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Abstract. This paper concerns the existence and multiplicity of solutions for a nonlinear Schrö-
dinger-Kirchhoff type equation involving the fractional p-Laplace operator in RN . Precisely, we

study the Kirchhoff-type problem(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)
(−∆)sp u+ V (x)|u|p−2u = f(x, u) in RN ,

where a, b > 0, (−∆)sp is the fractional p-Laplacian with 0 < s < 1 < p < N
s
, V : RN → R and

f : RN × R → R are continuous functions while V can have negative values and f fulfills suitable

growth assumptions. According to the interaction between the attenuation of the potential at infinity

and the behavior of the nonlinear term at the origin, using a penalization argument along with L∞-
estimates and variational methods, we prove the existence of a positive solution. In addition, we also

establish the existence of infinitely many solutions provided the nonlinear term is odd.

1. Introduction and main results

In this article, we consider the following fractional p-Laplacian Kirchhoff-type elliptic problem
(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)
(−∆)

s
p u+ V (x)|u|p−2u = f(x, u) in RN ,

u ∈W s,p(RN ),

(1.1)

where a, b > 0, p ∈ (1,∞), s ∈ (0, 1), N > sp, V is a continuous function which may vanishing at
infinity and f is a continuous function verifying suitable growth assumptions. Here, (−∆)sp is the
fractional p-Laplacian operator, which (up to normalization factors) is defined by

(−∆)spu(x) = 2 lim
δ→0+

∫
RN\Bδ(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN ,

for any u ∈ C∞
0 (RN ), where Bδ(x) denotes the ball in RN centered at x with radius δ.

In recent years, there has been a surge of interest in the study of partial differential equations
involving nonlocal fractional Laplace operators. This type of nonlocal operator comes up naturally in
the real world in many different applications, such as phase transitions, game theory, finance, image
processing, Lévy processes, and optimization; see, for example the works of Applebaum [16], Di Nezza-
Palatucci-Valdinoci [26] and their references for more details.

In the case a = 1, b = 0 and p = 2, (1.1) becomes the fractional Laplacian equation of the type

(−∆)su+ V (x)u = f(x, u) in RN , (1.2)

which can be seen as the fractional form of the following classical stationary Schrödinger equation

−∆u+ V (x)u = f(x, u) in RN . (1.3)

During the last years, equations (1.2) and (1.3) have been widely considered. Indeed, by using appro-
priate techniques and assuming different conditions of the potential V and the nonlinearity f , several
existence, multiplicity, and concentration results of equations (1.2) and (1.3) have been established.
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We refer to Alves-Miyagaki [3], Ambrosio [10, 11, 12], Figueiredo-Siciliano [28], Li-Sun-Tersian [33]
and Willem [47], see also the references therein.

In the case s = 1 and p = 2, (1.1) turns into the classical Kirchhoff-type equation of the form

−
(
a+ b

∫
RN

|∇u|2 dx
)
∆u+ V (x)u = f(x, u) in RN , (1.4)

which was proposed by Kirchhoff [32] as a generalization of the well-known d’Alembert’s wave equation

ρutt −

(
p0
h

+
E

2L

∫ L

0

|ux|2 dx

)
uxx = f(x, u),

for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in the length
of the string produced by transverse vibrations. Here, L is the length of the string, h is the area
of the cross-section, E is the Young modulus of the material, ρ is the mass density, and p0 is the
initial tension. In Alves-Corrêa-Ma [1], it was pointed out that problem (1.4) models several physical
systems, in which u described a process dependent on its own average value. Nonlocal effects also
have applications in biological systems. In fact, the parabolic version of the equation can be used
to describe the growth and movement of specific species. The motion modeled by the integral term
is assumed to depend on the energy of the whole system, where u is its population density. Some
interesting results concerning (1.4) can be found in Arosio-Panizzi [19] or D’Ancona-Spagnolo [23].
Since Lions’ work [36], problem (1.4) began to attract the attention of several mathematicians, we
refer to the papers of Chen-Li [22], He-Zou [31], Perera-Zhang [40], Sun-Li-Cencelj-Gabrovšek [45] and
the references therein.

On the other hand, the study of fractional p-Kirchhoff problems has attracted considerable attention.
Pucci-Xiang-Zhang [42] dealt with a nonhomogeneous fractional p-Laplacian Kirchhoff-Schrödinger
equation given by

M

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)
(−∆)spu+ V (x)|u|p−2u = f(x, u) + g(x) in RN ,

where the potential V satisfies a Bartsch-Wang type condition. In [51], Xiang-Zhang-Ferrara studied
the existence of two solutions for a nonhomogeneous fractional p-Kirchhoff problem, where the nonlin-
earity is convex-concave. In [21], Caponi-Pucci dealt with the existence, multiplicity, and asymptotic
behavior of entire solutions for a series of stationary Kirchhoff fractional p-Laplacian equations. Sub-
sequently, Liang-Rădulescu applied Kajikiya’s new version of the symmetric mountain pass lemma to
study a class of fractional p-Kirchhoff type Schrödinger-Choquard equations in [35]. In [29], Fiscella-
Pucci obtained the existence and the asymptotic behavior of nontrivial solutions for stationary frac-
tional p-Laplacian Kirchhoff equations involving a Hardy potential and different critical nonlinearities.
In [52], Xiang-Zhang-Rădulescu obtained a multiplicity result for a fractional p-Kirchhoff system driven
by a nonlocal integro-differential operator with zero Dirichlet boundary data. Moreover, Liang-Molica
Bisci-Zhang [34] studied the multiplicity of solutions of a class of noncooperative critical fractional
p-Laplacian elliptic system with homogeneous Dirichlet boundary conditions by using the Limit In-
dex Theory and the fractional version of the concentration compactness principle. The existence and
multiplicity of solutions for a critical fractional p-Kirchhoff type problem involving discontinuous non-
linearity has been obtained by Xiang-Zhang [50] while Ambrosio-Isernia-Rădulescu [14] discussed the
concentration of positive solutions for fractional p-Kirchhoff type problems given in the form

(
εspa+ ε2sp−3b[u]pW s,p(R3)

)
(−∆)spu+ V (x)up−1 = f(u) in R3,

u ∈W s,p(R3), u > 0 in R3,

where ε is a small positive parameter and a, b > 0. Another interesting work has been done by
Thin-Xiang-Zhang [46] who studied the existence of solutions for critical Schrödinger-Kirchhoff type
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fractional p-Laplacian problems with potential vanishing at infinity defined by

M

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy +

∫
RN

V (x)|u(x)|p dx
)(

(−∆)
s
p u(x) + V (x)|u|p−2u

)
= K(x)

(
λf(x, u) + |u|p

∗
s−2u

)
,

where p∗s = Np/(N − ps), M,K, V are nonnegative continuous functions satisfying suitable condi-
tions and λ > 0 is a real parameter. Very recently, Lv-Zheng [37, 38], studied critical fractional
p-Kirchhoff equations involving competitive nonlinearities or logarithmic nonlinearity while Xiong-
Chen-Chen-Sun [54] considered concave-convex fractional p-Kirchhoff type elliptic equation with steep
well potential. Finally, other interesting results in this direction can be found in the papers of Am-
brosio [9], Ambrosio-Isernia [13], Ambrosio-Servadei [15], Arora-Fiscella-Mukherjee-Winkert [17, 18],
Fiscella-Pucci [30], Nyamoradi-Zaidan [39], Pucci-Xiang-Zhang [41], Song-Shi [44], Xiang-Molica Bisci-
Tian-Zhang [48], Xiang-Zhang-Rădulescu [49] and Xiang-Zhang-Rădulescu [53]. However, in the above
works, the potential V is always non-negative, that is,

inf
x∈RN

V (x) ≥ V (x0) ≥ 0,

where V (x0) ≥ 0 is a constant.
In the past two decades, many studies have focused on the potential that can vanish at infinity,

that is, V (x) → 0 as |x| → ∞, or shortly, V∞ = 0. We refer the reader to Alves-Figueiredo-Yang [2],
Alves-Souto [4], Ambrosetti-Felli-Malchiodi [5], Ambrosetti-Malchiodi-Ruiz [6], Ambrosetti-Wang [8],
de B. Silva-Soares [24], and references therein. It is worth mentioning that a penalization technique
and corresponding L∞-estimates have been applied. It should also be emphasized that the existence
result shows the interplay between the behavior of the nonlinear term at the origin and the decay of the
potential at infinity. A key factor in establishing this relationship is the result of the L∞-estimates for
the penalized problem, which does not depend on the behavior of the nonlinear term near the origin.

Motivated by the papers of Alves-Souto [4], de B. Silva-Soares [24] and Ambrosio-Isernia-Rădulescu
[14] as well as due to the large interest shared by the mathematical community on fractional p-Laplacian
problems, we study the existence and multiplicity of solutions to problem (1.1) where the potential
V may assume negative values. Along the paper, we always assume f and V satisfy the following
assumptions:

(f1) f : RN × R → R is a continuous function and there exists ϑ > p such that

lim sup
z→0

∣∣∣∣zf(x, z)zϑ

∣∣∣∣ < +∞ uniformly for all x ∈ RN ;

(f2) There exist a1, a2 > 0 and q ∈ (p, p∗s) with p
∗
s = Np

N−sp such that

|f(x, z)| ≤ a1|z|q−1 + a2 for all (x, z) ∈ RN × R;

(f3) There exist θ > 2p and S0 ≥ 0 such that

zf(x, z) ≥ θF (x, z) > 0 for all |z| ≥ S0 and for all x ∈ RN ,

where F (x, z) :=
∫ z

0
f(x, t) dt;

(V1) V : RN → R is a continuous function and either V ≥ 0 in RN and satisfies

V (x) ≤ V∞ for all x ∈ Br0(x0) (1.5)

for some V∞, r0 > 0 and x0 ∈ RN or

Ω :=
{
x ∈ RN : V (x) < 0

}
is a nonempty bounded set and infΩ V > − S

|Ω|
sp
N
, where S > 0 is the best constant for the

embedding W s,p(RN ) into Lp∗
s (RN );
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(V2) There are constants Λ > 0 and R > 0(R > |x0| + r0, for r0 > 0 and x0 ∈ RN given by (1.5),
if V ≥ 0) such that

inf
|x|≥R

|x|
(N−sp)(ϑ−p)

p−1 V (x) ≥ Λ,

with ϑ > p given by (f1).

Now, we state our first main result of this work:

Theorem 1.1. Suppose hypotheses (V1)–(V2) and (f1)–(f3) hold. Then there exists a constant Λ∗ > 0
such that (1.1) has a positive solution for every Λ ≥ Λ∗.

Note that Λ∗ given in Theorem 1.1 depends on the radius R > 0 given in condition (V2). In
particular, when the condition (f3) holds with S0 = 0, and V satisfies the following version of (V2):

(V3) There are constants Λ > 0 and R > 0(R > |x0| + r0, for r0 > 0 and x0 ∈ RN given by (1.5),
if V ≥ 0) such that

1

R
(N−sp)(ϑ−p)

p−1

inf
|x|≥R

|x|
(N−sp)(ϑ−p)

p−1 V (x) ≥ Λ,

where ϑ > p given by (f1).

Now, we state the second result of this paper:

Theorem 1.2. Suppose hypotheses (V1), (V3), (f1)–(f2), and (f3) with S0 = 0 hold. Then there exists

Λ̃∗ > 0 such that (1.1) has a positive solution for every Λ ≥ Λ̃∗.

To strengthen the interaction between the theoretical behavior of the nonlinear term and the decay
of the potential, by conditions (f1) and (V2), we give a result in which the function f approaches zero
at the origin: Assume that f and V satisfy

(f̂1) There are constants ϑ, ς > 0 such that

lim sup
z→0

|f(x, z)|e(ς/|z|
ϑ) < +∞ uniformly in RN ;

(V4) There are constants Λ > 0, µ > 0 and R > 0 (R > |x0|+ r0, for r0 > 0 and x0 ∈ RN given by
(1.5), if V ≥ 0) such that

inf
|x|≥R

eµ|x|
(N−sp)ϑ

p−1
V (x) ≥ Λ,

where ϑ given by (f̂1).

We can state the following result.

Theorem 1.3. Suppose hypotheses (V1), (V4), (f̂1) and (f2)–(f3) hold. Then there exist constants
Λ∗, µ∗ > 0 such that (1.1) has a positive solution for every Λ ≥ Λ∗ and 0 < µ ≤ µ∗.

Similar to Theorem 1.3, if (f3) holds with S0 = 0 and V satisfies

(V5) There are constants Λ > 0, µ > 0 and R > 0 (R > |x0|+ r0 , for r0 > 0 and x0 ∈ RN given by
(1.5), if V ≥ 0) such that

inf
|x|≥R

eµ(
|x|
R )

(N−sp)ϑ
p−1

V (x) ≥ Λ,

with ϑ given by (f̂1).

Then we may take Λ̂∗ > 0, which does not depend on R, such that problem (1.1) has a positive solution

for each Λ > Λ̂∗. More precisely, using the arguments employed in the proof of Theorem 1.3, we also
have the following Theorem.

Theorem 1.4. Suppose hypotheses (V1), (V5), (f̂1), (f2) and (f3) with S0 = 0 hold. Then there are

constants Λ̂∗, µ̂∗ > 0 such that (1.1) has a positive solution for every Λ ≥ Λ̂∗ and 0 < µ ≤ µ̂∗.
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Remark that, under the above hypotheses, we may actually obtain solutions u+ and u− of problem
(1.1) with u+ > 0 and u− < 0 in RN . Suppose now f is odd with respect to the second variable, that
is

(f6) f(x,−z) = −f(x, z), for every (x, z) ∈ RN × R.
Then we may use a version of the penalization technique and a minimax critical point theorem for
functional with symmetry to get the subsequent results.

Theorem 1.5. Suppose hypotheses (V1)–(V2), (f1)–(f3) and (f6) hold. Then there exists constant
Λ∗ > 0 such that (1.1) has infinitely many nontrivial solutions for every Λ ≥ Λ∗.

Theorem 1.6. Suppose hypotheses (V1), (V3), (f1)–(f2), (f6) and (f3) with S0 = 0 hold. Then there

exists Λ̃∗ > 0 such that (1.1) has infinitely many nontrivial solutions for every Λ ≥ Λ̃∗.

Theorem 1.7. Suppose hypotheses (V1), (V4), (f̂1) and (f2)–(f6) hold. Then, there exist constants
Λ∗, µ∗ > 0 such that (1.1) has infinitely many nontrivial solutions for every Λ ≥ Λ∗ and 0 < µ ≤ µ∗.

Theorem 1.8. Suppose hypotheses (V1), (V5), (f̂1), (f2), (f6) and (f3) with S0 = 0 hold. Then there

are constants Λ̂∗, µ̂∗ > 0 such that (1.1) has a positive solution for every Λ ≥ Λ̂∗ and 0 < µ ≤ µ̂∗.

We know that (f3) is the classical (AR) condition, and it only considers the case θ > 2p. When
p < θ ≤ 2p, we can obtain a similar existence result considering the following hypothesis:

(f̃3) There exist p < θ ≤ 2p and S0 ≥ 0 such that

zf(x, z) ≥ θF (x, z) > 0 for every |z| ≥ S0, x ∈ RN ,

where F (x, z) :=
∫ z

0
f(x, t) dt.

Then, we have the following Theorem.

Theorem 1.9. Suppose hypotheses (V1)–(V2), (f1)–(f2) and (f̃3) hold. Then there exist b∗ > 0 and
Λ∗ > 0 such that (1.1) has a positive solution for every b ∈ (0, b∗) and Λ ≥ Λ∗.

It is not difficult to verify that, as a direct consequence of Theorem 1.9, versions of Theorems 1.2-1.4

hold under (f̃3):

Theorem 1.10. Suppose hypotheses (V1), (V3), (f1)–(f2), and (f̃3) with S0 = 0 hold. Then there

exist b∗ > 0 and Λ̃∗ > 0 such that (1.1) has a positive solution for every b ∈ (0, b∗) and Λ ≥ Λ̃∗.

Theorem 1.11. Suppose hypotheses (V1), (V4), (f̂1), (f2) and (f̃3) hold. Then there exist constants
b∗ > 0, Λ∗ and µ∗ > 0 such that (1.1) has a positive solution for every b ∈ (0, b∗), Λ ≥ Λ∗ and
0 < µ ≤ µ∗.

Theorem 1.12. Suppose hypotheses (V1), (V5), (f̂1), (f2) and (f̃3) with S0 = 0 hold. Then there

are constants b∗ > 0, Λ̂∗ > 0 and µ̂∗ > 0 such that (1.1) has a positive solution for every b ∈ (0, b∗),

Λ ≥ Λ̂∗ and 0 < µ ≤ µ̂∗.

Remark 1.13. The paper by de B. Silva-Soares [24] established the same conclusions for a semilinear
elliptic problem involving the Laplacian operator. More precisely, they considered only the case a = 1,
b = 0, p = 2 and s→ 1−. Obviously, our results are more general than those of [24].

Remark 1.14. By the subcritical and Kirchhoff problem, we will use the following techniques:

(i) In order to prove Theorems 1.1-1.4, we use the penalization argument explored by Alves-Souto
[4], which consists of a modification of the original problem such that f to be controlled by a
function at infinity.

(ii) Next, we use the Fountain Theorem to obtain the multiplicity of solutions.
(iii) When p < θ ≤ 2p, the mountain pass geometry and the boundedness of the (PS)c- or (C)c-

sequence {un}n∈N is very difficult to prove by a standard argument. In order to show Theorem
1.9, we also use the truncation technique in Zhang-Du [55] to prove the boundedness of (C)c-
sequences and later we prove that every (C)c-sequence contains a convergent subsequence.
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This paper is organized as follows. In Section 2, we give a detailed description of the properties
of the function space defined by the energy functional. In Section 3, considering the case θ > 2p,
we introduce the version of the penalization argument used for proving our results and establish the
existence of a positive solution for the penalized problem. Then we present an estimate for the L∞

norm for the solution to the modified problem. Finally, we obtain the positive solution of the original
problem and the multiplicity of the solutions. In Section 4, when p < θ ≤ 2p, we provide the proof of
Theorem 1.9.

2. Preliminaries

In this section, let us first recall some basic results related to the fractional Sobolev spaces. Let
u : RN → R be a measurable function. We say that u belongs to the space W s,p(RN ) if and only if
u ∈ Lp(RN ) and

[u]p
W s,p(RN )

:=

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy <∞.

The space W s,p(RN ) is a Banach space endowed with the following norm

∥u∥W s,p(RN ) =
[
|u|p

Lp(RN )
+ [u]p

W s,p(RN )

] 1
p

.

Moreover Lt(RN ) denotes the Lebesgue space with norm |u|Lt(RN ) =
(∫

RN |u|t dx
) 1

t for 1 ≤ t < ∞.

Then, W s,p(RN ) ↪→ Lt(RN ) is continuous for any t ∈ [p, p∗s], that is, there exists a positive constant
C∗ such that

|u|Lt(RN ) ≤ C∗∥u∥W s,p(RN ) for all u ∈W s,p(RN ). (2.1)

For detailed properties of W s,p(RN ), we refer the reader to the work of Di Nezza-Palatucci-Valdinoci
[26].

Now let E be the subspace of W s,p(RN ) defined by

E =

{
u ∈W s,p(RN ) :

∫
RN

V (x)|u|p dx <∞
}
.

Under the hypothesis (V1), we can introduce a new norm ∥ · ∥ on E given by

∥u∥ = ∥u∥E(RN ) :=

[
a[u]p

W s,p(RN )
+

∫
RN

V (x)|u|p dx
] 1

p

.

Lemma 2.1. Let s ∈ (0, 1) and p ∈ (1,∞) be such that N > sp. Under the hypothesis (V1), the
embedding E ↪→W s,p(RN ) is continuous in such a way that E is a Banach space that is continuously
embedded into Lt(RN ) for all t ∈ [p, p∗s]. In particular, there exists a constant Ct > 0 such that

|u|Lt(RN ) ≤ Ct∥u∥ for all u ∈ E.

If t ∈ [1, p∗s), then the embedding E ↪→↪→ Lt(BR) is compact for any R > 0.

Proof. Since the result is trivially verified if V ≥ 0 in RN , it suffices to suppose that Ω ̸= ∅. Given
u ∈W s,p(RN ), we may use Hölder’s inequality and the estimate |u|p

Lp∗s (Ω)
≤ S−1[u]p

W s,p(RN )
to get∫

Ω

|u|p dx ≤
(∫

Ω

|u|p
∗
s dx

) p
p∗s
(∫

Ω

1
N
sp dx

) sp
N

= |Ω|
sp
N |u|p

Lp∗s (Ω)

≤ |Ω|
sp
N

S
[u]p

W s,p(RN )
.

(2.2)

From (V1), there is α > 0 such that

inf
x∈Ω

V (x) ≥ −α > − S
|Ω| spN

. (2.3)
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Then, we may invoke (2.2) to obtain

a[u]p
W s,p(RN )

+

∫
RN

V (x)|u|p dx ≥
(
a− α|Ω|

sp
N

S

)
[u]p

W s,p(RN )
> 0.

Consequently, the first part follows.
Now, fix R > 0 and note that(

∥u∥pLp(BR) +

∫∫
BR×BR

|u(x)− u(y)|p

|x− y|N+ps
dx dy

) 1
p

is an equivalent norm on W s,p(BR) and the embedding E ↪→ W s,p(BR) is continuous. By Corollary
7.2 of Di Nezza-Palatucci-Valdinoci [26], the embedding W s,p (BR) ↪→↪→ Lt(BR) is compact. Thus,
the embedding E ↪→↪→ Lt(BR) is also compact by the first part of the Lemma. This proves the
assertion. □

Remark 2.2. In this paper we take α = 0 and Ω = ∅ whenever V ≥ 0 in RN . Note that in this setting
the above estimates are satisfied for those values of α and Ω.

The Euler-Lagrange functional associated with (1.1) is given by

Φ(u) =
a

p
[u]p

W s,p(RN )
+

b

2p

(
[u]p

W s,p(RN )

)2
+

1

p

∫
RN

V (x)|u|p dx−
∫
RN

F (x, u) dx for all u ∈ E.

From the conditions on f , it is easy to see that the functional Φ belongs to C1(E,R). Now we give
the definition of solutions for problem (1.1).

Definition 2.3. We say that u ∈ E is a weak solution of equation (1.1), if(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)(∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
(φ(x)− φ(y)) dx dy

)
+

∫
RN

V (x)|u|p−2uφdx =

∫
RN

f(x, u)φdx,

holds for any φ ∈ E.

Moreover, since in Theorems 1.1-1.4 we intend to prove the existence of a positive solution, we let
f(x, z) = 0 for every (x, z) ∈ RN × (−∞, 0].

3. The Case: θ > 2p

3.1. The penalized problem. In this section, we adopt a version of the penalization argument
employed in Alves-Souto [4]. To this end, for θ > p and R > 0 given by conditions (f3) and (V2),
respectively, we take k = pθ/(θ − p) and consider, for every (x, z) ∈ RN × (0,∞),

f̃(x, z) =


− 1

kV (x)|z|p−1, if kf(x, z) < −V (x)|z|p−1;

f(x, z) if − V (x)|z|p−1 ≤ kf(x, z) ≤ V (x)|z|p−1;
1
kV (x)|z|p−1, if kf(x, z) > V (x)|z|p−1.

Furthermore set f̃(x, z) = 0 for every (x, z) ∈ RN × (−∞, 0], and define

g(x, z) =

{
f(x, z), for (x, z) ∈ RN × R, |x| ≤ R;

f̃(x, z), for (x, z) ∈ RN × R, |x| > R.

A direct computation shows that g is a Carathéodory function and the following hold
g(x, z) = 0, for (x, z) ∈ RN × (−∞, 0];

g(x, z) = f(x, z), for (x, z) ∈ RN × R, |x| ≤ R;

|g(x, z)| ≤ |f(x, z)|, for (x, z) ∈ RN × R;
|g(x, z)| ≤ 1

kV (x)|z|p−1, for (x, z) ∈ RN × R, |x| > R;

(3.1)
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and {
G(x, z) = F (x, z), for (x, z) ∈ RN × R, |x| ≤ R;

G(x, z) ≤ 1
pkV (x)|z|p, for (x, z) ∈ RN × R, |x| > R;

(3.2)

where G(x, z) :=
∫ z

0
g(x, t) dt.

The auxiliary problem that we will consider is the following one:
(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)
(−∆)

s
p u+ V (x)|u|p−2u = g(x, u) in RN ,

u ∈ E.

(3.3)

Remark 3.1. Observe that any positive solution u of (3.3) that satisfies k|f(x, u)| ≤ V (x)|u|p−1 for
|x| ≥ R is a solution of (1.1).

Due to (3.3), the associated Euler–Lagrange functional I : E → R given by

I(u) = a

p
[u]p

W s,p(RN )
+

b

2p

(
[u]p

W s,p(RN )

)2
+

1

p

∫
RN

V (x)|u|p dx−
∫
RN

G(x, u) dx,

is well defined and of class C1(E,R) and its Gateaux derivative is

I ′(u)v =

(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)
×
(∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
(v(x)− v(y)) dxdy

)
+

∫
RN

V (x)|u|p−2uv dx−
∫
RN

g(x, u)v dx,

(3.4)

for all u, v ∈ E. Therefore, it is easy to see that the solutions of (3.3) correspond to the critical points
of the energy functional I.

Under our assumptions, we can show that functional has the mountain pass geometry.

Lemma 3.2. Suppose V satisfies (V1)–(V2) and f satisfies (f1)–(f3). Then, the following hold:

(1) There exist β, ρ > 0 such that I(u) ≥ β for every u ∈ E such that ∥u∥ = ρ;
(2) There exists a function e ∈ E with ∥u∥ ≥ ρ, such that I(e) < 0.

Proof. The proof for (1) is standard and follows well-known arguments. We give a proof for the case
Ω ̸= ∅. By (V1) and (V2), Ω ⊂ BR(0) and V (x) > 0 for every |x| ≥ R. Note that, by (f1)–(f2), it
follows that for each η > 0, there exists Cη > 0 such that

|F (x, z)| ≤ η|z|p + Cη|z|p
∗
s for every (x, z) ∈ RN × R.

Thus, there are positive constants d1 = d1(R) and d2 = d2(η) such that∫
BR(0)

F (x, u) dx ≤ ηd1∥u∥p + d2∥u∥p
∗
s for all u ∈ E. (3.5)
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Then, combining (2.3) with (3.2), we obtain

I(u) = a

p
[u]p

W s,p(RN )
+

b

2p

(
[u]p

W s,p(RN )

)2
+

1

p

∫
RN

V (x)|u|p dx−
∫
RN

G(x, u) dx

≥ a

p
[u]p

W s,p(RN )
+

1

p

∫
RN

V (x)|u|p dx−
∫
RN

G(x, u) dx

≥ a

p
[u]p

W s,p(RN )
+

1

p

∫
RN

V (x)|u|p dx−
∫
BR(0)

F (x, u) dx− 1

pk

∫
RN\Ω

V (x)|u|p dx

≥ a

p

(
1− α|Ω|

sp
N

aS

)
[u]p

W s,p(RN )
+
k − 1

pk

∫
RN\Ω

V (x)|u|p dx−
∫
BR(0)

F (x, u) dx

≥ d3

(
a[u]p

W s,p(RN )
+

∫
RN

V (x)|u|p dx
)
−
∫
BR(0)

F (x, u) dx

= d3∥u∥p −
∫
BR(0)

F (x, u) dx,

(3.6)

where d3 := min

{
1
p

(
1− α|Ω|

sp
N

aS

)
, k−1

pk

}
. From the above estimates (3.5) and (3.6), one has

I(u) ≥ d3∥u∥p − ηd1∥u∥p − d2∥u∥p
∗
s for every u ∈ E.

Using the above estimate and taking η > 0 sufficiently small, (1) follows by finding appropriated values
of β, ρ > 0.

On the other hand, by hypotheses (V1)–(V2) and taking V∞ = 0, if Ω ̸= ∅, we suppose that
Br0(x0) ⊂ BR(0) and V (x) ≤ V∞, for each x ∈ Br0(x0). Note that, by (f2) and (f3), there exist
constants C1, C2 > 0, depending on r0, such that

F (x, z) ≥ C1|z|θ − C2 for every (x, z) ∈ Br0(x0)× [0,∞). (3.7)

Then, considering a nonnegative function ϕ ∈ E \ {0} such that supp(ϕ) ⊂ Br0(x0), we obtain

I(tϕ) ≤ atp

p
[ϕ]pW s,p(Br0

(x0))
+
bt2p

2p

(
[ϕ]pW s,p(Br0

(x0))

)2
+ tp

∫
Br0

(x0)

V∞|ϕ|p dx−
∫
Br0

(x0)

F (x, tϕ) dx,
(3.8)

for every t ≥ 0. Combining (3.7) with (3.8), we have

I(tϕ) ≤ atp

p
[ϕ]pW s,p(Br0 (x0))

+
bt2p

2p

(
[ϕ]pW s,p(Br0 (x0))

)2
+ tp

∫
Br0

(x0)

V∞|ϕ|p dx

− C1t
θ

∫
Br0

(x0)

|ϕ|θ dx+ C2 |Br0(x0)| ,
(3.9)

which implies that I(tϕ) → −∞ as t→ +∞, since θ > 2p. Hence, taking e = tϕ, with t > 0 sufficiently
large, we have that ∥e∥ > ρ and I(e) < 0. The proof is complete. □

Consequently, using a version of the Mountain Pass Theorem (see Willem [47]), there exists a (PS)c
sequence {un}n∈N ⊂ E such that

I(un) → c and I ′(un) → 0,

where the minimax value c is given by

c := inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

with

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, I(γ(1)) < 0} .

Lemma 3.3. There exist constants β1, β2 > 0, such that β1 ≤ c ≤ β2.
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Proof. Note that by Lemma 3.2, c ≥ β > 0, and we take β1 ∈ (0, β). On the other hand, fix φ ∈ E\{0}.
Then, for all t > 0, as in (3.9) we can get

I(tφ) ≤ atp

p
[φ]pW s,p(Br0 (x0))

+
bt2p

2p

(
[φ]pW s,p(Br0 (x0))

)2
+ tp

∫
Br0

(x0)

V∞|φ|p dx

− C1t
θ

∫
Br0

(x0)

|φ|θ dx+ C2 |Br0(x0)| → −∞,

as t→ +∞. Thus, if β2 =: maxt>0 I(tϕ) > 0, it follows from the definition of c that c ≤ β2. The proof
is complete. □

Lemma 3.4. The sequence {un}n∈N is bounded in E.

Proof. Note that by (f1) and (f3), there exists a positive constant C = C(R) such that

1

θ
f(x, z)z − F (x, z) ≥ −C for every (x, z) ∈ RN × R. (3.10)

Hence, it follows from (3.1), (3.2) and (3.10) that

c+ on(1) = I(un)−
1

θ
I ′(un)un

=

(
a

p
− a

θ

)
[u]p

W s,p(RN )
+

(
b

2p
− b

θ

)(
[u]p

W s,p(RN )

)2
+

(
1

p
− 1

θ

)∫
RN

V (x)|un|p dx+

∫
RN

(
1

θ
g(x, un)un −G(x, un)

)
dx

≥
(
a

p
− a

θ

)
[u]p

W s,p(RN )
+

(
b

2p
− b

θ

)(
[u]p

W s,p(RN )

)2
+

(
1

p
− 1

θ

)∫
RN

V (x)|un|p dx

+

∫
BR(0)

(
1

θ
f(x, un)un − F (x, un)

)
dx

+
p− θ

θpk

∫
RN\BR(0)

V (x)|un|p dx

≥
(
1

p
− 1

θ

)
a[u]p

W s,p(RN )
+

(
b

2p
− b

θ

)(
[u]p

W s,p(RN )

)2
+

(
1

p
− 1

θ

)∫
BR(0)

V (x)|un|p dx

+
(θ − p)(θp− θ + p)

(θp)2

∫
RN\BR(0)

V (x)|un|p dx− C|BR(0)|

≥ K

(
a[u]p

W s,p(RN )
+

∫
RN

V (x)|un|p dx
)
− C|BR(0)|,

where

K = min

{
1

p
− 1

θ
,
(θ − p)(θp− θ + p)

(θp)2

}
> 0.

Consequently, by a > 0 and θ > 2p, we obtain

c+ on(1) ≥ K∥un∥p − C|BR(0)|,
which means that {un}n∈N is bounded in E. □

Remark 3.5. Note that by Lemmas 3.3 and 3.4, there is L > 0 such that ∥un∥ ≤ L for every n.
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By Lemma 3.4, the embeddings of E in W s,p(RN ) and the Sobolev embedding theorem, up to a
subsequence, we may suppose that there exists u ∈ E such that

un ⇀ u weakly in E,

un → u strongly in Lt
loc(RN ), for all t ∈ [1, p∗s),

un(x) → u(x) a.e. x ∈ RN .

(3.11)

Now we give several useful conclusions.

Lemma 3.6. Assume that conditions (f1)–(f3) and (V1)–(V2) hold. Then for any ε > 0, there exists
r = r(ε) > R > 0 such that

(a)

lim sup
n→∞

∫
RN\Br

(
a

∫
RN

|un(x)− un(y)|p

|x− y|N+sp
dy + V (x) |un|p

)
dx < ε; (3.12)

(b)

lim sup
n→∞

∫
Br

V (x)(|un|p−2un − |u|p−2u)(un − u) dx = 0; (3.13)

(c)

un → u strongly in Lt(RN )for all t ∈ [p, p∗s). (3.14)

Proof. First, we consider r > R and a function ψ = ψr ∈ C∞
0 (Bc

r) such that ψ ≡ 0 if x ∈ Br(0),
ψ ≡ 1 if x /∈ B2r(0) with 0 ≤ ψ(x) ≤ 1, and |∇ψ(x)| ≤ C

r , where C is a constant independent of r, for

all x ∈ RN . As {un}n∈N is bounded in E, the sequence {ψun}n∈N is also bounded. This shows that
I ′(un)(ψun) = on(1), namely,(

a+ b[un]
p
W s,p(RN )

)∫∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
ψ(x) dx dy +

∫
RN

V (x)|un|pψ dx

= on(1) +

∫
RN

g(x, un)ψun dx−
(
a+ b[un]

p
W s,p(RN )

)
×
∫∫

R2N

|un(x)− un(y)|p−2 (un(x)− un(y)) (ψ(x)− ψ(y))

|x− y|N+ps
un(y) dxdy.

Then, by the definition of ψ and (3.1), we obtain

a

∫∫
R2N

|un(x)− un(y)|p

|x− y|N+sp
ψ(x) dx dy + (1− 1

k
)

∫
RN

V (x)|un|pψ dx

≤ on(1)−
(
a+ b [un]

p
W s,p(RN )

)
×
∫∫

R2N

|un(x)− un(y)|p−2(un(x)− un(y))(ψ(x)− ψ(y))

|x− y|N+sp
un(y) dx dy.

(3.15)

Due to the boundedness of {un}n∈N in E, we can suppose that a+ b [un]
p
W s,p(RN ) → ℓ ∈ (0,∞). From

Lemma 3.4 and Hölder’s inequality, we get∣∣∣∣∫∫
R2N

|un(x)− un(y)|p−2(un(x)− un(y))(ψ(x)− ψ(y))

|x− y|N+sp
un(y) dxdy

∣∣∣∣
≤ C

(∫∫
R2N

|ψ(x)− ψ(y)|p

|x− y|N+sp
|un(y)|p dx dy

) 1
p

.

(3.16)
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In addition, by the definition of ψ, Lemma 3.4 and the polar coordinates, it follows that∫∫
R2N

|ψ(x)− ψ(y)|p

|x− y|N+sp
|un(x)|p dx dy

=

∫
RN

∫
|y−x|>r

|ψ(x)− ψ(y)|p

|x− y|N+sp
|un(x)|p dx dy

+

∫
RN

∫
|y−x|⩽r

|ψ(x)− ψ(y)|p

|x− y|N+sp
|un(x)|p dx dy

≤ C

∫
RN

|un(x)|p
(∫

|y−x|>r

dy

|x− y|N+sp

)
dx

+
C

rp

∫
RN

|un(x)|p
(∫

|y−x|⩽r

dy

|x− y|N+sp−p

)
dx

≤ C

∫
RN

|un(x)|p
(∫

|z|>r

dz

|z|N+sp

)
dx

+
C

rp

∫
RN

|un(x)|p
(∫

|z|⩽r

dz

|z|N+sp−p

)
dx

≤ C

∫
RN

|un(x)|p dx
(∫ ∞

r

dρ

ρsp+1

)
+
C

rp

∫
RN

|un(x)|p dx
(∫ r

0

dρ

ρsp−p+1

)
≤ C

rsp

∫
RN

|un(x)|p dx+
C

rp
r−sp+p

∫
RN

|un(x)|p dx

≤ C

rsp

∫
RN

|un(x)|p dx

≤ C

rsp
→ 0,

(3.17)

as r → ∞. Using (3.15), (3.16) and (3.17), we conclude that (3.12) is verified.
On the other hand, since un → u in Lt(Br), for all t ∈ [1, p∗s), by Lebesgue’s Dominated Convergence

Theorem, we obtain that

lim
n→∞

∫
Br

V (x)|un|t dx =

∫
Br

V (x)|u|t dx,

which shows that (3.13) holds. The proof of part (b) is finished.
In particular, it follows from (3.12) and Fatou’s lemma that∫

RN\Br

(
a

∫
RN

|un(x)− un(y)|p

|x− y|N+sp
dy + V (x) |un|p

)
dx < ε. (3.18)

For any n large enough, by (3.18), we obtain

|un − u|p
Lp(RN )

= |un − u|pLp(Br)
+ |un − u|p

Lp(RN\Br)

≤ ε+ |un − u|p
Lp(RN\Br)

≤ ε+
1

V0

∫
RN\Br

V (x) |un − u|p dx

≤ ε+ C

∫
RN\Br

(
a

∫
RN

|(un(x)− u(x))− (un(y)− u(y))|p

|x− y|N+sp
dy + V (x)|un − u|p

)
dx

≤ (1 + C)ε,
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where V0 = infx∈RN\BR(0) V (x) > 0. This implies that un → u in Lp(RN ). Then, by interpolation, we
have that (3.14) holds, which shows part (c). □

Lemma 3.7. Assume that conditions (f1)–(f3) and (V1)–(V2) hold. Then the functional I satisfies
the (PS)c condition.

Proof. The proof is based on the proofs of Lemmas 3.4-3.6. Indeed, from Lemma 3.4 and the growth
assumptions on g, we have that∣∣∣∣∫

RN

(g(x, un)un − g(x, u)u) (un − u) dx

∣∣∣∣
≤
(
|un|p−1

Lp(RN )
+ |u|p−1

Lp(RN )

)
|un − u|Lp(RN )

+ C
(
|un|q−1

Lq(RN )
+ |u|q−1

Lq(RN )

)
|un − u|Lq(RN )

≤ C |un − u|Lp(RN ) + C|un − u|Lq(RN ),

where q is given by (f2). The above estimate and (3.14) provide

lim
n→∞

∫
RN

(g(x, un)un − g(x, u)u) (un − u) dx = 0. (3.19)

Now, we prove that ∥un − u∥ → 0, as n → ∞. Consider φ ∈ E to be fixed and Bφ : E → R the
linear functional on E defined as

Bφ(v) :=

∫∫
R2N

|φ(x)− φ(y)|p−2(φ(x)− φ(y))(v(x)− v(y))

|x− y|N+sp
dxdy for all v ∈ E.

Note that, by Hölder’s inequality, Bφ is continuous on E, which shows using un → u in E that

lim
n→∞

((
a+ b[un]

p
W s,p(RN )

)
−
(
a+ b[u]p

W s,p(RN )

))
Bu(un − u) = 0, (3.20)

where we have that
(
a+ b[un]

p
W s,p(RN )

)
−
(
a+ b[u]p

WWs,p(RN )(RN )

)
is bounded in R. Moreover, since

un → u in E, I ′(un) → 0, and (3.14), we have that ⟨I ′(un)− I ′(u), un − u⟩ → 0, as n → ∞. Then,
by (3.19) and (3.20), one has

on(1) = ⟨I ′(un)− I ′(u), un − u⟩

=
(
a+ b[un]

p
W s,p(RN )

)
Bun

(un − u)−
(
a+ b[un]

p
W s,p(RN )

)
Bu(un − u)

+
((
a+ b[un]

p
W s,p(RN )

)
−
(
a+ b[u]p

W s,p(RN )

))
Bu (un − u)

+

∫
RN

V (x)
(
|un|p−2

un − |u|p−2u
)
(un − u) dx

−
∫
RN

(g(x, un)un − g(x, u)u)(un − u) dx

=
(
a+ b[un]

p
W s,p(RN )

)
(Bun

(un − u)− Bu(un − u))

+

∫
RN

V (x)(|un|p−2un − |u|p−2u)(un − u) dx+ on(1),

and so,

lim
n→∞

((
a+ b[un]

p
W s,p(RN )

)
(Bun

(un − u)− Bu(un − u))

+

∫
RN

V (x)(|un|p−2un − |u|p−2u)(un − u) dx

)
= 0.

Then, by the inequality (
|x|p−2x− |y|p−2y

)
(z − w) ≥ 0 for all x, y ∈ R,
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it follows that (
a+ b[un]

p
W s,p(RN )

)
(Bun(un − u)− Bu(un − u)) ≥ 0,

and we also obtain

V (x)(|un|p−2un − |u|p−2u)(un − u) ≥ 0 if x ∈ RN \ Ω.
Thus we may invoke (3.13) to get

lim
n→∞

(
a+ b[un]

p
W s,p(RN )

)
(Bun(un − u)− Bu(un − u)) = 0,

lim
n→∞

∫
RN\Ω

V (x)
(
|un|p−2un − |u|p−2u

)
(un − u) dx = 0.

(3.21)

Let us recall the Simon’s inequalities [43] given as

|ξ − η|p ≤ cp
(
|ξ|p−2ξ − |η|p−2η

)
· (ξ − η), if p ≥ 2,

|ξ − η|p ≤ Cp

[(
|ξ|p−2ξ − |η|p−2η

)
· (ξ − η)

]p/2
(|ξ|p + |η|p)(2−p)/2

, if 1 < p < 2,
(3.22)

for all ξ, η ∈ RN with positive constants cp and Cp depending only on p.
Case (i): Suppose that p ≥ 2. Then, by (3.21) and (3.22), it follows that

[un − u]p
W s,p(RN )

=

∫∫
R2N

|un(x)− un(y)− u(x) + u(y)|p|x− y|−(N+sp) dx dy

≤ cp

∫∫
R2N

[
|un(x)− un(y)|p−2

(un(x)− un(y))

− |u(x)− u(y)|p−2
(u(x)− u(y))

]
× (un(x)− un(y)− u(x) + u(y)) |x− y|−(N+sp)

dxdy

= cp [Bun(un − u)− Bu(un − u)] = on(1).

Similarly, by (3.21), we obtain∫
RN

V (x)|un − u|p dx ≤
∫
RN\Ω

V (x)|un − u|p dx

≤ cp

∫
RN\Ω

V (x)
(
|un|p−2

un − |u|p−2u
)
(un − u) dx = on(1).

In conclusion, ∥un − u∥ → 0 as n→ ∞.
Case (ii): Suppose that 1 < p < 2. Since un ⇀ u in E, there exists ϱ > 0 such that ∥un∥ ≤ ϱ for

all n ∈ N. Then, applying the following inequality

(a+ b)(2−p)/2 ≤ a(2−p)/2 + b(2−p)/2 for all a, b ≥ 0, 1 < p < 2,

it follows from (3.21), (3.22) and Hölder’s inequality that

[un − u]p
W s,p(RN )

≤ Cp (Bun
(un − u)− Bu(un − u))

p/2
(
[un]

p
W s,p(RN )

+ [u]p
W s,p(RN )

)(2−p)/2

≤ Cp (Bun
(un − u)− Bu(un − u))

p/2
(
[un]

p(2−p)/2

W s,p(RN )
+ [u]

p(2−p)/2

W s,p(RN )

)
≤ C ′

p (Bun
(un − u)− Bu(un − u))

p/2
= on(1).

Similarly, we also get that∫
RN

V (x)|un − u|p dx ≤
∫
RN\Ω

V (x)|un − u|p dx

≤ C ′′
p

(∫
RN\Ω

V (x)
(
|un|p−2

un − |u|p−2u
)
(un − u) dx

)p/2

= on(1).
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Then, ∥un − u∥ → 0 as n→ ∞. This fact implies that un → u strongly in E. □

Remark 3.8. Actually, in the proofs of Lemmas 3.2-3.7, we have only used (V1) and the fact that V
is positive on RN \BR(0). The decay of V at infinity is not needed.

As a byproduct of Lemmas 3.2-3.7 and the Mountain Pass Theorem (see Ambrosetti-Rabinowitz
[7]), there exists u ∈ E such that

I(u) = c > 0 and I ′(u) = 0,

which shows that u is a weak solution of problem (3.3).
Furthermore, u− = min{u, 0} = 0. Indeed, by the definition of u−, (3.4) and the fact u is a weak

solution to (3.3), we obtain that

I ′(u−)u− = 0,

which together with (3.1) and (3.11) yields

∥u−∥p = a

∫∫
R2N

|u−(x)− u−(y)|p

|x− y|N+sp
dx dy +

∫
RN

V (x)|u−|p dx

= I ′(u−)u− − b
(
[u−]p

W s,p(RN )

)2
+

∫
RN

g(x, u−)u− dx

= −b
(
[u−]p

W s,p(RN )

)2
≤ 0.

This implies that u− = 0. Since c > 0, the function u is a nontrivial and nonnegative weak solution of
(3.3). Consequently, from a Moser iteration argument, we can prove that u ∈ L∞(RN ) ∩C0(RN ) (see
Lemma 3.11 below). Then, the by maximum principle (see Del Pezzo-Quaas [25]), we can get that u
is positive in RN . It remains to prove that u is also a positive solution of problem (1.1).

Let us denote

d := sup
t≥0

[
atp

p
[ϕ]pW s,p(B0)

+
bt2p

2p

(
[ϕ]pW s,p(B0)

)2
+tp

∫
B0

V∞|ϕ|p dx− C1t
θ

∫
B0

|ϕ|θ dx+ C2 |B0|
]
,

where the constants C1, C2 are given in the proof of Lemma 3.2 and B0 := Br0(x0).

Lemma 3.9. Any solution u of (3.3) satisfies the estimate

∥u∥p ≤ K−1(d+ C|BR(0)|),
where C,K are given by the proof of Lemma 3.4, respectively.

Proof. Note that, by (3.14), we obtain that c ≤ d. In addition, arguing as in the proof of Lemma 3.4,
we have

c ≥ K∥u∥p − C|BR(0)|.

Thus, ∥u∥p ≤ K−1(c+ C|BR(0)|) ≤ K−1(d+ C|BR(0)|). □

Remark 3.10. If we suppose (f3) with S0 = 0, the estimate provided by Lemma 3.9 is independent of
R. Indeed, since in this case the constant C given by (3.10) is zero, we get ∥u∥p ≤ K−1d.
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3.2. A priori estimates of the solution of the penalized problem. In this part, we establish
an estimate for the L∞ norm of the solutions u in terms of its Lp∗

s norm. Here, we shall consider
the problem (3.3) with V satisfying (V1) and g : RN × R → R a Carathéodory function fulfilling the
subsequent assumptions:

(g1) There exist R > 0 and k > 1 such that

|g(x, z)| ≤ 1

k
V (x)|z|p−1

for all z ∈ R, for all x ∈ RN \BR(0);
(g2) There exist a1 > 0, a2 ≥ 0, and q ∈ (p, p∗s) such that

|g(x, z)| ≤ a1|z|q−1 + a2

for all z ∈ R and for all x ∈ RN .

Note that for (V1) and (g1) we have that Ω ⊂ BR(0) whenever Ω ̸= ∅. For our problem, we shall adopt
some ideas found in Alves-Souto [4] and Ambrosio-Isernia-Rădulescu [14].

Lemma 3.11. Suppose (V1) and (g1)–(g2) hold. Let u ∈ E be a solution of problem (3.3), then
u ∈ L∞(RN ) and

|u|L∞(RN ) ≤M.

Proof. It is sufficient to prove that u+ ∈ L∞(RN ). In addition, we shall prove the lemma under the
hypothesis Ω ̸= ∅.

For each L > 0, let uL := min {u, L} and denote the function

ℓ(u) := ℓL,σ(u) = uu
p(σ−1)
L ∈ E,

with σ > 1 to be determined later. Note that ℓ is increasing, thus we have

(a− b)(ℓ(a)− ℓ(b)) ≥ 0 for any a, b ∈ R.
Consider the functions

Q(t) :=
|t|p

p
and L(t) :=

∫ t

0

(ℓ′(τ))
1
p dτ,

and note that

L(u) ≥ 1

σ
uuσ−1

L . (3.23)

Hence, from (2.1) and (3.23), we obtain

[L(u)]pW s,p(RN ) ≥ C−1
∗ |L(u)|p

Lp∗s (RN )
≥ C−1

∗
1

σp
|uuσ−1

L |p
Lp∗s (RN )

. (3.24)

In addition, for any a, b ∈ R, it holds
Q′(a− b)(ℓ(a)− ℓ(b)) ≥ |L(a)− L(b)|p.

In fact, suppose that a > b, it follows from Jensen’s inequality that

Q′(a− b)(ℓ(a)− ℓ(b)) = (a− b)p−1(ℓ(a)− ℓ(b))

= (a− b)p−1

∫ a

b

ℓ′(τ)dτ

= (a− b)p−1

∫ a

b

(L′(τ))pdτ

≥
(∫ a

b

L′(τ)dτ

)p

= (L(a)− L(b))p.
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A similar argument holds if a ≤ b. Thus, we infer that

|L(u)(x)− L(u)(y)|p

≤ |u(x)− u(y)|p−2
(u(x)− u(y))

(
u(x)u

p(σ−1)
L (x)− u(y)u

p(σ−1)
L (y)

)
.

Using ℓ(u) as the test function in (3.3), in view of the above inequality and (g1), we get that

a[L(u)]p
W s,p(RN )

+

∫
RN

V (x)|u|pup(σ−1)
L dx

≤ a

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))
(
u(x)u

p(σ−1)
L (x)− u(y)u

p(σ−1)
L (y)

)
|x− y|N+sp

dxdy

+ b[u]p
W s,p(RN )

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(u(x)u
p(σ−1)
L (x)− un(y)u

p(σ−1)
L (y))

|x− y|N+sp
dxdy

+

∫
RN

V (x)|u|pup(σ−1)
L dx

=

∫
RN

g(x, u)uu
p(σ−1)
L dx

≤
∫
BR(0)

|g(x, u)|uup(σ−1)
L dx+

1

k

∫
RN\BR(0)

V (x)|u|pup(σ−1)
L dx.

By the fact that Ω ⊂ BR(0), we have

a[L(u)]p
W s,p(RN )

+

∫
Ω

V (x)|u|pup(σ−1)
L dx+

k − 1

k

∫
RN\Ω

V (x)|u|pup(σ−1)
L dx

≤
∫
BR(0)

|g(x, u)|uup(σ−1)
L dx,

which leads to

a[L(u)]p
W s,p(RN )

≤
∫
BR(0)

|g(x, u)|uup(σ−1)
L dx+ α

∫
Ω

|u|pup(σ−1)
L dx,

where α is given by (2.3). The above estimate and (3.24) provide

|uuσ−1
L |p

Lp∗s (RN )
≤ σpC∗ [L(u)]pW s,p(RN )

≤ σpC∗

a

(∫
BR(0)

|g(x, u)|uup(σ−1)
L dx+ α

∫
Ω

|u|pup(σ−1)
L dx

)

≤ Cσp

(∫
BR(0)

|g(x, u)|uup(σ−1)
L dx+ α

∫
Ω

|u|pup(σ−1)
L dx

)
.

(3.25)

On the other hand, by the growth assumptions on g and (3.25), it follows that

|uuσ−1
L |p

Lp∗s (RN )
≤ Cσp

(
a1

∫
BR(0)

|u|qup(σ−1)
L dx

+ a2

∫
BR(0)

uu
p(σ−1)
L dx+ α

∫
Ω

|u|pup(σ−1)
L dx

)
.

(3.26)

Applying Hölder’s inequality, we have that∫
BR(0)

|u|qup(σ−1)
L dx ≤

(∫
BR(0)

up
∗
s dx

) q−p
p∗s
(∫

BR(0)

(uuσ−1
L )

pp∗s
p∗s−(q−p) dx

) p∗s−(q−p)

p∗s

,
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∫
BR(0)

uu
p(σ−1)
L dx ≤ |BR(0)|

q−p
p∗s

(∫
BR(0)

(uu
p(σ−1)
L )

p∗s
p∗s−(q−p) dx

) p∗s−(q−p)

p∗s

,

and ∫
Ω

|u|pup(σ−1)
L dx ≤ |Ω|

q−p
p∗s

(∫
BR(0)

(uuσ−1
L )

pp∗s
p∗s−(q−p) dx

) p∗s−(q−p)

p∗s

,

where p <
pp∗

s

p∗
s−(q−p) < p∗s. Since u ≥ uL in RN , using Hölder’s inequality one more time, we have

∫
BR(0)

|u|qup(σ−1)
L dx ≤

(∫
BR(0)

up
∗
s dx

) q−p
p∗s
(∫

BR(0)

|u|
pp∗sσ

p∗s−(q−p) dx

) p∗s−(q−p)

p∗s

,

∫
BR(0)

uu
p(σ−1)
L dx ≤ |BR(0)|

q−p
p∗s

(∫
BR(0)

(uup(σ−1))
p∗s

p∗s−(q−p) dx

) p∗s−(q−p)

p∗s

,

≤ |BR(0)|
q−p
p∗s

+ p−1
pσ · p

∗
s−(q−p)

p∗s

(∫
BR(0)

|u|
pp∗sσ

p∗s−(q−p) dx

) p(σ−1)+1
pσ · p

∗
s−(q−p)

p∗s

,

and ∫
Ω

|u|pup(σ−1)
L dx ≤ |Ω|

q−p
p∗s

(∫
BR(0)

|u|
pp∗sσ

p∗s−(q−p) dx

) p∗s−(q−p)

p∗s

,

which together with (3.26) implies

|u|pσ
Lp∗sσ(RN )

≤ Cσp
(
a3|u|pσσα∗ + a4|u|p(σ−1)+1

σα∗

)
≤ Cσp

(
|u|pσσα∗ + |u|p(σ−1)+1

σα∗

)
,

where

α∗ =
pp∗s

p∗s − (q − p)
, a3 = a1

(∫
BR(0)

up
∗
s dx

) q−p
p∗s

+ α|Ω|
q−p
p∗s and a4 = a2|BR(0)|

q−p
p∗s

+ p−1
α∗σ .

Now, taking σ = p∗s/α
∗, we have

|u|pσ
Lp∗sσ(RN )

≤ Cσp
(
|u|pσ

Lp∗s (RN )
+ |u|p(σ−1)+1

Lp∗s (RN )

)
,

and replacing σ by σj , j ∈ N, in the above inequality, we obtain that

|u|pσ
j

Lp∗sσj
(RN )

≤ Cσjp
(
|u|pσ

j

Lp∗s (RN )
+ |u|p(σ

j−1)+1

Lp∗s (RN )

)
.

Then, by an argument of induction, we may verify that

|u|
Lp∗sσj

(RN )
≤ σ

1
σ+ 2

σ2 +···+ j

σj (pC + 1)
1
p (

1
σ+ 1

σ2 +···+ 1

σj )
(
1 + |u|Lp∗s (RN )

)
, (3.27)

for every j ∈ N. Note that
∞∑
j=1

1

σj
=

1

σ − 1
and

∞∑
j=1

i

σj
=

σ

(σ − 1)2
.

Since σ > 1, passing to the limit as j → ∞ in (3.27), we may infer that u ∈ L∞(RN ) and

|u|L∞(RN ) ≤ σ
σ

(σ−1)2 (pC + 1)
1

σ−1 (1 + |u|Lp∗s (RN )). (3.28)

From (3.28) and the argument used at the end of the proof of Lemma 2.8 in [14], we can conclude that
u ∈ L∞(RN ) ∩ C0(RN ). □
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Lemma 3.12. Suppose (V1) and (g1)–(g2) hold. Let u ∈ E be a solution of problem (3.3), then

|u(x)| ≤M

(
R

|x|

)(N−sp)/(p−1)

for all x ∈ RN and for all |x| ≥ R,

where R > 0 is given by (g1) and M is given by Lemma 3.11.

Proof. Let v ∈ C∞(RN \ {0}) be the function

v(x) =M

(
R

|x|

)(N−sp)/(p−1)

,

for each x ∈ RN . Moreover, since 1
|x|(N−sp)/(p−1) is s-harmonic (see for instance Bucur-Valdinoci [20]),

it shows that (−∆)spv = 0 in RN \BR(0). Obviously, by Lemma 3.11, we obtain the inequality

u(x) ≤ |u|L∞(RN ) ≤M

(
R

|x|

)(N−sp)/(p−1)

= v(x) for all 0 < |x| ≤ R.

Next, we define the function

w+(x) =

{
(u(x)− v(x))+, if |x| ≥ R,

0, if |x| < R,

Since (−∆)spv = 0 in RN \ BR(0), w
+ ∈ E,w+(x) = 0 for every |x| ≤ R, and w+ ≥ 0, it follows from

(g1) that (
a+ b[w+]p

W s,p(RN )

)
[w+]p

W s,p(RN )
=

∫
RN

g(x,w+)w+ dx−
∫
RN

V (x)
∣∣w+

∣∣p dx

≤
(
1

k
− 1

)∫
RN\BR(0)

V (x)|w+|p dx

≤ 0.

Hence, we have w+ ≡ 0, which implies that u(x) ≤ v(x) in |x| ≥ R. Similarly, by defining

w−(x) =

{
(−u(x)− v(x))+, if |x| ≥ R,

0, if |x| < R,

we can also get −u(x) ≤ v(x) in |x| ≥ R. Thus

|u(x)| ≤M

(
R

|x|

)(N−sp)/(p−1)

for all x ∈ RN and for all |x| ≥ R.

The proof is complete. □

3.3. Existence results for problem (1.1). Now we present the proofs of Theorems 1.1-1.4.

Proof of Theorem 1.1. From Lemmas 3.2-3.9 and the estimate |u|Lp∗s (Ω) ≤ S−1[u]p
W s,p(RN )

, problem

(3.3) has a positive solution u ∈ E, which satisfies

|u|Lp∗s (RN ) ≤ Č :=
[
K−1(aS − α|Ω|

sp
N )−1(d+ C|BR(0)|)

] 1
p

,

where C,K and d are given by Lemma 3.7. Next, using the hypotheses (f1), (f2), there exists a constant
C > 0 such that

|f(x, z)| ≤ C|z|ϑ−1 for all |x| ≥ R.

Therefore, it is enough to show that an appropriate u satisfies the inequality

|f(x, u(x))|
|u(x)|p−1

≤ CM (ϑ−p)

(
R

|x|

) (N−sp)(ϑ−p)
p−1

for all |x| ≥ R.
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Fixing Λ∗ = kCM (ϑ−p)R
(N−sp)(ϑ−p)

p−1 and Λ ≥ Λ∗ > 0, it follows from (V2) that

|f(x, u(x))| ≤ 1

k
V (x)|u(x)|p−1 for all |x| ≥ R.

This shows that u is a positive solution of (1.1). The proof of Theorem 1.1 is complete. □

When (f3) holds with S0 = 0, we may provide a relation between the parameter in hypothesis (V2)
and the value of R.

Proof of Theorem 1.2. Since f satisfies (f3) with S0 = 0, we may invoke Remark 3.10 and (3.28) to
infer that the constants C and M , do not depend on the values of Λ and R. Consequently, supposing
that (V3) holds, the argument used in the proof of Theorem 1.1 shows that problem (1.1) has a positive

solution for every Λ ≥ Λ̃∗ = kCMϑ−p. The proof is complete. □

Proof of Theorem 1.3. As (f̂1) shows that (f1) holds, we may exploit the arguments used in the proof

of Theorem 1.1 to infer that problem (3.3) has a positive solution u ∈ E. Fixing 0 < ς̂ < ς, from (f̂1)

and (f2) we may find C > 0 such that |f(x, z)| ≤ Ce−ς̂/|z|ϑ . Consequently, we may obtain

|f(x, u(x))| ≤ Ce−µ∗|x|
(N−sp)ϑ

p−1
for all |x| ≥ R,

where µ∗ = ς̂/
(
MR

N−sp
p−1

)ϑ
. Thereby, fixing 0 < µ ≤ µ∗, Λ∗ = kC and Λ ≥ Λ∗ > 0, it follows from

(V4) that

|f(x, u(x))| ≤ 1

k
V (x)|u(x)|p−1 for all |x| ≥ R.

This shows that u is a positive solution of (1.1). □

Proof of Theorem 1.4. The proof is analogous to Lemma 1.3, we omit it here. □

3.4. Multiplicity of Solutions. In this subsection, we give the proof for the multiplicity results.
Before we prove Theorem 1.5, let us recall the following version of the Fountain Theorem which can
be found in Willem [47].

Theorem 3.13. Let X be a Banach space with the norm ∥ · ∥ and let Xj be a sequence of subspace of

X with dimXj < ∞ for each j ∈ N. Further, X =
⊕

j∈NXj, the closure of the direct sum of all Xj.

Set Yk =
⊕k

j=0Xj, Zk =
⊕∞

j=kXj. Consider an even functional I ∈ C1(X,R) (i.e. I(−u) = I(u) for

all u ∈ X). Suppose, for every k ∈ N, there exist ρk > rk > 0 such that

(A1) ak := maxu∈Yk,∥u∥=ρk
I(u) ≤ 0;

(A2) bk := infu∈Zk,∥u∥=rk I(u) → +∞, as k → ∞;
(A3) the Palais-Smale condition holds above 0, i.e. any sequence {un}n∈N in X which satisfies

I(un) → c > 0 and I ′(un) → 0 contains a convergent subsequence.

Then I possesses an unbounded sequence of critical values.

To apply the Fountain Theorem, we still consider the odd extension of the function ĝ : RN ×R → R,
which is a Carathéodory function satisfying

ĝ(x, z) = f(x, z), for (x, z) ∈ RN × R, |x| ≤ R;

|ĝ(x, z)| ≤ |f(x, z)|, for (x, z) ∈ RN × R;
|ĝ(x, z)| ≤ 1

kV (x)|z|p−1, for (x, z) ∈ RN × R, |x| > R;

and {
Ĝ(x, z) = F (x, z), for (x, z) ∈ RN × R, |x| ≤ R;

Ĝ(x, z) ≤ 1
pkV (x)zp, for (x, z) ∈ RN × R, |x| > R;
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where Ĝ(x, z) :=
∫ z

0
g(x, t) dt. The symmetric version of the auxiliary problem that we will consider

is the following:
(
a+ b

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)
(−∆)

s
p u+ V (x)|u|p−2u = ĝ(x, u) in RN ,

u ∈ E.

(3.29)

Observe that any solution u of (3.29) satisfying k|f(x, u)| ≤ V (x)|u|p−1 for |x| ≥ R is a solution of
problem (1.1).

Moreover, the associated Euler-Lagrange functional Î : E → R, given by

Î(u) = a

p
[u]p

W s,p(RN )
+

b

2p

(
[u]p

W s,p(RN )

)2
+

1

p

∫
RN

V (x)|u|p dx−
∫
RN

Ĝ(x, u) dx,

is of class C1(E,R) and the critical points of Î are weak solutions of (3.29). By assumption (f6), we

know that Î(0) = 0 and Î is an even functional functional.
We choose an orthogonal basis {ej} of X := E and define

Yk := span {e1, . . . , ek} , Zk := Y ⊥
k−1.

In addition, to complete the proof of our result, we need the following Lemma.

Lemma 3.14. Suppose that (V1) holds. Then for p ≤ t < p∗s, we have

βk := sup
u∈Zk,∥u∥E(BR)=1

∥u∥Lt(BR) → 0, k → ∞.

Proof. It is clear that 0 < βk+1 ≤ βk, so that βk → β ≥ 0, as k → ∞. For every k ∈ N, there is

uk ∈ Zk such that ∥uk∥Lt(BR) >
βk

2 and ∥uk∥E(BR) = 1. By the definition of Zk, we can obtain that
uk ⇀ 0 in E. By Lemma 2.1, the Sobolev embedding theorem implies that uk → 0 in Lt(BR). Thus,
taking k → ∞, we have proved that β = 0, which completes the proof. □

Next, we will verify that the functional Î satisfies the remaining conditions of Theorem 3.13.

Lemma 3.15. Suppose (V1)–(V2) and (f1)–(f3) hold. Then the functional Î satisfies (A1).

Proof. As in the proof of Lemma 3.2, we consider B0 := Br0(x0) ⊂ BR(0) such that V (x) ≤ V∞ for
every x ∈ B0, and take a function ϕ ∈ Yk \ {0}, such that supp(ϕ) ⊂ Br0(x0). Then,

Î(tϕ) ≤ atp

p
[ϕ]pW s,p(B0)

+
bt2p

2p

(
[ϕ]pW s,p(B0)

)2
+ tp

∫
B0

V∞|ϕ|p dx− C1t
θ

∫
B0

|ϕ|θ dx+ C2 |B0| ,

where C1, C2 are given by (3.7). Since on the finite dimensional space Yk all norms are equivalent,
θ > 2p shows that

ak := max
u∈Yk,∥u∥=ρk

Î(u) ≤ 0,

for some ρk > 0 large enough. □

Lemma 3.16. Suppose (V1)–(V2) and (f1)–(f3) hold. Then the functional Î satisfies (A2).

Proof. As in the proof of Lemma 3.2, we consider the case Ω ̸= ∅. By (V1) and (V2), Ω ⊂ BR(0) and
V (x) > 0 for every |x| ≥ R. From (f1)–(f2), we get

Î(u) ≥ d3∥u∥p − ηd1∥u∥p − d2(η)∥u∥p
∗
s , for all u ∈ Zk,

where d1, d2 are given by (3.5), and d3 := min

{
1
p

(
1− α|Ω|

sp
N

aS

)
, k−1

pk

}
> 0. Then, we have

Î(u) ≥ d4∥u∥p − d2(η)β
p∗
s

k ∥u∥p
∗
s , ∀u ∈ Zk,
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for enough small η > 0 such that d4 = d3 − ηd1 > 0. Using the above estimate and choosing

rk := β
p∗
s/(p−p∗

s)
k , we have

bk := inf
u∈Zk,∥u∥=rk

Î(u)

= inf
u∈Zk,∥u∥=rk

Î(u)|BR
+ inf

u∈Zk,∥u∥=rk
Î(u)|Bc

R

≥ inf
u∈Zk,∥u∥=rk

Î(u)|BR

≥ (d4 − d2(η))β
pp∗s

p−p∗s
k .

Since, by Lemma 3.14, βk → 0 as k → ∞ and p∗s > p, we obtain

bk → +∞.

Thus, (A2) is proved. □

Proof of Theorem 1.5. Let E = Yk
⊕
Zk. By (f6) and Lemma 3.7, the functional Î satisfies the (PS)c

condition, and Î satisfies (I3). Then, Lemma 3.15 and 3.16 imply that all conditions of Theorem 3.13
are satisfied. Thus, from the Fountain Theorem, problem (3.29) possesses infinitely many nontrivial
solutions by using the estimate provided by Lemma 3.12. Hence, problem (1.1) also possesses infinitely
many nontrivial solutions. □

4. The Case: p < θ ≤ 2p

4.1. The penalized problem. In this section, we study the existence of a positive solution for (1.1)
in the case p < θ ≤ 2p. For this, we first define a cut-off function ζ ∈ C1([0,∞),R) (see Zhang-Du
[55]) which satisfies

ζ(t) =


1, 0 ≤ t ≤ 1,

0, t ≥ 2,

maxt>0 |ζ ′(t)| ≤ 2, t > 0,

ζ ′(t) ≤ 0, t > 0.

Moreover, using ζ, for any T > 0, we then define the truncated functional IT
b (u) : E → R by

IT
b (u) =

a

p
[u]p

W s,p(RN )
+

b

2p
ζ

(
∥u∥p

T p

)(
[u]p

W s,p(RN )

)2
+

1

p

∫
RN

V (x)|u|p dx−
∫
RN

G(x, u) dx.

By a standard argument, we can infer that IT
b ∈ C1(E,R) and its Gateaux differential is

(IT
b )

′(u)v

= a

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
(v(x)− v(y)) dxdy

+ bζ

(
∥u∥p

T p

)
[u]p

W s,p(RN )

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
(v(x)− v(y)) dx dy

+
b

2T p
ζ ′
(
∥u∥p

T p

)(∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
(v(x)− v(y)) dxdy

+

∫
RN

V (x)|u|p−2uv dxdy

)(
[u]p

W s,p(RN )

)2
+

∫
RN

V (x)|u|p−2uv dxdy −
∫
RN

g(x, u)v dx,

for all u, v ∈ E. With this penalization, by choosing an appropriate T > 0 and restricting b > 0 small
enough, we may obtain a Cerami sequence {un}n∈N of IT

b satisfying ∥un∥ ≤ T , and so {un} is also a
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Cerami sequence of I satisfying ∥un∥ ≤ T . Also, we are able to find a critical point u of IT
b such that

∥u∥ ≤ T and so u is also a critical point of I.
In order to obtain the critical point for IT

b , we show that IT
b satisfies the mountain pass geometry.

Lemma 4.1. Suppose (V1)–(V2), (f1), (f2) and (f̃3) hold. Then, we have the following:

(I) For any T > 0 and b > 0, there exist β, ρ > 0 (independent of T and b) such that IT
b (u) ≥ β

for every u ∈ E such that ∥u∥ = ρ;

(II) There exist b̊ > 0 and a function e ∈ E with ∥u∥ ≥ ρ, such that for each T > 0 and b ∈ (0, b̊),
we have IT

b (e) < 0.

Proof. Similar to the proof of (1) in Lemma 3.2, we also give a proof for the case Ω ̸= ∅. By (V1) and
(V2), Ω ⊂ BR(0) and V (x) > 0 for every |x| ≥ R. Then, by (f1)–(f2), combining (2.3) with (3.5), we
also obtain

IT
b (u) =

a

p
[u]p

W s,p(RN )
+

b

2p
ζ

(
∥u∥p

T p

)(
[u]p

W s,p(RN )

)2
+

1

p

∫
RN

V (x)|u|p dx−
∫
RN

G(x, u) dx

≥ d3∥u∥p − ηd1∥u∥p + d2∥u∥p
∗
s ,

where d1, d2 are given by (3.5), and d3 := min

{
1
p

(
1− α|Ω|

sp
N

aS

)
, k−1

pk

}
> 0. Using the above estimate

and taking η > 0 sufficiently small, the item (I) follows by finding appropriated values of β, ρ > 0.
On the other hand, by hypotheses (V1)–(V2) and taking V∞ = 0, if Ω ̸= ∅, we suppose that

Br0(x0) ⊂ BR(0) and V (x) ≤ V∞, for each x ∈ Br0(x0). We first define the functional I(u) : E → R
by

I(u) =
a

p
[u]p

W s,p(RN )
+

1

p

∫
RN

V (x)|u|p dx−
∫
RN

G(x, u) dx.

Then, by (3.7), we can choose a positive smooth function ϕ ∈ E \ {0} such that supp(ϕ) ⊂ Br0(x0),
to get

I(tϕ) ≤ atp

p
[ϕ]pW s,p(Br0

(x0))
+ tp

∫
Br0 (x0)

V∞|ϕ|p dx

− C1t
θ

∫
Br0 (x0)

|ϕ|θ dx+ C2 |Br0(x0)| → −∞,

as t → ∞, since p < θ ≤ 2p. Thus, there exist t0 > 0 large enough and e = t0ϕ such that I(e) ≤ −1
with ∥e∥ > ρ. Since

IT
b (e) = I(e) +

b

2p
ζ

(
∥e∥p

T p

)(
[e]p

W s,p(RN )

)2
≤ −1 +

b

2p

(
[e]p

W s,p(RN )

)2
,

there exists b̊ = 2p

[e]2p
Ws,p(RN )

> 0 such that IT
b (e) < 0 for each T > 0 and b ∈ (0, b̊). Therefore, the proof

is complete. □

Remark 4.2. We point out that the function e ∈ E \ {0} is a positive smooth function and does not
depend on T and b.

Next, we recall the following version of the Mountain Pass theorem which can be found in Ekeland
[27].

Theorem 4.3. Let X be a Banach space with its dual space X∗, and suppose that Φ ∈ C1(X,R)
satisfies

max{Φ(0),Φ(e)} ≤ µ < η ≤ inf
∥u∥=ρ

Φ(u)



24 H. TAO, L. LI, AND P. WINKERT

for some µ < η, ρ > 0 and e ∈ X with ∥e∥ > ρ. Let c ≥ η be characterized by

c = inf
ϖ∈Γ

max
t∈[0,1]

Φ(ϖ(t))

where Γ = {ϖ ∈ C([0, 1], X) : ϖ(0) = 0, ϖ(1) = e} is the set of continuous paths joining 0 and e.
Then there exists a sequence {un}n∈N ⊆ X such that

Φ (un) → c ≥ η and (1 + ∥un∥) ∥Φ′ (un)∥X∗ → 0, as n→ ∞.

By Lemma 4.1, we consider the mountain pass value

cTb := inf
γ∈Γ

sup
t∈[0,1]

IT
b (γ(t)),

with

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} .

From Lemma 4.1 and Theorem 4.3, we deduce that for each T > 0 and b ∈ (0, b̊), there exists a Cerami
sequence {un}n∈N ⊂ E (here we do not write the dependence on T and b) such that

IT
b (un) → cTb and (1 + ∥un∥)

∥∥(IT
b )

′ (un)
∥∥
E∗ → 0. (4.1)

The above sequence is called a (C)cTb -sequence for IT
b .

Lemma 4.4. For each T > 0 and b ∈ (0, b̊), there exist constants βT
1 , β

T
2 > 0, such that βT

1 ≤ cTb ≤ βT
2 .

Proof. Note that by Lemma 4.1, cTb ≥ β > 0, and we take βT
1 ∈ (0, β). On the other hand, fix e as in

Lemma 4.1. Then, it is easy to see that

IT
b (te) ≤

atp

p
[e]pW s,p(Br0

(x0))
+
b̊t2p

2p

(
[e]pW s,p(Br0

(x0))

)2
+ tp

∫
Br0 (x0)

V∞|e|p dx

− C1t
θ

∫
Br0

(x0)

|e|θ dx+ C2 |Br0(x0)| .

Consequently, there exists a constant βT
2 > 0 (independent of T and b) such that

cTb ≤ max
t∈[0,1]

IT
b (te) ≤ βT

2 .

The proof is complete. □

In the following lemma, we shall show that for a properly chosen T > 0, after passing to a subse-
quence, the sequence {un}n∈N given by (4.1) satisfies ∥un∥ ≤ T , and so {un}n∈N is also a bounded
Cerami sequence of I satisfying ∥un∥ ≤ T .

Lemma 4.5. If {un}n∈N ⊂ E is a Cerami sequence satisfying (4.1), then, up to a subsequence, there
exists b∗ > 0 such that for any b ∈ (0, b∗), there holds

∥un∥ ≤ T.

In particular, this sequence {un}n∈N is also a Cerami sequence at level cTb for I, i.e.,
I(un) → cTb and (1 + ∥un∥) ∥I ′ (un)∥E∗ → 0.

Proof. Suppose by contradiction, for any T > 0, there exists a subsequence of {un}n∈N (still denoted
by {un}n∈N), such that ∥un∥ > T . We divide the proof into the two cases ∥un∥p ≥ 2T p and T p <
∥un∥p ≤ 2T p.

Case (i): Assume that ∥un∥p ≥ 2T p holds. By Lemma 4.4 and k = pθ/ (θ − p), we have

βT
2 + 1 ≥ cTb + 1

≥ IT
b (un)−

1

θ
(IT

b )
′(un)un
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=

(
a

p
− a

θ

)
[un]

p
W s,p(RN )

+

(
b

2p
− b

θ

)
ζ

(
∥un∥p

T p

)(
[un]

p
W s,p(RN )

)2
− b

2θT p
ζ ′
(
∥un∥p

T p

)
∥un∥p

(
[un]

p
W s,p(RN )

)2
+

(
1

p
− 1

θ

)∫
RN

V (x)|un|p dx

+

∫
RN

(
1

θ
g(x, un)un −G(x, un)

)
dx

≥
(
a

p
− a

θ

)
[un]

p
W s,p(RN )

+

(
1

p
− 1

θ

)∫
RN

V (x)|un|p dx

+

∫
BR(0)

(
1

θ
f(x, un)un − F (x, un)

)
dx+

p− θ

θpk

∫
RN\BR(0)

V (x)|un|p dx

≥
(
1

p
− 1

θ

)
a[un]

p
W s,p(RN )

+

(
1

p
− 1

θ

)∫
BR(0)

V (x)|un|p dx

+
(θ − p)(θp− θ + p)

(θp)2

∫
RN\BR(0)

V (x)|un|p dx

≥ K

(
a[un]

p
W s,p(RN )

+

∫
RN

V (x)|un|p dx
)

= K∥un∥p,

where K = min{ 1
p − 1

θ ,
(θ−p)(θp−θ+p)

(θp)2 } > 0, for n large enough, which is a contradiction when T > 0 is

large enough.
Case (ii): Assume that T p < ∥un∥p ≤ 2T p holds. We have

0 ≤ ζ

(
∥un∥p

T p

)
≤ 1 and ζ ′

(
∥un∥p

T p

)
≤ 0 ≤

∣∣∣∣ζ ′(∥un∥p

T p

)∣∣∣∣ ≤ 2,

which shows that

K∥un∥p −
1

θ

∥∥(IT
b )

′ (un)
∥∥
E∗ ∥un∥

≤K∥un∥p +
1

θ
(IT

b )
′(un)un

≤IT
b (un) +

(
b

θ
− b

2p

)
ζ

(
∥un∥p

T p

)(
[un]

p
W s,p(RN )

)2
+

b

2θT p
ζ ′
(
∥un∥p

T p

)
∥u∥p

(
[un]

p
W s,p(RN )

)2
≤IT

b (un) + 4b(
3

r
− 1

2p
)T 2p

:=IT
b (un) + CbT 2p.

(4.2)

Let e ∈ E \ {0} be as in Lemma 4.1. By IT
b (un) → cTb as n→ ∞, we have

IT
b (un) ≤ 2cTb ≤ 2 max

t∈[0,1]
IT
b (te) ≤ 2βT

2 , (4.3)

for n large enough. Moreover, we obtain

K∥un∥p −
1

θ

∥∥(IT
b )

′ (un)
∥∥
E∗ ∥un∥ ≥ KT p − T. (4.4)

So from (4.2), (4.3) and (4.4) we get

KT p − T ≤ 2βT
2 + CbT 2p,

which is a contradiction if bT := 1
T 2p > 0, b∗ = min{̊b, bT } and b ∈ (0, b∗) for T large enough. Thus,

we obtain ∥un∥ ≤ T . □
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By Lemma 4.5, the embeddings of E in W s,p(RN ) and the Sobolev embedding theorem, up to a
subsequence, we may suppose that there exists u ∈ E such that

un ⇀ u weakly in E,

un → u strongly in Lt
loc(RN ), for all t ∈ [1, p∗s),

un(x) → u(x) for a.a.x ∈ RN .

Similar to the proof of Lemma 3.7, we can obtain that for all b ∈ (0, b∗), {un}n∈N ⊂ E contains a
convergent subsequence. Furthermore, u− = min{u, 0} = 0. Since c > 0, from a Moser iteration
argument and the maximum principle, we can get that u is a positive solution of problem (3.3). It
remains to verify that u is also a positive solution of problem (1.1).

4.2. Existence results for problem (1.1).

Proof of Theorem 1.9. From Lemmas 4.1–4.5 and the estimate

|u|Lp∗s (Ω) ≤ S−1[u]p
W s,p(RN )

for every b ∈ (0, b∗),

problem (3.3) has a positive solution u ∈ E. Next, using the hypotheses (f1), (f2), there exists a
constant C > 0 such that

|f(x, z)| ≤ C|z|ϑ−1 for all |x| ≥ R.

Thus, we still have the inequality

|f(x, u(x))| ≤ CM (ϑ−p)

(
R

|x|

) (N−sp)(ϑ−p)
p−1

|u(x)|p−1 for all |x| ≥ R.

Fixing Λ∗ = kCM (ϑ−p)R
(N−sp)(ϑ−p)

p−1 and Λ ≥ Λ∗ > 0, it follows from (V2) that

|f(x, u(x))| ≤ 1

k
V (x)|u(x)|p−1 for all |x| ≥ R.

It follows that u is a positive solution of (1.1). The proof of Theorem 1.9 is complete. □
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