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ABSTRACT. In this paper we study an anisotropic implicit obstacle problem driven by the
(p(+), q(+))-Laplacian and an isotropic implicit obstacle problem involving a nonlinear con-
vection term (a reaction term depending on the gradient) which contain several interesting
and challenging untreated problems. These two implicit obstacle problems have both highly
nonlinear and nonlocal functions and three multivalued terms where two of them are appear-
ing on the boundary and the other one is formulated in the domain. Under very general
assumptions on the data, we develop general frameworks to examine the nonemptiness and
compactness of the set of weak solutions to the problems under consideration. The proofs of
our main results use the theory of nonsmooth analysis, Tychonoff’s fixed point theorem for
multivalued operators, the theory of pseudomonotone operators and variational approach.

1. INTRODUCTION

In this paper we study isotropic and anisotropic quasilinear implicit obstacle problems involv-
ing multivalued mappings and mixed boundary conditions. These classes of problems include
several interesting special cases which have not been treated largely in the literature to date.
Originally, the study of so-called obstacle problems is due the pioneering work by Stefan [41]
in which the temperature distribution in a homogeneous medium undergoing a phase change,
typically a body of ice at zero degrees centigrade submerged in water, was studied. In this
direction we also mention the renowned contribution of Lions [23] who studied the equilibrium
position of an elastic membrane which lies above a given obstacle and which turns out as the
unique solution of the Dirichlet energy functional minimized on the closed convex set driven by
the obstacle.

Let us formulate the two problems under consideration. To this end, let 2 be a bounded
domain in RY (N > 2) with a Lipschitz boundary I' := 99 such that T is divided into three
mutually disjoint parts I'y, I's, and I'3 where I'y has positive Lebesgue measure. Note that I'y
and I's could be empty which means that I';y could be the whole boundary I'y = I'. In this
paper, we are interested in the study of two implicit obstacle problems. The first problem of
this paper is formulated by the following anisotropic implicit obstacle problem given in the form

—a(u)Apyu — b(u)Agyu + g(x,u) € Ur(z,u) in £,

u=20 on I'y,
ou
a S Ug(x,u) on F27 (11)
ou
_ail/n S ﬁcqb(x,u) on F37
Lu) < J(u),
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where p, q: Q — (1, +00) are continuous functions, Ay is the p(-)-Laplace differential operator
defined by

Ap(.)u =div (|Vu|P(a:)—2vu) for all u € Wl’p(')(Q)’

and
ou
vy,
with v being the unit normal vector on I'. Furthermore, g: Q2 x R — R is a Caratheddory func-
tion, ¢: T's x R — R is a convex function with respect to the second argument, a: L") (Q) —
(0,400), b: LP"()(Q) — [0, +00) are two continuous functions and U;: Q x R — 2% as well as
Uy: Ty x R — 2% are two given multivalued functions. Also, d.¢(x,u) is the convex subdif-
ferential of s — ¢(z,s), and L, J: WHP()(Q) — R are given functions defined on the variable
exponent Sobolev space WP() (), see Section 2 for its precise definition.
The second goal of this paper is the study of the following isotropic implicit obstacle problem
involving a nonlinear convection function f: Q x R x RN — R of the form

—a(w)Apu — b(u)Ayu + g(z,v) € Ui (z,u) + f(z,u, Vu) in 0,

= (a(u)|Vu\p(z)_2Vu + b(u)\vuw)—?vu) v, (1.2)

U= on I'y,
ou
a € UQ(I‘,U) on Fg, (13)
ou
_a € 8C¢($,U) on F3a
L(u) < J(u),
where L, J: W1P(Q) — R are two given functions and 597'; is defined by
;}‘Tu = (a(u)|VuP~2Vu + b(u)|Vu|?T?Vu) - v. (1.4)

As mentioned above, problems (1.1) and (1.3) combine several interesting and challenging
phenomena which have not been treated in the literature so far. To be more precise, these
problems include

e a nonlinear, nonhomogeneous differential operator with different anisotropic/isotropic
growth;

e two highly nonlinear nonlocal terms a and b, where the function b can be degenerate;

e mixed boundary conditions;

e multivalued mappings in which one of them is formulated by the subdifferential operator
to a convex function;

e an implicit obstacle effect;

e a nonlinear convection term for the isotropic case.

The main goal of the paper is to develop general frameworks for determining the existence
of a (weak) solution to the nonlinear implicit obstacle problems (1.1) and (1.3) via Tychonoft’s
fixed point theorem for multivalued operators, the theory of nonsmooth analysis and variational
methods for pseudomonotone operators. In fact, to the best of our knowledge, this is the first
work which combines a nonlinear anisotropic/isotropic partial differential operator along with
two highly abstract nonlocal terms, an implicit obstacle constraint, a nonlinear convection term
for the isotropic case, mixed boundary conditions and multivalued mixed terms which include
a convex subdifferential operator and two abstract multivalued functions.

Such combination of an implicit obstacle effect with mixed boundary conditions along with
multivalued mappings (which include as special case Clarke’s generalized gradients, see Clarke
[10]) arise in several engineering and economic models, such as Nash equilibrium problems with
shared constraints and transport route optimization with feedback control. We refer to books
of Panagiotopoulos [36, 37] and Naniewicz-Panagiotopoulos [35] for more models related to
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nonsmooth mechanical problems. In general, equations driven by the sum of two differential
operators of different nature arise often in mathematical models of physical processes, see, for
example, the works of Bahrouni-Radulescu-Repovs [4] for transonic flow problems, Cherfils-
I'yasov [9] for reaction diffusion systems, Zhikov [19] for elasticity problems and Papageorgiou-
Vetro-Vetro [39] for least energy problems. For implicit obstacle effects involving Clarke’s
generalized gradient or general multivalued mappings but without nonlocal term we refer to
the papers of Alleche-Radulescu [1], Aussel-Sultana-Vetrivel [3], Bonanno-Motreanu-Winkert
[5], Liu et al. [25], Carl-Le-Winkert [8], Iannizzotto-Papageorgiou [21], Migdrski-Khan-Zeng
[30, 31], Liu-Migérski-Nguyen-Zeng [24], Zeng-Bai-Gasiriski-Winkert [16, 17], Zeng-Radulescu-
Winkert [18] and the references therein. We also mention the recent monograph of Carl-
Le [7] about multivalued variational inequalities and inclusions. For single-valued equations
with convection term we refer to the works of Faraci-Motreanu-Puglisi [13], Faraci-Puglisi
[14], Figueiredo-Madeira [15], Gasiriski-Papageorgiou [18], Gasifski-Winkert [19], Liu-Motreanu-
Zeng [27], Marano-Winkert [29] and Papageorgiou-Radulescu-Repovs [38]. We also mention the
overview articles of Radulescu [12] about isotropic and anisotropic problems and of Mingione-
Radulescu [33] about recent developments for problems with nonstandard growth and nonuni-
form ellipticity.

Let us comment on some relevant special cases of problems (1.1) and (1.3). To the best of
our knowledge, these problems have not been studied yet in the literature. We start with (1.1).

(i) Let j1: @ xR = R and jo: I's Xx R — R be two functions which are measurable in the
first argument and locally Lipschitz in the second one. Moreover, let r1,75: R — R be
two functions and denote by 9j; Clarke’s generalized gradient of j;(x,-) for ¢ = 1,2. If
U, and Us are defined by Uy (z, s) = r1(s)0j1(x, s) for a.a.x € Q, s € R and Us(z, s) =
ro(8)0ja(x, s) for a.a.x € 'y, s € R, then problem (1.1) becomes

—a(u)Apcyu — b(u)Agyu + gz, u) € ri(u)dji(z,u) in ,

u=20 on I'y,
Ou 9; r
87% € ro(u)djz(z, u) on 1o, (1.5)
1o}
—a—li € 0ct(x,u) on I's,
L(u) < J(u),

where 2 is given in (1.2). We show in Theorem 3.13 that the solution set of (1.5) is
nonempty and compact which follows from Theorem 3.4.
(ii) f Ty =0 and T's = (), i.e., 'y =T, then problem (1.1) reduces to the following implicit

obstacle inclusion problem with Dirichlet boundary condition

—a(u)Apyu — b(u)Agyu + g(x,u) € Ur(z,u) in Q,
u=0 on T, (1.6)

where 06712 is given in (1.2). As a direct consequence, Corollary 3.12 guarantees the

existence of a solution of (1.6).
(iii) Let U: Q — R be a given obstacle. When J(u) =0 and L(u) := /(u(m) —U(z)) " da
Q

for all u € WP()(Q), then our problem (1.1) can be rewritten to the following obstacle
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inclusion problem

—a(u)Apyu — b(u)Agyu + g(x,u) € Ur(z,u) in ,

u=20 on I'y,
Ou
a € UQ(’JJ,U) on F27 (17)
M e dp(wu) onT
- T, u n
aVn c ) 3
u(z) < U(x) in £,
where a‘% is given in (1.2). We can also suppose that ®: I', — R is a given obstacle

on the boundary I'y, C I'" with I';, having positive Lebesgue measure. Then the last
inequality in (1.7) is replaced by u(z) < ®(z) on I',. The main results to problem (1.7)
are given in Corollary 3.10.

Finally if J(u) = +o00 or L(u) = —oo for all u € WP()(Q), then problem (1.1) turns
into the following mixed boundary value problem without obstacle effect

—a(u)Apyu — b(u)Agyu + g(x,u) € Ur(z,u) in ,

u = on I'y,
u € Us(x,u) onT (1.8)
o, 2z, 2,
ou

o, € 0cp(w,u) onlj,

where 2% is given in (1.2). We prove that there exists a weak solution of (1.8) and the

solution set of (1.8) is compact, see Corollary 3.11.

Next, we mention some special cases of problem (1.3).

(a)

If Uy and Us are defined by U;(x, s) = r1(s)071(z, s) for a.a.x € Q, s € Rand Us(z,s) =
ro(8)0j2(x, s) for a.a.x € T'a, s € R, where ji, j2,71,r2 are given in problem (1.5), then
problem (1.3) becomes the following implicit obstacle problem involving a nonlinear
convection term and generalized Clarke’s subgradients:

—a(u)Apu — b(uw)Agu + g(z,v) € r1(v)0j1(x, u) + f(z,u, Vu) in Q,

w=0 on I'y,
ou 94 r
Tyn S TQ(U) ,]Z(xau) on 1z, (19)
0
—a—;i € Dep(w,u) on I's,
L(u) < J(u),

where 867“ is given in (1.4). We also obtain the nonemptiness and compactness of the

solution set of problem (1.9), see Corollary 4.17. If f is independent of Vu, then problem
(1.9) can be seemed as a special case of problem (1.5).
If Ty = 0 and T3 = 0, i.e., I'4 = T, problem (1.3) reduces to the following nonlin-
ear implicit obstacle problem with nonlinear convection term and Dirichlet boundary
condition:
—a(u)Apu — b(u)Agu + g(z,u) € Uy(z,u) + f(z,u,Vu)  in £,
u=0 on T, (1.10)
L(u) < J(u).

In this case, we obtain Corollary 4.10 getting one weak solution to problem (1.10).
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(c¢) If f is independent of Vu, then problem (1.3) becomes the following problem:

—a(u)Apu — b(u)Agu + g(z,u) € Ur(z,u) in Q,
u=0 on I, (1.11)
L(u) < J(u).

This is exactly the particular case of problem (1.6) if the exponents p, ¢ are constants.
(d) Let ¥: Q — R be a given obstacle. When J(u) = 0 and L(u) := / (u(z)—¥(z))" da for
Q

all u € WHP(Q), then problem (1.3) can be rewritten to the following obstacle inclusion
problem with nonlinear convection term:

—a(u)Apu — b(u)Ayu + g(z,u) € Ur(z,u) + f(z,u, Vu) in Q,

u=0 onI'y,
ou
a S Ug(x,u) on I's, (112)
ou
_% € 0:9(x,u) on I's,
u(z) < ¥(x) in ,

where 8‘97“ is given in (1.4). In the case a,b to be independent of u € WP(Q), i.e., a,b

are two nonnegative constants, problem (1.12) has been recently studied by Zeng-Bai-
Gasiniski [45].

(e) If J(u) = +o0 or L(u) = —oo for all u € WHP(Q), then problem (1.3) turns into the
following mixed boundary value problem with nonlinear convection term, but without
obstacle effect:

—div (|VuP?Vu + p(z)|Vu|?*Vu) € Ui (z,u) + f(z,u, Vu) in Q,

uw=0 onI'y,
ou
o € Us(z,u) on I'y, (1.13)
—% € 0cp(x,u) on I',

where 597“ is given in (1.4).

The paper is organized as follows. Section 2 presents a detailed overview about variable expo-
nent Lebesgue/Sobolev spaces, the eigenvalue problem of the p-Laplacian with Steklov boundary
condition and we state some results from nonsmooth analysis, the properties of Clarke’s gen-
eralized gradient and Tychonoff’s fixed point theorem for multivalued operators which will be
used in the next sections to establish the main results of this paper. In Section 3, in order to
establish the solvability of the anisotropic implicit obstacle problem (1.1), we first introduce an
auxiliary problem defined in (3.3) and apply an existence theorem for a class of mixed variational
inequalities involving coercive and monotone operators to prove the existence and uniqueness
of the auxiliary problem. Finally, we introduce two multivalued operators, which are proved to
be strongly-weakly u.s.c. and apply Tychonoff’s fixed point theorem for multivalued operators
along with the theory of nonsmooth analysis to examine the nonemptiness and compactness
of the solution set of problem (1.1). After that, in Section 4, we move our attention to prove
the solvability of the implicit obstacle problem (1.3) with nonlinear convection term. Lastly,
several special and interesting cases of our problem (1.3) are discussed and the corresponding
and extended existence results are obtained at the end of the paper.
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2. PRELIMINARIES

In this section we present the main tools which are needed in the sequel. For this purpose, let
Q C RY be a bounded domain with Lipschitz boundary I' := 052, where T is divided into three
mutually disjoint parts I'y, I's and I's with I'; having positive Lebesgue measure. For any fixed
r € [1,00) and for any subset D of Q we denote the usual Lebesgue spaces by L"(D) := L"(D;R)
and L"(D;RY) equipped with the norm || - ||, p given by

1
[wllr,p = (/ |qux> for all w € L" (D).
D
Moreover, we set L™ (D)4 := {u € L"(D) : u(z) > 0 for a.a.x € D}. By W17 (Q) we define the
corresponding Sobolev space endowed with the norm || - ||, given by

lull1,r0 = llullrna + [Vulrq foralue whr(Q).

In the entire paper, the symbols “ — ” and “—” stand for the weak and the strong convergence,
respectively. Moreover, the conjugate of » > 1 is denoted by ' > 1, e.g., %—i— % = 1. The critical
exponents of r > 1 in the domain and on the boundary, denoted by r* and r,, are defined by

Nr . (N—-1)r .

fr<N, W=Ur ¢ < N,

r* = N-r 1 " and r,=<¢ N-T l " (2.1)
400 ifr >N, +00 if r > N,

respectively. From Simon [14, formula (2.2)], we have the well-known inequality
(222 = |yl y) - (2 — y) = k(r)lz —yI” (2:2)

for » > 2 and for all x,y € R, where k(r) is a positive constant.
The eigenvalue problem of the r-Laplacian (r > 1) with Steklov boundary condition is given
by

—Ayu = —|u|""2u in Q, (2.3)
lu|""%u - v = AMu|""?u on I .

We know that problem (2.3) has a smallest eigenvalue /\1377“ > 0 that is isolated and simple, see
Lé [22]. Also, /\157,4 > 0 can be characterized by

IVullz.o + llull7.o

in -
weW L ()\{0} [Jwlly

A5, = (2.4)

In what follows, we denote by uf’r the first eigenfunction of problem (2.3) corresponding to the

first eigenvalue A7 .. It is clear that uf, € int (C'(€)4), where int (C'(Q)4) stands for the
interior of

CHQ)y == {uecCQ) : u(x) >0 for all z € O},
that is
int (C'(Q)4) = {ueC'(Q) : u(z) >0 forall z € Q}.

Without any loss of generality, we suppose that Hufr 1.

HT,F -

Next, we introduce the subset C (Q2) of C(Q) defined by
Ci(Q):={s€CQ) : 1 <s(z) forall z € Q}.
For any r € C (), we define

P o= migr(x) and 74 = mag(r(x).
e z€Q
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Let p € C(Q). In what follows, we denote by p’ € C,(Q) the conjugate variable exponent to
p, namely,

1 1 _
—— 4+ ——=1 forallxe.

p(z) ()

Also, we denote by s* and s, the critical Sobolev variable exponents to s € C1(€2) in the domain
and on the boundary, respectively, given by

Ns(z) if <N .
s*(z) = ¢ N—s@) 1 s(@) © for all z € Q, (2.5)
+o0 if s(x) > N,
and
(N—1)s(x) if <N .
su(x) =3 N—s@) if s(2) " forall z € Q, (2.6)
+o0 if s(x) > N
respectively.

By M () we denote the space of all measurable functions u: Q@ — R. For r € C(Q) the
variable exponent Lebesgue space LT(')(Q) is defined by

L'OQ) = {u e M(Q) : /Q lu["® dz < +oo}.

It is well-known that L") (Q) equipped with the Luxemburg norm given by

|u| r(z)
ullp(y,0 :==inf ¢ A >0 : / <> dr <1
, AP

is a separable and reflexive Banach space, the dual space of L") (2) is L ()(2) and the following
Holder inequality holds:

1 1
/ luv| da < [ + ,] lullr),ellollyeye < 2lullyeellvlle e
Q r_ r

for all u € L")(Q) and for all v € L") (Q). Moreover, if 71,7, € C,(Q) are such that
r1(x) < ro(z) for all € Q, then we have the continuous embedding

L=0(Q) < LmO(Q).

For any r € C,(Q), we consider the modular function o,(.)q: L"O(Q) — Ry = [0, +00)
given by

or(y,0(u) = / lu|"@® dz for all u € L") (Q). (2.7)
Q

The following proposition states some important relations between the norm of L™)(Q) and the
modular function g,(.y o defined in (2.7).

Proposition 2.1. Ifr € C;(Q) and u € L") (Q), then we have the following assertions:
(i) ||UHT(.)7Q =)\ = Or(-),Q (%) =1 with u # 0;
(i) [Jullry,0 <1 (resp. =1, > 1) <= 0,(y,0(u) <1 (resp. =1, >1);
(i) lulero <1 = 47, o < or0) <l o
(1)l > 1= [ul7() g < erma(w) < [ullf) o
() llullr¢y,0 = 0 <= 0r(),0(u) = 0;
(vi) [lullry,0 — +00 <= 0r(),0(u) — +oo.
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Let D be a nonempty subset of . In what follows, we denote by || - llr(),p the norm of the
variable exponent Lebesgue space L) (D). We set 0r(y,p(u) = / |u|r(r) dz for u € L"0)(D).
Further, for 7 € C(Q), we denote by W"()(Q) the variable (e[}){ponent Sobolev space given
in
WhrO(Q) == {u e L'O(Q) : |Vul € L’“(‘)(Q)} ,
which is equipped with the norm
[l ey =l + I Vullyo  for all w e WHO(Q),

to be a separable and reflexive Banach space, where ||Vull,) .o := [||[Vul[.)q. Moreover we
define

WOLT(.)(Q) _ Wl"”lﬂ‘(-),ﬂ.
with norm || - |1 r(.),o. From Poincaré’s inequality, we know that we can endow the space
Wol’r(')(ﬂ) with the equivalent norm
ullr(0.0 = I Vull(y0  for all w e Wy ().
Additionally, we introduce a closed subset V of W2()(Q) given by
V= {u eWPO(Q) : u=0fora.a.zec Fl}.

It is clear that V' equipped with the norm V' > u + [lul|; »(.),0 € R becomes a reflexive Banach
space.
Employing Proposition 2.1, we also have the following proposition.

Proposition 2.2. Let r € C(Q) and t,.()0: WH(Q) — Ry = [0,+00) be the modular
function given by

Lr(y,(u) = /Q |Vau|"@ dz + /Q lu|"® dz for all u € WHO)(Q).

Ifu € WHO)(Q), then we have the following assertions:
(i ||UH1,T(-),Q =\ = br(1),Q (%) =1 with u # 0;

)
(ii) flulliry,0 <1 (resp. =1, > 1) <= 1p(y,0(u) <1 (resp. =1, > 1);
(i) ol rre < 1= Nl o < trya) < a0 00
)
)
)

(iv) ||u

Lre > 1= llullii 0 < toa) <l o
(V) llulli,ry,0 = 0 <= tr(y,0(u) = 0;
(vi) [Jully,r),0 = 00 == 1p0),0(u) = +o00.

In the sequel, we denote by C%1 o] () the set of all functions r: Q — R that are log-Hélder
continuous, namely, there is a constant C' > 0 satisfying

r(z) —r(y)]

The following propositions give several important embeddings results, its detailed proof can be
founded in Diening-Harjulehto-H&sté-Ruzicka [11, Corollary 8.3.2] and Fan [12, Propositions 2.1
and 2.2].

— 1
<——— forall z,y € Q with |z —y| < =.
[log [ — /| 2

Proposition 2.3.

(i) Ifre CO’Tlgtl(ﬁ) NC+(Q) and
1 x)

€ C(Q) is such that
< s( r

S
<r*(z) forallz e,
then the embedding

whr(Q) — L*O(Q)
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is conlinuous.
(i) If s € C+(Q) is such that
1 <s(x) <r*(z) forallze,
then the embedding
whr(Q) — L*O(Q)
is compact.
Proposition 2.4.
(i) Ifr € CL(Q) NW(Q) for some ¢ > N and s € C(Q) is such that
1< s(z) <ru(z) foralzeQ,
then the embedding
Wi O(Q) < L0 (90)
is conlinuous.
(i) If s € C+(Q) is such that
1< s(z) <ru(z) forallzeQ,
then the embedding
whr(Q) — L) (99Q)
is compact.

Remark 2.5. The embeddings in Propositions 2.3 and 2.4 remain valid if we replace the space
WhrO(Q) by V.

Next, we introduce the nonlinear operator F': V — V* given by
(F(u),v) := / |VulP® 2Ty - Vo des + / Ju[P@ =2y d, (2.8)
Q Q

for u,v € V with (,-) being the duality pairing between V and its dual space V*. Arguing as
in the proof of Proposition 2.5 of Gasinski-Papageorgiou [17] or Radulescu-Repovs [13, p. 40],
we have the following result which states the main properties of F: V — V*.

Proposition 2.6. The operator F defined by (2.8) is bounded, continuous, monotone (hence
mazximal monotone) and of type (S+), that is,

Up —= uw in'V and limsup (F(uy,),u, —u) <0,

n—oo
mmply uy, — uw in'V.

In the last part of this section we are going to recall some results from nonsmooth analysis
and multivalued analysis. First, we recall some definitions and properties of semicontinuous
multivalued operators.

Definition 2.7. Let Y and Z be topological spaces, let D C Y be a nonempty set, and let
G:Y — 2% be a multivalued map.

(i) The map G is called upper semicontinuous (u.s.c. for short) aty €'Y, if for each open set
O C Z such that G(y) C O, there exists a neighborhood N (y) of y satisfying G(N (y)) :=
Uzen(y)G(2) C O. If it holds for eachy € D, then G is called to be upper semicontinuous
in D.
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(ii) The map G is closed at y € Y, if for every sequence {(yn, zn)tnen C Gr(G) satisfying
(Yns2n) = (y,2) in'Y x Z, it holds (y,z) € Gr(G), where Gr(G) is the graph of G
defined by

Gr(Q) ={(y,2) e Y xZ|z€ G(y)}.
If it holds for each y € Y, then G is called to be closed or G has a closed graph.

The next proposition gives equivalent characterizations of multivalued functions to be upper
semicontinuous.

Proposition 2.8. Let F: X — 2Y with X and Y being topological spaces. The following
statements are equivalent:
(i) F is upper semicontinuous.
(ii) For each closed set C CY, F~(C):={z € X |F(x)NC # 0} is closed in X.
(iii) For each open set O CY, F*(O):={x € X |F(x) C O} is open in X.

In the following, let E be real Banach space with norm || - |z. A function ¢: E — R :=
RU{+0o0} is said to be proper, convex and lower semicontinuous, if the following conditions are
fulfilled:

e D(p):={u€FE : p(u) <+oo} # 0

e for any u,v € F and t € (0,1), it holds p(tu + (1 —t)v) < tp(u) + (1 —t)p(v);

e liminf, . ¢(u,) > ¢(u) where the sequence {uy,}ney C E is such that u, — u in E
as n — oo for some u € F.

Let ¢ be a convex mapping. An element x* € E* is said to be a subgradient of ¢ at u € F if

(@70 —u) <p(v) = p(u) (2.9)
holds for all v € E. The set of all elements z* € E* which satisfies (2.9) is called the convex
subdifferential of ¢ at u and is denoted by d.¢(u).

Moreover, a function j: F — R is said to be locally Lipschitz at x € E if there is a neighbor-
hood O(z) of z and a constant L, > 0 such that

i(y) =J(2)| < Laolly — 2|l for all y,z € O(x).
We denote by
. ) —
() = limsup i+ 2y) —5(z)
z—x, A0 A
the generalized directional derivative of j at the point z in the direction y and 9j: E — 27~
given by
0j(x) :={E € E" : j°a;y) > &, y)pxg forallye E} forallze F

is the generalized gradient of j at x in the sense of Clarke.

The next proposition summarizes the properties of generalized gradients and generalized

directional derivatives of a locally Lipschitz function. We refer to Migérski-Ochal-Sofonea [32,
Proposition 3.23] for its proof.

Proposition 2.9. Let j: E — R be locally Lipschitz with Lipschitz constant L, > 0 at x € E.
Then we have the following:

(i) The function y — j°(x;y) is positively homogeneous, subadditive, and satisfies
l5°(@;9)| < Lallylle  for ally € E.

(ii) The function (x,y) — j°(x;y) is upper semicontinuous.

(iii) For each x € E, dj(x) is a nonempty, convex, and weak* compact subset of E* with
l€llgs < L, for all £ € 9j(x).

(iv) j°(z;y) = max {(§,y)p-xr | & € j(x)} for ally € E.
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(v) The multivalued function E > x +— 9j(x) C E* is upper semicontinuous from E into
the subsets of E* with weak™ topology.

Finally, we recall Tychonoff’s fixed point theorem for multivalued operators. The proof of
this result can be found in Granas-Dugundji [20, Theorem 8.6].

Theorem 2.10. Let D be a bounded, closed and convex subset of a reflexive Banach space E,
and A: D — 2P be a multivalued map such that

(i) A has bounded, closed and convex values,
(ii) A is weakly-weakly u.s.c.

Then A has a fixed point in D.

3. ANISOTROPIC IMPLICIT OBSTACLE PROBLEMS

The main objective of this section is to develop a generalized framework for examining the
existence of weak solutions to the nonlinear implicit obstacle inclusion problem with multivalued
boundary conditions and nonlocal terms given by (1.1). Our method is based on the theory of
nonsmooth analysis, convex analysis, Tychonoff’s fixed point theorem for multivalued operators
and variational approach.

We start by imposing the precise assumptions on the data of problem (1.1).

H(0): p,q € C+(2) are such that
q(x) < p(x) forall z € Q.
H(1): a: LP")(Q) — (0,400) and b: LP"()(Q) — [0, +0c) are such that

(i) a is weakly continuous in V, i.e., if {u, fnen C V' C LP"()(Q) is such that u,, —— u
in V, then it holds
a(u) = nh—>120 a(ty,),
and there exists a constant ¢, > 0 satisfying
a(u) > ¢, for all u € V,

where p* is the critical exponent of p in the domain €2 given in (2.5);
(ii) b is a weakly continuous in V.

H(g): The function ¢g: Q x R — R is such that
(i) the function x — g(x, s) is measurable in ) for all s € R;
(ii) the function s — g(x, s) is continuous for a.a.z € ;
(iii) there exist a constant ay > 0 and a function 8, € L%()(Q) such that

|9z, 8)| < By(x) + agls|@ !
for a.a.z € Q and for all s € R, where 6y € C(Q) is such that
So(x) < p*(x) for all x €
(iv) there exist a constant a, > 0 and a function b, € L'(2) such that
9(2,5)s > a,ls"@ — by(2)
for a.a.x € Q and for all s € R, where ¢ € C(Q) is such that
p(z) <s(z) < p*(x) forall z € Q;
(v) the function s+ g(z, s) is nondecreasing for a.a.z € Q, i.e.,
(g(z;51) = g(x,52))(s1 — 52) 2 0

for all s1,s5 € R and for a.a.z € Q.
H(U;): The multivalued function Uy : Q x R — 2% is such that
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(i) Uy(z,s) is a nonempty, bounded, closed and convex set in R for a.a.x € Q and all
s € R;
(ii) =+ Ui(x,s) is measurable in 2 for all s € R;
(ii) s — Uq(z,s) is u.s.c.for a.a.z € Q;
(iv) there exist a function ay, € L()(€), and a constant a, > 0 such that

nl < av, (z) + ag, |s| 71

for all n € Uy(z, s), for a.a.x € Q and for all s € R, where §; € C,(Q) is such that
§1(z) < p(x) for all z € Q.

H(Us): The multivalued function Us: I'y x R — 2® is such that
(i) Ux(z,s) is a nonempty, bounded, closed and convex set in R for a.a.x € 'y and all
s € R;
(ii) « — Uz(x,s) is measurable on I'; for all s € R;
(i) s Us(x,s) is us.c.for a.a.x € T'y;
(iv) there exist a function ay, € L%()(I'y)4 and a constant ay, > 0 such that

€] < av, (@) + agy |s| >
for all ¢ € Uy(x, 8), for a.a.z € T'y and for all s € R, where 6, € C (Q) is such that
S2(z) < p(x) for all x € Q.

H(¢): The function ¢: I's x R — R is such that
(i) = — ¢(x,r) is measurable on I's for all r € R;
(ii) 7+~ ¢(z,7) is convex and l.s.c.for a.a.x € I's;
(iii) for each function u € LP+()(T3) the function = +— ¢(x,u(z)) belongs to L'(T'3),
where p, is the critical exponent of p on the boundary I' given in (2.6).

H(L): L: V — R is positively homogeneous and subadditive such that
L(u) < limsup L(uy,), (3.1)

n—oo

whenever {u, }neny C V is such that w, s win V for some u € V.
H(J): J: V — (0,+00) is weakly continuous, that is, for any sequence {u, }neny C V such that
Up — u for some u € V, we have
J(uy) = J(u).

Remark 3.1. From hypotheses H(L), we can observe that on the one hand, the homogeneity
and subadditivity of L guarantee the convexity of L and on the other hand, if L: V — R is weak
lower semicontinuous, then inequality (3.1) holds automatically.

il

satisfy hypotheses H(g), where 7,71,...,7 € [1,p%) and 71,..., 7 € [0,400). Observe that the
function b given above is finite degenerate.
Let ¢y > 0 and sp,5 € C1(Q) and B, € L' )(Q) be such that

so(x) < plx) <s(z) <p*(x) for all x € Q.

Example 3.2. Given a constant ¢, > 0, the functions

Tidx —

7

k
a(u) = ¢, +/ |lu|"dx  and b(u) = H
Q i=1

Then, the following function satisfies hypotheses H(g)

Cals|®) s + By(w) if Is| <1,

r,8) = ) : or a.a.x € .
o) {Cglsl‘(””)_25+ﬁg($) if [s| > 1, I
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Let w € L>®(T'3)4. Then, the function ¢: 's x R — R fulfills assumption H(¢)

_ Jw(@)[s| if s <1,
d(w,8) = {w(m)|s|g2(l’) iFls| > 1, for a.a.xz € T's.

In order to formulate the implicit obstacle effect to a suitable variational constraint, we
consider the multivalued map K: V — 2" defined by

K(u):={veV : L) < Ju)} (3.2)

forallu e V.
Next, we state the definition of a weak solution of problem (1.1).

Definition 3.3. A function u € V is said to be a weak solution of problem (1.1), ifu € K(u) and
there exist functions n € L10)(Q), € € L%20O(Ty) such that n(z) € Uy(z,u(x)) for a.a.z € 9,
&(x) € Ug(x,u(x)) for a.a.x € Ty and the inequality

a(u) |Vu|p(m)_2Vu V(v —wu)dx + b(u) |Vu|q<m)_2Vu V(v —u)dz
Q Q
+ / g(z,u)(v —u)dx +
Q

¢(x,v)dl — d(x,u)dl
I's s

> /Qn(x)(v —u)dx + 5 &(x)(v —u)dl

is satisfied for all v € K (u), where the multivalued function K:V — 2V is defined by (3.2).
The main result in this section is stated by the following theorem.

Theorem 3.4. Assume that H(0), H(1), H(g), H(Uy), H(Uz), H(¢), H(L) and H(J) are sat-
isfied. Then, the solution set of problem (1.1), denoted by Y, is nonempty and compact in
V.

In order to prove Theorem 3.4, we need the following important auxiliary result which delivers
several significant properties for the multivalued mapping K: V — 2Y. More precisely, this
lemma reveals an essential characteristic that K is Mosco continuous (see Mosco [34], i.e., K is
sequentially weakly-weakly closed and sequentially weakly-strongly l.s.c.). The detailed proof
of this lemma can be found in Lemma 3.3 of Zeng-Radulescu-Winkert [18].

Lemma 3.5. Let J: V — (0,400) and L: V — R be two functions such that H(L) and H(J)
are satisfied. Then, the following statements hold:

(i) for each w €V, K(u) is closed and convex in V such that 0 € K(u);
(i) the graph Gr(K) of K is sequentially closed in Vi, X Vo, that is, K is sequentially closed
from V' with the weak topology into the subsets of V' with the weak topology;
(iil) if {un}nen CV is a sequence such that

Up — u inV
for some uw € V, then for each v € K (u) there exists a sequence {vy}neny CV such that

vp € K(up) and v, —v inV.

Note that problem (1.1) has several interesting and complicated characterizations, such as,
highly abstract nonlocal functions (which could be specialized to a nonlinear Kirchhoff type
condition (see for example, in [2], the authors combined the effects of a nonlocal Kirchhoff
coefficient and a double phase operator with a singular term and a critical Sobolev nonlinearity
in which the proof of main result is based on a suitable minimization argument on the Nehari
manifold; the work [10] investigates the effects of an indefinite Kirchhoff type function on the
geometry of an elliptic problem, by adopting an approximation process based on the Galerkin
method), multivalued terms (which can be seemed as feedback control effect from the control
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point of view), and also nonsmooth boundary conditions. This leads to tremendous difficulties
from various perspectives. For example, we are not able to use directly variational methods,
topological techniques and the theory of set-valued analysis for determining the existence of a
weak solution. In order to bypass those difficulties, we consider the following auxiliary problem:
for given functions (w,n,£) € V x X* x Y, find a function u: Q@ — R such that

—a(w)Apyu — b(w)Agyu + gz, u) = n(x) in Q,
u=20 on I'y,
Oou(x)
ayw - g(x) on F2) (33)
0
- glif) € 0.¢(x,u) on Iy,

L(u) < J(w),
where X := L9()(Q), Y := L%0)(T'y), and X* and Y* are the dual spaces of X and Y (i.e.,
X* = L%0O(Q) and Y* := L%2()(Iy)), respectively, and
ou
My
Note that problem (3.3) is an anisotropic obstacle problem with mixed boundary conditions.

From Definition 3.3, it is not difficult to see that a function v € V is a weak solution of
problem (3.3), if the following holds: u € K(w) and

= (a(w)|Vu|p(z)_2Vu + b(w)|Vu\q(”3)_2Vu) .

a(w) / |VuP@ =2V - V(v — u) de + b(w) / |Vu|" =2V, - V(v — u) dz
Q Q

+ / g(z,u)(v —u)dz + ¢(z,v)dl’ — ¢(x,u)dl
Q Ts

I's
Z/Qn(x)(v—u)dx—i— Fz{(m)(v—u)dF

for all v € K(w).
The following lemma examines the existence and uniqueness of problem (3.3).

Lemma 3.6. Suppose that H(0), H(g) and H(¢) are fulfilled. Then, for each fixed (w,n,&) €
V x X* x Y™, problem (3.3) has a unique solution.

Proof. Recall that V < X, V < Y and V < L%()(Q) are continuous embeddings. We
introduce the nonlinear operator F: V' — V* given by

(F(u),v) = a(w)/ |VulP® 2Ty - Vo dz + b(w) / |Vu|?"® =2y - Vo de
Q Q

+/Qg(x,u)vdx—/ﬂv7(x)vdx— N E(z)vdl

for all u,v € V. By virtue of hypotheses H(0) and H(g), we can see that F: V — V* is a
continuous, bounded and strictly monotone operator. Furthermore, let us consider the function
@: V — R defined by

o(u) = ¢(x,u)dl’ for all u € V,
Ts
which is well-defined due to hypothesis H(¢)(iii). Applying standard arguments, it is not difficult
to prove that ¢ is a proper, convex and l.s.c. function in V. In fact, it is convex and continuous,
because the effective domain of ¢ contains V.
Utilizing the notation above, it is obvious that u is a weak solution of problem (3.3), if and
only if it solves the following mixed variational inequality problem: find v € K(w) such that

(Fu),v —u) + o(v) — p(u) 2 0 (3.4)
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for all v € K(w). Moreover, using hypotheses H(0) and H(g)(iv), we obtain
(Fu, u)

> a(w) [ [VulP® dz + b(w) [ [Vul7® dz + / ag|uls® — b, (z) dx
Q Q Q

—/n(x)uda:— &(x)udl
Q Iy

> cafp(), (V) + b(w)eg(),o(Vu) = ([nllv- + €]

ve) [ullv = lbgllie + agos) a(w),

where ¢, > 0 is given in hypotheses H(1). Keeping in mind that p(x) < ¢(z) for all x € Q, it
follows from Young’s inequality that
ag0¢(1,0(1) 2 Catp(),0(u) —mo

for some mg > 0. Taking the last two inequalities into account, we have

(Fu,u)

> Cap(,0 (V) + b(w) gy 0(Vu) = ([nllv= + [1€llv<) [lullv = lIbgll.0 + caop(),o(u) —mo

> a (0p().2(VU) + gpy (W) = (Inllv- + €]

> comin {||ully [Julli } = (nllv- + (€]

ve) lullv = bglle = mo

|ullv: = [lbg

V) 1,0 — Mo,

where the last inequality is obtained by using Proposition 2.2 (iii) and (iv). This means that F
is a coercive operator.

Therefore, all conditions of Theorem 3.2 of Liu-Migérski-Zeng [26] are satisfied. Using this
theorem, we conclude that inequality (3.4) has at least one solution. On the other hand, the
strict monotonicity of F implies that this solution is unique. This completes the proof. O

In particular, if J(w) = 400 for all w € V, problem (3.3) reduces to the following nonlinear
anisotropic mixed boundary problem involving a convex subdifferential term: find v € V' such
that

—a(w)Apyu — b(w)Ayyu + g(z,u) = n(x) in Q,
u=20 on I'y,
ﬂ = ¢{(x) on I'y (3.5)
OV, ’
ou
v, € 0cp(x,u) onTs.

In this special case, we have the following result.

Corollary 3.7. Suppose that H(0), H(g) and H(¢) are fulfilled. Then, problem (3.5) has a
unique solution.

Lemma 3.6 permits us to consider the solution mapping S: V x X* x Y* — V of problem
(3.3) defined by

S(w,n,§) == Ugw,ne forall (w,n,§) €V x X* xY™,

where (., ¢) is the unique solution of problem (3.3) corresponding to (w,7n,§) € V x X* x Y*.
The following lemma shows that the solution mapping S is a completely continuous operator,
that is, if {(wn, P, &) Inen €V x X* x Y* and (u,n,&) € V x X* x Y* satisty (wn, 7, &) —
(w,n,€) in V x X* x Y*, then we have S(wy,, 1, &n) — S(w,n, &) in V.

Lemma 3.8. Assume that H(0), H(1), H(g), H(¢), H(L) and H(J) are satisfied. Then, the
solution map S: V x X* xY* = V of problem (3.3) is completely continuous.
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Proof. Let {(wn, M, &) neny € V X X* X Y*, {uptnen € V be sequences and (w,n,£) €
V x X* x Y* such that

(Wry Ny &n) 2 (w,n,§) mVxX*xY*

and u,, = S(Wn, Ny, &) for each n € N. Hence, for any n € N, the function u,, € K(w,) is the
unique solution of the following inequality

a(wn)/ |V |P@ =2V, - V(v — u,) dz + b(wn)/ |V, |1®) =2V, - V(v — u,) dz
Q Q

+ [ ooyar— [ s u)ar+ [ gl - u) i (3.6)
I's I's Q

> / N (2) (v — uy,) do + En(x)(v—up)dl for all v € K(w,,).
Q T,

Claim 1: The solution sequence {u, }nen is uniformly bounded in V.
If the sequence {uy }nen is unbounded in V, then, passing to a subsequence if necessary, we
may suppose that

lun|ly = 400 as n — oo. (3.7)

Note that 0 € K(w,,) for each n € N (see Lemma 3.5(i)), we can take v = 0 in inequality (3.6)
in order to obtain

a(wn) / VP dz + ba) / Vun 7) de + / o un)undz+ [ ¢, un(z))dr
Q Q Q T's

< [ @@ det [ g@u@dr+ [ o0 (3:8)
Q Ty I's
<o 0)lhrs + [mmllvellunllv + 1&nllv-lunllv-
Condition H(g)(iv) and Young’s inequality imply that
T, Uy )Up dz > [ aglu @) _p (z)dx
[ stewunde = [ agun ) b 59

= ag0¢(),0(un) = Ibgll1,0 > caop().a(un) —m1 — [[byll1,0

for some my > 0 which is independent of n. Recall that v — p(v) = / ¢(z,v)dl is a proper,
I

convex and l.s.c. function. Thus, from Brézis [0, Proposition 1.10], we are able to find two
positive constants o, 8, > 0 such that
P(v) = —apllvllv = B, (3.10)

for all v € V. Taking into account (3.8), (3.9) and (3.10) and using hypothesis H(1) leads to
0> catp(),0(Vun) +b(wn)og(),0(Vin) + cap(),aun) —mi — |[bgll1o — apllunllv — By
—ll¢C0)llers = (lmmllve + [1€nllv+) llunllv
> ca (0p(),2(Vtn) + 2p(),0(un)) = m1 = [Ibgll1.0 — apllunlly — By = [16(-,0)[l1,ry

= (Imnllv= + lgnllv) llunllv
> cqmin {{|un [y, Junl[i} = m1 = [Ibgll1.0 — agllunllv — By = 1¢(,0)l1.r,
= (nallve +11&nllv) lunllv-

Because {0, }nen and {&, }nen are bounded in X* and Y™*, respectively, and the embeddings of
V into X and of V into Y are continuous, we know that {n,}nen and {&, }nen are bounded in
V*. Passing to the lower limit as n — oo in the above inequalities and then using (3.7), it leads
to a contradiction. Therefore, we conclude that the sequence {uy, }nen is uniformly bounded in
V. The claim follows.
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Using this claim, without any loss of generality, we are able to find a function u € V satisfying
Un — u in V.

Claim 2: The sequence {u,, }nen converges strongly to u in V.

Recall that the graph of K, Gr(K), is sequentially closed in Vi, x V,, (see Lemma 3.5(ii)).
So, it follows from the convergence (tn,w,) — (u,w) in V x V and {(tn, wy)}nen C Gr(K),
that u belongs to K (w), that is, u € K(w). By means of Lemma 3.5(iii), it permits us to find
a sequence {y, }nen C V such that y, € K(w,) for each n € N and

Yn —u in V.

Taking v = y,, in (3.6) one has
a(wy,) |Vun|p(m)_2Vun -V (up — yn) dz + b(wy,) |Vun|q(m)_2Vun -V(up — yn) dzx
Q Q

o(x,yp)dl — ng(m Up)dl + / gz, un) (yn — up) de

I's

- [ mte)on =, dx—:/'in (4 — ) dT,

Passing to the upper limit as n — oo in the above inequality, we obtain

lim sup [a(wn) / [V, [P 2V, - V(un — yn) da
Q

n— oo

+ b(wn)/ |vun|q($)72vun : V(Un - yn) d$:|
Q

< limsup{ o(x,y,)dl’' —
s

n—oQ

¢u%mﬂ+/m%%mwwmm
L @ (3.11)

_ /an(a:)(yn —uy,)dz — §n(x)(yn —u) dF}

<limsup | ¢(x,y,)dl — hmmf/ o(x,up) dl + 1imsup/ g(z,un) (yn — up) dz
Q

n—oo JTs n—oo
— lim inf/ M () (Yn, — up) dz — lim 1nf/ Enlx — uy,)drl.
n—oo Q n—oo

Keeping in mind that V is embedded compactly into L%)(Q) (resp. X and Y'), we have

lim | g(z,un)(yn —up)de =0,

n—oo Q

lim [ 9.(z)(yn — un)dax =0, (3.12)

n— oo

lim inf §n($)(yn - Un) dl’ = 0,
I

n— oo

where we have used the boundedness of {1, }neny C X* and {&, }neny C Y* as well as hypotheses
H(g). Hypotheses H(¢) indicates that s — ¢(z,s) is continuous for a.a.z € I's. Employing
Fatou’s lemma and the convergence (un,yn) = (u,u) in Y x Y implies

limsup | ¢é(z,yn)dl —liminf [ ¢(z,u,)dl <O0. (3.13)

n—oo JTy oo Jry



18 S. ZENG, L. GASINSKI, V.D. RADULESCU, AND P. WINKERT

Note that a and b are continuous. Applying Holder’s inequality we get

lim inf b(wn)/ [V, |1 =2V, - V(u, — yn) da
Q

e (3.14)
> lim inf b(w,,) / |Vyn|q(’”)_2Vyn -V(up —yn)dz =0
n—oo Q
and
lim sup a(wy,) / |V, [P =2V, - V (1, — yp) da
n— 00 [¢)
= lim sup [a(wn)/ |V, [P =2V, - V(u, — y,) dz +/ |t |P®) =2, (1, — 1) da:]
n—00 Q Q
> lim sup {a(w) / |V, |P@ =2V, - V(u, — yp) dz + / |t |P@) =20, (uy, — ) dx}
n—o0 Q Q
~timsuplatien) = a(w)l| [ (VP2 F - Ty =)
n—00 Q
> lim sup [a(w)/ ‘Vun|p(m)72vun “V(up — yp) do + / |Un|p(m)72un(un —u) dx]
n—oo Q Q
— limsup 2ko|a(wn) — a(w)[[|Vinllp),0 I V(U = un)llp),0 (3.15)
n—oo

> lim sup {a(w) VPP =2V, - Viu, —u)de + [ |un|P® 2, (u, — u) da
Q

n— oo Q

+ a(w) / |V, |P@) =2V, - V(u — yn) dx}
Q

> lim sup {a(w) / |V, [P =2V, - V(u, — u)de + / [t |P@) =20, (1, — ) dx}
Q Q

n—oo

+ liIr_1>inf a(w) / |V, |P@ =2V, - V(u — y,) dz
n o0 QO

> lim sup {a(w) / |V, [P =2V, - V(u, — u)dz + / |t |P@) =20, (1, — ) dx}
Q Q

n—oo

for some kg > 0 which is independent of n, where we have used the compactness of the embedding
of V into LP()(Q) and the equality

lim / |t [P 20y, (uy — ) dzz = 0.
Q

n—oo

Let us consider the bifunction A: V x V' — V* defined by
(A(w,u),v) = a(w)/ |Vu[P® 2Ty - Vods  for all w,u,v € V.
Q
Inserting (3.12), (3.13), (3.14) and (3.15) into (3.11) yields

lim sup {a(w) / VP2V, - Viu, —u)de + [ |un|P® 2, (u, — u) de
Q

n—oQ Q

= limsup(A(w, uy), t, —u) < 0.

n—,oo
The latter combined with the (S, )-property of A(w,-) (see Proposition 2.6) implies that u,, — u
in V. Therefore, the claim is proved.
Claim 3: The function u is the unique solution of problem (3.3) corresponding to (w,n,&) €
V x X* x Y*, that is, u = S(w,n, ).
Let z € K(w) be arbitrary. We use Lemma 3.5(iii) to find a sequence {z, }nen C V satisfying

zn € K(wy,) and z, —z inV.
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Choosing v = z, in (3.6) and passing to the upper limit as n — oo, we obtain

a(w) / (VuP@ =2V - V(2 — u) dz + b(w) / |Vl =2V - V(2 — u) de
) Q

+ [ swaar- [ swwars [ -
FS Fs Q

> lim sup a(wn)/ |V, [P =2V, - V(z, — up) da
Q

n—oo

+ limsup b(wy,) / |V, |1 =2V, - V(2, — u,)dz + limsup [ é(x, 2,)dl
n— o0 O

n—oo JTI's

—liminf [ &é(z,u,)dl + lim sup/ g(x,un)(zn — up) da
Q

n—oo  [p, n—00

> lim sup/ M () (2 — up) doe 4+ limsup [ &, () (2, — uy,)dT
Q

n—oo n—00 I's
- / n@)(z —w)de + | €(@)(z —u)dT,
Q T2

Since z € K (w) is arbitrary, we can apply Lemma 3.6 and have that w is the unique solution of
problem (3.3) corresponding to (w,,£), that is, u = S(w, n, ).

Because each convergent subsequence of {u,, } nen converges to the same limit u, we know that
the whole sequence {uy, }nen converges strongly to v in V. This means that S: Vx X*xY* -V
is completely continuous. 0

In what follows, we write i: V — X and v: V — Y for the embedding operators of V' to
X and the trace operator from V into Y, respectively. It is obvious that ¢ and  are linear,
bounded and compact. Also, by i*: X* — V* and v*: Y* — V* we denote the dual operators
of i and =, respectively. Moreover, let us consider two multivalued mappings U; : X — 2X" and
Uy: Y — 2Y given by

Ui(u) == {n € X* : n(xz) € Ui(z,u(z)) a.a.in Q}, (3.16)
Us(v) :={€ € Y™ : &(z) € Us(w,v(w)) a.a.on T}, (3.17)

for all (u,v) € X xY, respectively. The following lemma indicates that 4, and Uy are well-defined
and strongly-weakly u.s.c.

Lemma 3.9. Let H(U;) and H(Us) be satisfied. Then, the following statements hold:

(i) Uy and Uz are well-defined and for each w € X and for each v € Y, the sets Ui (u) and
Us(v) are bounded, closed and convex in X* and Y™, respectively;

(ii) Uy and Us are strongly-weakly u.s.c., i.e., Uy is u.s.c. from X with the strong topology
to the subsets of X* with the weak topology, and Uy is u.s.c. from Y with the strong
topology to the subsets of Y* with the weak topology.

Proof. (i) Note that U; and U, satisfy an upper Carathéodory condition, that is, Q > = —
Ui(z,s) C R and T'y 3 2 — Us(x,s) C R are measurable and R 3 s — Uj(x,s) C R and
R > s — Usx(x,s) C R are u.s.c. Employing Theorem 1.3.4 of Kamenskii-Obukhovskii-Zecca
[28], we can see that for each (u,v) € X x Y, the functions Q2 3 = — Uj(z,u(z)) C R and
I'; 3 2 — Usz(x,v(x)) C R are both measurable in Q and on I'y, respectively. This allows us
to invoke the Yankov-von Neumann-Aumann selection theorem (see e. g. Papageorgiou-Winkert
[10, Theorem 2.7.25]) which implies that there are two measurable functions n: @ — R and
&: 'y — R satisfying

n(x) € Uy(z,u(x)) fora.a.x € Q and ¢(x) € Us(x,v(x)) fora.a.z €Ts.
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From hypotheses H(U;)(iv) and H(Us)(iv) we have that

81 (2)
05" (), Q / |77 |5 1(z) dx < / (OéUl (I’) +ay, |u(l,)|51(z)71) 1 da
<ma [ (a0, @50 + (@) 2) da )

= ma (Qa;(-),Q(aUl) + 951(-)79(“))
< +o0,

for some my > 0, and

/ 85 (x)
osy000(©) = [ 165 ar < [ (v, @)+ aus s> ar
2 2

<ma [ (av (@) + u(o) ) ar (319)
s

= ms (055,05 (Q0,) + 065,15 (1))

< +o00,

for some m3 > 0, where we have used the elementary inequality (s +¢)" < 277 1(s" +¢") for all
s,t > 0 and r > 1 as well as the continuity of §; and d2. The latter together with Proposition
2.1(vi) implies that n € X* and ¢ € Y*. Thus, the multivalued mappings U, and Uy are well-
defined and for each (u,v) € X x Y, the sets U (u) and Us(v) are bounded in X* and Y™,
respectively. Recall that U; and Us have closed and convex values. So we can use standard
arguments to show that for each (u,v) € X x Y the sets U; (u) and Uz (v) are closed and convex
in X* and Y*, respectively.

(ii) We only prove that U; is u.s.c., the upper semicontinuity of Uy can be shown in a similar
way. It follows from Proposition 2.8 that it is sufficient to show that for each weakly closed set
D of X*, the set U; (D) is closed in X. Let {u,}neny € U™ (D) be such that u, — u in X for
some u € X. Due to the continuity of the embedding V < L'(£2), by passing to a subsequence
if necessary, we may assume that

up(x) > u(z) asn—oo fora.a.x e (3.20)

Let {n, }nen € X* be a sequence such that 1, € Ui (u,)ND for each n € N. By virtue of (3.18),
we infer that sequence {1, }nen is bounded in X*. Because X* is reflexive, we may assume that

M — 1 in X*
for some n € D owing to the weak closedness of D. Our objective is to prove that n € U (u),
namely, n(z) € Uy (x,u(z)) for a.a.z € Q.

Employing Mazur’s theorem, we are able to find a sequence {(, }nen of convex combinations
of {nn }nen such that

(o= n in LOQ) and (o(z) > n(z) fora.a.z€Q as n— oo. (3.21)

The convexity of Uy guarantees that (,(z) € Uy (x, u,(x)) for a.a.x € Q. Applying the conver-
gences in (3.20) and (3.21) along with the upper semicontinuity of U; (see hypothesis H(U7)(iii)),
we get that n(z) € Uy (x,u(x)) for a.a. x € Q. This means that n € U; (u)ND. Hence, u € U] (D).
Therefore, we can apply Proposition 2.8 to conclude that U is strongly-weakly u.s.c. This com-
pletes the proof. O

Using the results above, we are now in a position to provide the detailed proof of Theorem 3.4.

Proof of Theorem 3.4. First, we prove the following claims.
Claim 4: The solution set T of problem (1.1) is bounded, if T is nonempty.



ANISOTROPIC AND ISOTROPIC IMPLICIT OBSTACLE PROBLEMS 21

Let u € V' be a weak solution of problem (1.1). Then, there exist functions (n,£) € X* x Y*
with n(x) € Uy (z,u(z)) for a.a.z € Q and &(x) € Uz(z,u(z)) for a.a.x € I'y such that

a(w) / |VuP® 2Ty - V(v — u) dz + b(u) / |Vu|" =2y, - V(v — u) dz
Q Q

+ / g(z,u)(v —u)dz + ¢(xz,v)dl’ — ¢(xz,u)dl
Q s

s

> [n@)w-uyde+ [ @) wdr
Q T2
for all v € K(u). Since 0 € K(u) we take v = 0 in the above inequality to obtain

a(u)/ | V[P d:z:+b(u)/ |V |7 do:Jr/g(:r,u)udz
Q Q Q

(3.22)
< ¢(z,0)dl’ — ¢(z,u)dl + / n(z)udz + [ &(z)udl.
I's I's Q I's
Tt follows from hypotheses H(U;)(iv) and H(Us3)(iv) that
/ n(@)u() de < / (@) lu(z)] dz
Q Q
< [ (aus @) + av, fula) ) [u(w)] da (3:23)
Q
< ay, 05,(),0(w) + 2llav, |5 ¢).allulls ()0
and
/ £(x)u(z) dT < / €(2)]ju)| AT
Ty Iy
(3.24)

< /F (0w (&) + gy [u(@) 1) fu(z) 4T

< au, 05,(9,r, (W) + 2|lav, sy ).ellullsy .-

Since the embeddings of V into X and of V into Y are continuous, we are able to find two
constants C'x, Cy > 0 such that

llulls,(y,0 < Cxllullv  and ||ulls,)r, < Cyllully  forallu e V. (3.25)

Keeping in mind that ¢(z) > p(z) for all € Q, using hypothesis H(g)(iv), we have

/QQ(LU)U dz > /QagIUIg(””) —by(z) dz = agoc().a(u) = [IbgllL0- (3.26)

Putting (3.23), (3.24), (3.25) and (3.26) into (3.22), we have

Calp(-),(Vu) + agé’g(~),ﬂ(u) = llbgll1,0 — apllullv

< au, 05,().r, () + 2l|aws, sy ) allulls, ) v, + avy 05, ().0W) + 2llav, |5 0).ellulls, .0 + Bes
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where we have used inequality (3.10). Employing Propositions 2.1(iii), (iv) and 2.2(iii) and (iv)
we get

camin {[Jull} el } = cqmin {ull20) o0 1l o } + agmin {0 o0 Il o}
— aplfully
< Ca (0p(),0 (V) + 0p(),0(1) = Cap(y,0(u) + agocy,a(u) — apllully
< au, 05, ()., (1) + 2)laws, sy, llwllso ), + av, 06, ().0(w) + 2llaw, |5 ).ellulls ().0
+ B + [Ibgll 1.0 (3.27)
< avy max {ull32) r, 0l 325, b+ av, max{uunﬁizm,||u|\§1z>,g}
+ 2llaw, [lsy¢y.ellulls, ., + 2||04U1 s (). ellulls, (y.0 + B

o 5 [ 51— 6 5
< ag, max { O~ Jull . O w3+ } + av, max { O ull ol uliifya )

+ 2llaws, sy (). llullsy),rs + 2llew, s (y.allulls, .0 + Be + 1bgll10-

Recall that ¢_ > p_ > §;_ and p_ > do_. From the estimates above, it is not difficult to prove
that there exists a constant my4 > 0 such that

llully <my for all ue Y.

Thus, the claim is verified.
Claim 5: There exists a constant M™* > 0 such that

S(Bv(o, M*), U, (ti((L M*)), Z/[Q(’)/Bv(o, M*))) - B\/(O7 M*), (328)
where By (0, M*) :={u eV : |ully < M*}.
Arguing by contradiction, suppose that there is no such constant M* such that the inclusion
holds. Then for each n > 0 there exist wy, z,,y, € By (0,n) and (n,,&,) € X* x Y* with
Nn € Us(izy,) and &, € Ua(yy,) such that

Up = S(Wn, M, &) and  |ugllv > n.

Hence, for every n > 0, we have
a(wn)/ |V, [P =2V, - V(v — u,) dz + b(wn)/ |V, |9® =2V, - V(v — u,) dz
Q Q
0,00l = [ o) dr+ [ glou)(0 - u) ds
s I3 Q

> [ @)= u)dot [ @) w)dr
Q Iy
for all v € K(w,,). Taking v = 0 in the above inequality gives

a(wn)/ |Vun‘p(z) dz + b(wn)/ \Vun|q(w) dz
@ Q

+/ g(z, up)updz + | ¢(x, up(x))dl (3.29)
Q

s

< / M (@) un(z)dz 4+ | En(@)un(z)dl + [ ¢(z,0)dl
Q Ty

I's
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From hypotheses H(U;)(iv) and H(Us)(iv), we have
[ m@une)ds < [ (el (z)] do
Q Q
[ (a0 @)+ (@) (o) da (3.30)
Q

<ms (inl(A),Q(Zn) + 951(-),9(%)) + 2||av, Hé{t),ﬂ||Un||61(-),£27

IN

for some ms > 0, and

. En(@)up(z) do < /F2 &0 ()| (2)] Ao
< /F2 (OéUz (w) + aUzlyn($)|62(r)—1) |un (z)] dz (3.31)

<M (055(,05 (Un) + 065,15 (Un)) + 2llaw, sy, ra 1nll sy,

for some mg > 0, where we have used Young’s inequality and the continuity of §; and d5. Putting
u = u, into (3.26) leads to

[ @) de > ago au) = by (332)
Inserting (3.30), (3.31), (3.32) into (3.29), we obtain
ca (0p(),0(Vun) + 0p(),0(n)) = Catp(y 0(un) + agosy o(un) — aplluallv
< (055(),02 (Un) + 055(),02 (n)) + 2l w5y (.15 lunlls,().00 + B + 119( 0)l1rs + [lbgll1.0
+ms (05,(),0(2n) + 06,(),0(un)) + 2[law, 6 ¢).0llunlls, ()0

Hence,
camin {fun [ e 15} = e {lunl2 o lun 26 o }
+ ag {IlunlSp) 0 Il 0 b = allunllv

< me (max {lyall320) o Doll52E) e, b+ max {luall§zc) r, o a2 v, 1)
+ 2llaw, 1y (),ra nllss ()0 + Be + 10(5 0|15 + 2llaw, [l ().allunlls, (.0
s (s {150, 0 o5 e {5 5 )

S e o BN )
+ 2llaw, oy () 0. Cy llunllv + By + |6(, 0)[l1,rs + 2llaw, |16 (),0Cx lunllv
s e Rl e {2 )

<o Bl i)+ (G )
+ 2/l 1y, 0. Cy lunllv + Be + [6(, 0)l1,rs + 2llaw, |5 (),0Cx [unllv

+ms (max{C 1- ||UnH61_ 51+|| n||51+}+maX{C - ||Un||61_ 51+H n”51+})'

Because of ¢ > p_ > 61— and p_ > do_, passing to the upper limit as n — oo in the above
inequalities, we get a contradiction. Hence there exists a constant M* > 0 such that (3.28) is
fulfilled.

As mentioned before, the main tool in the proof of the existence of a solution to problem
(1.1) is the Tychonoft’s fixed point theorem for multivalued operators, see Theorem 2.10. For
this purpose, let us consider the multivalued mapping A: V x X* x Y* — 2V*X" XY™ defined by

A(uv m, 5) = (S(ua m, f)’ul (iu)vu2('7u))7
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where U; and Uy are given in (3.16) and (3.17). Observe that if (u,n,€) is a fixed point of A,
then we have u = S(u,n,€) and (n, &) € U (iu) X Us(yu). It is obvious from the definitions of S,
U; and Uy that u is also a weak solution of problem (1.1). Therefore, we are going to examine
the validity of the conditions of Theorem 2.10. Invoking Lemmas 3.6 and 3.9, we can see that
for each (w,n,£) € V x X* x Y*, the set A(w,n,£) is a nonempty, bounded, closed and convex
subset of V' x X* x Y*.

Employing hypotheses H(U;)(iv) and H(Uy)(iv), it is not difficult to prove that Uy : X — 2%~
and Us: Y — 2Y are two bounded operators (see (3.18) and (3.19)), and there exist two
constants My > 0 and My > 0 satisfying

[t (iBy (0, M*))||x+ < My and  [[Ua(yBv (0, M*))[ly~ < M.
Additionally, we introduce a bounded, closed and convex subset D of V' x X* x Y* defined by
D={(u,n,&) eV XX*"xY" : |ully <M*, |nllx- < M; and ||€]ly~ < Ms}.

From this and (3.28) we know that A maps D into itself.

Next, we are going to prove that the multivalued mapping A is weakly-weakly u.s.c. For any
weakly closed set E in V' x X* x Y* such that A~ (E) # 0, let {(wn,nn,&n) neny C A7 (E) be
such that (wn, M, &) — (w,n,€) in V x X* x Y* for some (w,7n,£) € V x X* x Y*. Our goal
is to show that (w,n,£) € A~ (FE), namely, there exists (u, d, o) € A(w,n,£)NE. Indeed, for each
n € N, we are able to find (un,0n, 0n) € Awn, Mn, Ex) NE, 50, Uy = S(Wny Mns En),s 0n € Us (fwy,)
and o, € Us(ywy). From (3.18) and (3.19), one has that the sequences {J, }nen and {op fnen
are bounded in X* and Y*, respectively. Passing to a subsequence if necessary, we may assume
that

Sp — 6 inX* and o, — o inY*

for some (4, 0) € X*xY™. Recall that S is completely continuous. So, it holds u,, = S(wn, M, En)
— S(w,n,&) := u in V. Note that ¢ and v are both compact. Hence iw, — iw in X and
yw, — yw in Y. Since U; (resp. Us) is strongly-weakly u.s.c.and has nonempty, bounded,
closed and convex values, it follows from Theorem 1.1.4 of Kamenskii-Obukhovskii-Zecca [28]
that Uy (resp. Us) is strongly-weakly closed. The latter combined with the convergences above
implies that § € U; (iw) and o € Us(yw), namely, (u,d,0) € Al(w,n,&) N E, because of the weak
closedness of E. Therefore, we conclude that A is weakly-weakly u.s.c.

Therefore, all conditions of Theorem 2.10 are satisfied. Using this theorem, we conclude that
A has at least a fixed point, say (u*,n*,£*) € V x X* x Y*. Hence, u* € V is a weak solution
of problem (1.1).

Next, let us prove the compactness of the solution set Y. As proved before, we can see that
the solution set T of problem (1.1) is bounded in V. By the definitions of a weak solution (see
Definition 3.3) and of A, there exist (n,£) € X* x Y* such that v = S(u,n,€), n € Uy (iu) and
& € Us(yu), that is, (u,n,€) € Alu,n,§). Let {uy}nen be any sequence of solutions to problem
(1.1). Then, there are two sequences {0, }nen C X* and {&, }neny C Y™ such that n,, € Uy (iu,),
&n € Us(yuy) and uy, = S(up, M, &y) for all n € N. From the boundedness of T we may assume
that

Up, s uw inV
for some u € V. This together with the estimates (3.18) and (3.19) deduces that {1, }neny C X*

and {&,}ney C Y™ are both bounded. So, passing to a subsequence if necessary, we suppose
that

M —> 1 inX* and &, — ¢ inY*

for some n € Ui(iu) and £ € Us(yu), owing to the compactness of ¢ and v as well as the
strongly-weakly closedness of Uy and Us. Using the complete continuity of S, we conclude that

Uup = S(Un, Nny €n) — S(u,n,§) = u.
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This means that wu is a solution to problem (1.1). Consequently, the solution set T of problem
(1.1) is compact. O

We end this section by considering some particular cases of problem (1.1).
Let ¥: Q — (0,+00). If J(u) =0 and

L(u) = /Q(u(x) —V(z))Tdz forallueV,

then problem (1.1) becomes the anisotropic obstacle problem (1.7) with mixed boundary con-
ditions. A careful observation gives the following corollary.

Corollary 3.10. Assume that H(0), H(1), H(g), H(U1), H(Us) and H(¢) are satisfied. Then,

the solution set of problem (1.7) is nonempty and compact in V.

If J(u) = +oo for all uw € V, then problem (1.1) becomes the non-obstacle mixed boundary
value problem (1.8). In this situation, we obtain the following corollary.

Corollary 3.11. Assume that H(0), H(1), H(g), H(U1), H(Uz) and H(¢) are satisfied. Then,
the solution set of problem (1.8) is nonempty and compact in V.

In addition, if 'y = ) and T's = (), i.e., ['; =T, then problem (1.1) reduces to problem (1.6).
Using Theorem 3.4, we have the following corollary.

Corollary 3.12. Assume that H(0), H(1), H(Uy) and H(®) are satisfied. Then, the solution
set of problem (1.6) with g = 0 is nonempty and compact in V.

Let us now consider problem (1.5) and suppose the following assumptions:
H(j1): The functions j1: @ x R — R and r1: R — R are such that
(i) @~ j1(z, s) is measurable in 2 for all s € R with x — j1(x,0) belonging to L(Q);
(ii) for a.a.x € Q, s — j1(x, s) is locally Lipschitz continuous and the function r,: R —
R is continuous;
(iii) there exist a function a;, € L()(Q), and a constant aj, > 0 such that

Ir1(s)n] < oy, (&) + aj, | 5]+ @1
for all n € 9jy(z, s), for a.a.z € Q and for all s € R, where §; € C () is such that
51 (z) < p(z) forall z € Q.

H(j2): The functions j3: I's Xx R — R and ro: R — R are such that
(i) # — ja(x,s) is measurable on T'y for all s € R with & — ja(x,0) belonging to
LY(Ts);
(ii) for a.a.x € Ty, s — ja(x,s) is locally Lipschitz continuous and the function
ro: R — R is continuous;
(iii) there exist a function ¢, € L%0)(Ty),4 and a constant aj, > 0 such that

ra(s)€] < ajy (x) + ajy,|s|?2@ 1

for all & € dja(x,s), for a.a.x € 'y and for all s € R, where 6, € C(Q) is such
that

Sa(w) < p(z) for all z € Q.

If Uy and U, are given by Ui (x,s) = r1(s)071(z, s) for a.a.x € €, for s € R and Usz(x, s) =
ro(s)0ja(z, s) for a.a.x € I'g, for s € R, problem (1.1) becomes the implicit obstacle problem
(1.3) with generalized subgradient term in the sense of Clarke. We have the following result.

Theorem 3.13. Assume that H(0), H(1), H(g), H(¢), H(L), H(J), H(j1) and H(j2) are satis-
fied. Then, the solution set of problem (1.5) is nonempty and compact in V.
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Proof. 1t is obvious that the conclusion is a direct consequence of Theorem 3.4. So, we have
to verify that the functions Uy and Uy, defined by Ui (z,s) = r1(s)071(z, s) for a.a.x € Q, for
s € R and Us(x,s) = rao(s)dja(x,s) for a.a.x € Ty, for s € R, fulfill hypotheses H(U;) and
H(Us), respectively.

It follows from Proposition 2.9 that for a.a.xz € Q (resp. for a.a. x € T'5) and all s € R the
set Uy (z,s) (resp. Ua(z,s)) is nonempty, bounded, closed and convex in R, namely, condition
H(Uy)(i) (resp. H(Uz)) is satisfied. Hypotheses H(j1)(i) and H(j2)(i) indicate that for all s € R,
the functions z — Uj(x, s) = r1(s) dj1(x, s) and x — Us(z, s) = ra(s)dja(x, s) are measurable
in  and on Ty, respectively. This means that H(U;)(ii) and H(Uz)(ii) hold.

We claim that s — r1(s)0j1(xz, s) is w.s.c. From Proposition 2.8, it is sufficient to show that
(r1()041(x,-))~ (D) is closed for each closed set D C R. Let {sy}nen C (r1(-)0j1(x, )~ (D) be
such that s, — s. Then, there exists a sequence {1, }nen C R satisfying n,, € r1(s,)0j1(x, s,) N
D for each n € N. We are able to find a sequence {&, }nen such that n, = r1(s,)&, and &, €
0j1(x, $p,) for all n € N and for a. a. x € Q. Recall that s, — s, we can apply Proposition 2.9(iii)
and (v) to conclude that {&,},cn is bounded in R. Hence, we may assume that &, — ¢ in R for
some £ € D, because of the closedness of D. But, the closedness of dj; (see Proposition 2.9(v))
admits that £ € 971 (x, s). This combined with the continuity of r; deduces that n,, = r1(s,)&, —
r1(s)¢ € r1(s)0j1(x,s). This implies that s € (r1(-)071(x,-))~ (D), that is, (r1(-)dj1(x,-)) (D)
is closed. Applying Proposition 2.8 we see that s — r1(s)0j1(x, s) is u.s.c. Using the same
arguments as before, we can also show that s — r2(s)0j2(x,s) is u.s.c. Therefore, H(Un)(iii)
and H(Us)(iii) are verified.

Finally, hypotheses H(Uy)(iv) and H(Us)(iv) are consequences of the assumptions H(jy)(iii)
and H(j2)(iil). Consequently, we apply Theorem 3.4 to obtain the desired conclusion. O

In particular, when p, ¢ are constants such that 1 < ¢ < p, then problem (1.1) reduces to the
following isotropic implicit obstacle problem:

—a(u)Apu — b(u)Agu + g(z,u) € Uy (z,u) in Q,

u=20 on I'q,
Ju
ail/n S UQ(J?, U) on FQ, (333)
ou
_871/” S 80 (l‘,u) on Fg,
L(u) < J(u),

where A, is the well-known p-Laplace operator, i.e.,
Ayu = div(|VulP~2Vu)  for all u € WHP(Q).
Then, we have the following corollary.

Corollary 3.14. Assume that H(1), H(g), H(Uy), H(U2), H(¢), H(L) and H(J) are satisfied
such that the exponents p,q, 00,01, 02 are constants. Then, the solution set of problem (3.33) is
nonempty and weakly compact in V.

4. ISOTROPIC IMPLICIT OBSTACLE PROBLEMS WITH NONLINEAR CONVECTION TERMS

In this section, we are going to move our attention to study the implicit obstacle problem
(1.3) which involves a nonlinear convection function, two nonlocal terms and three multivalued
mappings where two of them are formulated on the boundary and the other one is defined
in the domain. If the exponents p,q are constants in problem (1.1), then problem (1.3) is a
generalization of problem (1.1). The goal of this section is to establish the existence of a weak
solution to problem (1.3) under more general assumptions.

We suppose the following assumptions on the functions g, U; and Us.
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H(g'): The function g: @ x R — R is such that H(g)(i), (ii), (iii) are satisfied,  — g(x,0)
belongs to Lp/(Q) and there exists a constant mgy > 0 such that
(9(z,8) = g(x, 1)) (s = 1) = mg|s — 1|
for all s,t € R and for a.a.z € €.
H(U{): The multivalued function U;: Q x R — 2% is such that H(U;)(i), (i), (iii) are satisfied
and there exist a function ay, € L ()4 and a constant ay, > 0 such that
[l < av, (x) + a, s~ (4.1)
for all n € Uy (z,s), for a.a.z € Q and for all s € R.
H(U3): The multivalued function Us: I's x R — 2% is such that H(Uz)(i), (ii), (iii) are satisfied
and there exist a function ag, € L (I'y)4 and a constant ay, > 0 such that
€] < au, (@) + agy|s[P~! (42)
for all £ € Us(x, s), for a.a.z € I'y and for all s € R.
For the convection term we suppose the following conditions.
H(f): f: QxR x RY — R is a Carathéodory function such that
(1) there exist ay,by > 0 and a function oy € Lot (Q)4 satisfying

p(a1—1)

(2,5, < agle] o +byls|™ ™ + ay(2)

for a.a.x € Q, for all s € R and for all £ € RV, where 1 < ¢; < p* and p* is the
critical exponents to p in the domain (see (2.1) with r = p);
(ii) there exist ¢, dy > 0 and a function 8y € L*(Q)4 such that

f(x,5,8)s < cplé|P + dy|s|P + By (x)

for a.a.z € Q, for all s € R and for all £ € RY;
(iii) there exist ey, hy > 0 such that

(fz,5,8) = f@,1,6))(s —t) <epls — P
f (@, 5,&1) = flz,5,6)| < hylér — &1
for a.a.z € €, for all s,t € R and for all &,&; € RY.
H(2): The inequalities
Cq > Ay, ()\f,p)_l + ¢y,
k(p)cq > hfj\%
mg > max{ay, ()\ls’p)71 +ds +ay,,er}

hold, where k(p) is given in (2.2), )\f’p is the first eigenvalue of the p-Laplacian with

Steklov boundary condition (see (2.3) and (2.4)) and A > 0 is the smallest constant such
that

[ullp.o < AVulpo  for all u e WHP(Q). (4.3)
Remark 4.1. Observe that hypotheses H(U7) and H(US) are weaker than H(Uy) and H(Us) in

case if 01,02 are constants. Indeed, if 61 (resp.d2) is a constant and € > 0 is arbitrary, then
from H(Uy)(iv) (resp. H(U1)(iv)), there exists a constant I(€) > 0 such that

[l < av, (2) + av, 5|7 < av, (@) +1(e) + s

for all n € Uy(x,s), for a.a.x € Q and for all s € R, where we have used Young’s inequality
and the fact that 1 < 81 < p. Then, the inequality (4.1) (resp.(4.2)) is valid. Therefore, H(U])
(resp. H(U3)) holds.
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Example 4.2. The following functions satisfy hypotheses H(g) and H(f)

g(x,s) = C(x) + Fos,

f(z,s,8) = ZC151_513+W( )

i=1

for a.a.x € Q, for all s € R and for all ¢ € R, where p = q1 = 2, w € L?(Q), ko > 0 and
¢=(¢,...,¢n) €RYN is a given vector.

Now, let V be the closed subspace of WP () defined by
Vi={ueW"(Q) : u=0onTy}.

As in Section 3, the multivalued mapping K is defined as in (3.2). In what follows, if we refer
to the conditions mentioned in Section 3, then it should be regarded as that the conditions
hold in the constant exponents setting. For example, if we assume that H(¢) holds, then
condition H(¢)(iii) is valid in the following sense: for each function u € LP+(T'3) the function
x — ¢(z,u(z)) belongs to L(T'3), where p, is the critical exponent of p on the boundary T (see
(2.1) with r = p).

Next, we give the definition of a weak solution.

Definition 4.3. We say that a function uw € V is a weak solution of problem (1.3) if u € K (u)
and there exist functions n € LV (Q), € € L (Ty) such that n(z) € Uy (z,u(z)) for a.a.xz € Q,
&(x) € Ug(x,u(x)) for a.a.x € Ty and the inequality

w) / |Vu|P~2Vu - V(v — u) dz + b(u) / |Vu|??Vu - V(v — u) dz
Q Q

+ / gz, u)(v—u)dz+ [ o(z,v)dl — o(x,u)dl (4.4)
Q Iy

> [ @) —war+

holds for all v € K(u).

(z)(v—u)dl + /Q flz,u, Vu)(v —u) de

T2

Let (w,n,€) € V x X* x Y* be arbitrary fixed, where X = LP(Q), Y = LP(T'5), X* = L' (Q)
and Y* = L (Ty). In order to solve problem (1.3), we first consider the following auxiliary
obstacle problem with dependence on the gradient

—a(w)Apu — b(w)Agu + g(x,u) = n(zr) + f(z,u, Vu) in €,

u=0 on I'y,
Ou(x)
v, @ on Iy, (4.5)
- 8;1Ez) ac(b(xa u) on F3’
L(u) < J(w),

where % is defined by

Ou
Oy,

The next lemma shows that problem (4.5) has a unique solution.

= (a(w)|Vu|P"?Vu + b(w)|Vu|*"*Vu) - v

Lemma 4.4. Let p > 2 and 1 < ¢ < p. Suppose that H(1), H(g'), H(¢), H(f), H(L) and H(J)
are fulfilled. Then, for each fized (w,n,£) € V. x X* x Y™*, problem (4.5) has a unique solution.
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Proof. The existence result is a direct consequence of Theorem 3.4 of Zeng-Bai-Gasinski [45]. It
remains to verify the uniqueness of problem (4.5).

Let uy,us € V be two weak solutions of problem (4.5). Then, for each i = 1,2, we have
u; € K(w) and

a(w)/ |V P72V, - V(v — uy) do + b(w)/ |V |92V, - V(v — u;) do
Q Q

+ ¢(x,v)dl — o(z,u;) dT 4+ /Q g(x,u;)(v—u;)dz

s s

Z/Qn(x)(v—ui)der f(x)(v—Ui)dF‘F/S)f(xaui,VUi)(U—ui)dm

T

for all v € K(w). Inserting v = us and v = w; in the above inequalities with ¢ = 1 and ¢ = 2,
respectively, we sum up the resulting inequalities to obtain

a(w)/ﬁ (|VU1|p72VU1 - |Vu2|p72VuQ) -V(up — ug)dz
+ b(w)/ (IVu1|"2Vuy — [Vus |7 2Vuy) - V(ur — uz) dz
Q
+ [ (o) = gla)) (= ) do
< /Q(f(xaulv Vuy) — f(x,u2, Vug))(ur — uz) de
= /Q(f(xuuh Vuy) — f(x,uz, Vuy))(ur — ug) de

—l—/(f(x,uz,Vul) — f(z,uz, Vus))(u; — ug) de.
Q

Taking (2.2), H(¢') and H(f)(iii) into account implies

k(p)callVur — Vuzl[p o +mgllur —uz|?
< / eflur —ug|P dx +/ hflVu, — VP~ ug — up| de.
Q Q

Applying Holder’s inequality and (4.3) gives
k(p)cal|Vur — Vuall? o +myllur —usa|l?
<egllur —uall? o + hyl|Vur = Vo |55 [[ur — uzlp0
< el —ually o + by AP [ Vur — Vuglff o

Hence,

(K)ea = AP ) IVar = Vuallf g + (my = ) Jur = sl <0

By assumption, we know that hfj\% < ¢cqk(p) and my > ey, thus uy = up. Therefore, for each
(w,n,&) €V x X* x Y*, problem (4.5) has a unique weak solution v € V. d

Let S: V x X* x Y* — V be the solution mapping of problem (4.5) defined by
S(w,n,&) = Uwye forall (w,n,§) eV x X* xY™,

where uy, 5 ¢ is the unique solution of problem (4.5) corresponding to (w,n,§) € V x X* x Y*,
see Lemma 4.4.
Next, we can prove that S is a completely continuous operator.
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Lemma 4.5. Let p > 2 and 1 < ¢ < p. Assume that H(1), H(g"), H(¢), H(f), H(L) and
H(J) are satisfied. Then, the solution map S: V x X* xY* — V of problem (4.5) is completely
continuous.

Proof. Let {(wn,Mn,&n) nen CV X X* X Y* and (w,n,£) € V x X* x Y* be such that
(wnannafn) i> (wﬂ’hf) inV xX*xY*.

Then, for any n € N, we have u,, € K(w,,) and

a(wn)/ |Vun|p72Vun V(v —u,)dz+ b(wn)/ |Vun\q72Vun V(v —uy,)de
Q Q

+ [ oty = [ ou)ar+ [ gl - u)ds (4.6)
I's I's Q

> / M () (v — up) dz + En(@) (v —up)dl + / f (@, un, Vuy) (v — uy) do
Q Ty Q
for all v € K(w,,). Using hypotheses H(f)(ii) and H(g'), we have
/ f(z,upn, Vup)u, (z) de < / cf|Vun ()P + df|un(x) P + By (x) dz
Q Q

= 7| Vunlly o + drllunlly o + 187l1.0;

and

/Q g(x, up )un () da
= / (9(z,un) — g(x,0)) up(x) da —|—/ g(z,0)u,(x) dx (4.8)
Q

Q
2 /ng|“n($)‘p dz — [[g(-, 0)[lpr,ellunllpo = mg”un”g,g = [lg(, 0)llp ellunllpo-

Putting v = 0 in (4.6) and using the inequalities (3.10), (4.6), (4.7) and (4.8), we get

min {(ca = ¢y), (mg = dp)} [unlll; = l9C, 0)llp allunllv + [1B¢ll1.0 — apllunllv
< (ca = ¢p) [Vunlly o + (mg = dy) lunlly o = 19C 0l ellunllpo + 18slho — aplluallv
< o€ 0)llrs + lmmllv-llunllv + [1Enllv-llunllv + Be-

From the inequalities ¢, > ¢y and my > dy, it is not difficult to see that sequence {uy,}nen is
bounded in V. Passing to a subsequence if necessary, we may assume that

V*

Up — winV
for some v € K(w) due to Lemma 3.5(ii). Again from Lemma 3.5(ii), we are able to find a
sequence {y, tnen with y, € K(w,) satisfying y, — u in V. Condition H(f)(i) reveals that the
sequence {f (-, un, Viin) nen is bounded in L9 (Q) and since ¢; < p* we have

lim | f(x,un, Vr)(yn — upn)dz = 0. (4.9)

n—00 Q

Inserting v = y,, in (4.6) and passing to the upper limit as n — oo for the resulting inequality
gives

n—oo

lim sup {a(wn)/ |V |P~2Vuy, - V(un — yn) do + b(wn)/ |V, |9 2V, - V (un — yn) dx}
Q Q

< lim sup [ o(x,y,)dll —
I3

n—o0

o, uy) T + /Q 92 0) (g — ) e

s

- /Q N (2) (Y — 1) dzz — 5 &n (@) (yn — up)dl’ — /Q f(@, un, Vug ) (yn — un)}
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Applying (3.12), (3.13), (3.14), (4.9) and the arguments of the proof of inequality (3.15) leads
to

lim sup [a(w)/ |V |P 2V, - V(u, — u) de —l—/ |t [P~ 20 (U, — w) dz| < 0.
n—00 Q Q
Therefore, it holds that u, — u in V.
For any fixed z € K(w), we apply Lemma 3.5(iii) to find a sequence {z,}neny C V such that
zn € K(wy,) and z, — z in V. We take v = z,, in (4.6) and pass to the upper limit as n — oo
for the resulting inequality to obtain that

a(w) /Q |VulP~2Vu - V(2 — u) dz + b(w) /Q |Vu|T2Vu - V(z — u) da

+ o(x,z)dl — ¢z, u)dl + /Q g(z,u)(z —u)de

s I's

z/szn(ac)(z—u)dx—i— E(x)(z—u)dF—l—/Qf(x,u,Vu)(z—u)dx.

Ty
Because z € K (w) is arbitrary, we conclude that u is the unique solution of problem (4.5) corre-
sponding to (w,7n,£) € Vx X*xY™*. Consequently, it holds u,, = S(wpn, M, &n) = S(w,n,€) = u
in V, namely, S is completely continuous. O

Furthermore, we introduce the following multivalued mappings U;: X — 2X and Uy: Y —
2Y" given by

Ur(u) := {n € X* : n(z) € U(z,u(x)) a.a.in Q},
Us(v) :={E € Y™ : &(x) € Uz(w,v(x)) a.a.on T'p},

for all (u,v) € X x Y, respectively. As before, by i: V — X and v: V — Y, we denote
the embedding operator of V < X and the trace operator from V < Y respectively. It is
clear that both are linear, bounded and compact. Then, their dual operators i*: X* — V*
and v*: Y* — V* are linear, bounded and compact as well. The following lemma is a direct
consequence of Lemma 3.8.

Lemma 4.6. Let H(U]) and H(U}) be satisfied. Then, the following statements hold:

(i) Uy and Uy are well-defined and for each u € X and v € Y, the sets Ui (u) and Usz(v) are
bounded, closed and convex in X* and Y™, respectively;

(ii) Uy and Us are strongly-weakly u.s.c., i.e., Uy is u.s.c. from X with the strong topology
to the subsets of X* with the weak topology, and Us is u.s.c. from Y with the strong
topology to the subsets of Y* with the weak topology.

We are now in a position to give the following existence theorem to problem (1.3).

Theorem 4.7. Let 2 < p and 1 < g < p. Assume that H(1), H(2), H(f), H(¢"), H(U;), H(U3),
H(¢), H(L) and H(J) are satisfied. Then, the solution set of problem (1.3) is nonempty and
compact in V.

Proof. From the proof of Theorem 3.4, it is sufficient to prove that the solution set of problem
(1.3) is bounded and that the inclusion

S(By (0, M), Uy (iBy (0, M), Us(v By (0, M*))) € By (0, M*) (4.10)

is satisfied for some M* > 0.

We only examine the boundedness of Y. The validity of (4.10) can be obtained by employing
the same arguments to the boundedness of T and the techniques applied in the proof of Claim
5 in Theorem 3.4.
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For any u € T, we are able to find functions n € U; (iu) and £ € Us(yu) such that inequality
(4.4) holds. Using hypotheses H(g’) and H(f)(ii) yields

/Qg(amu)u(m)dx:/Q(g(x7u)—g(m,O))u(m)dx—i—/Qg(&mO)u(m)dx

(4.11)
> mg g, — llg( 0) v allullpe
and
/ [, u, Vu)u(z) de < cf||Vaull? o +dg|ull;, (4.12)
By means of H(U7) and H(U3), we have
[ @t de < [ nteljuta)) @z
< [ (w(o) + oo @) P ) fu(a)| dz 419)
Q
< av, [l + llaw, Il
and
[ @pu)ar < [ fe@)ua)ar
< 62(.’1))—1
< [ (00 @) + o fu@) 1) o)l ar i

< ay, ”qu?‘Q,p + ||aU2 ”P',Fz Hqu,Fz
—1 _1
<av, (88,) 7 (1900 + 0l) + lavallrs (05,) 7 (19l + )

where we have used the elementary inequality (s +¢)" < s" +¢" for all s,¢ >0 with 0 <r <1
and the inequality

-1
e, < OF,) " (IVullhq + ulllg) - for all uw e Wh2(9),

which comes from the eigenvalue problem of the p-Laplacian with Steklov boundary condition
(see (2.3) and (2.4)).
Taking (4.11), (4.12), (4.13) and (4.14) into account, we have the following estimate

u)/Q|Vu|pdx+b(u)/Q|Vu|qu—|—/9g(x,u)udm—/Qn(x)u(a:) dz
E(@)u(z)dl — [ f(x,u, Vu)udz
Iy Q

> (ca—av, (A5,) " = s ) IVl g + (mg = avy (0F,) ™ = dy —au, )

1
—lav, llprs (W) 7 lullv = llaw, lpellullpe = 19, 0l allullpe — 187 ]1.0-
Arguing as in the proof of (3.27), we can use the estimates above and hypotheses H(2) to
conclude that Y is bounded.
Subsequently, we can invoke the same arguments as in the proof of Theorem 3.4 to conclude
that the solution set of problem (1.3) is nonempty and compact in V. O

Let us consider some special cases to problem (1.3).
If J(u) =0 and

L(u) = /Q(u(z) —U(z))tdz forallueV,

then problem (1.1) becomes the obstacle problem (1.12) with mixed boundary conditions, where
U: Q — (0,+00) is a given obstacle function. A careful observation gives the following corollary.
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Corollary 4.8. Let 1 < g < p. Assume that H(1), H(f)(1), (ii), H(¢"), H(U{), H(U3) and H(¢)
are satisfied. If, in addition, the following inequalities hold
Cq > ay, ()\‘f,p)_l +cr and mg > ay, ()\fyp)_l +ds +ay,,
then the solution set of problem (1.12) is nonempty and compact in V.
If J(u) = 400 or L(u) = —oo for all u € V, then problem (1.3) becomes the non-obstacle

elliptic inclusion problem (1.13) involving a monotone and a nonmonotone multivalued boundary
conditions, respectively. Hence, we have the following corollary.

Corollary 4.9. Let 1 < g < p. Assume that H(1), H(f)(1), (ii), H(¢"), H(U{), H(U3) and H(¢)
are satisfied. If, in addition, the following inequalities hold

—1 —1
Cq > ay, ()\fp) +cf and mg > ay, ()\fyp) +ds +ay,,
then the solution set of problem (1.13) is nonempty and compact in V.
In addition, if 'y = @ and I's = @, i.e., I'; = T, then problem (1.3) reduces to implicit obstacle

problem (1.10) with Dirichlet boundary condition. Using Theorem 4.7, we obtain the following
corollary.

Corollary 4.10. Assume that H(1), H(f)(i), (ii), H(U1) and H(¢) are satisfied. If, in addition,
the following inequalities hold
cq >cy and mg>df+ay,,
then the solution set of problem (1.10) with g = 0 is nonempty and compact in V.
It should be mentioned that hypotheses H(1) in problem (1.13) can be relaxed to the following
weaker conditions.
H(1"): a: V — (0,+00) and b: LP" (Q) — [0, +00) are such that a(u) = l,(u) + kq(u) for all
u € V and b is a continuous function, where l,: V — [cq, +00) is weakly continuous
with some ¢, > 0 and k,: V — [0, +00) is continuous.

Obviously, we do not require in H(1’) that a and b are weakly continuous on V. This extends
enormously the scope of applications to our results. A concrete example to hypotheses H(1') is
the following functions

a(u) = cq + e SV and b(u) = |u

o forallueV,

where 1 <7 < p.
We have the following result for (1.13) by using H(1’) instead of H(1).

Theorem 4.11. Let 1 < g < p. Assume that H(1"), H(f)(i), (i), H(¢"), H(U7), H(US) and
H(¢) are satisfied. If, in addition, the following inequalities hold

-1 -1
cq > ay, ()\f,p) +cy and mg > ay, ()\ip) +dy +ay,,
then the solution set of problem (1.13) is nonempty and compact in V.

Proof. Let B: V xV - V* F:V —-V*and G: V — V* be the functions defined by
(B(u,u),v) := b(u)/ |Vu|?2Vu - Vo de,
Q

(Fu,v) ::/Qf(:c,u,Vu)vdz,

(G(u),v) ::/Qg(z,u)vdx,

for all u,v € V. Then, using standard arguments, it is not difficult to see that u € V is a
solution of problem (1.13) if and only if it solves the following inclusion problem:

Gu)+ dcp(u) 20 in V¥,



34 S. ZENG, L. GASINSKI, V.D. RADULESCU, AND P. WINKERT

where the multivalued mapping G: V — 2" is defined by
G(u) = A(u,u) + B(u,u) + G(u) — F(u) — t*Us (u) — v Us(u) (4.15)

for all uw € V. From the proof of Theorem 3.4 of Zeng-Bai-Gasinski [15], we can see that the
continuity of a and b plays a significant role to verify the pseudomonotonicity of G. More
precisely, it directly effects the validity of the condition that

o if {u,}pen CV with u,, —= wuin V and v’ € G(u,) are such that

lim sup(u);, u, — u) <0, (4.16)
n—oo
then to each element v € V, there exists u*(v) € G(u) with
(u*(v),u —v) < liminf (u), u, — v). (4.17)
n—oo

Let {un}tnen C V and {u}}nen C V* be sequences such that u € G(u,) and suppose
inequality (4.16) holds. Then, there exist sequences {n, }nen C X* and {&, }neny C Y™ satisfying

upy = A(un, un) + B(un, un) + Gluy) — F(up) —i*n, —v*E, for all n € N.

Using hypotheses H(U7) and H(UJ), we know that the sequences {n, }neny C X* and {&, }nen C
Y™ are both bounded. Passing to a subsequence if necessary, we may assume that

M —> 1 inX* and &, — ¢ inY* (4.18)

for some (n,£) € X* x Y*. Besides, hypotheses H(f) reveal that the sequence {F(uy)}nen is

bounded in L% (£2). Then, we use the compactness of i and ~ as well as of the embedding from
V into L% (Q) to obtain

0 > limsup(u;,, u, — u)

n—oo
> lim sup(A(tn, tp), up, — u) + liminf (B(uy,, uy), uy — vy + lim inf (G(uy,), uy, — u)
- liisogp<F(un), Un — U>Lq’1 (Q)xLu(Q) hgsogp@na Un — u>LP’(Q)><LP(Q)
- 1imjup<§m Un — U>LP’(F2)><LP(F2)

> lim sup(A(tn, Un ), Uy, — ) + Uminf (B (un, u), uy, — u) + Uminf(G(u), u, — u)

n—o0o n—0o0 n— 00

> lim sup(A(un, tn ), un — u),
n—oo

where we have used the monotonicity of u — B(v,u) and u — G(u). Hence, we have

0 Z lim Sup<A(’an, ’an), Un — ’lL>
n— 00

= lim sup ((la(un) + ka(un)) /Q |V, P2V, - V (u, — u) do:)

n— oo

n— oo

> lim sup la(un)/ VP~ *Vu, -V (u, —u) dz
)
+ lim inf kza(un)/ |V, |P~*Vu, - V (u, —u) dz
n—oo Q

> lim sup la(un)/ \Vu,|P~*Vu, -V (u, —u) dz
Q

n— oo

+ lin_l}inf ko (un) / |Vu|P~2Vu -V (u, —u) dz
n o0 Q

> lim sup la(u)/ |V, P2V, - V (u, —u) dz
Q

n—oo

— limsup |lq(un) — lo(u)]

n— oo

/ \Vun|p72Vun -V (uy, —u) dz
Q
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> lim sup la(u)/ |V, |P 2V, - V (u, —u) dz.
Q

n— oo

This implies that u,, — v in V.
Recall that U; and Us are strongly-weakly closed. Therefore, from (4.18) it follows that
n € Ui (u) and € € Us(u). For any v € V', we have, due to the continuity of a, b, F and G, that

lim (u),, u, —v) = (A(u,u) + B(u,u) + G(u) — F(u) —i'n — & u —v).

n—oQ

The latter combined with the fact that n € U (iu) and & € Uz(vyu) implies that u* = A(u,u) +
B(u,u) + G(u) — F(u) —i*n —~v*¢ € G(u). Therefore, we conclude that (4.17) holds.

Arguing as in the proof of Theorem 3.4 of Zeng-Bai-Gasiniski [15], we can prove that the
solution set of problem (1.13) is nonempty. Invoking the same arguments as in the proof of
Theorem 3.4, we conclude that the solution set of problem (1.13) is compact. O

Furthermore, we suppose that the function k, in hypotheses H(1’) satisfies the following
condition:

kqo(u) = 0o as u eV with |Vull,q — oo. (4.19)

Then inequality ¢, > ay, ()\fyp)fl + ¢y can be dropped and the domain of I, can be replaced
by (0, +00).

Theorem 4.12. Let 1 < ¢ < p. Assume that H(1") with l,: (0,400) — (0,+00), H(f)(i), (ii),
H(g'), H(Uy), H(US) and H(®) are satisfied. If, in addition, (4.19) and the inequality

~1
mg > ay, ()\‘1971,) +dy + ay,

hold, then the solution set of problem (1.13) is nonempty and compact in V.

Proof. We will see that the inequality ¢, > ay, (Apr)fl + ¢y plays an important role in order
to prove that the operator G: V — 2V defined in (4.15) is coercive in the sense that
iy (Gtns Un)
n=oo [lunlv

= +o0, (4.20)

whenever the sequence {uy }nen C V is such that ||u, ||y — +oo.
Let {un}nen C V be such that ||uy|ly — +oo. Then, from (4.11), (4.12), (4.13) and (4.14),
we have

(G(un), un)
_ s 1 p _ s\ 4 p
> (a(un) —av, () = 1) IVl g + (mg —av, (AF,) " —dy —aws ) g (4.21)

_1
~llaw, llpr.rs (A5) 7 lunlly = low, I 2llunllp.e = ¢, 0l 2lluallp.e = 157(1.0-
Since ||un|lv = ||unllp,0 + || Vun||p,o = 400, one of the following cases can occur:

(@) ||unllp,o0 = +oo and {||Vunl|/p,a}nen is bounded;
(b) [Vur|lp,o — oo and {||un|/p.0}nen is bounded;
(c) llunllp,o = +oo and ||Vuy,||pa — co.

Let us discuss the cases above separately. If case (a) holds, then we have
—1
(atw) —av, (OF,) " —er) IVwnlf

lim inf =0,
n—od [l [lv

and

—1
(e (08,) 7 = dy = a0, g
lim inf = +o00.
n—00 [[unllv
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This shows that (4.20) is valid. If (b) occurs, then from (4.19) we are able to find ng € N such
that

a(un) — au, (Afyp)il —cy >0 foralln>ng

and

—1 —1
() = av, (AF,) 7 = o) VUl g + (mg = v, (A5,) ™" = dy = au, ) luallh g
lim + o0.
w Tnllv

Hence, also in this case we have (4.20). Finally, if case (c) takes place, then we have

-1 1
aun) —av, (\7,) = cp 2my —ay, (A7) —df —ay, >0
for all n > nq, for some n; € N, and

i (Gn). )

n=oo unllv

-1
(o= an 03,) 7 = dr = av,) (IVwalllg + lual )
> lim

T meo [[un]|

1
|

unllv + llov, lpr 2llunllp.o + 190, 0y ollunllp.o = 115¢lhe

lims H U2||P',F2 ( l,p)
UnHL

n—00 |

= +o00.

Thus, (4.20) is verified. Therefore, we have shown that G is coercive.
Employing the same arguments as in the proof of Theorem 4.11, we can conclude that the
solution set of problem (1.13) is nonempty and compact in V. g

Example 4.13. The following functions satisfy hypotheses H(1") and (4.19):
a(u) = ¢ +/ |VulPdz  and a(u) = elalv"d —|—/ |Vul? dz
Q Q

for all w € V' and for some ¢y > 0.
Similarly, if J(u) = 0 and

L(u) = /Q(u(m) —U(x))"dr forallueV (4.22)

we also have the following theorem concerning problem (1.12).

Theorem 4.14. Let 1 < q < p. Assume that H(1"), H(f)(), (i), H(¢"), H(U7), H(U}) and
H(¢) are satisfied. If, in addition, (4.19) and the inequality

-1
mg > ay, ()\f_’p) +dy +ay,,
hold, then the solution set of problem (1.12) is nonempty and compact in V.
Additionally, if g=0and 'y =T'3 =0, i.e.,, I'y =T, and J(u) =0 and L as in (4.22) (resp.
J(u) = +oo for all u € V), then problem (1.3) reduces to the following elliptic obstacle inclusion

problem with Dirichlet boundary and nonlinear convection (resp. elliptic non-obstacle inclusion
problem with Dirichlet boundary and nonlinear convection):

—a(u)Apu — b(u)Aqu € Uy (z,u) + f(z,u, Vu) in €,
u=0 onT, (4.23)
u(z) < U(x) in Q,
resp.,
—a(uw)Apu — b(u)Aqu € Us(z,u) + f(z,u, Vu) in Q,

4.24
u=20 onI'. ( )
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Now, we can remove the inequality
-1
mg > ay, ()\ip) +ds +ay,.
For problems (4.23) and (4.24) we have the following results.

Theorem 4.15. Let 1 < g < p. Assume that H(1"), H(f)(i), (ii), and H(U7) are satisfied. If,
in addition, (4.19) holds, then the solution set of problem (4.23) is nonempty and compact in V.

Proof. Since T'y = T, we see that V = Wy*(Q) and ||lully = ||V, for all u € V. From the
proof of Theorem 4.12, it is sufficient to examine that G is coercive in the sense of (4.20).
Let {un}neny C V be such that ||uy,||y — 4+00. Then, we have

(G(un), un) = (alun) = cf) [IVunlly o = llaw, lp ellunllp.o = 8¢l 0-

Applying (4.19), there exists no € N such that a(u,) — ¢y > 1 for all n > ny. Passing to the

limit as n — oo in the last inequality, we conclude that (4.20) holds, that is, G is coercive.
Arguing as in the proof of Theorem 4.11, we infer that the solution set of problem (1.13) is

nonempty and compact in V. O

A similar result holds for problem (4.24).

Theorem 4.16. Let 1 < g < p. Assume that H(1"), H(f)(i), (ii), and H(Uj) are satisfied. If,
in addition, (4.19) holds, then the solution set of problem (4.24) is nonempty and compact in V.

Next, we consider the problems (1.9) and (3.33). For this purpose, we assume the following
conditions.
H(j1): The functions j1: 2 x R — R and r1: R — R are such that
(i) =+ ji(z,s) is measurable in  for all s € R with z — j;(z,0) belonging to L*(2);
(ii) s+ j1(z, s) is locally Lipschitz continuous for a. a.z €  and the function r1: R —
R is continuous;
(iii) there exist a function a;, € LP ()4 and a constant aj, > 0 such that

[ri(s)nl < oy (@) + agy |sP~

for all n € 9jy1(x, s), for a.a.z € Q and for all s € R.

H(j5): The functions jo: I's X R — R and ro: R — R are such that
(i)  — ja(x,s) is measurable on I'y for all s € R with « — ja(x,0) belonging to
LN (Ts);
(ii) s — ja(z, s) is locally Lipschitz continuous for a. a. 2 € T's and the function 75: R —
R is continuous;
(iii) there exist a function ¢, € LP (D), and a constant aj, > 0 such that

|T2(S)§| < aj, (l‘) + aj, |S|p_1
for all £ € 0ja(x, ), for a.a.xz € 'y and for all s € R.
From the proofs of Theorems 3.13 and 4.7, we obtain the following result.

Corollary 4.17. Let 2 < p and 1 < g < p. Assume that H(1), H(f), H(g"), H(j1), H(j}) and
H(¢) are satisfied. If, in addition, the inequalities

1

—1 \»p -1
Co > Gj, (/\ISW) +cp, k(p)eq > hy (/\) and mg > max{a;, (/\f,p) +ds +aj,.er}
hold, then the solution set of problem (1.9) is nonempty and compact in V.

More particularly, when f = 0, then problem (1.3) reduces to problem (3.33). In some sense,
the following corollary extends the one in Corollary 3.14.
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Corollary 4.18. Let 1 < q < p. Assume that H(1), H(¢"), H(U;), H(U3), H(¢), H(L) and
H(J) are satisfied. If, in addition, the inequalities

-1 -1
Ca > ay, (/\fp) and mg > ay, ()‘ip) + ay,
hold, then the solution set of problem (3.33) is nonempty and compact in V.
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