg(x) if |s| ≤ 1,

cg|s|ς(x)−2s+ βg(x) if |s| > 1,
for a. a.x ∈ Ω.



ANISOTROPIC AND ISOTROPIC IMPLICIT OBSTACLE PROBLEMS 13

Let ω ∈ L∞(Γ3)+. Then, the function ϕ : Γ3 × R → R fulfills assumption H(ϕ)

ϕ(x, s) =

{
ω(x)|s| if |s| ≤ 1,

ω(x)|s|ς2(x) if |s| > 1,
for a. a.x ∈ Γ3.

In order to formulate the implicit obstacle effect to a suitable variational constraint, we
consider the multivalued map K : V → 2V defined by

K(u) := {v ∈ V : L(v) ≤ J(u)} (3.2)

for all u ∈ V .
Next, we state the definition of a weak solution of problem (1.1).

Definition 3.3. A function u ∈ V is said to be a weak solution of problem (1.1), if u ∈ K(u) and

there exist functions η ∈ Lδ′1(·)(Ω), ξ ∈ Lδ′2(·)(Γ2) such that η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω,
ξ(x) ∈ U2(x, u(x)) for a. a.x ∈ Γ2 and the inequality

a(u)

∫
Ω

|∇u|p(x)−2∇u · ∇(v − u) dx+ b(u)

∫
Ω

|∇u|q(x)−2∇u · ∇(v − u) dx

+

∫
Ω

g(x, u)(v − u) dx+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, u) dΓ

≥
∫
Ω

η(x)(v − u) dx+

∫
Γ2

ξ(x)(v − u) dΓ

is satisfied for all v ∈ K(u), where the multivalued function K : V → 2V is defined by (3.2).

The main result in this section is stated by the following theorem.

Theorem 3.4. Assume that H(0), H(1), H(g), H(U1), H(U2), H(ϕ), H(L) and H(J) are sat-
isfied. Then, the solution set of problem (1.1), denoted by Υ, is nonempty and compact in
V .

In order to prove Theorem 3.4, we need the following important auxiliary result which delivers
several significant properties for the multivalued mapping K : V → 2V . More precisely, this
lemma reveals an essential characteristic that K is Mosco continuous (see Mosco [34], i.e., K is
sequentially weakly-weakly closed and sequentially weakly-strongly l.s.c.). The detailed proof
of this lemma can be found in Lemma 3.3 of Zeng-Rǎdulescu-Winkert [48].

Lemma 3.5. Let J : V → (0,+∞) and L : V → R be two functions such that H(L) and H(J)
are satisfied. Then, the following statements hold:

(i) for each u ∈ V , K(u) is closed and convex in V such that 0 ∈ K(u);
(ii) the graph Gr(K) of K is sequentially closed in Vw×Vw, that is, K is sequentially closed

from V with the weak topology into the subsets of V with the weak topology;
(iii) if {un}n∈N ⊂ V is a sequence such that

un
w−→ u in V

for some u ∈ V , then for each v ∈ K(u) there exists a sequence {vn}n∈N ⊂ V such that

vn ∈ K(un) and vn → v in V.

Note that problem (1.1) has several interesting and complicated characterizations, such as,
highly abstract nonlocal functions (which could be specialized to a nonlinear Kirchhoff type
condition (see for example, in [2], the authors combined the effects of a nonlocal Kirchhoff
coefficient and a double phase operator with a singular term and a critical Sobolev nonlinearity
in which the proof of main result is based on a suitable minimization argument on the Nehari
manifold; the work [16] investigates the effects of an indefinite Kirchhoff type function on the
geometry of an elliptic problem, by adopting an approximation process based on the Galerkin
method), multivalued terms (which can be seemed as feedback control effect from the control
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point of view), and also nonsmooth boundary conditions. This leads to tremendous difficulties
from various perspectives. For example, we are not able to use directly variational methods,
topological techniques and the theory of set-valued analysis for determining the existence of a
weak solution. In order to bypass those difficulties, we consider the following auxiliary problem:
for given functions (w, η, ξ) ∈ V ×X∗ × Y ∗, find a function u : Ω → R such that

−a(w)∆p(·)u− b(w)∆q(·)u+ g(x, u) = η(x) in Ω,

u = 0 on Γ1,

∂u(x)

∂νw
= ξ(x) on Γ2,

−∂u(x)

∂νw
∈ ∂cϕ(x, u) on Γ3,

L(u) ≤ J(w),

(3.3)

where X := Lδ1(·)(Ω), Y := Lδ2(·)(Γ2), and X∗ and Y ∗ are the dual spaces of X and Y (i.e.,

X∗ := Lδ′1(·)(Ω) and Y ∗ := Lδ′2(·)(Γ2)), respectively, and

∂u

∂νw
:=

(
a(w)|∇u|p(x)−2∇u+ b(w)|∇u|q(x)−2∇u

)
· ν.

Note that problem (3.3) is an anisotropic obstacle problem with mixed boundary conditions.
From Definition 3.3, it is not difficult to see that a function u ∈ V is a weak solution of

problem (3.3), if the following holds: u ∈ K(w) and

a(w)

∫
Ω

|∇u|p(x)−2∇u · ∇(v − u) dx+ b(w)

∫
Ω

|∇u|q(x)−2∇u · ∇(v − u) dx

+

∫
Ω

g(x, u)(v − u) dx+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, u) dΓ

≥
∫
Ω

η(x)(v − u) dx+

∫
Γ2

ξ(x)(v − u) dΓ

for all v ∈ K(w).
The following lemma examines the existence and uniqueness of problem (3.3).

Lemma 3.6. Suppose that H(0), H(g) and H(ϕ) are fulfilled. Then, for each fixed (w, η, ξ) ∈
V ×X∗ × Y ∗, problem (3.3) has a unique solution.

Proof. Recall that V ↪→ X, V ↪→ Y and V ↪→ Lδ0(·)(Ω) are continuous embeddings. We
introduce the nonlinear operator F : V → V ∗ given by

⟨F(u), v⟩ := a(w)

∫
Ω

|∇u|p(x)−2∇u · ∇v dx+ b(w)

∫
Ω

|∇u|q(x)−2∇u · ∇v dx

+

∫
Ω

g(x, u)v dx−
∫
Ω

η(x)v dx−
∫
Γ2

ξ(x)v dΓ

for all u, v ∈ V . By virtue of hypotheses H(0) and H(g), we can see that F : V → V ∗ is a
continuous, bounded and strictly monotone operator. Furthermore, let us consider the function
φ : V → R defined by

φ(u) :=

∫
Γ3

ϕ(x, u) dΓ for all u ∈ V,

which is well-defined due to hypothesis H(ϕ)(iii). Applying standard arguments, it is not difficult
to prove that φ is a proper, convex and l.s.c. function in V . In fact, it is convex and continuous,
because the effective domain of φ contains V .

Utilizing the notation above, it is obvious that u is a weak solution of problem (3.3), if and
only if it solves the following mixed variational inequality problem: find u ∈ K(w) such that

⟨F(u), v − u⟩+ φ(v)− φ(u) ≥ 0 (3.4)
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for all v ∈ K(w). Moreover, using hypotheses H(0) and H(g)(iv), we obtain

⟨Fu, u⟩

≥ a(w)

∫
Ω

|∇u|p(x) dx+ b(w)

∫
Ω

|∇u|q(x) dx+

∫
Ω

ag|u|ς(x) − bg(x) dx

−
∫
Ω

η(x)udx−
∫
Γ2

ξ(x)udΓ

≥ caϱp(·),Ω(∇u) + b(w)ϱq(·),Ω(∇u)− (∥η∥V ∗ + ∥ξ∥V ∗) ∥u∥V − ∥bg∥1,Ω + agϱς(·),Ω(u),

where ca > 0 is given in hypotheses H(1). Keeping in mind that p(x) < ς(x) for all x ∈ Ω, it
follows from Young’s inequality that

agϱς(·),Ω(u) ≥ caϱp(·),Ω(u)−m0

for some m0 > 0. Taking the last two inequalities into account, we have

⟨Fu, u⟩
≥ caϱp(·),Ω(∇u) + b(w)ϱq(·),Ω(∇u)− (∥η∥V ∗ + ∥ξ∥V ∗) ∥u∥V − ∥bg∥1,Ω + caϱp(·),Ω(u)−m0

≥ ca
(
ϱp(·),Ω(∇u) + ϱp(·),Ω(u)

)
− (∥η∥V ∗ + ∥ξ∥V ∗) ∥u∥V − ∥bg∥1,Ω −m0

≥ ca min
{
∥u∥p−

V , ∥u∥p+

V

}
− (∥η∥V ∗ + ∥ξ∥V ∗) ∥u∥V − ∥bg∥1,Ω −m0,

where the last inequality is obtained by using Proposition 2.2 (iii) and (iv). This means that F
is a coercive operator.

Therefore, all conditions of Theorem 3.2 of Liu-Migórski-Zeng [26] are satisfied. Using this
theorem, we conclude that inequality (3.4) has at least one solution. On the other hand, the
strict monotonicity of F implies that this solution is unique. This completes the proof. □

In particular, if J(w) = +∞ for all w ∈ V , problem (3.3) reduces to the following nonlinear
anisotropic mixed boundary problem involving a convex subdifferential term: find u ∈ V such
that

−a(w)∆p(·)u− b(w)∆q(·)u+ g(x, u) = η(x) in Ω,

u = 0 on Γ1,

∂u

∂νw
= ξ(x) on Γ2,

− ∂u

∂νw
∈ ∂cϕ(x, u) on Γ3.

(3.5)

In this special case, we have the following result.

Corollary 3.7. Suppose that H(0), H(g) and H(ϕ) are fulfilled. Then, problem (3.5) has a
unique solution.

Lemma 3.6 permits us to consider the solution mapping S : V × X∗ × Y ∗ → V of problem
(3.3) defined by

S(w, η, ξ) := u(w,η,ξ) for all (w, η, ξ) ∈ V ×X∗ × Y ∗,

where u(w,η,ξ) is the unique solution of problem (3.3) corresponding to (w, η, ξ) ∈ V ×X∗ ×Y ∗.
The following lemma shows that the solution mapping S is a completely continuous operator,

that is, if {(wn, ηn, ξn)}n∈N ⊂ V ×X∗×Y ∗ and (u, η, ξ) ∈ V ×X∗×Y ∗ satisfy (wn, ηn, ξn)
w−→

(w, η, ξ) in V ×X∗ × Y ∗, then we have S(wn, ηn, ξn) → S(w, η, ξ) in V .

Lemma 3.8. Assume that H(0), H(1), H(g), H(ϕ), H(L) and H(J) are satisfied. Then, the
solution map S : V ×X∗ × Y ∗ → V of problem (3.3) is completely continuous.
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Proof. Let {(wn, ηn, ξn)}n∈N ⊂ V × X∗ × Y ∗, {un}n∈N ⊂ V be sequences and (w, η, ξ) ∈
V ×X∗ × Y ∗ such that

(wn, ηn, ξn)
w−→ (w, η, ξ) in V ×X∗ × Y ∗

and un = S(wn, ηn, ξn) for each n ∈ N. Hence, for any n ∈ N, the function un ∈ K(wn) is the
unique solution of the following inequality

a(wn)

∫
Ω

|∇un|p(x)−2∇un · ∇(v − un) dx+ b(wn)

∫
Ω

|∇un|q(x)−2∇un · ∇(v − un) dx

+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, un) dΓ +

∫
Ω

g(x, un)(v − un) dx

≥
∫
Ω

ηn(x)(v − un) dx+

∫
Γ2

ξn(x)(v − un) dΓ for all v ∈ K(wn).

(3.6)

Claim 1: The solution sequence {un}n∈N is uniformly bounded in V .
If the sequence {un}n∈N is unbounded in V , then, passing to a subsequence if necessary, we

may suppose that

∥un∥V → +∞ as n → ∞. (3.7)

Note that 0 ∈ K(wn) for each n ∈ N (see Lemma 3.5(i)), we can take v = 0 in inequality (3.6)
in order to obtain

a(wn)

∫
Ω

|∇un|p(x) dx+ b(wn)

∫
Ω

|∇un|q(x) dx+

∫
Ω

g(x, un)un dx+

∫
Γ3

ϕ(x, un(x)) dΓ

≤
∫
Ω

ηn(x)un(x) dx+

∫
Γ2

ξn(x)un(x) dΓ +

∫
Γ3

ϕ(x, 0) dΓ

≤ ∥ϕ(·, 0)∥1,Γ3
+ ∥ηn∥V ∗∥un∥V + ∥ξn∥V ∗∥un∥V .

(3.8)

Condition H(g)(iv) and Young’s inequality imply that∫
Ω

g(x, un)un dx ≥
∫
Ω

ag|un|ς(x) − bg(x) dx

= agϱς(·),Ω(un)− ∥bg∥1,Ω ≥ caϱp(·),Ω(un)−m1 − ∥bg∥1,Ω
(3.9)

for some m1 > 0 which is independent of n. Recall that v 7→ φ(v) =

∫
Γ3

ϕ(x, v) dΓ is a proper,

convex and l.s.c. function. Thus, from Brézis [6, Proposition 1.10], we are able to find two
positive constants αφ, βφ ≥ 0 such that

φ(v) ≥ −αφ∥v∥V − βφ (3.10)

for all v ∈ V . Taking into account (3.8), (3.9) and (3.10) and using hypothesis H(1) leads to

0 ≥ caϱp(·),Ω(∇un) + b(wn)ϱq(·),Ω(∇un) + caϱp(·),Ω(un)−m1 − ∥bg∥1,Ω − αφ∥un∥V − βφ

− ∥ϕ(·, 0)∥1,Γ3
− (∥ηn∥V ∗ + ∥ξn∥V ∗) ∥un∥V

≥ ca
(
ϱp(·),Ω(∇un) + ϱp(·),Ω(un)

)
−m1 − ∥bg∥1,Ω − αφ∥un∥V − βφ − ∥ϕ(·, 0)∥1,Γ3

− (∥ηn∥V ∗ + ∥ξn∥V ∗) ∥un∥V
≥ ca min

{
∥un∥p−

V , ∥un∥p+

V

}
−m1 − ∥bg∥1,Ω − αφ∥un∥V − βφ − ∥ϕ(·, 0)∥1,Γ3

− (∥ηn∥V ∗ + ∥ξn∥V ∗) ∥un∥V .

Because {ηn}n∈N and {ξn}n∈N are bounded in X∗ and Y ∗, respectively, and the embeddings of
V into X and of V into Y are continuous, we know that {ηn}n∈N and {ξn}n∈N are bounded in
V ∗. Passing to the lower limit as n → ∞ in the above inequalities and then using (3.7), it leads
to a contradiction. Therefore, we conclude that the sequence {un}n∈N is uniformly bounded in
V . The claim follows.
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Using this claim, without any loss of generality, we are able to find a function u ∈ V satisfying

un
w−→ u in V.

Claim 2: The sequence {un}n∈N converges strongly to u in V .
Recall that the graph of K, Gr(K), is sequentially closed in Vw × Vw (see Lemma 3.5(ii)).

So, it follows from the convergence (un, wn)
w−→ (u,w) in V × V and {(un, wn)}n∈N ⊂ Gr(K),

that u belongs to K(w), that is, u ∈ K(w). By means of Lemma 3.5(iii), it permits us to find
a sequence {yn}n∈N ⊂ V such that yn ∈ K(wn) for each n ∈ N and

yn → u in V.

Taking v = yn in (3.6) one has

a(wn)

∫
Ω

|∇un|p(x)−2∇un · ∇(un − yn) dx+ b(wn)

∫
Ω

|∇un|q(x)−2∇un · ∇(un − yn) dx

≤
∫
Γ3

ϕ(x, yn) dΓ−
∫
Γ3

ϕ(x, un) dΓ +

∫
Ω

g(x, un)(yn − un) dx

−
∫
Ω

ηn(x)(yn − un) dx−
∫
Γ2

ξn(x)(yn − un) dΓ.

Passing to the upper limit as n → ∞ in the above inequality, we obtain

lim sup
n→∞

[
a(wn)

∫
Ω

|∇un|p(x)−2∇un · ∇(un − yn) dx

+ b(wn)

∫
Ω

|∇un|q(x)−2∇un · ∇(un − yn) dx

]
≤ lim sup

n→∞

[ ∫
Γ3

ϕ(x, yn) dΓ−
∫
Γ3

ϕ(x, un) dΓ +

∫
Ω

g(x, un)(yn − un) dx

−
∫
Ω

ηn(x)(yn − un) dx−
∫
Γ2

ξn(x)(yn − un) dΓ

]
≤ lim sup

n→∞

∫
Γ3

ϕ(x, yn) dΓ− lim inf
n→∞

∫
Γ3

ϕ(x, un) dΓ + lim sup
n→∞

∫
Ω

g(x, un)(yn − un) dx

− lim inf
n→∞

∫
Ω

ηn(x)(yn − un) dx− lim inf
n→∞

∫
Γ2

ξn(x)(yn − un) dΓ.

(3.11)

Keeping in mind that V is embedded compactly into Lδ0(·)(Ω) (resp. X and Y ), we have

lim
n→∞

∫
Ω

g(x, un)(yn − un) dx = 0,

lim
n→∞

∫
Ω

ηn(x)(yn − un) dx = 0,

lim inf
n→∞

∫
Γ2

ξn(x)(yn − un) dΓ = 0,

(3.12)

where we have used the boundedness of {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗ as well as hypotheses
H(g). Hypotheses H(ϕ) indicates that s 7→ ϕ(x, s) is continuous for a. a.x ∈ Γ3. Employing
Fatou’s lemma and the convergence (un, yn) → (u, u) in Y × Y implies

lim sup
n→∞

∫
Γ3

ϕ(x, yn) dΓ− lim inf
n→∞

∫
Γ3

ϕ(x, un) dΓ ≤ 0. (3.13)
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Note that a and b are continuous. Applying Hölder’s inequality we get

lim inf
n→∞

b(wn)

∫
Ω

|∇un|q(x)−2∇un · ∇(un − yn) dx

≥ lim inf
n→∞

b(wn)

∫
Ω

|∇yn|q(x)−2∇yn · ∇(un − yn) dx = 0

(3.14)

and

lim sup
n→∞

a(wn)

∫
Ω

|∇un|p(x)−2∇un · ∇(un − yn) dx

= lim sup
n→∞

[
a(wn)

∫
Ω

|∇un|p(x)−2∇un · ∇(un − yn) dx+

∫
Ω

|un|p(x)−2un(un − u) dx

]
≥ lim sup

n→∞

[
a(w)

∫
Ω

|∇un|p(x)−2∇un · ∇(un − yn) dx+

∫
Ω

|un|p(x)−2un(un − u) dx

]
− lim sup

n→∞
|a(wn)− a(w)|

∣∣∣∣∫
Ω

|∇un|p(x)−2∇un · ∇(un − yn) dx

∣∣∣∣
≥ lim sup

n→∞

[
a(w)

∫
Ω

|∇un|p(x)−2∇un · ∇(un − yn) dx+

∫
Ω

|un|p(x)−2un(un − u) dx

]
− lim sup

n→∞
2k0|a(wn)− a(w)|∥∇un∥p(·),Ω∥∇(yn − un)∥p(·),Ω

≥ lim sup
n→∞

[
a(w)

∫
Ω

|∇un|p(x)−2∇un · ∇(un − u) dx+

∫
Ω

|un|p(x)−2un(un − u) dx

+ a(w)

∫
Ω

|∇un|p(x)−2∇un · ∇(u− yn) dx

]
≥ lim sup

n→∞

[
a(w)

∫
Ω

|∇un|p(x)−2∇un · ∇(un − u) dx+

∫
Ω

|un|p(x)−2un(un − u) dx

]
+ lim inf

n→∞
a(w)

∫
Ω

|∇un|p(x)−2∇un · ∇(u− yn) dx

≥ lim sup
n→∞

[
a(w)

∫
Ω

|∇un|p(x)−2∇un · ∇(un − u) dx+

∫
Ω

|un|p(x)−2un(un − u) dx

]

(3.15)

for some k0 > 0 which is independent of n, where we have used the compactness of the embedding
of V into Lp(·)(Ω) and the equality

lim
n→∞

∫
Ω

|un|p(x)−2un(un − u) dx = 0.

Let us consider the bifunction A : V × V → V ∗ defined by

⟨A(w, u), v⟩ := a(w)

∫
Ω

|∇u|p(x)−2∇u · ∇v dx for all w, u, v ∈ V.

Inserting (3.12), (3.13), (3.14) and (3.15) into (3.11) yields

lim sup
n→∞

[
a(w)

∫
Ω

|∇un|p(x)−2∇un · ∇(un − u) dx+

∫
Ω

|un|p(x)−2un(un − u) dx

]
= lim sup

n→∞
⟨A(w, un), un − u⟩ ≤ 0.

The latter combined with the (S+)-property of A(w, ·) (see Proposition 2.6) implies that un → u
in V . Therefore, the claim is proved.

Claim 3: The function u is the unique solution of problem (3.3) corresponding to (w, η, ξ) ∈
V ×X∗ × Y ∗, that is, u = S(w, η, ξ).

Let z ∈ K(w) be arbitrary. We use Lemma 3.5(iii) to find a sequence {zn}n∈N ⊂ V satisfying

zn ∈ K(wn) and zn → z in V.
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Choosing v = zn in (3.6) and passing to the upper limit as n → ∞, we obtain

a(w)

∫
Ω

|∇u|p(x)−2∇u · ∇(z − u) dx+ b(w)

∫
Ω

|∇u|q(x)−2∇u · ∇(z − u) dx

+

∫
Γ3

ϕ(x, z) dΓ−
∫
Γ3

ϕ(x, u) dΓ +

∫
Ω

g(x, u)(z − u) dx

≥ lim sup
n→∞

a(wn)

∫
Ω

|∇un|p(x)−2∇un · ∇(zn − un) dx

+ lim sup
n→∞

b(wn)

∫
Ω

|∇un|q(x)−2∇un · ∇(zn − un) dx+ lim sup
n→∞

∫
Γ3

ϕ(x, zn) dΓ

− lim inf
n→∞

∫
Γ3

ϕ(x, un) dΓ + lim sup
n→∞

∫
Ω

g(x, un)(zn − un) dx

≥ lim sup
n→∞

∫
Ω

ηn(x)(zn − un) dx+ lim sup
n→∞

∫
Γ2

ξn(x)(zn − un) dΓ

=

∫
Ω

η(x)(z − u) dx+

∫
Γ2

ξ(x)(z − u) dΓ.

Since z ∈ K(w) is arbitrary, we can apply Lemma 3.6 and have that u is the unique solution of
problem (3.3) corresponding to (w, η, ξ), that is, u = S(w, η, ξ).

Because each convergent subsequence of {un}n∈N converges to the same limit u, we know that
the whole sequence {un}n∈N converges strongly to u in V . This means that S : V ×X∗×Y ∗ → V
is completely continuous. □

In what follows, we write i : V → X and γ : V → Y for the embedding operators of V to
X and the trace operator from V into Y , respectively. It is obvious that i and γ are linear,
bounded and compact. Also, by i∗ : X∗ → V ∗ and γ∗ : Y ∗ → V ∗ we denote the dual operators
of i and γ, respectively. Moreover, let us consider two multivalued mappings U1 : X → 2X

∗
and

U2 : Y → 2Y
∗
given by

U1(u) :=
{
η ∈ X∗ : η(x) ∈ U1(x, u(x)) a. a. in Ω

}
, (3.16)

U2(v) :=
{
ξ ∈ Y ∗ : ξ(x) ∈ U2(x, v(x)) a. a. on Γ2

}
, (3.17)

for all (u, v) ∈ X×Y , respectively. The following lemma indicates that U1 and U2 are well-defined
and strongly-weakly u.s.c.

Lemma 3.9. Let H(U1) and H(U2) be satisfied. Then, the following statements hold:

(i) U1 and U2 are well-defined and for each u ∈ X and for each v ∈ Y , the sets U1(u) and
U2(v) are bounded, closed and convex in X∗ and Y ∗, respectively;

(ii) U1 and U2 are strongly-weakly u.s.c., i.e., U1 is u.s.c. from X with the strong topology
to the subsets of X∗ with the weak topology, and U2 is u.s.c. from Y with the strong
topology to the subsets of Y ∗ with the weak topology.

Proof. (i) Note that U1 and U2 satisfy an upper Carathéodory condition, that is, Ω ∋ x 7→
U1(x, s) ⊂ R and Γ2 ∋ x 7→ U2(x, s) ⊂ R are measurable and R ∋ s 7→ U1(x, s) ⊂ R and
R ∋ s 7→ U2(x, s) ⊂ R are u.s.c. Employing Theorem 1.3.4 of Kamenskii-Obukhovskii-Zecca
[28], we can see that for each (u, v) ∈ X × Y , the functions Ω ∋ x 7→ U1(x, u(x)) ⊂ R and
Γ2 ∋ x 7→ U2(x, v(x)) ⊂ R are both measurable in Ω and on Γ2, respectively. This allows us
to invoke the Yankov-von Neumann-Aumann selection theorem (see e. g. Papageorgiou-Winkert
[40, Theorem 2.7.25]) which implies that there are two measurable functions η : Ω → R and
ξ : Γ2 → R satisfying

η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω and ξ(x) ∈ U2(x, v(x)) for a. a.x ∈ Γ2.
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From hypotheses H(U1)(iv) and H(U2)(iv) we have that

ϱδ′1(·),Ω(η) =

∫
Ω

|η(x)|δ
′
1(x) dx ≤

∫
Ω

(
αU1

(x) + aU1
|u(x)|δ1(x)−1

)δ′1(x)

dx

≤ m2

∫
Ω

(
αU1(x)

δ′1(x) + |u(x)|δ1(x)
)
dx

= m2

(
ϱδ′1(·),Ω(αU1

) + ϱδ1(·),Ω(u)
)

< +∞,

(3.18)

for some m2 > 0, and

ϱδ′2(·),Γ2
(ξ) =

∫
Γ2

|ξ(x)|δ
′
2(x) dΓ ≤

∫
Γ2

(
αU2

(x) + aU2
|s|δ2(x)−1

)δ′2(x)

dΓ

≤ m3

∫
Γ2

(
αU2

(x)δ
′
2(x) + |u(x)|δ2(x)

)
dΓ

= m3

(
ϱδ′2(·),Γ2

(αU2
) + ϱδ2(·),Γ2

(u)
)

< +∞,

(3.19)

for some m3 > 0, where we have used the elementary inequality (s+ t)r ≤ 2r−1(sr + tr) for all
s, t ≥ 0 and r ≥ 1 as well as the continuity of δ1 and δ2. The latter together with Proposition
2.1(vi) implies that η ∈ X∗ and ξ ∈ Y ∗. Thus, the multivalued mappings U1 and U2 are well-
defined and for each (u, v) ∈ X × Y , the sets U1(u) and U2(v) are bounded in X∗ and Y ∗,
respectively. Recall that U1 and U2 have closed and convex values. So we can use standard
arguments to show that for each (u, v) ∈ X × Y the sets U1(u) and U2(v) are closed and convex
in X∗ and Y ∗, respectively.

(ii) We only prove that U1 is u.s.c., the upper semicontinuity of U2 can be shown in a similar
way. It follows from Proposition 2.8 that it is sufficient to show that for each weakly closed set
D of X∗, the set U−

1 (D) is closed in X. Let {un}n∈N ⊂ U−(D) be such that un → u in X for
some u ∈ X. Due to the continuity of the embedding V ↪→ L1(Ω), by passing to a subsequence
if necessary, we may assume that

un(x) → u(x) as n → ∞ for a. a.x ∈ Ω. (3.20)

Let {ηn}n∈N ⊂ X∗ be a sequence such that ηn ∈ U1(un)∩D for each n ∈ N. By virtue of (3.18),
we infer that sequence {ηn}n∈N is bounded in X∗. Because X∗ is reflexive, we may assume that

ηn
w−→ η in X∗

for some η ∈ D owing to the weak closedness of D. Our objective is to prove that η ∈ U1(u),
namely, η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω.

Employing Mazur’s theorem, we are able to find a sequence {ζn}n∈N of convex combinations
of {ηn}n∈N such that

ζn → η in Lδ′1(·)(Ω) and ζn(x) → η(x) for a. a.x ∈ Ω as n → ∞. (3.21)

The convexity of U1 guarantees that ζn(x) ∈ U1(x, un(x)) for a. a.x ∈ Ω. Applying the conver-
gences in (3.20) and (3.21) along with the upper semicontinuity of U1 (see hypothesis H(U1)(iii)),
we get that η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω. This means that η ∈ U1(u)∩D. Hence, u ∈ U−

1 (D).
Therefore, we can apply Proposition 2.8 to conclude that U1 is strongly-weakly u.s.c. This com-
pletes the proof. □

Using the results above, we are now in a position to provide the detailed proof of Theorem 3.4.

Proof of Theorem 3.4. First, we prove the following claims.
Claim 4: The solution set Υ of problem (1.1) is bounded, if Υ is nonempty.
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Let u ∈ V be a weak solution of problem (1.1). Then, there exist functions (η, ξ) ∈ X∗ × Y ∗

with η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω and ξ(x) ∈ U2(x, u(x)) for a. a.x ∈ Γ2 such that

a(u)

∫
Ω

|∇u|p(x)−2∇u · ∇(v − u) dx+ b(u)

∫
Ω

|∇u|q(x)−2∇u · ∇(v − u) dx

+

∫
Ω

g(x, u)(v − u) dx+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, u) dΓ

≥
∫
Ω

η(x)(v − u) dx+

∫
Γ2

ξ(x)(v − u) dΓ

for all v ∈ K(u). Since 0 ∈ K(u) we take v = 0 in the above inequality to obtain

a(u)

∫
Ω

|∇u|p(x) dx+ b(u)

∫
Ω

|∇u|q(x) dx+

∫
Ω

g(x, u)udx

≤
∫
Γ3

ϕ(x, 0) dΓ−
∫
Γ3

ϕ(x, u) dΓ +

∫
Ω

η(x)udx+

∫
Γ2

ξ(x)udΓ.

(3.22)

It follows from hypotheses H(U1)(iv) and H(U2)(iv) that∫
Ω

η(x)u(x) dx ≤
∫
Ω

|η(x)||u(x)|dx

≤
∫
Ω

(
αU1(x) + aU1 |u(x)|δ1(x)−1

)
|u(x)|dx

≤ aU1ϱδ1(·),Ω(u) + 2∥αU1∥δ′1(·),Ω∥u∥δ1(·),Ω,

(3.23)

and ∫
Γ2

ξ(x)u(x) dΓ ≤
∫
Γ2

|ξ(x)||u(x)|dΓ

≤
∫
Γ2

(
αU2

(x) + aU2
|u(x)|δ2(x)−1

)
|u(x)|dΓ

≤ aU2
ϱδ2(·),Γ2

(u) + 2∥αU2
∥δ′2(·),Ω∥u∥δ2(·),Γ2

.

(3.24)

Since the embeddings of V into X and of V into Y are continuous, we are able to find two
constants CX , CY > 0 such that

∥u∥δ1(·),Ω ≤ CX∥u∥V and ∥u∥δ2(·),Γ2
≤ CY ∥u∥V for all u ∈ V. (3.25)

Keeping in mind that ς(x) > p(x) for all x ∈ Ω, using hypothesis H(g)(iv), we have∫
Ω

g(x, u)udx ≥
∫
Ω

ag|u|ς(x) − bg(x) dx = agϱς(·),Ω(u)− ∥bg∥1,Ω. (3.26)

Putting (3.23), (3.24), (3.25) and (3.26) into (3.22), we have

caϱp(·),Ω(∇u) + agϱς(·),Ω(u)− ∥bg∥1,Ω − αφ∥u∥V
≤ aU2

ϱδ2(·),Γ2
(u) + 2∥αU2

∥δ′2(·),Ω∥u∥δ2(·),Γ2
+ aU1

ϱδ1(·),Ω(u) + 2∥αU1
∥δ′1(·),Ω∥u∥δ1(·),Ω + βφ,
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where we have used inequality (3.10). Employing Propositions 2.1(iii), (iv) and 2.2(iii) and (iv)
we get

ca min
{
∥u∥p−

V , ∥u∥p+

V

}
− ca min

{
∥u∥p−

p(·),Ω, ∥u∥
p+

p(·),Ω

}
+ ag min

{
∥u∥ς−ς(·),Ω, ∥u∥

ς+
ς(·),Ω

}
− αφ∥u∥V

≤ ca
(
ϱp(·),Ω(∇u) + ϱp(·),Ω(u)

)
− caϱp(·),Ω(u) + agϱς(·),Ω(u)− αφ∥u∥V

≤ aU2
ϱδ2(·),Γ2

(u) + 2∥αU2
∥δ′2(·),Ω∥u∥δ2(·),Γ2

+ aU1
ϱδ1(·),Ω(u) + 2∥αU1

∥δ′1(·),Ω∥u∥δ1(·),Ω
+ βφ + ∥bg∥1,Ω

≤ aU2
max

{
∥u∥δ2−δ2(·),Γ2

, ∥u∥δ2+δ2(·),Γ2

}
+ aU1

max
{
∥u∥δ1−δ1(·),Ω, ∥u∥

δ1+
δ1(·),Ω

}
+ 2∥αU2∥δ′2(·),Ω∥u∥δ2(·),Γ2

+ 2∥αU1
∥δ′1(·),Ω∥u∥δ1(·),Ω + βφ + ∥bg∥1,Ω

≤ aU2
max

{
C

δ2−
Y ∥u∥δ2−V , C

δ2+
Y ∥u∥δ2+V

}
+ aU1

max
{
C

δ1−
X ∥u∥δ1−V , C

δ1+
X ∥u∥δ1+δ1(·),Ω

}
+ 2∥αU2∥δ′2(·),Ω∥u∥δ2(·),Γ2

+ 2∥αU1
∥δ′1(·),Ω∥u∥δ1(·),Ω + βφ + ∥bg∥1,Ω.

(3.27)

Recall that ς− > p− > δ1− and p− > δ2−. From the estimates above, it is not difficult to prove
that there exists a constant m4 > 0 such that

∥u∥V ≤ m4 for all u ∈ Υ.

Thus, the claim is verified.
Claim 5: There exists a constant M∗ > 0 such that

S(BV (0,M∗), U1(iBV (0,M∗)), U2(γBV (0,M∗))) ⊂ BV (0,M∗), (3.28)

where BV (0,M∗) := {u ∈ V : ∥u∥V ≤ M∗}.
Arguing by contradiction, suppose that there is no such constant M∗ such that the inclusion

holds. Then for each n > 0 there exist wn, zn, yn ∈ BV (0, n) and (ηn, ξn) ∈ X∗ × Y ∗ with
ηn ∈ U1(izn) and ξn ∈ U2(γyn) such that

un = S(wn, ηn, ξn) and ∥un∥V > n.

Hence, for every n > 0, we have

a(wn)

∫
Ω

|∇un|p(x)−2∇un · ∇(v − un) dx+ b(wn)

∫
Ω

|∇un|q(x)−2∇un · ∇(v − un) dx

+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, un) dΓ +

∫
Ω

g(x, un)(v − un) dx

≥
∫
Ω

ηn(x)(v − un) dx+

∫
Γ2

ξn(x)(v − un) dΓ

for all v ∈ K(wn). Taking v = 0 in the above inequality gives

a(wn)

∫
Ω

|∇un|p(x) dx+ b(wn)

∫
Ω

|∇un|q(x) dx

+

∫
Ω

g(x, un)un dx+

∫
Γ3

ϕ(x, un(x)) dΓ

≤
∫
Ω

ηn(x)un(x) dx+

∫
Γ2

ξn(x)un(x) dΓ +

∫
Γ3

ϕ(x, 0) dΓ.

(3.29)
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From hypotheses H(U1)(iv) and H(U2)(iv), we have∫
Ω

ηn(x)un(x) dx ≤
∫
Ω

|ηn(x)||un(x)|dx

≤
∫
Ω

(
αU1

(x) + aU1
|zn(x)|δ1(x)−1

)
|un(x)|dx

≤ m5

(
ϱδ1(·),Ω(zn) + ϱδ1(·),Ω(un)

)
+ 2∥αU1∥δ′1(·),Ω∥un∥δ1(·),Ω,

(3.30)

for some m5 > 0, and∫
Γ2

ξn(x)un(x) dx ≤
∫
Γ2

|ξn(x)||un(x)|dx

≤
∫
Γ2

(
αU2

(x) + aU2
|yn(x)|δ2(x)−1

)
|un(x)|dx

≤ m6

(
ϱδ2(·),Γ2

(yn) + ϱδ2(·),Γ2
(un)

)
+ 2∥αU2

∥δ′2(·),Γ2
∥un∥δ2(·),Γ2

,

(3.31)

for somem6 > 0, where we have used Young’s inequality and the continuity of δ1 and δ2. Putting
u = un into (3.26) leads to∫

Ω

g(x, un)un dx ≥ agϱς(·),Ω(un)− ∥bg∥1,Ω. (3.32)

Inserting (3.30), (3.31), (3.32) into (3.29), we obtain

ca
(
ϱp(·),Ω(∇un) + ϱp(·),Ω(un)

)
− caϱp(·),Ω(un) + agϱς(·),Ω(un)− αφ∥un∥V

≤ m6

(
ϱδ2(·),Γ2

(yn) + ϱδ2(·),Γ2
(un)

)
+ 2∥αU2

∥δ′2(·),Γ2
∥un∥δ2(·),Γ2

+ βφ + ∥ϕ(·, 0)∥1,Γ3
+ ∥bg∥1,Ω

+m5

(
ϱδ1(·),Ω(zn) + ϱδ1(·),Ω(un)

)
+ 2∥αU1

∥δ′1(·),Ω∥un∥δ1(·),Ω.
Hence,

ca min
{
∥un∥p−

V , ∥un∥p+

V

}
− ca

{
∥un∥p−

p(·),Ω, ∥un∥p+

p(·),Ω

}
+ ag

{
∥un∥ς−ς(·),Ω, ∥un∥ς+ς(·),Ω

}
− αφ∥un∥V

≤ m6

(
max

{
∥yn∥δ2−δ2(·),Γ2

, ∥yn∥δ2+δ2(·),Γ2

}
+max

{
∥un∥δ2−δ2(·),Γ2

, ∥un∥δ2+δ2(·),Γ2

})
+ 2∥αU2∥δ′2(·),Γ2

∥un∥δ2(·),Γ2
+ βφ + ∥ϕ(·, 0)∥1,Γ3

+ 2∥αU1
∥δ′1(·),Ω∥un∥δ1(·),Ω

+m5

(
max

{
∥zn∥δ1−δ1(·),Ω, ∥zn∥

δ1+
δ1(·),Ω

}
+max

{
∥un∥δ1−δ1(·),Ω, ∥un∥δ1+δ1(·),Ω

})
≤ m6

(
max

{
C

δ2−
Y ∥yn∥δ2−V , C

δ2+
Y ∥yn∥δ2+V

}
+max

{
C

δ2−
Y ∥un∥δ2−V , C

δ2+
Y ∥un∥δ2+V

})
+ 2∥αU2

∥δ′2(·),Γ2
CY ∥un∥V + βφ + ∥ϕ(·, 0)∥1,Γ3

+ 2∥αU1
∥δ′1(·),ΩCX∥un∥V

+m5

(
max

{
C

δ1−
X ∥zn∥δ1−V , C

δ1+
X ∥zn∥δ1+V

}
+max

{
C

δ1−
X ∥un∥δ1−V , C

δ1+
X ∥un∥δ1+V

})
≤ m6

(
max

{
C

δ2−
Y ∥un∥δ2−V , C

δ2+
Y ∥un∥δ2+V

}
+max

{
C

δ2−
Y ∥un∥δ2−V , C

δ2+
Y ∥un∥δ2+V

})
+ 2∥αU2

∥δ′2(·),Γ2
CY ∥un∥V + βφ + ∥ϕ(·, 0)∥1,Γ3

+ 2∥αU1
∥δ′1(·),ΩCX∥un∥V

+m5

(
max

{
C

δ1−
X ∥un∥δ1−V , C

δ1+
X ∥un∥δ1+V

}
+max

{
C

δ1−
X ∥un∥δ1−V , C

δ1+
X ∥un∥δ1+V

})
.

Because of ς− > p− > δ1− and p− > δ2−, passing to the upper limit as n → ∞ in the above
inequalities, we get a contradiction. Hence there exists a constant M∗ > 0 such that (3.28) is
fulfilled.

As mentioned before, the main tool in the proof of the existence of a solution to problem
(1.1) is the Tychonoff’s fixed point theorem for multivalued operators, see Theorem 2.10. For
this purpose, let us consider the multivalued mapping Λ: V ×X∗×Y ∗ → 2V×X∗×Y ∗

defined by

Λ(u, η, ξ) := (S(u, η, ξ),U1(iu),U2(γu)),
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where U1 and U2 are given in (3.16) and (3.17). Observe that if (u, η, ξ) is a fixed point of Λ,
then we have u = S(u, η, ξ) and (η, ξ) ∈ U1(iu)×U2(γu). It is obvious from the definitions of S,
U1 and U2 that u is also a weak solution of problem (1.1). Therefore, we are going to examine
the validity of the conditions of Theorem 2.10. Invoking Lemmas 3.6 and 3.9, we can see that
for each (w, η, ξ) ∈ V ×X∗ × Y ∗, the set Λ(w, η, ξ) is a nonempty, bounded, closed and convex
subset of V ×X∗ × Y ∗.

Employing hypotheses H(U1)(iv) and H(U2)(iv), it is not difficult to prove that U1 : X → 2X
∗

and U2 : Y → 2Y
∗
are two bounded operators (see (3.18) and (3.19)), and there exist two

constants M1 > 0 and M2 > 0 satisfying

∥U1(iBV (0,M∗))∥X∗ ≤ M1 and ∥U2(γBV (0,M∗))∥Y ∗ ≤ M2.

Additionally, we introduce a bounded, closed and convex subset D of V ×X∗ × Y ∗ defined by

D = {(u, η, ξ) ∈ V ×X∗ × Y ∗ : ∥u∥V ≤ M∗, ∥η∥X∗ ≤ M1 and ∥ξ∥Y ∗ ≤ M2} .

From this and (3.28) we know that Λ maps D into itself.
Next, we are going to prove that the multivalued mapping Λ is weakly-weakly u.s.c. For any

weakly closed set E in V ×X∗ × Y ∗ such that Λ−(E) ̸= ∅, let {(wn, ηn, ξn)}n∈N ⊂ Λ−(E) be

such that (wn, ηn, ξn)
w−→ (w, η, ξ) in V ×X∗×Y ∗ for some (w, η, ξ) ∈ V ×X∗×Y ∗. Our goal

is to show that (w, η, ξ) ∈ Λ−(E), namely, there exists (u, δ, σ) ∈ Λ(w, η, ξ)∩E. Indeed, for each
n ∈ N, we are able to find (un, δn, σn) ∈ Λ(wn, ηn, ξn)∩E, so, un = S(wn, ηn, ξn), δn ∈ U1(iwn)
and σn ∈ U2(γwn). From (3.18) and (3.19), one has that the sequences {δn}n∈N and {σn}n∈N
are bounded in X∗ and Y ∗, respectively. Passing to a subsequence if necessary, we may assume
that

δn
w−→ δ in X∗ and σn

w−→ σ in Y ∗

for some (δ, σ) ∈ X∗×Y ∗. Recall that S is completely continuous. So, it holds un = S(wn, ηn, ξn)
→ S(w, η, ξ) := u in V . Note that i and γ are both compact. Hence iwn → iw in X and
γwn → γw in Y . Since U1 (resp. U2) is strongly-weakly u.s.c. and has nonempty, bounded,
closed and convex values, it follows from Theorem 1.1.4 of Kamenskii-Obukhovskii-Zecca [28]
that U1 (resp. U2) is strongly-weakly closed. The latter combined with the convergences above
implies that δ ∈ U1(iw) and σ ∈ U2(γw), namely, (u, δ, σ) ∈ Λ(w, η, ξ) ∩E, because of the weak
closedness of E. Therefore, we conclude that Λ is weakly-weakly u.s.c.

Therefore, all conditions of Theorem 2.10 are satisfied. Using this theorem, we conclude that
Λ has at least a fixed point, say (u∗, η∗, ξ∗) ∈ V ×X∗ × Y ∗. Hence, u∗ ∈ V is a weak solution
of problem (1.1).

Next, let us prove the compactness of the solution set Υ. As proved before, we can see that
the solution set Υ of problem (1.1) is bounded in V . By the definitions of a weak solution (see
Definition 3.3) and of Λ, there exist (η, ξ) ∈ X∗ × Y ∗ such that u = S(u, η, ξ), η ∈ U1(iu) and
ξ ∈ U2(γu), that is, (u, η, ξ) ∈ Λ(u, η, ξ). Let {un}n∈N be any sequence of solutions to problem
(1.1). Then, there are two sequences {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗ such that ηn ∈ U1(iun),
ξn ∈ U2(γun) and un = S(un, ηn, ξn) for all n ∈ N. From the boundedness of Υ we may assume
that

un
w−→ u in V

for some u ∈ V . This together with the estimates (3.18) and (3.19) deduces that {ηn}n∈N ⊂ X∗

and {ξn}n∈N ⊂ Y ∗ are both bounded. So, passing to a subsequence if necessary, we suppose
that

ηn
w−→ η in X∗ and ξn

w−→ ξ in Y ∗

for some η ∈ U1(iu) and ξ ∈ U2(γu), owing to the compactness of i and γ as well as the
strongly-weakly closedness of U1 and U2. Using the complete continuity of S, we conclude that

un = S(un, ηn, ξn) → S(u, η, ξ) = u.
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This means that u is a solution to problem (1.1). Consequently, the solution set Υ of problem
(1.1) is compact. □

We end this section by considering some particular cases of problem (1.1).
Let Ψ: Ω → (0,+∞). If J(u) ≡ 0 and

L(u) =

∫
Ω

(u(x)−Ψ(x))+ dx for all u ∈ V,

then problem (1.1) becomes the anisotropic obstacle problem (1.7) with mixed boundary con-
ditions. A careful observation gives the following corollary.

Corollary 3.10. Assume that H(0), H(1), H(g), H(U1), H(U2) and H(ϕ) are satisfied. Then,
the solution set of problem (1.7) is nonempty and compact in V .

If J(u) ≡ +∞ for all u ∈ V , then problem (1.1) becomes the non-obstacle mixed boundary
value problem (1.8). In this situation, we obtain the following corollary.

Corollary 3.11. Assume that H(0), H(1), H(g), H(U1), H(U2) and H(ϕ) are satisfied. Then,
the solution set of problem (1.8) is nonempty and compact in V .

In addition, if Γ2 = ∅ and Γ3 = ∅, i.e., Γ1 = Γ, then problem (1.1) reduces to problem (1.6).
Using Theorem 3.4, we have the following corollary.

Corollary 3.12. Assume that H(0), H(1), H(U1) and H(ϕ) are satisfied. Then, the solution
set of problem (1.6) with g ≡ 0 is nonempty and compact in V .

Let us now consider problem (1.5) and suppose the following assumptions:

H(j1): The functions j1 : Ω× R → R and r1 : R → R are such that
(i) x 7→ j1(x, s) is measurable in Ω for all s ∈ R with x 7→ j1(x, 0) belonging to L1(Ω);
(ii) for a. a.x ∈ Ω, s 7→ j1(x, s) is locally Lipschitz continuous and the function r1 : R →

R is continuous;
(iii) there exist a function αj1 ∈ Lδ′1(·)(Ω)+ and a constant aj1 ≥ 0 such that

|r1(s)η| ≤ αj1(x) + aj1 |s|δ1(x)−1

for all η ∈ ∂j1(x, s), for a. a.x ∈ Ω and for all s ∈ R, where δ1 ∈ C+(Ω) is such that

δ1(x) < p(x) for all x ∈ Ω.

H(j2): The functions j2 : Γ2 × R → R and r2 : R → R are such that
(i) x 7→ j2(x, s) is measurable on Γ2 for all s ∈ R with x 7→ j2(x, 0) belonging to

L1(Γ2);
(ii) for a. a.x ∈ Γ2, s 7→ j2(x, s) is locally Lipschitz continuous and the function

r2 : R → R is continuous;
(iii) there exist a function αj2 ∈ Lδ′2(·)(Γ2)+ and a constant aj2 ≥ 0 such that

|r2(s)ξ| ≤ αj2(x) + aj2 |s|δ2(x)−1

for all ξ ∈ ∂j2(x, s), for a. a.x ∈ Γ2 and for all s ∈ R, where δ2 ∈ C+(Ω) is such
that

δ2(x) < p(x) for all x ∈ Ω.

If U1 and U2 are given by U1(x, s) = r1(s)∂j1(x, s) for a. a.x ∈ Ω, for s ∈ R and U2(x, s) =
r2(s)∂j2(x, s) for a. a.x ∈ Γ2, for s ∈ R, problem (1.1) becomes the implicit obstacle problem
(1.3) with generalized subgradient term in the sense of Clarke. We have the following result.

Theorem 3.13. Assume that H(0), H(1), H(g), H(ϕ), H(L), H(J), H(j1) and H(j2) are satis-
fied. Then, the solution set of problem (1.5) is nonempty and compact in V .
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Proof. It is obvious that the conclusion is a direct consequence of Theorem 3.4. So, we have
to verify that the functions U1 and U2, defined by U1(x, s) = r1(s)∂j1(x, s) for a. a.x ∈ Ω, for
s ∈ R and U2(x, s) = r2(s)∂j2(x, s) for a. a.x ∈ Γ2, for s ∈ R, fulfill hypotheses H(U1) and
H(U2), respectively.

It follows from Proposition 2.9 that for a. a.x ∈ Ω (resp. for a. a. x ∈ Γ2) and all s ∈ R the
set U1(x, s) (resp. U2(x, s)) is nonempty, bounded, closed and convex in R, namely, condition
H(U1)(i) (resp. H(U2)) is satisfied. Hypotheses H(j1)(i) and H(j2)(i) indicate that for all s ∈ R,
the functions x 7→ U1(x, s) = r1(s) ∂j1(x, s) and x 7→ U2(x, s) = r2(s)∂j2(x, s) are measurable
in Ω and on Γ2, respectively. This means that H(U1)(ii) and H(U2)(ii) hold.

We claim that s 7→ r1(s)∂j1(x, s) is u.s.c. From Proposition 2.8, it is sufficient to show that
(r1(·)∂j1(x, ·))−(D) is closed for each closed set D ⊂ R. Let {sn}n∈N ⊂ (r1(·)∂j1(x, ·))−(D) be
such that sn → s. Then, there exists a sequence {ηn}n∈N ⊂ R satisfying ηn ∈ r1(sn)∂j1(x, sn)∩
D for each n ∈ N. We are able to find a sequence {ξn}n∈N such that ηn = r1(sn)ξn and ξn ∈
∂j1(x, sn) for all n ∈ N and for a. a.x ∈ Ω. Recall that sn → s, we can apply Proposition 2.9(iii)
and (v) to conclude that {ξn}n∈N is bounded in R. Hence, we may assume that ξn → ξ in R for
some ξ ∈ D, because of the closedness of D. But, the closedness of ∂j1 (see Proposition 2.9(v))
admits that ξ ∈ ∂j1(x, s). This combined with the continuity of r1 deduces that ηn = r1(sn)ξn →
r1(s)ξ ∈ r1(s)∂j1(x, s). This implies that s ∈ (r1(·)∂j1(x, ·))−(D), that is, (r1(·)∂j1(x, ·))−(D)
is closed. Applying Proposition 2.8 we see that s 7→ r1(s)∂j1(x, s) is u.s.c. Using the same
arguments as before, we can also show that s 7→ r2(s)∂j2(x, s) is u.s.c. Therefore, H(U1)(iii)
and H(U2)(iii) are verified.

Finally, hypotheses H(U1)(iv) and H(U2)(iv) are consequences of the assumptions H(j1)(iii)
and H(j2)(iii). Consequently, we apply Theorem 3.4 to obtain the desired conclusion. □

In particular, when p, q are constants such that 1 < q < p, then problem (1.1) reduces to the
following isotropic implicit obstacle problem:

−a(u)∆pu− b(u)∆qu+ g(x, u) ∈ U1(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νn
∈ U2(x, u) on Γ2,

− ∂u

∂νn
∈ ∂cϕ(x, u) on Γ3,

L(u) ≤ J(u),

(3.33)

where ∆p is the well-known p-Laplace operator, i.e.,

∆pu = div(|∇u|p−2∇u) for all u ∈ W 1,p(Ω).

Then, we have the following corollary.

Corollary 3.14. Assume that H(1), H(g), H(U1), H(U2), H(ϕ), H(L) and H(J) are satisfied
such that the exponents p, q, δ0, δ1, δ2 are constants. Then, the solution set of problem (3.33) is
nonempty and weakly compact in V .

4. Isotropic implicit obstacle problems with nonlinear convection terms

In this section, we are going to move our attention to study the implicit obstacle problem
(1.3) which involves a nonlinear convection function, two nonlocal terms and three multivalued
mappings where two of them are formulated on the boundary and the other one is defined
in the domain. If the exponents p, q are constants in problem (1.1), then problem (1.3) is a
generalization of problem (1.1). The goal of this section is to establish the existence of a weak
solution to problem (1.3) under more general assumptions.

We suppose the following assumptions on the functions g, U1 and U2.
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H(g′): The function g : Ω × R → R is such that H(g)(i), (ii), (iii) are satisfied, x 7→ g(x, 0)

belongs to Lp′
(Ω) and there exists a constant mg > 0 such that

(g(x, s)− g(x, t))(s− t) ≥ mg|s− t|p

for all s, t ∈ R and for a. a.x ∈ Ω.

H(U ′
1): The multivalued function U1 : Ω × R → 2R is such that H(U1)(i), (ii), (iii) are satisfied

and there exist a function αU1
∈ Lp′

(Ω)+ and a constant aU1
≥ 0 such that

|η| ≤ αU1
(x) + aU1

|s|p−1 (4.1)

for all η ∈ U1(x, s), for a. a.x ∈ Ω and for all s ∈ R.
H(U ′

2): The multivalued function U2 : Γ2 × R → 2R is such that H(U2)(i), (ii), (iii) are satisfied

and there exist a function αU2 ∈ Lp′
(Γ2)+ and a constant aU2 > 0 such that

|ξ| ≤ αU2(x) + aU2 |s|p−1 (4.2)

for all ξ ∈ U2(x, s), for a. a.x ∈ Γ2 and for all s ∈ R.
For the convection term we suppose the following conditions.

H(f): f : Ω× R× RN → R is a Carathéodory function such that

(i) there exist af , bf ≥ 0 and a function αf ∈ L
q1

q1−1 (Ω)+ satisfying

|f(x, s, ξ)| ≤ af |ξ|
p(q1−1)

q1 + bf |s|q1−1 + αf (x)

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ RN , where 1 < q1 < p∗ and p∗ is the
critical exponents to p in the domain (see (2.1) with r = p);

(ii) there exist cf , df ≥ 0 and a function βf ∈ L1(Ω)+ such that

f(x, s, ξ)s ≤ cf |ξ|p + df |s|p + βf (x)

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ RN ;
(iii) there exist ef , hf ≥ 0 such that

(f(x, s, ξ)− f(x, t, ξ))(s− t) ≤ ef |s− t|p

|f(x, s, ξ1)− f(x, s, ξ2)| ≤ hf |ξ1 − ξ2|p−1

for a. a.x ∈ Ω, for all s, t ∈ R and for all ξ1, ξ2 ∈ RN .

H(2): The inequalities

ca > aU2

(
λS
1,p

)−1
+ cf ,

k(p)ca > hf λ̂
1
p

mg > max{aU2

(
λS
1,p

)−1
+ df + aU1 , ef}

hold, where k(p) is given in (2.2), λS
1,p is the first eigenvalue of the p-Laplacian with

Steklov boundary condition (see (2.3) and (2.4)) and λ̂ > 0 is the smallest constant such
that

∥u∥p,Ω ≤ λ̂∥∇u∥p,Ω for all u ∈ W 1,p(Ω). (4.3)

Remark 4.1. Observe that hypotheses H(U ′
1) and H(U ′

2) are weaker than H(U1) and H(U2) in
case if δ1, δ2 are constants. Indeed, if δ1 (resp. δ2) is a constant and ε > 0 is arbitrary, then
from H(U1)(iv) (resp. H(U1)(iv)), there exists a constant l(ε) > 0 such that

|η| ≤ αU1
(x) + aU1

|s|δ1−1 ≤ αU1
(x) + l(ε) + ε|s|p−1

for all η ∈ U1(x, s), for a. a.x ∈ Ω and for all s ∈ R, where we have used Young’s inequality
and the fact that 1 < δ1 < p. Then, the inequality (4.1) (resp. (4.2)) is valid. Therefore, H(U ′

1)
(resp. H(U ′

2)) holds.
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Example 4.2. The following functions satisfy hypotheses H(g) and H(f)

g(x, s) = ζ(x) + κ0s,

f(x, s, ξ) =

N∑
i=1

ζiξi − κ1s+ ω(x)

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ R, where p = q1 = 2, ω ∈ L2(Ω), κ0 > 0 and
ζ = (ζ1, . . . , ζN ) ∈ RN is a given vector.

Now, let V be the closed subspace of W 1,p(Ω) defined by

V :=
{
u ∈ W 1,p(Ω) : u = 0 on Γ1

}
.

As in Section 3, the multivalued mapping K is defined as in (3.2). In what follows, if we refer
to the conditions mentioned in Section 3, then it should be regarded as that the conditions
hold in the constant exponents setting. For example, if we assume that H(ϕ) holds, then
condition H(ϕ)(iii) is valid in the following sense: for each function u ∈ Lp∗(Γ3) the function
x 7→ ϕ(x, u(x)) belongs to L1(Γ3), where p∗ is the critical exponent of p on the boundary Γ (see
(2.1) with r = p).

Next, we give the definition of a weak solution.

Definition 4.3. We say that a function u ∈ V is a weak solution of problem (1.3) if u ∈ K(u)

and there exist functions η ∈ Lp′
(Ω), ξ ∈ Lp′

(Γ2) such that η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω,
ξ(x) ∈ U2(x, u(x)) for a. a.x ∈ Γ2 and the inequality

a(u)

∫
Ω

|∇u|p−2∇u · ∇(v − u) dx+ b(u)

∫
Ω

|∇u|q−2∇u · ∇(v − u) dx

+

∫
Ω

g(x, u)(v − u) dx+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, u) dΓ

≥
∫
Ω

η(x)(v − u) dx+

∫
Γ2

ξ(x)(v − u) dΓ +

∫
Ω

f(x, u,∇u)(v − u) dx

(4.4)

holds for all v ∈ K(u).

Let (w, η, ξ) ∈ V ×X∗ ×Y ∗ be arbitrary fixed, where X = Lp(Ω), Y = Lp(Γ2), X
∗ = Lp′

(Ω)

and Y ∗ = Lp′
(Γ2). In order to solve problem (1.3), we first consider the following auxiliary

obstacle problem with dependence on the gradient

−a(w)∆pu− b(w)∆qu+ g(x, u) = η(x) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u(x)

∂νw
= ξ(x) on Γ2,

−∂u(x)

∂νw
∈ ∂cϕ(x, u) on Γ3,

L(u) ≤ J(w),

(4.5)

where ∂u(x)
∂νw

is defined by

∂u

∂νw
:=

(
a(w)|∇u|p−2∇u+ b(w)|∇u|q−2∇u

)
· ν.

The next lemma shows that problem (4.5) has a unique solution.

Lemma 4.4. Let p ≥ 2 and 1 < q < p. Suppose that H(1), H(g′), H(ϕ), H(f), H(L) and H(J)
are fulfilled. Then, for each fixed (w, η, ξ) ∈ V ×X∗ × Y ∗, problem (4.5) has a unique solution.
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Proof. The existence result is a direct consequence of Theorem 3.4 of Zeng-Bai-Gasiński [45]. It
remains to verify the uniqueness of problem (4.5).

Let u1, u2 ∈ V be two weak solutions of problem (4.5). Then, for each i = 1, 2, we have
ui ∈ K(w) and

a(w)

∫
Ω

|∇ui|p−2∇ui · ∇(v − ui) dx+ b(w)

∫
Ω

|∇ui|q−2∇ui · ∇(v − ui) dx

+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, ui) dΓ +

∫
Ω

g(x, ui)(v − ui) dx

≥
∫
Ω

η(x)(v − ui) dx+

∫
Γ2

ξ(x)(v − ui) dΓ +

∫
Ω

f(x, ui,∇ui)(v − ui) dx

for all v ∈ K(w). Inserting v = u2 and v = u1 in the above inequalities with i = 1 and i = 2,
respectively, we sum up the resulting inequalities to obtain

a(w)

∫
Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
· ∇(u1 − u2) dx

+ b(w)

∫
Ω

(
|∇u1|q−2∇u1 − |∇u2|q−2∇u2

)
· ∇(u1 − u2) dx

+

∫
Ω

(g(x, u1)− g(x, u2)) (u1 − u2) dx

≤
∫
Ω

(f(x, u1,∇u1)− f(x, u2,∇u2))(u1 − u2) dx

=

∫
Ω

(f(x, u1,∇u1)− f(x, u2,∇u1))(u1 − u2) dx

+

∫
Ω

(f(x, u2,∇u1)− f(x, u2,∇u2))(u1 − u2) dx.

Taking (2.2), H(g′) and H(f)(iii) into account implies

k(p)ca∥∇u1 −∇u2∥pp,Ω +mg∥u1 − u2∥pp,Ω

≤
∫
Ω

ef |u1 − u2|p dx+

∫
Ω

hf |∇u1 −∇u2|p−1|u1 − u2|dx.

Applying Hölder’s inequality and (4.3) gives

k(p)ca∥∇u1 −∇u2∥pp,Ω +mg∥u1 − u2∥pp,Ω
≤ ef∥u1 − u2∥pp,Ω + hf∥∇u1 −∇u2∥p−1

p,Ω ∥u1 − u2∥p,Ω

≤ ef∥u1 − u2∥pp,Ω + hf λ̂
1
p ∥∇u1 −∇u2∥pp,Ω.

Hence, (
k(p)ca − hf λ̂

1
p

)
∥∇u1 −∇u2∥pp,Ω + (mg − ef ) ∥u1 − u2∥pp,Ω ≤ 0.

By assumption, we know that hf λ̂
1
p < cak(p) and mg > ef , thus u1 = u2. Therefore, for each

(w, η, ξ) ∈ V ×X∗ × Y ∗, problem (4.5) has a unique weak solution u ∈ V . □

Let S : V ×X∗ × Y ∗ → V be the solution mapping of problem (4.5) defined by

S(w, η, ξ) = uw,η,ξ for all (w, η, ξ) ∈ V ×X∗ × Y ∗,

where uw,η,ξ is the unique solution of problem (4.5) corresponding to (w, η, ξ) ∈ V ×X∗ × Y ∗,
see Lemma 4.4.

Next, we can prove that S is a completely continuous operator.
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Lemma 4.5. Let p ≥ 2 and 1 < q < p. Assume that H(1), H(g′), H(ϕ), H(f), H(L) and
H(J) are satisfied. Then, the solution map S : V ×X∗ ×Y ∗ → V of problem (4.5) is completely
continuous.

Proof. Let {(wn, ηn, ξn)}n∈N ⊂ V ×X∗ × Y ∗ and (w, η, ξ) ∈ V ×X∗ × Y ∗ be such that

(wn, ηn, ξn)
w−→ (w, η, ξ) in V ×X∗ × Y ∗.

Then, for any n ∈ N, we have un ∈ K(wn) and

a(wn)

∫
Ω

|∇un|p−2∇un · ∇(v − un) dx+ b(wn)

∫
Ω

|∇un|q−2∇un · ∇(v − un) dx

+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, un) dΓ +

∫
Ω

g(x, un)(v − un) dx

≥
∫
Ω

ηn(x)(v − un) dx+

∫
Γ2

ξn(x)(v − un) dΓ +

∫
Ω

f(x, un,∇un)(v − un) dx

(4.6)

for all v ∈ K(wn). Using hypotheses H(f)(ii) and H(g′), we have∫
Ω

f(x, un,∇un)un(x) dx ≤
∫
Ω

cf |∇un(x)|p + df |un(x)|p + βf (x) dx

= cf∥∇un∥pp,Ω + df∥un∥pp,Ω + ∥βf∥1,Ω,
(4.7)

and ∫
Ω

g(x, un)un(x) dx

=

∫
Ω

(g(x, un)− g(x, 0))un(x) dx+

∫
Ω

g(x, 0)un(x) dx

≥
∫
Ω

mg|un(x)|p dx− ∥g(·, 0)∥p′,Ω∥un∥p,Ω = mg∥un∥pp,Ω − ∥g(·, 0)∥p′,Ω∥un∥p,Ω.

(4.8)

Putting v = 0 in (4.6) and using the inequalities (3.10), (4.6), (4.7) and (4.8), we get

min {(ca − cf ) , (mg − df )} ∥un∥pV − ∥g(·, 0)∥p′,Ω∥un∥V + ∥βf∥1,Ω − αφ∥un∥V
≤ (ca − cf ) ∥∇un∥pp,Ω + (mg − df ) ∥un∥pp,Ω − ∥g(·, 0)∥p′,Ω∥un∥p,Ω + ∥βf∥1,Ω − αφ∥un∥V
≤ ∥ϕ(·, 0)∥1,Γ3

+ ∥ηn∥V ∗∥un∥V + ∥ξn∥V ∗∥un∥V + βφ.

From the inequalities ca > cf and mg > df , it is not difficult to see that sequence {un}n∈N is
bounded in V . Passing to a subsequence if necessary, we may assume that

un
w−→ u in V

for some u ∈ K(w) due to Lemma 3.5(ii). Again from Lemma 3.5(ii), we are able to find a
sequence {yn}n∈N with yn ∈ K(wn) satisfying yn → u in V . Condition H(f)(i) reveals that the

sequence {f(·, un,∇un)}n∈N is bounded in Lq′1(Ω) and since q1 < p∗ we have

lim
n→∞

∫
Ω

f(x, un,∇un)(yn − un) dx = 0. (4.9)

Inserting v = yn in (4.6) and passing to the upper limit as n → ∞ for the resulting inequality
gives

lim sup
n→∞

[
a(wn)

∫
Ω

|∇un|p−2∇un · ∇(un − yn) dx+ b(wn)

∫
Ω

|∇un|q−2∇un · ∇(un − yn) dx

]
≤ lim sup

n→∞

[ ∫
Γ3

ϕ(x, yn) dΓ−
∫
Γ3

ϕ(x, un) dΓ +

∫
Ω

g(x, un)(yn − un) dx

−
∫
Ω

ηn(x)(yn − un) dx−
∫
Γ2

ξn(x)(yn − un) dΓ−
∫
Ω

f(x, un,∇un)(yn − un)

]
.
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Applying (3.12), (3.13), (3.14), (4.9) and the arguments of the proof of inequality (3.15) leads
to

lim sup
n→∞

[
a(w)

∫
Ω

|∇un|p−2∇un · ∇(un − u) dx+

∫
Ω

|un|p−2un(un − u) dx

]
≤ 0.

Therefore, it holds that un → u in V .
For any fixed z ∈ K(w), we apply Lemma 3.5(iii) to find a sequence {zn}n∈N ⊂ V such that

zn ∈ K(wn) and zn → z in V . We take v = zn in (4.6) and pass to the upper limit as n → ∞
for the resulting inequality to obtain that

a(w)

∫
Ω

|∇u|p−2∇u · ∇(z − u) dx+ b(w)

∫
Ω

|∇u|q−2∇u · ∇(z − u) dx

+

∫
Γ3

ϕ(x, z) dΓ−
∫
Γ3

ϕ(x, u) dΓ +

∫
Ω

g(x, u)(z − u) dx

≥
∫
Ω

η(x)(z − u) dx+

∫
Γ2

ξ(x)(z − u) dΓ +

∫
Ω

f(x, u,∇u)(z − u) dx.

Because z ∈ K(w) is arbitrary, we conclude that u is the unique solution of problem (4.5) corre-
sponding to (w, η, ξ) ∈ V ×X∗×Y ∗. Consequently, it holds un = S(wn, ηn, ξn) → S(w, η, ξ) = u
in V , namely, S is completely continuous. □

Furthermore, we introduce the following multivalued mappings U1 : X → 2X
∗
and U2 : Y →

2Y
∗
given by

U1(u) :=
{
η ∈ X∗ : η(x) ∈ U1(x, u(x)) a. a. in Ω

}
,

U2(v) :=
{
ξ ∈ Y ∗ : ξ(x) ∈ U2(x, v(x)) a. a. on Γ2

}
,

for all (u, v) ∈ X × Y , respectively. As before, by i : V → X and γ : V → Y , we denote
the embedding operator of V ↪→ X and the trace operator from V ↪→ Y , respectively. It is
clear that both are linear, bounded and compact. Then, their dual operators i∗ : X∗ → V ∗

and γ∗ : Y ∗ → V ∗ are linear, bounded and compact as well. The following lemma is a direct
consequence of Lemma 3.8.

Lemma 4.6. Let H(U ′
1) and H(U ′

2) be satisfied. Then, the following statements hold:

(i) U1 and U2 are well-defined and for each u ∈ X and v ∈ Y , the sets U1(u) and U2(v) are
bounded, closed and convex in X∗ and Y ∗, respectively;

(ii) U1 and U2 are strongly-weakly u.s.c., i.e., U1 is u.s.c. from X with the strong topology
to the subsets of X∗ with the weak topology, and U2 is u.s.c. from Y with the strong
topology to the subsets of Y ∗ with the weak topology.

We are now in a position to give the following existence theorem to problem (1.3).

Theorem 4.7. Let 2 ≤ p and 1 < q < p. Assume that H(1), H(2), H(f), H(g′), H(U ′
1), H(U ′

2),
H(ϕ), H(L) and H(J) are satisfied. Then, the solution set of problem (1.3) is nonempty and
compact in V .

Proof. From the proof of Theorem 3.4, it is sufficient to prove that the solution set of problem
(1.3) is bounded and that the inclusion

S(BV (0,M∗), U1(iBV (0,M∗)), U2(γBV (0,M∗))) ⊂ BV (0,M∗) (4.10)

is satisfied for some M∗ > 0.
We only examine the boundedness of Υ. The validity of (4.10) can be obtained by employing

the same arguments to the boundedness of Υ and the techniques applied in the proof of Claim
5 in Theorem 3.4.
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For any u ∈ Υ, we are able to find functions η ∈ U1(iu) and ξ ∈ U2(γu) such that inequality
(4.4) holds. Using hypotheses H(g′) and H(f)(ii) yields∫

Ω

g(x, u)u(x) dx =

∫
Ω

(g(x, u)− g(x, 0))u(x) dx+

∫
Ω

g(x, 0)u(x) dx

≥ mg∥u∥pp,Ω − ∥g(·, 0)∥p′,Ω∥u∥p,Ω
(4.11)

and ∫
Ω

f(x, u,∇u)u(x) dx ≤ cf∥∇u∥pp,Ω + df∥u∥pp,Ω + ∥βf∥1,Ω. (4.12)

By means of H(U ′
1) and H(U ′

2), we have∫
Ω

η(x)u(x) dx ≤
∫
Ω

|η(x)||u(x)|dx

≤
∫
Ω

(
αU1(x) + aU1 |u(x)|p−1

)
|u(x)|dx

≤ aU1
∥u∥pp,Ω + ∥αU1

∥p′,Ω∥u∥p,Ω,

(4.13)

and ∫
Γ2

ξ(x)u(x) dΓ ≤
∫
Γ2

|ξ(x)||u(x)|dΓ

≤
∫
Γ2

(
αU2

(x) + aU2
|u(x)|δ2(x)−1

)
|u(x)|dΓ

≤ aU2
∥u∥pΓ2,p

+ ∥αU2
∥p′,Γ2

∥u∥p,Γ2

≤ aU2

(
λS
1,p

)−1
(
∥∇u∥pp,Ω + ∥u∥pp,Ω

)
+ ∥αU2

∥p′,Γ2

(
λS
1,p

)− 1
p (∥∇u∥p,Ω + ∥u∥p,Ω) ,

(4.14)

where we have used the elementary inequality (s+ t)r ≤ sr + tr for all s, t > 0 with 0 < r < 1
and the inequality

∥u∥pp,Γ2
≤

(
λS
1,p

)−1
(
∥∇u∥pp,Ω + ∥u∥pp,Ω

)
for all u ∈ W 1,p(Ω),

which comes from the eigenvalue problem of the p-Laplacian with Steklov boundary condition
(see (2.3) and (2.4)).

Taking (4.11), (4.12), (4.13) and (4.14) into account, we have the following estimate

a(u)

∫
Ω

|∇u|p dx+ b(u)

∫
Ω

|∇u|q dx+

∫
Ω

g(x, u)udx−
∫
Ω

η(x)u(x) dx

−
∫
Γ2

ξ(x)u(x) dΓ−
∫
Ω

f(x, u,∇u)udx

≥
(
ca − aU2

(
λS
1,p

)−1 − cf

)
∥∇u∥pp,Ω +

(
mg − aU2

(
λS
1,p

)−1 − df − aU1

)
∥u∥pp,Ω

− ∥αU2
∥p′,Γ2

(
λS
1,p

)− 1
p ∥u∥V − ∥αU1

∥p′,Ω∥u∥p,Ω − ∥g(·, 0)∥p′,Ω∥u∥p,Ω − ∥βf∥1,Ω.
Arguing as in the proof of (3.27), we can use the estimates above and hypotheses H(2) to
conclude that Υ is bounded.

Subsequently, we can invoke the same arguments as in the proof of Theorem 3.4 to conclude
that the solution set of problem (1.3) is nonempty and compact in V . □

Let us consider some special cases to problem (1.3).
If J(u) ≡ 0 and

L(u) =

∫
Ω

(u(x)−Ψ(x))+ dx for all u ∈ V,

then problem (1.1) becomes the obstacle problem (1.12) with mixed boundary conditions, where
Ψ: Ω → (0,+∞) is a given obstacle function. A careful observation gives the following corollary.
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Corollary 4.8. Let 1 < q < p. Assume that H(1), H(f)(i), (ii), H(g′), H(U ′
1), H(U ′

2) and H(ϕ)
are satisfied. If, in addition, the following inequalities hold

ca > aU2

(
λS
1,p

)−1
+ cf and mg > aU2

(
λS
1,p

)−1
+ df + aU1

,

then the solution set of problem (1.12) is nonempty and compact in V .

If J(u) ≡ +∞ or L(u) ≡ −∞ for all u ∈ V , then problem (1.3) becomes the non-obstacle
elliptic inclusion problem (1.13) involving a monotone and a nonmonotone multivalued boundary
conditions, respectively. Hence, we have the following corollary.

Corollary 4.9. Let 1 < q < p. Assume that H(1), H(f)(i), (ii), H(g′), H(U ′
1), H(U ′

2) and H(ϕ)
are satisfied. If, in addition, the following inequalities hold

ca > aU2

(
λS
1,p

)−1
+ cf and mg > aU2

(
λS
1,p

)−1
+ df + aU1 ,

then the solution set of problem (1.13) is nonempty and compact in V .

In addition, if Γ2 = ∅ and Γ3 = ∅, i.e., Γ1 = Γ, then problem (1.3) reduces to implicit obstacle
problem (1.10) with Dirichlet boundary condition. Using Theorem 4.7, we obtain the following
corollary.

Corollary 4.10. Assume that H(1), H(f)(i), (ii), H(U1) and H(ϕ) are satisfied. If, in addition,
the following inequalities hold

ca > cf and mg > df + aU1
,

then the solution set of problem (1.10) with g ≡ 0 is nonempty and compact in V .

It should be mentioned that hypotheses H(1) in problem (1.13) can be relaxed to the following
weaker conditions.

H(1′): a : V → (0,+∞) and b : Lp∗
(Ω) → [0,+∞) are such that a(u) = la(u) + ka(u) for all

u ∈ V and b is a continuous function, where la : V → [ca,+∞) is weakly continuous
with some ca > 0 and ka : V → [0,+∞) is continuous.

Obviously, we do not require in H(1′) that a and b are weakly continuous on V . This extends
enormously the scope of applications to our results. A concrete example to hypotheses H(1′) is
the following functions

a(u) = ca + e−
∫
Ω
|∇u|τ dx and b(u) = ∥u∥p∗,Ω for all u ∈ V,

where 1 ≤ τ ≤ p.
We have the following result for (1.13) by using H(1′) instead of H(1).

Theorem 4.11. Let 1 < q < p. Assume that H(1′), H(f)(i), (ii), H(g′), H(U ′
1), H(U ′

2) and
H(ϕ) are satisfied. If, in addition, the following inequalities hold

ca > aU2

(
λS
1,p

)−1
+ cf and mg > aU2

(
λS
1,p

)−1
+ df + aU1 ,

then the solution set of problem (1.13) is nonempty and compact in V .

Proof. Let B : V × V → V ∗, F : V → V ∗ and G : V → V ∗ be the functions defined by

⟨B(u, u), v⟩ := b(u)

∫
Ω

|∇u|q−2∇u · ∇v dx,

⟨Fu, v⟩ :=
∫
Ω

f(x, u,∇u)v dx,

⟨G(u), v⟩ :=
∫
Ω

g(x, u)v dx,

for all u, v ∈ V . Then, using standard arguments, it is not difficult to see that u ∈ V is a
solution of problem (1.13) if and only if it solves the following inclusion problem:

G(u) + ∂cφ(u) ∋ 0 in V ∗,
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where the multivalued mapping G : V → 2V
∗
is defined by

G(u) = A(u, u) +B(u, u) +G(u)− F (u)− i∗U1(u)− γ∗U2(u) (4.15)

for all u ∈ V . From the proof of Theorem 3.4 of Zeng-Bai-Gasiński [45], we can see that the
continuity of a and b plays a significant role to verify the pseudomonotonicity of G. More
precisely, it directly effects the validity of the condition that

• if {un}n∈N ⊂ V with un
w−→ u in V and u∗

n ∈ G(un) are such that

lim sup
n→∞

⟨u∗
n, un − u⟩ ≤ 0, (4.16)

then to each element v ∈ V , there exists u∗(v) ∈ G(u) with
⟨u∗(v), u− v⟩ ≤ lim inf

n→∞
⟨u∗

n, un − v⟩. (4.17)

Let {un}n∈N ⊂ V and {u∗
n}n∈N ⊂ V ∗ be sequences such that u∗

n ∈ G(un) and suppose
inequality (4.16) holds. Then, there exist sequences {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗ satisfying

u∗
n = A(un, un) +B(un, un) +G(un)− F (un)− i∗ηn − γ∗ξn for all n ∈ N.

Using hypotheses H(U ′
1) and H(U ′

2), we know that the sequences {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂
Y ∗ are both bounded. Passing to a subsequence if necessary, we may assume that

ηn
w−→ η in X∗ and ξn

w−→ ξ in Y ∗ (4.18)

for some (η, ξ) ∈ X∗ × Y ∗. Besides, hypotheses H(f) reveal that the sequence {F (un)}n∈N is

bounded in Lq′1(Ω). Then, we use the compactness of i and γ as well as of the embedding from
V into Lq1(Ω) to obtain

0 ≥ lim sup
n→∞

⟨u∗
n, un − u⟩

≥ lim sup
n→∞

⟨A(un, un), un − u⟩+ lim inf
n→∞

⟨B(un, un), un − u⟩+ lim inf
n→∞

⟨G(un), un − u⟩

− lim sup
n→∞

⟨F (un), un − u⟩
Lq′1 (Ω)×Lq1 (Ω)

− lim sup
n→∞

⟨ηn, un − u⟩Lp′ (Ω)×Lp(Ω)

− lim sup
n→∞

⟨ξn, un − u⟩Lp′ (Γ2)×Lp(Γ2)

≥ lim sup
n→∞

⟨A(un, un), un − u⟩+ lim inf
n→∞

⟨B(un, u), un − u⟩+ lim inf
n→∞

⟨G(u), un − u⟩

≥ lim sup
n→∞

⟨A(un, un), un − u⟩,

where we have used the monotonicity of u 7→ B(v, u) and u 7→ G(u). Hence, we have

0 ≥ lim sup
n→∞

⟨A(un, un), un − u⟩

= lim sup
n→∞

(
(la(un) + ka(un))

∫
Ω

|∇un|p−2∇un · ∇ (un − u) dx

)
≥ lim sup

n→∞
la(un)

∫
Ω

|∇un|p−2∇un · ∇ (un − u) dx

+ lim inf
n→∞

ka(un)

∫
Ω

|∇un|p−2∇un · ∇ (un − u) dx

≥ lim sup
n→∞

la(un)

∫
Ω

|∇un|p−2∇un · ∇ (un − u) dx

+ lim inf
n→∞

ka(un)

∫
Ω

|∇u|p−2∇u · ∇ (un − u) dx

≥ lim sup
n→∞

la(u)

∫
Ω

|∇un|p−2∇un · ∇ (un − u) dx

− lim sup
n→∞

|la(un)− la(u)|
∣∣∣∣∫

Ω

|∇un|p−2∇un · ∇ (un − u) dx

∣∣∣∣
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≥ lim sup
n→∞

la(u)

∫
Ω

|∇un|p−2∇un · ∇ (un − u) dx.

This implies that un → u in V .
Recall that U1 and U2 are strongly-weakly closed. Therefore, from (4.18) it follows that

η ∈ U1(u) and ξ ∈ U2(u). For any v ∈ V , we have, due to the continuity of a, b, F and G, that

lim
n→∞

⟨u∗
n, un − v⟩ = ⟨A(u, u) +B(u, u) +G(u)− F (u)− i∗η − γ∗ξ, u− v⟩.

The latter combined with the fact that η ∈ U1(iu) and ξ ∈ U2(γu) implies that u∗ = A(u, u) +
B(u, u) +G(u)− F (u)− i∗η − γ∗ξ ∈ G(u). Therefore, we conclude that (4.17) holds.

Arguing as in the proof of Theorem 3.4 of Zeng-Bai-Gasiński [45], we can prove that the
solution set of problem (1.13) is nonempty. Invoking the same arguments as in the proof of
Theorem 3.4, we conclude that the solution set of problem (1.13) is compact. □

Furthermore, we suppose that the function ka in hypotheses H(1′) satisfies the following
condition:

ka(u) → ∞ as u ∈ V with ∥∇u∥p,Ω → ∞. (4.19)

Then inequality ca > aU2

(
λS
1,p

)−1
+ cf can be dropped and the domain of la can be replaced

by (0,+∞).

Theorem 4.12. Let 1 < q < p. Assume that H(1′) with la : (0,+∞) → (0,+∞), H(f)(i), (ii),
H(g′), H(U ′

1), H(U ′
2) and H(ϕ) are satisfied. If, in addition, (4.19) and the inequality

mg > aU2

(
λS
1,p

)−1
+ df + aU1

hold, then the solution set of problem (1.13) is nonempty and compact in V .

Proof. We will see that the inequality ca > aU2

(
λS
1,p

)−1
+ cf plays an important role in order

to prove that the operator G : V → 2V
∗
defined in (4.15) is coercive in the sense that

lim
n→∞

⟨Gun, un⟩
∥un∥V

= +∞, (4.20)

whenever the sequence {un}n∈N ⊂ V is such that ∥un∥V → +∞.
Let {un}n∈N ⊂ V be such that ∥un∥V → +∞. Then, from (4.11), (4.12), (4.13) and (4.14),

we have

⟨G(un), un⟩

≥
(
a(un)− aU2

(
λS
1,p

)−1 − cf

)
∥∇un∥pp,Ω +

(
mg − aU2

(
λS
1,p

)−1 − df − aU1

)
∥un∥pp,Ω

− ∥αU2
∥p′,Γ2

(
λS
1,p

)− 1
p ∥un∥V − ∥αU1

∥p′,Ω∥un∥p,Ω − ∥g(·, 0)∥p′,Ω∥un∥p,Ω − ∥βf∥1,Ω.

(4.21)

Since ∥un∥V = ∥un∥p,Ω + ∥∇un∥p,Ω → +∞, one of the following cases can occur:

(a) ∥un∥p,Ω → +∞ and {∥∇un∥p,Ω}n∈N is bounded;
(b) ∥∇un∥p,Ω → ∞ and {∥un∥p,Ω}n∈N is bounded;
(c) ∥un∥p,Ω → +∞ and ∥∇un∥p,Ω → ∞.

Let us discuss the cases above separately. If case (a) holds, then we have

lim inf
n→∞

(
a(un)− aU2

(
λS
1,p

)−1 − cf

)
∥∇un∥pp,Ω

∥un∥V
= 0,

and

lim inf
n→∞

(
mg − aU2

(
λS
1,p

)−1 − df − aU1

)
∥un∥pp,Ω

∥un∥V
= +∞.
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This shows that (4.20) is valid. If (b) occurs, then from (4.19) we are able to find n0 ∈ N such
that

a(un)− aU2

(
λS
1,p

)−1 − cf > 0 for all n ≥ n0

and

lim
n→∞

(
a(un)− aU2

(
λS
1,p

)−1 − cf

)
∥∇un∥pp,Ω +

(
mg − aU2

(
λS
1,p

)−1 − df − aU1

)
∥un∥pp,Ω

∥un∥V
+∞.

Hence, also in this case we have (4.20). Finally, if case (c) takes place, then we have

a(un)− aU2

(
λS
1,p

)−1 − cf ≥ mg − aU2

(
λS
1,p

)−1 − df − aU1
> 0

for all n ≥ n1, for some n1 ∈ N, and

lim
n→∞

⟨G(un), un⟩
∥un∥V

≥ lim
n→∞

(
mg − aU2

(
λS
1,p

)−1 − df − aU1

)(
∥∇un∥pp,Ω + ∥un∥pp,Ω

)
∥un∥

− lim sup
n→∞

∥αU2
∥p′,Γ2

(
λS
1,p

)− 1
p ∥un∥V + ∥αU1

∥p′,Ω∥un∥p,Ω + ∥g(·, 0)∥p′,Ω∥un∥p,Ω − ∥βf∥1,Ω
∥un∥V

= +∞.

Thus, (4.20) is verified. Therefore, we have shown that G is coercive.
Employing the same arguments as in the proof of Theorem 4.11, we can conclude that the

solution set of problem (1.13) is nonempty and compact in V . □

Example 4.13. The following functions satisfy hypotheses H(1′) and (4.19):

a(u) = c0 +

∫
Ω

|∇u|p dx and a(u) = e
∫
Ω
|u|p dx +

∫
Ω

|∇u|p dx

for all u ∈ V and for some c0 > 0.

Similarly, if J(u) ≡ 0 and

L(u) =

∫
Ω

(u(x)−Ψ(x))+ dx for all u ∈ V (4.22)

we also have the following theorem concerning problem (1.12).

Theorem 4.14. Let 1 < q < p. Assume that H(1′), H(f)(i), (ii), H(g′), H(U ′
1), H(U ′

2) and
H(ϕ) are satisfied. If, in addition, (4.19) and the inequality

mg > aU2

(
λS
1,p

)−1
+ df + aU1

,

hold, then the solution set of problem (1.12) is nonempty and compact in V .

Additionally, if g ≡ 0 and Γ2 = Γ3 = ∅, i.e., Γ1 = Γ, and J(u) ≡ 0 and L as in (4.22) (resp.
J(u) ≡ +∞ for all u ∈ V ), then problem (1.3) reduces to the following elliptic obstacle inclusion
problem with Dirichlet boundary and nonlinear convection (resp. elliptic non-obstacle inclusion
problem with Dirichlet boundary and nonlinear convection):

−a(u)∆pu− b(u)∆qu ∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ,

u(x) ≤ Ψ(x) in Ω,

(4.23)

resp.,
−a(u)∆pu− b(u)∆qu ∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ.
(4.24)



ANISOTROPIC AND ISOTROPIC IMPLICIT OBSTACLE PROBLEMS 37

Now, we can remove the inequality

mg > aU2

(
λS
1,p

)−1
+ df + aU1 .

For problems (4.23) and (4.24) we have the following results.

Theorem 4.15. Let 1 < q < p. Assume that H(1′), H(f)(i), (ii), and H(U ′
1) are satisfied. If,

in addition, (4.19) holds, then the solution set of problem (4.23) is nonempty and compact in V .

Proof. Since Γ1 = Γ, we see that V = W 1,p
0 (Ω) and ∥u∥V = ∥∇u∥p,Ω for all u ∈ V . From the

proof of Theorem 4.12, it is sufficient to examine that G is coercive in the sense of (4.20).
Let {un}n∈N ⊂ V be such that ∥un∥V → +∞. Then, we have

⟨G(un), un⟩ ≥ (a(un)− cf ) ∥∇un∥pp,Ω − ∥αU1
∥p′,Ω∥un∥p,Ω − ∥βf∥1,Ω.

Applying (4.19), there exists n2 ∈ N such that a(un) − cf ≥ 1 for all n ≥ n2. Passing to the
limit as n → ∞ in the last inequality, we conclude that (4.20) holds, that is, G is coercive.

Arguing as in the proof of Theorem 4.11, we infer that the solution set of problem (1.13) is
nonempty and compact in V . □

A similar result holds for problem (4.24).

Theorem 4.16. Let 1 < q < p. Assume that H(1′), H(f)(i), (ii), and H(U ′
1) are satisfied. If,

in addition, (4.19) holds, then the solution set of problem (4.24) is nonempty and compact in V .

Next, we consider the problems (1.9) and (3.33). For this purpose, we assume the following
conditions.

H(j′1): The functions j1 : Ω× R → R and r1 : R → R are such that
(i) x 7→ j1(x, s) is measurable in Ω for all s ∈ R with x 7→ j1(x, 0) belonging to L1(Ω);
(ii) s 7→ j1(x, s) is locally Lipschitz continuous for a. a.x ∈ Ω and the function r1 : R →

R is continuous;
(iii) there exist a function αj1 ∈ Lp′

(Ω)+ and a constant aj1 ≥ 0 such that

|r1(s)η| ≤ αj1(x) + aj1 |s|p−1

for all η ∈ ∂j1(x, s), for a. a.x ∈ Ω and for all s ∈ R.
H(j′2): The functions j2 : Γ2 × R → R and r2 : R → R are such that

(i) x 7→ j2(x, s) is measurable on Γ2 for all s ∈ R with x 7→ j2(x, 0) belonging to
L1(Γ2);

(ii) s 7→ j2(x, s) is locally Lipschitz continuous for a. a.x ∈ Γ2 and the function r2 : R →
R is continuous;

(iii) there exist a function αj2 ∈ Lp′
(Γ2)+ and a constant aj2 ≥ 0 such that

|r2(s)ξ| ≤ αj2(x) + aj2 |s|p−1

for all ξ ∈ ∂j2(x, s), for a. a.x ∈ Γ2 and for all s ∈ R.
From the proofs of Theorems 3.13 and 4.7, we obtain the following result.

Corollary 4.17. Let 2 ≤ p and 1 < q < p. Assume that H(1), H(f), H(g′), H(j′1), H(j′2) and
H(ϕ) are satisfied. If, in addition, the inequalities

ca > aj2
(
λS
1,p

)−1
+ cf , k(p)ca > hf

(
λ̂
) 1

p

and mg > max{aj2
(
λS
1,p

)−1
+ df + aj1 , ef}

hold, then the solution set of problem (1.9) is nonempty and compact in V .

More particularly, when f ≡ 0, then problem (1.3) reduces to problem (3.33). In some sense,
the following corollary extends the one in Corollary 3.14.
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Corollary 4.18. Let 1 < q < p. Assume that H(1), H(g′), H(U ′
1), H(U ′

2), H(ϕ), H(L) and
H(J) are satisfied. If, in addition, the inequalities

ca > aU2

(
λS
1,p

)−1
and mg > aU2

(
λS
1,p

)−1
+ aU1

hold, then the solution set of problem (3.33) is nonempty and compact in V .
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Villars, Paris, 1969.



ANISOTROPIC AND ISOTROPIC IMPLICIT OBSTACLE PROBLEMS 39
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