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Abstract. In this paper, we study a nonlinear double phase problem with

variable exponent and critical growth on the boundary. The problem has
in the reaction the combined effects of a Carathéodory perturbation defined

only locally and of a critical term. The presence of the critical term does

not permit to apply results of the critical point theory to the corresponding
energy functional. Thus, we use appropriate cut-off functions and truncation

techniques to work on an auxiliary coercive problem. In this way, we can

use variational tools to get a sequence of sign changing solutions to our main
problem. Further, we show that such a sequence converges to 0 in L∞ and in

the Musielak-Orlicz Sobolev space.

1. Introduction

Given a bounded domain Ω ⊆ RN (N ≥ 2) with Lipschitz boundary ∂Ω, we deal
with critical Robin double phase problems of the form

−divA(u) = f(z, u) + |u|p
∗−2u in Ω,

A(u) · ν + β(z)|u|p∗−2u = 0 on ∂Ω,
(1.1)

where divA(u) is the variable exponent double phase operator given by

divA(u) := div
(
|∇u|p−2∇u+ µ(z)|∇u|q(z)−2∇u

)
,

ν(z) denotes the unit normal of Ω at the point z ∈ ∂Ω and

p∗ :=
Np

N − p
and p∗ :=

(N − 1)p

N − p

are the critical exponents corresponding to p. Here, we suppose that the exponents
and the functions µ as well as β satisfy the following conditions:

(H1) q ∈ C(Ω) is such that 1 < p < N , p < q(z) < p∗ for all z ∈ Ω. Moreover,
µ ∈ L∞(Ω) and β ∈ L∞(∂Ω) are such that µ(z) > 0 for a.a. z ∈ Ω and
β(z) ≥ 0 for a.a. z ∈ ∂Ω with β ̸= 0.

For r ∈ C(Ω), we put

r− = min
z∈Ω

r(z) and r+ = max
z∈Ω

r(z).

We suppose the following assumptions on the data of problem (1.1).

(H2) f : Ω × [−η0, η0] → R is a Carathéodory function with η0 > 0 such that
for a.a. z ∈ Ω, f(z, 0) = 0, f(z, ·) is odd and it holds
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(i) there exists a0 ∈ L∞(Ω) such that

|f(z, x)| ≤ a0(z) for a.a. z ∈ Ω and for all |x| ≤ η0;

(ii) there exists τ ∈
(
1,min

{
p, p2

N−p + 1
})

such that

lim
x→0

f(z, x)

|x|τ−2x
= 0 uniformly for a.a. z ∈ Ω;

(iii)

lim
x→0

f(z, x)

|x|p−2x
= +∞ uniformly for a.a. z ∈ Ω.

Remark 1.1. We point out that f is defined only locally. Hence, on account of
hypothesis (H2)(iii) we can assume, without loss of generality, that

f(z, x)

|x|p−2x
> 0 for a.a. z ∈ Ω and for all 0 < |x| ≤ η0.

This guarantees that

f(z, x) > 0 for all 0 < x ≤ η0 and f(z, x) < 0 for all − η0 ≤ x < 0.

We say that a function u ∈ W 1,H(Ω) (the Musielak-Orlicz Sobolev space, see
Section 2) is a weak solution of problem (1.1) if∫

Ω

(
|∇u|p−2∇u+ µ(z) |∇u|q(z)−2∇u

)
· ∇hdz +

∫
∂Ω

β(z)|u|p∗−2uhdσ

=

∫
Ω

(
f(z, u) + |u|p

∗−2u
)
hdz

is fulfilled for all h ∈ W 1,H(Ω).
Then, the main result of the paper is the following.

Theorem 1.2. Let hypotheses (H1) and (H2) be satisfied. Then, problem (1.1) has
a sequence {wn}n∈N ⊆ W 1,H(Ω)∩L∞(Ω) of nodal (that is, sign changing) solutions
such that ∥wn∥1,H → 0 and ∥wn∥∞ → 0.

We stress that our work is closely connected to a recent paper of Liu-Papageorgiou
[29] where a similar double phase problem with constant exponents was studied in
a Dirichlet setting. Precisely as in [29], we find in the right-hand side of problem
(1.1) the combined effects of a Carathéodory perturbation f(z, ·) which is defined
only locally and of a critical term u → |u|p∗−2u. In contrast to [29], we allow a
variable exponent q ∈ C(Ω) and critical growth on the boundary.

We point out that the presence of critical terms do not permit to apply results
of the critical point theory to the corresponding energy functional. Therefore, we
use suitable cut-off functions and truncation techniques to work with a coercive
functional. In this way, we can act by using variational tools. Hence, we study
a nonlinear auxiliary coercive problem. We establish the existence of extremal
constant sign solutions for such a problem (see Section 3). Next, we use these ex-
tremal solutions and a generalized version of the symmetric mountain pass theorem
due to Kajikiya [24, Theorem 1] in order to get a sequence of nodal solutions for
problem (1.1). So, we extend the results of Liu-Papageorgiou [29] to the Robin
double phase operator with one variable exponent and further we can skip hy-
pothesis H1(iii) in [29]. In addition, we remark that our main result extends the
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recent work Papageorgiou-Vetro-Winkert [35] to Robin double phase problems with
critical growth even on the boundary.

Functionals of type

ω 7→
∫
Ω

(
|∇ω|p + µ(z)|∇ω|q

)
dz, 1 < p < q < N,

were first considered by Zhikov [44] in connection with problems of homogenization
and nonlinear elasticity. In addition, there are several other applications in the
study of duality theory and of the Lavrentiev gap phenomenon, see Zhikov [45, 46].
A first mathematical framework for such type of functionals has been introduced
by Baroni-Colombo-Mingione [8], see also the related works by the same authors in
[9, 10] and of De Filippis-Mingione [15] about nonautonomous integrals.

However so far, there are only few results for problems involving the variable
exponent double phase operator. We refer to the recent results of Aberqi-Bennouna-
Benslimane-Ragusa [1] for existence results in complete manifolds, Albalawi-Alharthi-
Vetro [2] for convection problems with (p(·), q(·))-Laplace type problems, Bahrouni-
Rădulescu-Winkert [6] for double phase problems of Baouendi-Grushin type op-
erator, Crespo-Blanco-Gasiński-Harjulehto-Winkert [13] for double phase convec-
tion problems, Kim-Kim-Oh-Zeng [25] for concave-convex-type double-phase prob-
lems, Leonardi-Papageorgiou [26] for concave-convex problems, Vetro-Winkert [40]
for parametric problems involving superlinear nonlinearities and Zeng-Rădulescu-
Winkert [43] for multivalued problems, see also the references therein.

Furthermore, we mention the works of Ambrosio-Isernia [3] for (p, q)-Schrödinger-
Kirchhoff type equations, Ambrosio-Rădulescu [4] for concentrating solutions for
(p, q)-Schrödinger equations, Ambrosio-Repovš [5] for multiplicity and concentra-
tion results for (p, q)-Laplacian problems in RN , Bai-Papageorgiou-Zeng [7] for
singular eigenvalue problems for (p, q)-equations, Cen-Khan-Motreanu-Zeng [11]
for inverse problems for generalized quasi-variational inequalities, Crespo-Blanco-
Papageorgiou-Winkert [14] for double phase problems with singular term and crit-
ical growth on the boundary, Colasuonno-Squassina [12] for eigenvalue problems of
double phase type, Farkas-Winkert [17] for Finsler double phase problems, Gasiński-
Papageorgiou [18] for locally Lipschitz right-hand sides, Gasiński-Winkert [20, 19]
for convection problems and constant sign-solutions, Liu-Dai [28] for a Nehari man-
ifold approach, Papageorgiou-Vetro [33] for superlinear problems, Papageorgiou-
Vetro-Vetro [34] for parametric Robin problems, Perera-Squassina [37] for Morse
theoretical approach, Vetro-Winkert [39] for parametric convective problems, Zeng-
Rădulescu-Winkert [42] for double phase implicit obstacle problems with convection
and multivalued mixed boundary value conditions, Zeng-Bai-Gasiński-Winkert [41]
for implicit obstacle problems with multivalued operators.

2. Preliminaries

The function space framework for the analysis of problem (1.1) is provided by
the so-called Musielak-Orlicz Sobolev spaces. Therefore, we devote this section to
recall some elements from theory of such spaces. Also, we introduce some tools
which we will need later.

We denote by M(Ω) the space of all functions u : Ω → R which are measurable.
Let r ∈ C(Ω) be such that r(z) > 1 for all z ∈ Ω, then we denote by Lr(·)(Ω) the
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usual variable exponent Lebesgue space defined by

Lr(·)(Ω) =

{
u ∈ M(Ω) : ϱr(u) :=

∫
Ω

|u(z)|r(z) dz < +∞
}
,

and endowed it with the Luxemburg norm

∥u∥r(·) := inf
{
α > 0 : ϱr

(u

α

)
≤ 1

}
.

In addition, we write W 1,r(·)(Ω) for the corresponding Sobolev space equipped with
the norm ∥ · ∥1,r(·), see Diening-Harjulehto-Hästö-Růžička [16] or Harjulehto-Hästö
[22].

Further, on ∂Ω we consider the (N−1)-dimensional Hausdorff (surface) measure
σ(·) and, using this measure, we define in the usual way the boundary Lebesgue
spaces Lr(·)(∂Ω).

Next, we assume that (H1) holds. Then, we consider the nonlinear function
H : Ω× [0,+∞) → [0,+∞) defined by

H(z, x) = xp + µ(z)xq(z) for all z ∈ Ω and for all x ≥ 0.

We write ρH for the corresponding modular function, that is,

ρH(u) :=

∫
Ω

H(z, |u|) dz =

∫
Ω

(
|u|p + µ(z) |u|q(z)

)
dz.

Hypotheses (H1) guarantees that H is a generalized N -function satisfying the so-

called ∆2-condition, i.e., H(z, 2x) ≤ 2q
+H(z, x) for all z ∈ Ω and for all x ≥ 0.

Now we can define the Musielak-Orlicz space LH(Ω) by

LH(Ω) = {u ∈ M(Ω) : ρH(u) < +∞}

equipped with the Luxemburg norm

∥u∥H := inf
{
α > 0 : ρH

(u

α

)
≤ 1

}
.

The modular ρH and the norm ∥ · ∥H are related by the following proposition, see
Crespo-Blanco-Gasiński-Harjulehto-Winkert [13, Proposition 2.13] or Harjulehto-
Hästö [22].

Proposition 2.1. Let hypotheses (H1) be satisfied. Then the following hold:

(i) ∥u∥H < 1 (resp. > 1,= 1) if and only if ρH(u) < 1 (resp. > 1,= 1);

(ii) if ∥u∥H < 1 then ∥u∥q
+

H ≤ ρH(u) ≤ ∥u∥pH;

(iii) if ∥u∥H > 1 then ∥u∥pH ≤ ρH(u) ≤ ∥u∥q
+

H ;
(iv) ∥u∥H → 0 if and only if ρH(u) → 0;
(v) ∥u∥H → +∞ if and only if ρH(u) → +∞.

Now, using the Musielak-Orlicz space, we define the corresponding Musielak-
Orlicz Sobolev space W 1,H(Ω) by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
.

We equip this space with the norm

∥u∥1,H := ∥∇u∥H + ∥u∥H,

where ∥∇u∥H := ∥ |∇u| ∥H. Note that the norm ∥·∥H defined on LH(Ω) is uniformly
convex and hence the spaces LH(Ω) and W 1,H(Ω) are reflexive Banach spaces, see



NODAL SOLUTIONS FOR CRITICAL ROBIN DOUBLE PHASE PROBLEMS 5

[13, Proposition 2.12]. Furthermore, for W 1,H(Ω) the following embedding results
hold, see [13, Propositions 2.16 and 2.18].

Proposition 2.2. Let hypotheses (H1) be satisfied. Then the following hold:

(i) LH(Ω) ↪→ Lr(·)(Ω) and W 1,H(Ω) ↪→ W 1,r(·)(Ω) are continuous for all r ∈
C(Ω) with 1 ≤ r(z) ≤ p for all z ∈ Ω;

(ii) W 1,H(Ω) ↪→ Lr(·)(Ω) is compact for r ∈ C(Ω) with 1 ≤ r(z) < p∗ for all
z ∈ Ω;

(iii) W 1,H(Ω) ↪→ Lr(·)(∂Ω) is compact for r ∈ C(Ω) with 1 ≤ r(z) < p∗ for all
z ∈ Ω;

(iv) W 1,H(Ω) ↪→ LH(Ω) is compact;
(v) Lq(·)(Ω) ↪→ LH(Ω) is continuous.

Also, we denote by C1(Ω)+ the positive cone of the ordered Banach space C1(Ω)
given by

C1(Ω)+ =
{
u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

int
(
C1(Ω)+

)
=

{
u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω

}
,

Next, we consider the eigenvalue problem for the p-Laplacian with Robin bound-
ary condition given in the form

−∆pu = λ|u|p−2u in Ω,

|∇u|p−2∇u · ν + β(z)|u|p−2u = 0 on ∂Ω.
(2.1)

We recall that λ ∈ R is an eigenvalue of (2.1) if problem (2.1) has a nontrivial
solution u ∈ W 1,p(Ω). Such a solution is called eigenfunction corresponding to the
eigenvalue λ. It is known that there exists a smallest eigenvalue λ1,p of problem
(2.1) which is positive, isolated, simple and it can be variationally characterized
through

λ1,p := inf

{∥∇u∥pp +
∫
∂Ω

β(z)|u|p dσ
∥u∥pp

: u ∈ W 1,p(Ω), u ̸= 0

}
,

see Papageorgiou-Rădulescu [30].
In the sequel, we write u1,p for the Lp-normalized (i.e., ∥u1,p∥p = 1) positive

eigenfunction corresponding to λ1,p. From the nonlinear regularity theory and

the nonlinear strong maximum principle we know that u1,p ∈ int
(
C1(Ω)+

)
, see

Lieberman [27] and Vázquez [38].
For any s ∈ R we put s± = max{±s, 0}, that means s = s+ − s− and |s| =

s+ + s−. Also, for any function v : Ω → R we put v±(·) = [v(·)]±.
Finally, given a Banach space X and its dual space X∗, we say that a functional

Φ ∈ C1(X) satisfies the Palais-Smale condition (PS-condition for short), if every
sequence {un}n∈N ⊆ X such that {Φ(un)}n∈N ⊆ R is bounded and

Φ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence. Moreover, we denote by KΦ the set of
all critical points of Φ, that is,

KΦ = {u ∈ X : Φ′(u) = 0} .
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We also recall that a set S ⊆ X is said to be downward directed if for given
u1, u2 ∈ S we can find u ∈ S such that u ≤ u1 and u ≤ u2. Analogously, S ⊆ X
is said to be upward directed if for given v1, v2 ∈ S we can find v ∈ S such that
v1 ≤ v and v2 ≤ v.

3. A Nonlinear Auxiliary problem

In this section, we work with a nonlinear auxiliary problem and show the ex-
istence of extremal constant sign solutions for such a problem. This will help us
in the next section to produce nodal (that is, sign changing) solutions for problem
(1.1).

Before introducing such an auxiliary problem, we first prove a result which we
will use later.

Lemma 3.1. Let hypotheses (H1) be satisfied. Then, for some a > 0 and all
u ∈ W 1,H(Ω), we have

∥u∥1,p ≤ a [∥∇u∥p + ∥u∥p∗,β,∂Ω]

where ∥u∥p∗,β,∂Ω is the seminorm

∥u∥p∗,β,∂Ω :=

∫
∂Ω

β(z)|u|p∗ dσ.

Proof. The assertion of the lemma follows if we show that there exists â > 0 such
that

∥u∥p ≤ â [∥∇u∥p + ∥u∥p∗,β,∂Ω] (3.1)

for all u ∈ W 1,H(Ω). Indeed, since ∥u∥1,p := ∥∇u∥p + ∥u∥p, (3.1) gives

∥u∥1,p ≤ ∥∇u∥p + â [∥∇u∥p + ∥u∥p∗,β,∂Ω] ≤ (â+ 1) [∥∇u∥p + ∥u∥p∗,β,∂Ω] .

In order to prove the validity of (3.1), we argue indirectly. So, assume that (3.1) is
not true. Then we can find a sequence {un}n∈N ⊆ W 1,H(Ω) such that

∥un∥p ≥ n [∥∇un∥p + ∥un∥p∗,β,∂Ω] for all n ∈ N. (3.2)

We put yn = un

∥un∥p
which gives ∥yn∥p = 1. Then, from (3.2) we obtain

1

n
≥ ∥∇yn∥p + ∥yn∥p∗,β,∂Ω. (3.3)

Hence, we deduce that {yn}n∈N ⊆ W 1,p(Ω) is bounded (we recall that ∥yn∥1,p =
∥∇yn∥p + ∥yn∥p). Therefore, we can assume that

yn ⇀ y in W 1,p(Ω) and yn ⇀ y in Lp∗
(Ω) and Lp∗(∂Ω). (3.4)

Next, we know that W 1,p(Ω) ↪→ Lq(·)(Ω) is compact (being q+ < p∗) and further
Lq(·)(Ω) ↪→ LH(Ω) is continuous (see Proposition 2.2 (v)). On account of this, we
conclude that yn → y in LH(Ω). Also, from ∥yn∥p = 1, we have y ̸= 0.

Now, passing to limit in (3.3) as n → +∞ and using (3.4) along with the weak
lower semicontinuity of the norm ∥∇ · ∥p and of the seminorm ∥ · ∥p∗,β,∂Ω we obtain
that

0 ≥ ∥∇y∥p + ∥y∥p∗,β,∂Ω,
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which gives ∇y = 0. Hence, we deduce that y = b̂ is a constant with b̂ ̸= 0.
Therefore, by (3.3) passing to limit as n → +∞ we get

0 ≥ |b̂|p∗

∫
∂Ω

β(z) dσ > 0

since β(z) ≥ 0 for a.a. z ∈ Ω and β ̸= 0. This gives a contradiction and so (3.1)
holds true. □

Now, let k : Ω× R → R be the Carathéodory function defined by

k(z, x) = θ(x)[f(z, x) + |x|p
∗−2x] + (1− θ(x))|x|τ−2x (3.5)

for all (z, x) ∈ Ω×R, where τ is given in (H2)(ii) and θ ∈ C1(R) is an even cut-off
function satisfying the following conditions:

supp θ ⊆ [−η0, η0], θ∣∣[−η0
2 ,

η0
2 ]

≡ 1 and 0 < θ ≤ 1 on (−η0, η0). (3.6)

Note that (3.6) and (H2)(ii) ensure that

|k(z, x)| ≤ c
(
1 + |x|τ−1

)
(3.7)

for some c > 0, for a.a. z ∈ Ω and for all x ∈ R.
Then, we consider the following auxiliary Robin double phase problem

−div
(
|∇u|p−2∇u+ µ(z) |∇u|q(z)−2∇u

)
= k(z, u) in Ω,(

|∇u|p−2∇u+ µ(z)|∇u|q(z)−2∇u
)
· ν = −β(z)|u|p∗−2u on ∂Ω.

(3.8)

We denote by S+ and S− the set of positive and negative solutions of problem (3.8),
respectively. We start showing that these sets are nonempty.

Proposition 3.2. Let hypotheses (H1) and (H2) be satisfied. Then S+ and S− are
nonempty subsets in W 1,H(Ω) ∩ L∞(Ω).

Proof. Our first aim is to prove that S+ ̸= ∅. Thus, we consider the C1-functional
Φ+ : W 1,H(Ω) → R defined by

Φ+(u) =

∫
Ω

[
1

p
|∇u|p + µ(z)

q(z)
|∇u|q(z)

]
dz +

∫
∂Ω

1

p∗
β(z)|u|p∗ dσ

−
∫
Ω

K(z, u+) dz,

for all u ∈ W 1,H(Ω), where K(z, x) =
∫ x

0
k(z, s) ds. We know that

Φ+(u) ≥
1

p

∫
Ω

|∇u|p dz + 1

q+

∫
Ω

µ(z)|∇u|q(z) dz

+
1

p∗

∫
∂Ω

β(z)|u|p∗ dσ −
∫
Ω

K(z, u+) dz.

Then, using (3.7), hypothesis (H2)(ii) (which gives τ < p) and hypothesis (H1)
(which ensures β(z) ≥ 0 for a.a. z ∈ ∂Ω), we conclude that Φ+ is coercive. Next,
we recall that the embedding W 1,H(Ω) ↪→ Lr(·)(Ω) is compact for any r ∈ C(Ω)
with 1 ≤ r(z) < p∗ for all z ∈ Ω (see Proposition 2.2(ii)). On account of this, we
see that the functional Φ+ is sequentially weakly lower semicontinuous. Therefore,
there exists u0 ∈ W 1,H(Ω) such that

Φ+(u0) = inf
[
Φ+(u) : u ∈ W 1,H(Ω)

]
.
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Next, we show that u0 is nontrivial. By hypothesis (H2)(iii) we can find for each
η > 0 a number δ ∈

(
0,min{η0

2 , 1}
)
such that

F (z, x) =

∫ x

0

f(z, s) ds ≥ η

p
|x|p for all |x| ≤ δ. (3.9)

Also, we can choose t ∈ (0, 1) small enough so that tu1,p(z) ∈ (0, δ] for all z ∈
Ω, where u1,p ∈ int

(
C1(Ω)+

)
denotes the Lp-normalized positive eigenfunction

corresponding to λ1,p (see Section 2). According of this, we have

Φ+(tu1,p) =

∫
Ω

[
1

p
|∇(tu1,p)|p +

µ(z)

q(z)
|∇(tu1,p)|q(z)

]
dz

+

∫
∂Ω

1

p∗
β(z)(tu1,p)

p∗ dσ −
∫
Ω

K (z, tu1,p) dz

≤ tp

p

∫
Ω

|∇u1,p|p dz +
tq

−

q−

∫
Ω

µ(z) |∇u1,p|q(z) dz

+
tp∗

p∗

∫
∂Ω

β(z)up∗
1,p dσ −

∫
Ω

K (z, tu1,p) dz

=
tp

p

[
λ1,p

∫
Ω

up
1,p dz −

∫
∂Ω

β(z)up
1,pdσ

]
+

tq
−

q−

∫
Ω

µ(z) |∇u1,p|q(z) dz +
tp∗

p∗

∫
∂Ω

β(z)up∗
1,p dσ

−
∫
Ω

K (z, tu1,p) dz

≤ tp

p
λ1,p +

tq
−

q−

∫
Ω

µ(z)|∇u1,p|q(z) dz +
tp∗

p∗

∫
∂Ω

β(z)up∗
1,p dσ

−
∫
Ω

K (z, tu1,p) dz.

Now, since tu1,p ∈ (0, δ] and δ ∈
(
0,min{η0

2 , 1}
)
, from (3.6) we know that

k(z, tu1,p) = f(z, tu1,p) + (tu1,p)
p∗−2tu1,p ≥ f(z, tu1,p). (3.10)

Then, using (3.9) and (3.10), we get

Φ+(tu1,p) ≤
tp

p
λ1,p +

tq
−

q−

∫
Ω

µ(z)|∇u1,p|q(z) dz

+
tp∗

p∗

∫
∂Ω

β(z)up∗
1,p dσ − tp

p
η

=
tp

p
(λ1,p − η) +

tq
−

q−

∫
Ω

µ(z)|∇u1,p|q(z) dz

+
tp∗

p∗

∫
∂Ω

β(z)up∗
1,p dσ.

Recall that η is arbitrary. Thus, if we choose η > λ1,p (which gives λ1,p − η < 0),
we have for t > 0 sufficiently small

tp

p
(λ1,p − η) +

tq
−

q−

∫
Ω

µ(z)|∇u1,p|q(z) dz +
tp∗

p∗

∫
∂Ω

β(z)up∗
1,p dσ < 0
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since p < q− and p < p∗. This implies that Φ+(tu1,p) < 0 = Φ+(0) for t ∈ (0, 1)
sufficiently small. Hence, u0 ̸= 0.

As u0 is a global minimizer of Φ+, we have Φ′
+(u0) = 0, that is,∫

Ω

(
|∇u0|p−2∇u0 + µ(z)|∇u0|q(z)−2∇u0

)
· ∇hdz

+

∫
∂Ω

β(z)|u0|p∗−2u0 · hdσ =

∫
Ω

k(z, (u0)+)hdz

(3.11)

for all h ∈ W 1,H(Ω). Also, we know that ±u± ∈ W 1,H(Ω) for any u ∈ W 1,H(Ω), see
Crespo-Blanco-Gasiński-Harjulehto-Winkert [13, Proposition 2.17]. So, if we take
h = −(u0)− in (3.11) we obtain that (u0)− = 0. This gives u0 ≥ 0. Taking into
account that u0 ̸= 0, we conclude that u0 is a positive weak solution of problem
(3.8). Thus, S+ ̸= ∅. Similar to the proof of Theorem 3.1 in Gasiński-Winkert [21]
we can show that u0 ∈ L∞(Ω).

Arguing in a similar way, we get the existence of a negative weak solution for
problem (3.8). It is sufficient to work with the C1-functional Φ− : W 1,H(Ω) → R
defined by

Φ−(u) =

∫
Ω

[
1

p
|∇u|p + 1

q(z)
µ(z)|∇u|q(z)

]
dz

+

∫
∂Ω

1

p∗
β(z)|u|p∗ dσ −

∫
Ω

K(z,−u−) dz

and show that the global minimizer of Φ−(u) is nontrivial. □

Now, we are ready to prove the existence of a smallest positive solution u∗ ∈ S+

and the existence of a largest negative solution v∗ ∈ S−.

Proposition 3.3. Let hypotheses (H1) and (H2) be satisfied. Then there exists
u∗ ∈ S+ such that u∗ ≤ u for all u ∈ S+ and there exists v∗ ∈ S− such that v∗ ≥ v
for all v ∈ S−.

Proof. We prove the existence of a smallest positive solution in S+. Arguing in a
similar way, we also obtain the existence of a largest negative solution v∗ ∈ S−.

Following the proof of Proposition 7 in Papageorgiou-Rădulescu-Repovš [31], we
can easily check that S+ is a downward directed set. This guarantees, thanks to
Hu-Papageorgiou [23, Lemma 3.10, p. 178], that we can find a decreasing sequence
{un}n∈N ⊆ S+ such that

inf
n∈N

un = inf S+.

In addition, since un ∈ S+, we know that∫
Ω

(
|∇un|p−2∇un + µ(z)|∇un|q(z)−2∇un

)
· ∇hdz

+

∫
∂Ω

β(z)|un|p∗−2un · hdσ =

∫
Ω

k(z, un)hdz

(3.12)

for all h ∈ W 1,H(Ω) and for all n ∈ N.
Now, taking h = un in (3.12), on account of (3.7) and using 0 ≤ un ≤ u1, we

deduce that∫
Ω

|∇un|p dz +
∫
Ω

µ(z)|∇un|q(z) dz +
∫
∂Ω

β(z)|un|p∗ dσ < b1 (3.13)
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for some b1 > 0 and for all n ∈ N. Thus, since β(z) ≥ 0 for a.a. z ∈ ∂Ω, we have

ρH(∇un) =

∫
Ω

|∇un|p dz +
∫
Ω

µ(z)|∇un|q(z) dz < b1

for some b1 > 0 and for all n ∈ N. This shows that {ρH(∇un)}n∈N ⊆ RN

is bounded. Hence, thanks to Proposition 2.1, we deduce that {∥∇un∥H}n∈N is
bounded in LH(Ω).

Next, we observe that (3.13) also gives∫
Ω

|∇un|p dz +
∫
∂Ω

β(z)|un|p∗ dσ < b1 (3.14)

for some b1 > 0 and for all n ∈ N. Taking Lemma 3.1 into account yields

∥un∥1,p ≤ a [∥∇un∥p + ∥un∥p∗,β,∂Ω] for some a > 0 and for all n ∈ N.

Using this and (3.14) we infer that {un}n∈N ⊆ W 1,p(Ω) is bounded. Finally, we
recall that the embedding W 1,p(Ω) ↪→ Lq(·)(Ω) is compact (due to q+ < p∗) and
further the embedding Lq(·)(Ω) ↪→ LH(Ω) is continuous (see Proposition 2.2 (v)).
Therefore, we conclude that ∥un∥H ≤ b2 for some b2 > 0 and for all n ∈ N.

On account of this, since {∥∇un∥H}n∈N is bounded in LH(Ω) and ∥un∥1,H =
∥∇un∥H + ∥un∥H, we conclude that {un} ⊆ W 1,H(Ω) is bounded.

Observe that τ < p2

N−p + 1 due to hypothesis (H2)(ii). Hence, we know that
N−1
p (τ − 1) < p∗. So, if we choose s > N−1

p such that s(τ − 1) < p∗, taking into

account that {un} ⊆ W 1,H(Ω) is bounded, we may suppose that

un ⇀ u∗ in W 1,H(Ω) and un → u∗ in Ls(τ−1)(Ω) and in Ls(τ−1)(∂Ω).

From (3.5), (3.6) and hypothesis (H2)(i) it follows that

|k(z, x)| ≤ b3|x|τ−1 (3.15)

for some b3 > 0, for a.a. z ∈ Ω and for all x ∈ R. Then, from (3.12) and (3.15) along
with a Moser-iteration type argument as it was explained in Colasuonno-Squassina
[12, Section 3.2], we obtain, as s > N−1

p , that

∥un∥∞ ≤ b4∥un∥
τ−1
p−1

s(τ−1) for some b4 > 0 and for all n ∈ N.

Now, we show that u∗ ̸= 0. We argue indirectly and suppose u∗ = 0 which implies
∥un∥∞ → 0 as n → +∞. Hence, we deduce

0 < un(z) ≤ δ for a.a. z ∈ Ω and for all n ≥ n0,

where δ ∈
(
0,min{η0

2 , 1}
)
. We further have

k(z, un(z)) = f(z, un(z)) + un(z)
p∗−1 for a.a. z ∈ Ω and for all n ≥ n0.

We put yn = un

∥un∥1,H
for all n ∈ N. Thus, ∥yn∥1,H = 1 and yn ≥ 0 for all n ∈ N.

Moreover, we can suppose

yn ⇀ y in W 1,H(Ω) and yn → y in Lq(·)(Ω) with y ≥ 0.

Now, we remark that (3.12) gives∫
Ω

(
|un∥p−1

1,H |∇yn|p−2∇yn + ∥un∥q(z)−1
1,H µ(z)|∇yn|q(z)−2∇yn

)
· ∇hdz

+

∫
∂Ω

β(z)∥un∥p∗−1
1,H |yn|p∗−2ynhdσ
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=

∫
Ω

∥un∥p−1
1,H

[
f(z, un)

up−1
n

+ up∗−p
n

]
yp−1
n hdz

for all h ∈ W 1,H(Ω) and for all n ∈ N. Hence, since 0 < un(z) ≤ δ, we deduce that∫
Ω

|∇yn|p−2∇yn · ∇hdz

+

∫
Ω

∥un∥q(z)−p
1,H µ(z)|∇yn|q(z)−2∇yn · ∇hdz

+

∫
∂Ω

β(z)∥un∥p∗−p
1,H |yn|p∗−2yn · hdσ

=

∫
Ω

[
f(z, un)

up−1
n

+ up∗−p
n

]
yp−1
n hdz

(3.16)

for all h ∈ W 1,H(Ω). Note that the left-hand side in (3.16) is bounded for all
h ∈ W 1,H(Ω). From this, using hypothesis (H2)(iii), we infer

y = 0 and
f(z, un)

up−1
n

yp−1
n → 0 for a.a. z ∈ Ω.

Furthermore, if we choose h = yn in (3.16) and we pass to limit as n → +∞, we
obtain

lim
n→+∞

∫
Ω

|∇yn|p = 0.

This guarantees, at least for a subsequence, that ∇yn(z) → 0 for a.a. z ∈ Ω.
Hence, we infer that H(z,∇yn) → 0 for a.a. z ∈ Ω. Taking into account that
{H(·,∇yn)}n∈N ⊂ L1(Ω) is uniformly integrable, by Vitali’s convergence theorem,
we get that

ρH(∇yn) → 0 in W 1,H(Ω)

as n → +∞, which by Proposition 2.1(iv) implies that

∥∇yn∥H → 0 as n → +∞.

Finally, we recall that ∥yn∥1,H = ∥∇yn∥H + ∥yn∥H = 1 for all n ∈ N. Then, we
have

lim
n→+∞

∥yn∥1,H = lim
n→+∞

(∥∇yn∥H + ∥yn∥H)

= lim
n→+∞

∥∇yn∥H + lim
n→+∞

∥yn∥H

= lim
n→+∞

∥yn∥H = 1.

Also, as the embedding Lq(·)(Ω) ↪→ LH(Ω) is continuous (see Proposition 2.1(v)),
we know that ∥yn∥H ≤ e∥yn∥q(·) for some e > 0. Next, taking into account that

yn → 0 in Lq(·)(Ω), we have that ∥yn∥q(·) → 0. Then, we get a contradiction. This
allows to conclude that u∗ ̸= 0. Therefore, u∗ ∈ S+ and u∗ is the smallest positive
solution in S+. □
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4. Proof of Theorem 1.2

In this section we prove our main result, namely Theorem 1.2. To be more
precise, we prove the existence of a sequence of nodal (that is, sign changing)
solutions for problem (1.1). Furthermore, we are going to show that such a sequence
converges to 0 in W 1,H(Ω) and in L∞(Ω).

For this purpose, we start by the extremal constant sign solutions u∗ and v∗
determinated in Proposition 3.3. Our aim is to focus on the order interval

[v∗, u∗] :=
{
u ∈ W 1,H(Ω) : v∗(z) ≤ u(z) ≤ u∗(z) for a.a. z ∈ Ω

}
.

Therefore, we use truncations of k(z, ·) at v∗(z) and u∗(z) in order to introduce a
new C1-functional Ψ∗. Thus, let k∗ : Ω × R → R be the truncation function given
by

k∗(z, x) :=


k(z, v∗(z)) if x < v∗(z),

k(z, x) if v∗(z) ≤ x ≤ u∗(z),

k(z, u∗(z)) if u∗(z) < x.

(4.1)

Then, we consider the C1-functional Ψ∗ : W
1,H(Ω) → R defined by

Ψ∗(u) =

∫
Ω

[
1

p
|∇u|p + 1

q(z)
µ(z)|∇u|q(z)

]
dz

+

∫
∂Ω

1

p∗
β(z)|u|p∗ dσ −

∫
Ω

K∗(z, u) dz,

for all u ∈ W 1,H(Ω), where K∗(z, x) =
∫ x

0
k∗(z, s) ds.

As a first step, we observe that KΨ∗ = {u ∈ W 1,H(Ω) : (Ψ∗)
′(u) = 0} is

contained in the order interval [v∗, u∗]. So, let u ∈ KΨ∗ \ {u∗, v∗}, then we know
that ∫

Ω

(
|∇u|p−2∇u+ µ(z)|∇u|q(z)−2∇u

)
· ∇hdz

+

∫
∂Ω

β(z)|u|p∗−2uhdσ =

∫
Ω

k∗(z, u)hdz

(4.2)

for all h ∈ W 1,H(Ω). If we take h = (u− u∗)+ in (4.2) we have∫
Ω

(
|∇u|p−2∇u+ µ(z)|∇u|q(z)−2∇u

)
· ∇(u− u∗)+ dz

+

∫
∂Ω

β(z)|u|p∗−2u · (u− u∗)+ dσ

=

∫
Ω

k∗(z, u)(u− u∗)+ dz

=

∫
Ω

k(z, u∗)(u− u∗)+ dz

=

∫
Ω

(
|∇u∗|p−2∇u∗ + µ(z)|∇u∗|q(z)−2∇u∗

)
· ∇(u− u∗)+ dz

+

∫
∂Ω

β(z)|u∗|p∗−2u∗ · (u− u∗)+ dσ

since u∗ ∈ S+. It follows that∫
Ω

(
|∇u|p−2∇u− |∇u∗|p−2∇u∗

)
· ∇(u− u∗)+ dz
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+

∫
Ω

µ(z)
(
|∇u|q(z)−2∇u− |∇u∗|q(z)−2∇u∗

)
· ∇(u− u∗)+ dz

+

∫
∂Ω

β(z)
(
|u|p∗−2u− |u∗|p∗−2u∗

)
· (u− u∗)+ dσ = 0.

Now, taking into account that β(z) ≥ 0 for a.a. z ∈ ∂Ω, we may conclude that
u ≤ u∗. Arguing in a similar way but choosing h = (v∗ − u)+ in (4.2), we get that
v∗ ≤ u.

Let V ⊆ W 1,H(Ω) ∩ L∞(Ω) be a finite dimensional subspace. For v ∈ V we put

{v < v∗} := {z ∈ Ω : v(z) < v∗(z)},
{v∗ ≤ v ≤ u∗} := {z ∈ Ω : v∗(z) ≤ v(z) ≤ u∗(z)},

{u∗ < v} := {z ∈ Ω : u∗(z) < v(z)}.

Next, we establish the following result.

Proposition 4.1. Let hypotheses (H1) and (H2) be satisfied. Then, we can find
rV > 0 such that

sup[Ψ∗(v) : v ∈ V, ∥v∥1,H = rV ] < 0.

Proof. Recall that V is a finite dimensional space and thus we know that all the
norms on V are equivalent, see for example Papageorgiou-Winkert [36, Proposition
3.1.17, p.183]. This guarantees that we can find rV > 0 such that

v ∈ V and ∥v∥1,H ≤ rV imply |v(z)| ≤ δ for a. a. z ∈ Ω

with δ ∈
(
0,min{η0

2 , 1}
)
. Since δ ≤ η0

2 , by (3.6) we know that θ(v(z)) = 1 for
a.a. z ∈ Ω. Consequently, for v ∈ V with ∥v∥1,H ≤ rV , we have

k∗(z, v(z)) =


f(z, v∗(z)) + |v∗(z)|p

∗−2v∗(z) if v(z) < v∗(z),

f(z, v(z)) + |v(z)|p∗−2v(z) if v∗(z) ≤ v(z) ≤ u∗(z),

f(z, u∗(z)) + |u∗(z)|p
∗−2u∗(z) if u∗(z) < v(z).

Now, we consider the function f∗ : Ω× R → R given by

f∗(z, v(z)) =


f(z, v∗(z)) if v(z) < v∗(z),

f(z, v(z)) if v∗(z) ≤ v(z) ≤ u∗(z),

f(z, u∗(z)) if u∗(z) < v(z)

and we put F∗(z, v) :=
∫ v

0
f∗(z, s) ds. For v < v∗ we know

F∗(z, v) =

∫ v∗

0

f∗(z, s) ds+

∫ v

v∗

f∗(z, s) ds

=

∫ v∗

0

f(z, s) ds+

∫ v

v∗

f(z, v∗) ds

= F (z, v∗) + f(z, v∗)(v − v∗).

Note that f(z, v∗) is negative, see Remark 1.1, then f(z, v∗)(v−v∗) > 0. From this,
we deduce that

F (z, v)− F∗(z, v) = [F (z, v)− F (z, v∗)] + f(z, v∗)(v∗ − v)

≤ [F (z, v)− F (z, v∗)],
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where F (z, v) :=
∫ v

0
f(z, s) ds. Likewise, for u∗ < v we have

F∗(z, v) = F (z, u∗) + f(z, u∗)(v − u∗),

which gives

F (z, v)− F∗(z, v) = [F (z, v)− F (z, u∗)] + f(z, u∗)(u∗ − v)

≤ [F (z, v)− F (z, u∗)],

since f(z, u∗)(u∗ − v) < 0, see Remark 1.1.
Consequently, we infer that

Ψ∗(v) =

∫
Ω

[
1

p
|∇v|p + 1

q(z)
µ(z)|∇v|q(z)

]
dz

+

∫
∂Ω

1

p∗
β(z)|v|p∗ dσ −

∫
Ω

K∗(z, v) dz

≤ 1

p

∫
Ω

|∇v|p dz + 1

q−

∫
Ω

µ(z)|∇v|q(z) dz + 1

p∗

∫
∂Ω

β(z)|v|p∗ dσ

−
∫
{v<v∗}

[
F∗(z, v) +

1

p∗
|v∗|p

∗
]
dz −

∫
{v∗≤v≤u∗}

[
F (z, v) +

1

p∗
|v|p

∗
]
dz

−
∫
{u∗<v}

[
F∗(z, v) +

1

p∗
|u∗|p

∗
]
dz

≤ 1

p

∫
Ω

|∇v|p dz + 1

q−

∫
Ω

µ(z)|∇v|q(z) dz + 1

p∗

∫
∂Ω

β(z)|v|p∗ dσ

−
∫
{v<v∗}

F∗(z, v) dz −
∫
{v∗≤v≤u∗}

F (z, v) dz −
∫
{u∗<v}

F∗(z, v) dz

where we used that
1

p∗
|v∗|p

∗
,

1

p∗
|v|p

∗
and

1

p∗
|u∗|p

∗

are positive. We can further write

Ψ∗(v) ≤
1

p

∫
Ω

|∇v|p dz + 1

q−

∫
Ω

µ(z)|∇v|q(z) dz + 1

p∗

∫
∂Ω

β(z)|v|p∗ dσ

−
∫
Ω

F (z, v) dz +

∫
{v<v∗}

[F (z, v)− F∗(z, v)] dz

+

∫
{u∗<v}

[F (z, v)− F∗(z, v)] dz

≤ 1

p

∫
Ω

|∇v|p dz +
1

q−

∫
Ω

µ(z)|∇v|q(z) dz +
1

p∗

∫
∂Ω

β(z)|v|p∗ dσ

−
∫
Ω

F (z, v) dz +

∫
{v<v∗}

[F (z, v)− F (z, v∗)] dz

+

∫
{u∗<v}

[F (z, v)− F (z, u∗)] dz.

Next, we recall that f is odd and thus by hypothesis (H2)(iii) we know that for
each η > 0 it is possible to find δ ∈

(
0,min{η0

2 , 1}
)
such that

F (z, x) ≥ η

p
|x|p for all |x| ≤ δ.
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Then, if we take rV small so that∫
{v<v∗}

[F (z, v)− F (z, v∗)] dz +

∫
{u∗<v}

[F (z, v)− F (z, u∗)] dz < δp,

we obtain

Ψ∗(v) ≤
1

p

∫
Ω

|∇v|pd z + 1

q−

∫
Ω

µ(z)|∇v|q(z) dz

+
1

p∗

∫
∂Ω

β(z)|v|p∗ dσ − η

p

∫
Ω

|v|p dz + δp.

Now, taking into account that ∥v∥1,H = ∥∇v∥H + ∥v∥H, by Proposition 2.1(ii),
(iii) we know that∫

Ω

µ(z)|∇v|q(z) dz ≤ ρH(∇v) ≤ max{∥∇v∥pH, ∥∇v∥q
+

H }

≤ max{∥v∥p1,H, ∥v∥q
+

1,H}.

In addition, we recall that LH(Ω) ↪→ Lp(Ω) is continuous, see Proposition 2.2(i).
Then, for some ê > 0 we have ∥∇v∥p ≤ ê ∥∇v∥H which gives ∥∇v∥p ≤ ê ∥v∥1,H.

Finally, we recall that V is finite dimensional and thus all the norms on V are
equivalent. On account of this, we find positive constants c1, c2, c3, c4, independent
of δ, such that

Ψ∗(v) ≤ c1∥v∥p∞ + c2 max
{
∥v∥p∞, ∥v∥q

+

∞

}
+ c3∥v∥p∗

∞ − η c4∥v∥p∞ + δp.

Thanks to the equivalence of the norms on V , for v ∈ V with ∥v∥1,H = rV we
deduce that

Ψ∗(v) ≤ c1δ
p + c2 max{δp, δq

+

}+ c3δ
p∗ − η c4δ

p + δp

≤ (c1 + c2 + c3 − η c4 + 1) δp

as δ < 1 and p < p∗. Next, since η is arbitrary, we can choose η > c1+c2+c3+1
c4

in
order to get

Ψ∗(v) < 0 for all v ∈ V with ∥v∥1,H = rV ,

which gives the claim. □

Now we can give the proof of Theorem 1.2. In order to prove it, we use a
generalized version of the symmetric mountain pass theorem due to Kajikiya, see
[24, Theorem 1].

Proof of Theorem 1.2. With view to the definition of the truncation function k∗ : Ω×
R → R given in (4.1), we easily deduce that Ψ∗ : W

1,H(Ω) → R is even and co-
ercive. This guarantees that Ψ∗ : W

1,H(Ω) → R is bounded from below. More-
over, we know that Ψ∗ : W

1,H(Ω) → R satisfies the Palais-Smale condition, see
Papageorgiou-Radulescu-Repovs [32, Proposition 5.1.15]. According to this and
thanks to Proposition 4.1, we can apply Theorem 1 of Kajikiya [24] which gives
the existence of a sequence {wn}n∈N ⊆ W 1,H(Ω) ∩ L∞(Ω) satisfying the following
properties

wn ∈ KΨ∗ ⊆ [v∗, u∗], wn ̸= 0, Ψ∗(wn) ≤ 0 for all n ∈ N
and

∥wn∥1,H → 0 as n → +∞.
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Recall that v∗ and u∗ are the extremal constant sign solutions for problem (3.8).
Therefore, as wn ∈ KΨ∗ ⊆ [v∗, u∗] and wn ̸= 0 for all n ∈ N, we infer that wn is
a nodal solution of problem (3.8) for all n ∈ N. Also, arguing as in the proof of
Proposition 3.3 we obtain

∥wn∥∞ ≤ d ∥wn∥
τ−1
p−1

s(τ−1)

for some d > 0 and for all n ∈ N with s > N−1
p as well as s(τ − 1) < p∗. Hence,

due to ∥wn∥1,H → 0, we derive that ∥wn∥∞ → 0 as n → +∞. Then, we can find
n0 ∈ N such that |wn(z)| ≤ η0

2 for a.a. z ∈ Ω and for all n ≥ n0. Hence, we have

θ(wn(z)) = 1 for a.a. z ∈ Ω and for all n ≥ n0.

Therefore, with view to (4.1) and (3.5), we conclude that wn is a sign changing
solution of problem (1.1) for all n > n0. □
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Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst. 37 (2017),

no. 5, 2589–2618.
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