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Abstract. In this paper, we investigate the existence and concentration of so-
lutions for the following 1-biharmonic Choquard equation with steep potential

well {
∆2

1 −∆1u+ (1 + λV (x)) u
|u| = (Iµ ∗ F (u)) f(u) in RN ,

u ∈ BL(RN ),

where N ≥ 3, λ > 0 is a positive parameter, V : RN → R, f : R → R are contin-
uous functions verifying further conditions, Ω = int(V −1({0})) has nonempty

interior and Iµ : RN → R is the Riesz potential of order µ ∈ (N − 1, N). For
λ > 0 large enough we prove the existence of a nontrivial solution uλ of the

problem above via variational methods and the concentration behavior of uλ

which is explored on the set Ω.

1. Introduction

In this work, we consider the existence and concentration of solutions to the
following quasilinear elliptic problems with steep potential well{

∆2
1 −∆1u+ (1 + λV (x)) u

|u| = (Iµ ∗ F (u)) f(u) in RN ,

u ∈ BL(RN ),
(1.1)

where N ≥ 3, λ > 0 is a positive parameter, the 1-Laplacian operator is defined as

∆1u = div

(
Du

|Du|

)
,

and the 1-biharmonic operator is given by

∆2
1u = ∆

(
∆u

|∆u|

)
.

The nonlinearity f : R → R and the potential V : RN → R satisfy the following
assumptions:

(f1) f : R → R is continuous;
(f2) lim

|s|→0
f(s) = 0;

(f3) There exist constants σ > 0 and 1 < q1 ≤ q2 < µ
N−1 such that

|f(s)| ≤ σ(|s|q1−1 + |s|q2−1) for all s ∈ R;
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(f4) There exists κ ∈ (1,+∞) such that

0 < κF (s) ≤ f(s)s, for s ̸= 0,

where F (s) =
∫ s

0
f(t) dt;

(f5) f is increasing.
(V1) V ∈ C(RN ) and V (x) ≥ 0 for all x ∈ RN ;
(V2) There exists M0 > 0 such that the Lebesgue measure |{x ∈ RN : V (x) ≤

M0}| < +∞;
(V3) Ω = int(V −1({0})) is nonempty with smooth boundary and Ω = V −1({0}).
Moreover, Iµ : RN → R is the Riesz potential of order µ ∈ (N − 1, N) on the

Euclidean space RN of dimension N ≥ 3, defined for each x ∈ RN \ {0} by

Iµ(x) =
Γ
(

N−µ
2

)
Γ
(
µ
2

)
π

N
2 2µ|x|N−µ

,

where Γ(·) stands for a standard Gamma function. The Choquard equation was
introduced by Choquard in 1976 in the modeling of a one-component plasma, see
Lieb-Loss [25]. It seems to originate from Fröhlich’s and Pekar’s model of the
polaron, which is a quasiparticle used in condensed matter physics to understand
the interactions between electrons and atoms in a solid material, see Fröhlich [19]
and Hajaiej [20]. For the study of this equation, we refer, for example, to the
papers of Alves-Nóbrega-Yang [3], Alves-Yang [5], Lee-Kim-Bae-Park [23], Liang-
Zhang [24], Yang-Tang-Gu [32] and the references therein.

Quasilinear elliptic equations are nonlinear generalizations of linear elliptic par-
tial differential equations. It is well known that linear elliptic equations represent
models of various physical problems, such as Laplace and Poisson equation. That
is why they have been studied for more than two hundred years and still attract
researchers even today. As a branch or evolution of variational calculus, varia-
tional methods are almost entirely related to nonlinearity. The earliest origin of
variational methods was in the Euler era, and the great development in modern
times originated from the pioneering work of Ambrosetti and Rabinowitz in the
1970s. The emergence of modern variational tools such as the mountain path the-
orem and the symmetric mountain path theorem injected new vitality into ancient
variational methods. The variational method has achieved rich results in the exis-
tence and multiplicity of solutions for nonlinear elliptic equations or systems. We
recommend readers to refer to the works of Anthal-Giacomoni-Sreenadh [6], Bai-
Papageorgiou-Zeng [8], Cen-Khan-Motreanu-Zeng [13], Papageorgiou-Rădulescu-
Repovs̆ [26], Rădulescu-Repovs̆ [30], Rădulescu-Vetro [31], Zeng-Migorski-Khan [33]
and the references therein.

The 1-biharmonic problem is studied in the space of functions BL(Ω) with |Ω| <
+∞ or BL(RN ). Unlike the usual Sobolev spaces, the space BL is neither reflexive
nor uniformly convex and the associated energy functional lacks smoothness. This is
the reason why it is so difficult to prove that functionals defined on this space satisfy
compactness properties like the Palais-Smale condition and we have to use the
critical point theory of nonsmooth functionals. Clearly, the 1-biharmonic problem
can also be seen as the limit of the p-biharmonic ones, as the parameter p → 1+. It
is worth noting that the critical exponent for the 1-biharmonic operator is 1∗ = N

N−1

instead of N
N−2 .
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In [27], Parini-Ruf-Tarsi first studied this kind of operator and dealt with the
related eigenvalue problem. The authors proved that

Λ1,1(Ω) = inf
u∈BL0(Ω)\{0}

∫
Ω
|∆u|

∥u∥1
is attained by a non-negative and superharmonic function v that belongs to the
space

BL0(Ω) =
{
u ∈ W 1,1

0 (Ω) : ∆u ∈ M(Ω)
}
,

where M(Ω) is the space of the Radon measures defined on Ω and
∫
Ω
|∆u| is defined

in (2.1). In fact, their results are more general since they also provide information
about the shape of the domain Ω that maximizes Λ1,1(Ω). In [29], the same authors
considered the following minimization problem

Λc
1,1(Ω) = inf

u∈C∞
c (Ω)\{0}

∫
Ω
|∆u|

∥u∥1
.

and studied the shape of the subset that maximizes the quantity Λc
1,1(Ω). Fur-

thermore, in Parini-Ruf-Tarsi [28], some optimal constants of Sobolev embeddings
in certain function spaces related to the 1-biharmonic operator are proved. In [9],
Barile-Pimenta obtained existence results of bounded variation solutions to the
following quasilinear fourth-order problem{

∆2
1u = f(x, u) in Ω,

u = ∆u
|∆u| = 0 on ∂Ω.

In particular, Hurtado-Pimenta-Miyagaki [21] proved some compactness results of
the BL(RN ) of radially symmetric functions and the existence of the ground state
solution for the quasilinear elliptic problem{

∆2
1 −∆1u+ u

|u| = f(u) in RN ,

u ∈ BL(RN ).

Moreover, Bartsch, Pankow and Wang studied such a situation for the first time
and proved the existence of solutions of a nonlinear Schrödinger equation with steep
potential well for λ large enough, see the papers in [10, 11, 12]. In recent years,
elliptic equations with steep potential well have attracted much attention. We also
refer to the works of Alves-Figueiredo-Pimenta [2], Alves-Nóbrega-Yang [3], Ding-
Tanaka [16], Jia-Luo [22] for the subcritical case and Alves-de Morais Filho-Souto
[1], Alves-Souto [4], Costa [15], Zhang-Lou [34] for the critical case, see also the
references therein.

Motivated by the aforementioned works, in this paper, we consider the 1-bihar-
monic Choquard problem with the steep potential well. The main results in our
paper are the following ones.

Theorem 1.1. Suppose that assumptions (f1)–(f5) and (V1)–(V3) hold. Then there
exists λ∗ > 0 such that for each λ ≥ λ∗, problem (1.1) has a nontrivial ground state
solution uλ.

Theorem 1.2. Suppose that assumptions (f1)–(f5) and (V1)–(V3) hold. If uλ is a
nontrivial solution obtained by Theorem 1.1, then there exists uΩ ∈ BL(RN ) such
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that, if λn → +∞, then, up to a subsequence not relabeled, uλn
→ uΩ in Lq

loc(RN )
for 1 ≤ q < 1∗ and

∥un∥λn
− ∥uΩ∥Ω → 0 as n → +∞,

where ∥ · ∥λ and ∥ · ∥Ω are defined in (2.4) and (4.2). Furthermore, uΩ ≡ 0 a.e. in
RN \ Ω and uΩ is a solution of{

∆2
1 −∆1u+ u

|u| = (Iµ ∗ F (u)) f(u) in Ω,

u = 0 on ∂Ω.

This paper is organized as follows. In Section 2 we give a detailed description of
the variational framework and the properties of the related function space defined
by the energy functional. In Section 3 we give the proof of Theorem 1.1, studying
separately the arguments on the existence of solutions for λ large enough. Finally,
in Section 4, we prove Theorem 1.2, studying the arguments on the concentration
of solutions for λ → +∞.

2. Preliminaries

In this section we recall the basic notions and preliminaries to the underlying
function space of problem (1.1). This space is defined by

BL(RN ) :=
{
u ∈ W 1,1(RN ) : ∆u ∈ M(RN )

}
,

where M(RN ) is the set of all Radon measures on RN . Parini-Ruf-Tarsi [27] proved
that u ∈ W 1,1(RN ) belongs to BL(RN ) if and only if∫

RN

|∆u| < +∞,

where ∫
RN

|∆u| := sup

{∫
RN

u∆φdx : φ ∈ C∞
0 (RN ), ∥φ∥∞ ⩽ 1

}
. (2.1)

The space BL(RN ) is a Banach space when endowed with the following norm

∥u∥ =

∫
RN

|∆u|+ ∥∇u∥1 + ∥u∥1,

which is continuously embedded into Lr(RN ) for all r ∈ [1, 1∗], see Hurtado-
Pimenta-Miyagaki [21].

Moreover, the space of smooth functions is not dense in BL(RN ) with respect to
the topology of the norm. However, it is with respect to the topology induced by the
following notion of convergence. This has motivated people to define a weaker sense
of convergence in BL(RN ). We say that a sequence (un)n∈N ⊂ BL(RN ) converges to
u ∈ BL(RN ) in the sense of the strict convergence if both of the following conditions
are satisfied

un → u in W 1,1(RN ),

and ∫
RN

|∆un| →
∫
RN

|∆u|,

as n → +∞. In fact, with respect to the strict convergence, C∞(RN ) ∩ BL(RN ) is
dense in BL(RN ) and C∞

0 (RN ) is dense in BL(RN ).
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For a vectorial Radon measure µ ∈ M(RN ,RN ), we denote by µ = µa + µs

the usual decomposition stated in the Radon-Nikodym Theorem, where µa and µs

are, respectively, the absolute continuous and the singular parts with respect to the
N -dimensional Lebesgue measure LN . With |µ| as the scalar Radon measure, the
usual Lebesgue-Radon-Nikodym derivative of µ with respect to |µ| is given by

µ

|µ|
(x) = lim

r→0

µ(Br(x))

|µ|(Br(x))
.

It is easy to see that J : BL(RN ) → R, given by

J (u) =

∫
RN

|∆u|+
∫
RN

|∇u|dx+

∫
RN

|u|dx

is a convex functional which is Lipschitz continuous in its domain and lower semi-
continuous with respect to the W 1,r(RN ) topology, for r ∈ [1, 1∗]. Meanwhile, J
is lower semicontinuous with respect to the Lr(RN )-topology for r ∈ [1, 1∗), see
Hurtado-Pimenta-Miyagaki [21]. Although nonsmooth, the functional J admits
some directional derivatives. More precisely, as is shown by Anzellotti in [7], given
u ∈ BL(RN ), for all v ∈ BL(RN ) such that (∆v)s is absolutely continuous with re-
spect to (∆u)s, (∆v)a vanishes LN -a.e. in

{
x ∈ RN : (∆u)a(x) = 0

}
, ∇v vanishes

a.e. in the set where ∇u vanishes and v ≡ 0, a.e. in the set where u vanishes, it
follows that

J ′(u)v =

∫
RN

(∆u)a(∆v)a

|(∆u)a|
dx+

∫
RN

∆u

|∆u|
(x)

∆v

|∆v|
(x) |(∆v)s|

+

∫
RN

∇u · ∇v

|∇u|
dx+

∫
RN

sgn(u)v dx,

(2.2)

where sgn(u(x)) = 0 if u(x) = 0 and sgn(u(x)) = u(x)/|u(x)| if u(x) ̸= 0. In
particular, taking (2.2) into account, for all u ∈ BL(RN ), we have

J ′(u)u = J (u). (2.3)

Now let Xλ be the subspace of BL(RN ) given by

Xλ =

{
u ∈ BL(RN ) :

∫
RN

(1 + λV (x))|u|dx < +∞
}

endowed with the norm

∥u∥λ =

∫
RN

|∆u|+
∫
RN

|∇u|dx+

∫
RN

(1 + λV (x))|u|dx. (2.4)

Note that the embedding Xλ ↪→ BL(RN ) is continuous in such a way that Xλ is a
Banach space that is continuously embedded into Lr(RN ) for r ∈ [1, 1∗].

Let us present the energy functional associated with problem (1.1). Let Φλ : Xλ

→ R be given by

Φλ(u) = Jλ(u)−F(u), (2.5)

where Jλ = ∥u∥λ and F : Xλ → R is defined by

F(u) =

∫
RN

(Iµ ∗ F (u))F (u) dx.

Concerned with the nonlocal type problems with Riesz potential, we need the
following well-known Hardy-Littlewood-Sobolev inequality, see Lieb-Loss [25].
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Lemma 2.1 (Hardy–Littlewood–Sobolev inequality). Let s, r > 1 and 0 < α < N
with 1/s + (N − µ)/N + 1/r = 2. Let g ∈ Ls(RN ) and h ∈ Lr(RN ). Then there
exists a sharp constant C(s,N, µ, r), independent of g and h, such that∫

RN

∫
RN

g(x)h(y)

|x− y|N−µ
dxdy ≤ C(s,N, µ, r)∥g∥Ls(RN )∥h∥Lr(RN ).

Remark 2.2. In particular, F (v) = |v|q1 for some q1 > 0. By the Hardy-
Littlewood-Sobolev inequality,∫

RN

∫
RN

F (u(x))F (u(y))

|x− y|N−µ
dy dx

is well defined if F (u) ∈ Ls(RN ) for s > 1 which satisfies

s = r and
2

s
+

N − µ

N
= 2.

Since u ∈ BL(RN ), we require that sq1 ∈ [1, 1∗]. For the subcritical case, we have
to assume that

1

2

(
2− N − µ

N

)
< q1 ≤ q2 <

1∗

2

(
2− N − µ

N

)
.

In our paper, we are assuming a stronger condition on q1, q2, and µ, because we
intend to study the concentration of the solutions.

Then it is easy to check that Jλ is a convex functional which is Lipschitz con-
tinuous in its domain and F ∈ C1(Xλ,R). Similar to (2.3), we have

J ′
λ(u)v =

∫
RN

(∆u)a(∆v)a

|(∆u)a|
dx+

∫
RN

∆u

|∆u|
(x)

∆v

|∆v|
(x) |(∆v)s|

+

∫
RN

∇u · ∇v

|∇u|
dx+

∫
RN

(1 + λV (x)) sgn(u)v dx.

(2.6)

In particular, note that, for all u ∈ Xλ, J ′
λ(u)u = Jλ(u). Moreover, taking v = u

in (2.6), it follows that

Φ′
λ(u)u = J ′

λ(u)u−
∫
RN

(Iµ ∗ F (u))f(u)udx

= ∥u∥λ −
∫
RN

(Iµ ∗ F (u))f(u)udx.

Let us give a precise definition of the solution we are considering. Since Φλ

can be written as the difference between the Lipschitz functional Jλ and a smooth
functional F , we say that uλ ∈ Xλ is a solution of (1.1) if 0 ∈ ∂Φλ(uλ), where
∂Φλ(uλ) denotes the subdifferential of Φλ in uλ, as defined, for example, in Chang
[14]. This in turn is equivalent to F ′(uλ) ∈ ∂Jλ(uλ). However, since the convexity
of Jλ, it implies that F ′(uλ) ∈ ∂Jλ(uλ) if and only if

Jλ(v)− Jλ(uλ) ≥ F ′(uλ)(v − uλ) for all v ∈ Xλ,

or equivalently

∥v∥λ − ∥uλ∥λ ≥
∫
R
(Iµ ∗ F (u))f(uλ)(v − uλ) dx for all v ∈ Xλ. (2.7)

Hence, every uλ ∈ Xλ for which (2.7) holds is going to be called a solution of (1.1).
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In fact, from Parini-Ruf-Tarsi [27], we know that if uλ ∈ Xλ satisfies (2.7), there
exists a function γ ∈ L∞,N (RN ) and a vector field z ∈ W 1,1(RN ) ∩ L∞(RN ) such
that |z|∞ ≤ 1 and

div z ∈ L∞,N (RN ),∆z ∈ L∞,N (RN ),∫
RN uλ∆z−

∫
RN uλ div zdx =

∫
RN |∆uλ|+

∫
RN |∇uλ| dx,

γ |uλ| = (1 + λV (x))uλ a.e. in RN ,

∆z− div z+ γ = (Iµ ∗ F (uλ))f(uλ), a.e. in RN ,

(2.8)

where

L∞,N

(
RN
)
=
{
g : RN → R | g is measurable and ∥g∥∞,N < ∞

}
and

∥g∥∞,N = sup
∥Φλ∥1+∥Φλ∥1∗≤1

∣∣∣∣∫
RN

gΦλ dx

∣∣∣∣ .
Hence, (2.8) is the precise version of (1.1).

3. Proof of Theorem 1.1

Let us first recall the Mountain-Pass Theorem in its version from Figueiredo-
Pimenta [17].

Theorem 3.1 (Mountain-Pass Theorem). Let E be a Banach space, Ψ = I0 − I,
where I ∈ C1(E,R) and I0 is a locally Lipschitz convex functional defined in E.
Suppose that the functional Ψ satisfies the following conditions:

(g1) There exist ρ > 0 and α > Ψ(0) such that Ψ|∂Bρ(0) ≥ α.

(g2) Ψ(e) < Ψ(0), for some e ∈ E \Bρ(0).

Then for all τ > 0, there exists xτ ∈ E such that

c− τ < Ψ(xτ ) < c+ τ,

and

I0(y)− I0 (xτ ) ≥ I ′ (xτ ) (y − xτ )− τ ∥y − xτ∥ for all y ∈ E,

where c ≥ α is characterized by

c = inf
γ∈Γ

sup
t∈[0,1]

Ψ(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = e}.

Motivated by the paper of Alves-Yang [5] we have the following uniform bound-
edness results.

Proposition 3.2. There exists K > 0 such that

|Iµ ∗ F (u)| ≤ K for all u ∈ Xλ. (3.1)

Proof. Indeed, by assumptions (f2) and (f3), we have that

|F (u)| ≤ σ (|u|q1 + |u|q2) ,
and it follows that

|Iµ ∗ F (u)| =
∣∣∣∣∫

RN

F (u)

|x− y|N−µ
dy

∣∣∣∣
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=

∣∣∣∣∣
∫
|x−y|≤1

F (u)

|x− y|N−µ
dy

∣∣∣∣∣+
∣∣∣∣∣
∫
|x−y|≥1

F (u)

|x− y|N−µ
dy

∣∣∣∣∣
≤ σ

∫
|x−y|≤1

|u|q1 + |u|q2
|x− y|N−µ

dy + σ

∫
|x−y|≥1

(|u|q1 + |u|q2) dy

≤ σ

∫
|x−y|≤1

|u|q1 + |u|q2
|x− y|N−µ

dy + C,

where we used the fact that 1 < q1 ≤ q2 < 1∗. Choosing t1 ∈ (Nµ , N
(N−1)q1

) and

t2 ∈ (Nµ , N
(N−1)q2

), it follows from Hölder’s inequality that∫
|x−y|≤1

|u|q1
|x− y|N−µ

dy

≤

(∫
|x−y|≤1

|u|t1q1 dy

) 1
t1
(∫

|x−y|≤1

1

|x− y|
t1(N−µ)

t1−1

dy

) t1−1
t1

≤ C1

(∫
|r|≤1

|r|N−1− t1(N−µ)
t1−1 dr

) t1−1
t1

.

Similarly, we get∫
|x−y|≤1

|u|q2
|x− y|N−µ

dy ≤ C2

(∫
|r|≤1

|r|N−1− t2(N−µ)
t2−1 dr

) t2−1
t2

.

Since N − 1− ti(N−µ)
ti−1 > −1 for i = 1, 2, there exists a constant C > 0 such that∫

|x−y|≤1

|u|q1 + |u|q2
|x− y|N−µ

dy ≤ C for all x ∈ RN .

Hence the inequality implies the uniform boundedness given in (3.1). □

Now let us verify that the functional Φλ : Xλ → R defined in (2.5) satisfies the
geometrical conditions of the Mountain-Pass Theorem.

Lemma 3.3. The functional Φλ verifies the following properties:

(g1) There exist ρ > 0 and α > Φλ(0) such that Φλ|∂Bρ(0) ≥ α.

(g2) Φλ(e) < Φλ(0) for some e ∈ Xλ \Bρ(0).

Proof. We start to verify the first condition. Note that, from (f2) and (f3), there
exists

|F (u)| ≤ σ (|u|q1 + |u|q2) , (3.2)

where q1, q2 are as in (f3). Then, by (3.2) and the Hardy-Littlewood-Sobolev in-
equality, we get that∣∣∣∣∫

RN

(Iµ ∗ F (u))F (u) dx

∣∣∣∣ ≤ C1∥F (u)∥s∥F (u)∥s

≤ C2

(∫
RN

(|u|q1 + |u|q2)s dx

) 2
s

,
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where 1
s = 1 − N−µ

2N . Since 1
2

(
2− N−µ

N

)
< q1 ≤ q2 < 1∗

2

(
2− N−µ

N

)
, we can see

that 1 < sq1 ≤ sq2 < 1∗. By using the continuous embeddings of Xλ, we have that(∫
RN

(|u|q1 + |u|q2)s dx
) 2

s

≤ C3(∥u∥2q1λ + ∥u∥2q2λ ).

Therefore,

Φλ(u) =

∫
RN

|∆u|+
∫
RN

|∇u|dx+

∫
RN

(1 + λV (x))|u|dx

−
∫
RN

(Iµ ∗ F (u))F (u) dx

= ∥u∥λ −
∫
RN

(Iµ ∗ F (u))F (u) dx

≥ ∥u∥λ − C4(∥u∥2q1λ + ∥u∥2q2λ ).

Since q2 ≥ q1 ≥ 1, the claim follows if we choose ρ small enough.
Now let us prove that Φλ satisfies (g2). For a fixed positive function u0 ∈

C∞
0

(
RN
)
\ {0} with u0 > 0, we set

ϕ(t) := H
(

tu0

∥u0∥λ

)
for t > 0,

where

H(u) :=

∫
RN

(Iµ ∗ F (u))F (u) dx.

By using the Ambrosetti-Rabinowitz condition (f4), we deduce that

ϕ′(t) = H′
(

tu0

∥u0∥λ

)
u0

∥u0∥λ

=

∫
RN

[
Iµ ∗ F

(
tu0

∥u0∥λ

)]
f

(
tu0

∥u0∥λ

)
u0

∥u0∥λ
dx

≥ κ

t

∫
RN

[
Iµ ∗ F

(
tu0

∥u0∥λ

)]
F

(
tu0

∥u0∥λ

)
dx

≥ κ

t
ϕ(t).

Integrating this on [1, t ∥u0∥λ] with t > 1
∥u0∥λ

, we find

ϕ (t ∥u0∥λ) ≥ ϕ(1) (t ∥u0∥λ)
κ
,

which implies

H (tu0) ≥ H
(

u0

∥u0∥λ

)
∥u0∥κλ t

κ.

Thus,

Φλ(tu0) ≤ t∥u0∥λ −H
(

u0

∥u0∥λ

)
∥u0∥κλ t

κ → −∞, (3.3)

as t → +∞ since κ > 1. Then we can choose e = tu0 ∈ Xλ such that Φλ(e) < 0. □
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From Theorem 3.1 we get that, for all λ > 0, given a sequence (τn)n∈N with
τn → 0, there exists a sequence (un)n∈N ∈ Xλ such that

lim
n→∞

Φλ(un) = cλ

and

∥v∥λ − ∥un∥λ ≥
∫
RN

(Iµ ∗ F (un)) f(un)(v − un) dx− τn∥v − un∥λ, (3.4)

for all v ∈ Xλ where cλ is given by

cλ = inf
γ∈Γλ

sup
t∈[0,1]

Φλ(γ(t))

and Γλ = {γ ∈ C([0, 1], Xλ) : γ(0) = 0,Φλ(γ(1)) < 0}.
In addition, let us define the Nehari manifold associated to problem (1.1) for

λ > 0 which is given by

Nλ = {u ∈ Xλ \ {0} : Φ′
λ(u)u = 0} .

From Figueiredo-Pimenta [18] it follows that

cλ = inf
u∈Xλ\{0}

max
t≥0

Φλ(tu) = inf
u∈Nλ

Φλ(u).

In the following result, we give lower and upper bounds for cλ.

Lemma 3.4. For each λ > 0, there exist positive constants α0 and β0 independent
of λ such that

α0 ≤ cλ ≤ β0.

Proof. From the proof of the property (g1) in Lemma 3.3, it is obvious that we can
take 0 < α0 < α < cλ. On the other hand, by e ∈ C∞

0 (Ω), for all t > 0, as in (3.3),
we have

Φλ(te) ≤ t

(∫
RN

|∆e|+
∫
RN

|∇e|dx+

∫
RN

|e|dx
)
−H

(
e

∥e∥λ

)
∥e∥κλ t

κ → −∞,

as t → ∞. Thus, there exists a constant β0 > 0 such that

cλ ≤ max
t>0

Φλ(te) ≤ β0.

□

Next we are going to prove that the sequence (un)n∈N is bounded in BL(RN ).

Lemma 3.5. The sequence (un)n∈N is bounded in BL(RN ).

Proof. Taking the test function v = 2un in (3.4) yields

∥un∥λ ≥
∫
RN

(Iµ ∗ F (un)) f(un)un dx− τn∥un∥λ,

which implies that

(1 + τn)∥un∥λ ≥
∫
RN

(Iµ ∗ F (un)) f(un)un dx. (3.5)

Then, by (f4) and (3.5), we get

cλ + on(1) ≥ Φλ(un)

= ∥un∥λ +

∫
RN

(Iµ ∗ F (un))

(
1

κ
f(un)un − F (un)

)
dx
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−
∫
RN

1

κ
(Iµ ∗ F (un)) f(un)un dx

≥ ∥un∥λ
(
1− 1

κ
− τn

κ

)
≥ C∥un∥λ,

for some C > 0 which does not depend on n ∈ N and λ > 0. Thus, we conclude
that (un)n∈N is bounded in BL(RN ). □

From Lemmas 3.4 and 3.5 we obtain the following result.

Corollary 3.6. There exists a positive constant C > 0 independent of λ such that

∥un∥λ ≤ C for all n ∈ N
and

lim inf
n→+∞

∥un∥λ ≥ α0 for all λ > 0.

Since the sequence (un)n∈N is bounded in BL(RN ) and the compactness of the
embedding BL(RN ) ↪→ Lr

loc(RN ) for 1 ≤ r < 1∗, there exists uλ ∈ BLloc(RN ) such
that

un → uλ in Lr
loc(RN ) for 1 ≤ r < 1∗,

and

un → uλ a.e. in RN ,

as n → +∞. Note that uλ ∈ BL(RN ). Indeed, by Fatou’s Lemma, it follows that
uλ ∈ L1RN . For a given R > 0, from the semicontinuity of the norm in BL(BR(0))
with respect to the Lq(BR(0)) convergence, we have that∫

BR(0)

|∆ulambda| ≤ lim inf
n→+∞

∫
BR(0)

|∆un| ≤ lim inf
n→+∞

∥un∥BL(RN ) ≤ C,

where C does not depend on n and on R. Since the last inequality holds for every
R > 0, then ∆uλ ∈ M(RN ). Hence, by Hurtado-Pimenta-Miyagaki [21], it follows
that uλ ∈ BL(RN ). The following result is crucial for obtaining the compactness
properties in our work.

Lemma 3.7. For all fixed q ∈ [1, 1∗) and for a given ε > 0, there exist λ∗(q, ε) > 0
and R > 0 such that ∫

Bc
R(0)

|un|q dx ≤ ε,

for all λ ≥ λ∗(q, ε) and for all n ∈ N, where Bc
R(0) = {x ∈ RN : |x| > R}.

Proof. For a given R > 0, let us define the sets

A(R) = {x ∈ RN : |x| > R and V (x) ≥ M0},
B(R) = {x ∈ RN : |x| > R and V (x) < M0},

where M0 is given in (V2).
Note that, by Corollary 3.6, (V2) and the definition of ∥ · ∥λ, we have∫

A(R)

(1 + λM0)|un|dx ≤
∫
A(R)

(1 + λV (x))|un|dx ≤ ∥un∥λ,
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which implies that∫
A(R)

|un|dx ≤ 1

1 + λM0
∥un∥λ ≤ C

1 + λM0
<

ε

2
(3.6)

for all n ∈ N whenever λ > λ∗(ε) and λ∗(ε) ≥ M−1
0 ( 2Cε − 1).

On the other hand, by Corollary 3.6, (V2), Hölder’s inequality and the embed-
dings of Xλ, we obtain∫

B(R)

|un|dx ≤ C∥un∥1
∗

1∗ |B(R)| 1
N ≤ C|B(R)| 1

N <
ε

2
, (3.7)

where R > 0 is large enough and |B(R)| → 0 as R → +∞.
Then, if λ > λ∗(ε) and R > 0 is large enough, from (3.6) and (3.7), it follows

the result for q = 1.
For q ∈ (1, 1∗), by Corollary 3.6 and interpolation in Lebesgue spaces the es-

timate follows for λ greater than a certain λ∗(q, ε), since (un)n∈N is bounded in
L1∗(RN ). This completes the proof. □

Now we will prove that uλ is nontrivial.

Lemma 3.8. There exists λ∗ > 0 such that uλ ̸= 0 for all λ ≥ λ∗.

Proof. Taking the test function v = un + tun in (3.4) and letting t → 0±, we get
that

Φ′
λ(un)un = on(1),

which implies that

∥un∥λ =

∫
RN

(Iµ ∗ F (un)) f(un)un dx+ on(1)

=

∫
BR(0)

(Iµ ∗ F (un)) f(un)un dx

+

∫
RN\BR(0)

(Iµ ∗ F (un)) f(un)un dx+ on(1).

(3.8)

From (f3) and Proposition 3.2, we have∫
RN\BR(0)

(Iµ ∗ F (un)) f(un)un dx

≤ Kσ

∫
RN\BR(0)

|un|q1 dx+Kσ

∫
RN\BR(0)

|un|q2 dx.
(3.9)

Then, by Lemma 3.7, taking λ∗ ≥ max{λ∗( α0

4Kσ , q1), λ
∗( α0

4Kσ , q2)} where α0 is as in
Corollary 3.6, it follows that (3.9) implies that

lim sup
n→+∞

∫
RN\BR(0)

(Iµ ∗ F (un)) f (un)un dx

≤ K lim sup
n→+∞

∫
RN\BR(0)

f (un)un dx ≤ α0

2
.

(3.10)

From the compactness of the embedding BL(BR(0)) ↪→ Lq(BR(0)) for q ∈ [1, 1∗),
(f2) and (f3), we have that

lim
n→+∞

∫
BR(0)

(Iµ ∗ F (un)) f(un)un dx =

∫
BR(0)

(Iµ ∗ F (uλ)) f(uλ)uλ dx. (3.11)
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Hence, from (3.11), (3.8), (3.10) and Corollary 3.6, we obtain∫
BR(0)

(Iµ ∗ F (uλ)) f(uλ)uλ dx

= lim
n→+∞

∫
BR(0)

(Iµ ∗ F (un)) f(un)un dx

≥ lim inf
n→+∞

(
∥un∥λ −

∫
RN\BR(0)

(Iµ ∗ F (un)) f(un)un dx

)
≥ lim inf

n→+∞
∥un∥λ − α0

2

≥ α0

2
,

where λ ≥ λ∗. Thus uλ ̸= 0. □

The following result is the pivotal point.

Lemma 3.9. Φ′
λ(uλ)uλ ≤ 0.

Proof. Let φ ∈ C∞
0 (RN ) be such that

0 ≤ φ ≤ 1, φ ≡ 1 in BR(0), φ ≡ 0 in Bc
2R(0)

and let C > 0 be a constant such that |∇φ| ≤ C and |∆φ| ≤ C, for φR := φ(·/R).
Then, for all u ∈ BL(RN ), it follows that

(∆(φRu))
s is absolutely continuous w.r.t. (∆u)s. (3.12)

Indeed, note that

∆(φRu) = ∆φRu+ 2∇φR · ∇u+ φR∆u

= ∆φRu+ 2∇φR · ∇u+ φR(∆u)a + φR(∆u)s in D′(RN ).

Then it follows that

(∆(φRu))
s = (φR(∆u)s)s = φR(∆u)s.

Taking (3.12) into account and the fact that φRun is equal to 0 a.e. in the set
where un vanishes, we see that φRun and un fulfill two of the three requirements
that would allow us to calculate Φ′

λ(un)(φRun). However, we have no ensure that

(∆(φRun))
a = ∆φRu+ 2∇φR∇u+ φR(∆u)a

vanishes a.e. in the set {
x ∈ RN : (∆un)

a(x) = 0
}
.

Hence, it might not be possible to calculate the Gateaux derivative Φ′
λ(un)(φRun).

We have to work in a slightly different way. In fact, it will be enough to work with
the left Gateaux derivative

lim
t→0−

Φλ(un + tφRun)− Φλ(un)

t
,

which, by (3.4), satisfy

lim
t→0−

Φλ(un + tφRun)− Φλ(un)

t
≤ on(1). (3.13)
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In order to calculate the limit above, let us first calculate separately a part of it.
Let us define for all u ∈ BL(RN ),

Ja(u) =

∫
RN

|(∆u)a(x)| dx.

Then, for all u, v ∈ BL(RN ), we have that

lim
t→0−

Ja(u+ tv)− Ja(u)

t

= lim
t→0−

1

t

∫
RN

(|(∆u)a + t(∆v)a| − |(∆u)a|) dx

= −
∫
Tu

|(∆v)a| dx+

∫
RN\Tu

(∆u)a(∆v)a

|(∆u)a|
dx,

(3.14)

where Tu =
{
x ∈ RN : (∆u)a(x) = 0

}
.

Taking into account (3.13) and (3.14), it follows that

on(1) ≥
∫
RN\Tun

(∆un)
a[∆φRun + 2∇φR · ∇un + φR(∆un)

a]

|(∆un)a|
dx

−
∫
Tun

|(∆φRun + 2∇φR · ∇un)|dx

+

∫
RN

∆un

|∆un|
φR(∆un)

s

|φR(∆un)s|
|φR(∆un)

s|

+

∫
RN

∇un · (∇φRun + φR∇un)

|∇un|
dx

+

∫
RN

(1 + λV (x)) sgn(un)(φRun) dx

−
∫
RN

(Iµ ∗ F (un)) f(un)φRun dx

=

∫
RN\Tun

φR|(∆un)
a|dx

+

∫
RN\Tun

(∆un)
a(∆φRun + 2∇φR · ∇un)

|(∆un)a|
dx

−
∫
Tun

|(∆φRun + 2∇φR · ∇un)|dx

+

∫
RN

∆un

|∆un|
φR(∆un)

s

|φR(∆un)s|
|φR(∆un)

s|

+

∫
RN

∇un · (∇φRun + φR∇un)

|∇un|
dx

+

∫
RN

(1 + λV (x)) |un|φR dx

−
∫
RN

(Iµ ∗ F (un)) f(un)φRun dx.
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Noting that
∫
RN\Tun

φR |(∆un)
a| dx =

∫
RN φR |(∆un)

a| dx and calculating the

limn→+∞ in the inequality above, we have that

0 ≥ lim inf
n→+∞

(∫
RN

φR |(∆un)
a| dx

+

∫
RN

(∆un)
s

|(∆un)s|
φR(∆un)

s

|φR(∆un)s|
|φR(∆un)

s|
)

+ lim inf
n→+∞

∫
RN\Tun

(∆un)
a(∆φRun + 2∇φR · ∇un)

|(∆un)a|
dx

− lim sup
n→+∞

∫
Tun

|(∆φRun + 2∇φR · ∇un)| dx

+ lim inf
n→+∞

∫
RN

∇un · (∇φRun + φR∇un)

|∇un|
dx

+

∫
RN

(1 + λV (x)) |uλ|φR dx−
∫
RN

(Iµ ∗ F (uλ)) f(uλ)φRuλ dx.

(3.15)

Now, by the lower semicontinuity of the norm in BL(BR(0)) w.r.t. the L1(BR(0))-
convergence and also by the fact that φRµ

|φRµ| =
µ
|µ| a.e. in BR(0) with (3.15), we have

that ∫
BR(0)

|∆uλ| dx

≤ − lim inf
n→+∞

∫
RN\Tun

(∆un)
a(∆φRun + 2∇φR · ∇un)

|(∆un)a|
dx

+ lim sup
n→+∞

∫
Tun

|(∆φRun + 2∇φR · ∇un)| dx

− lim inf
n→+∞

∫
RN

∇un · (∇φRun + φR∇un)

|∇un|
dx

−
∫
RN

(1 + λV (x)) |uλ|φR dx+

∫
RN

(Iµ ∗ F (uλ)) f(uλ)φRuλ dx.

(3.16)

Furthermore, since (un)n∈N is a bounded sequence in L1(RN ), it follows that

lim
R→+∞

∣∣∣∣∣lim inf
n→∞

∫
RN\Tun

un(∆un)
a ·∆φR

|(∆un)a|
dx

∣∣∣∣∣
≤ lim

R→+∞
(lim inf

n→∞

∫
RN\Tun

|un| |∆φR| dx)

≤ lim
R→+∞

C

R
(lim inf

n→∞

∫
RN\Tun

|un| dx) = 0.

(3.17)

Similarly, we can also get that

lim
R→+∞

∣∣∣∣∣lim inf
n→∞

∫
RN\Tun

(∆un)
a(2∇φR · ∇un)

|(∆un)a|
dx

∣∣∣∣∣ = 0,

lim
R→+∞

∣∣∣∣∣lim inf
n→+∞

∫
Tun

|(un∆φR + 2∇φR · ∇un)| dx

∣∣∣∣∣ = 0,

(3.18)
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and

lim
R→+∞

∣∣∣∣lim inf
n→+∞

∫
RN

un∇un · ∇φR

|∇un|
dx

∣∣∣∣ = 0. (3.19)

Letting R → +∞ in both sides of (3.16) and taking (3.17), (3.18) and (3.19) into
account, we get that∫

RN

|∆uλ|+
∫
RN

|∇uλ|dx+

∫
RN

(1 + λV (x)) |uλ| dx

≤
∫
RN

(Iµ ∗ F (uλ)) f(uλ)uλ dx.

This shows the assertion of the lemma. □

By the last result, there exists tλ ∈ (0, 1] such that tλuλ ∈ Nλ. Note also that

cλ + on(1) = Φλ(un) + on(1) = Φλ(un)− Φ′
λ(un)un

=

∫
RN

(Iµ ∗ F (un)) (f(un)un − F (un)) dx,
(3.20)

and under (f5), it is easy to see that t 7→ f(t)t− F (t) is increasing for t ∈ (0,+∞)
and decreasing for t ∈ (−∞, 0), then by Fatou’s Lemma in the last inequality, we
derive that

cλ ≥
∫
RN

(Iµ ∗ F (uλ)) (f(uλ)uλ − F (uλ)) dx

≥
∫
RN

(Iµ ∗ F (uλ)) (f(tλuλ)tλuλ − F (tλuλ)) dx

= Φλ(tλuλ)− Φ′
λ(tλuλ)tλuλ

= Φλ(tλuλ)

≥ cλ.

Hence, tλ = 1, Φλ(uλ) = cλ, and by (3.20),

(Iµ ∗ F (un)) (f(un)un − F (un))

→ (Iµ ∗ F (uλ)) (f(uλ)uλ − F (uλ)) in L1(RN ).
(3.21)

Moreover, by (f4), we have

0 ≤
(
1− 1

κ

)
f(un)un ≤ f(un)un − F (un),

and

0 ≤ (κ− 1)F (un) ≤ f(un)un − F (un).

Then, by (3.21), we can apply Lebesgue’s Dominated Convergence Theorem to get

(Iµ ∗ F (un)) f(un)un → (Iµ ∗ F (uλ)) f(uλ)uλ in L1(RN ), (3.22)

and

(Iµ ∗ F (un))F (un) → (Iµ ∗ F (uλ))F (uλ) in L1(RN ).

Since

∥uλ∥λ =

∫
RN

(Iµ ∗ F (uλ)) f(uλ)uλ dx
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and

∥un∥λ =

∫
RN

(Iµ ∗ F (un)) f(un)un dx+ on(1),

by the limit (3.22), we obtain

∥un∥λ → ∥uλ∥λ, (3.23)

from which we conclude that

∥un∥1 → ∥uλ∥1, (3.24)

as n → +∞.
Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Based on the previous results, we can finish the proof of
Theorem 1.1. Indeed, by (3.4), (3.23), (3.24) and the lower semicontinuity of the
norm ∥ · ∥λ w.r.t. the L1(RN )-convergence, it follows that

∥v∥λ − ∥uλ∥λ ≥
∫
RN

(Iµ ∗ F (uλ)) f(uλ)(v − uλ) dx for all v ∈ Xλ.

Then, uλ is a nontrivial solution of problem (1.1) and Φλ(uλ) = cλ. Thus, uλ is
also a ground state solution of problem (1.1). □

4. Proof of Theorem 1.2

In this section, we first consider the problem{
∆2

1 −∆1u+ u
|u| = (Iµ ∗ F (u)) f(u) in Ω,

u = 0 on ∂Ω.
(4.1)

The corresponding energy functional ΦΩ(u) : BL(Ω) → R is given by

ΦΩ(u) = ∥u∥Ω −
∫
Ω

(Iµ ∗ F (u))F (u) dx,

where

∥u∥Ω =

∫
Ω

|∆u|+
∫
Ω

|∇u|dx+

∫
Ω

|u|dx+

∫
∂Ω

|u|dHN−1. (4.2)

Also, we have that u ∈ BL(Ω) is a solution of (4.1) if

∥v∥Ω − ∥u∥Ω ≥
∫
Ω

(Iµ ∗ F (u)) f(u)(v − u) for all v ∈ BL(Ω).

Definition 4.1. A sequence (wn)n∈N ⊂ BL(RN ) is called a (PS)c,∞-sequence for
the family (Φλ)λ≥1, if there is a sequence λn → ∞ such that un ∈ Xλn

for n ∈ N,
Φλn (wn) → c,

as n → +∞, and

∥v∥λn
− ∥wn∥λn

≥
∫
RN

(Iµ ∗ F (wn)) f (wn) (v − wn)− τn ∥v − wn∥λn

(4.3)

for all v ∈ Xλn
, where τn → 0 as n → +∞.
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Similarly to the proof of Lemma 3.3, ΦΩ also satisfies the geometric conditions
of the Mountain-Pass Theorem. Then, the Nehari manifold associated to ΦΩ is also
well defined by

NΩ = {u ∈ BL(Ω) \ {0} : Φ′
Ω(u)u = 0} ,

and

cΩ = inf
NΩ

ΦΩ = inf
γ∈ΓΩ

max
t∈[0,1]

ΦΩ(γ(t)),

where

ΓΩ = {γ ∈ C([0, 1],BL(Ω)) : γ(0) = 0 and ΦΩ(γ(1)) < 0} .

Lemma 4.2. Let (wn)n∈N ⊂ BL(RN ) be a (PS)d,∞-sequence for (Φλ)λ≥1 with d ∈
R. Then either d = 0 or d ≥ cΩ. Moreover, there exists wΩ ∈ BL(RN ) such that,
up to a subsequence not relabeled, wn → wΩ in Lq

loc(RN ), for all 1 ≤ q < 1∗, wΩ ≡ 0
a.e. in RN \ Ω and wΩ is a solution of problem (4.1). Moreover, if d = cΩ, then

∥wn∥λn
− ∥wΩ∥Ω → 0 as n → +∞.

Proof. Note that as in the proof of Lemma 3.5, we have that

d+ on(1) ≥ C ∥wn∥λn
,

which implies that d ≥ 0. We also conclude that (∥wn∥λn
)n∈N is a bounded sequence

and then we know that (wn)n∈N is bounded in BL(RN ).
By the Sobolev embedding, there exists wΩ ∈ BLloc(RN ) such that

wn → wΩ in Lq
loc(R

N ) for 1 ≤ q < 1∗,

and

wn(x) → wΩ(x) a.e.x ∈ R,

as n → +∞. Moreover, it is possible to show that in fact wΩ belongs to BL(RN ).
Next let us show that wΩ ≡ 0 a.e. in RN \ Ω. In fact, for each m ∈ N, let us

define

Cm =

{
x ∈ RN : V (x) ≥ 1

m

}
,

and note that RN \ Ω =
⋃+∞

i=1 Cm ∪ ∂Ω. Then, since (∥wn∥λn
)n∈N is bounded, we

have ∫
Cm

|wn| dx ≤ m

λn

∫
Cm

λnV (x) |wn| dx

≤ m

λn
∥wn∥λn

= on(1),

which implies by Fatou’s Lemma that∫
Cm

|wΩ|dx = 0.

Hence, since RN \ Ω =
⋃+∞

i=1 Cm ∪ ∂Ω and |∂Ω| = 0, it follows that∫
RN\Ω

|wΩ| dx = 0,
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and then that wΩ = 0 a.e. in RN \ Ω.
If d = 0, it implies that ∥wn∥λn

→ 0 as n → +∞ and we are done.
If d > 0, since

d+ on(1) = Φλn
(wn) ≤ ∥wn∥λn

,

it is possible to argue as in Lemma 3.8 in order to show that in fact wΩ ̸= 0.
Similar to the proof of Lemma 3.9, we also get that

Φ′
Ω (wΩ)wΩ ≤ 0.

From the last conclusion, there exists tΩ ∈ (0, 1] such that tΩwΩ ∈ NΩ. Note also
that

d+ on(1) = Φλn(wn) + on(1) = Φλn(wn)− Φ′
λn

(wn)wn

=

∫
RN

(Iµ ∗ F (wn)) (f(wn)wn − F (wn)) dx.
(4.4)

Then, by Fatou’s Lemma in the last inequality, we derive that

d ≥
∫
RN

(Iµ ∗ F (wΩ)) (f(wΩ)wΩ − F (wΩ)) dx

≥
∫
RN

(Iµ ∗ F (wΩ)) (f(tΩwΩ)tΩwΩ − F (tΩwΩ)) dx

= ΦΩ(tΩwΩ)− Φ′
Ω(tΩwΩ)tΩwΩ

= ΦΩ(tΩwΩ)

≥ cΩ,

which implies that d ≥ cΩ.
Finally, we consider the case d = cΩ. In this case we have tΩ = 1, ΦΩ(wΩ) = cΩ

and wΩ ∈ NΩ. Then, by (4.4), we obtain

(Iµ ∗ F (wn)( f(wn)wn − F (wn))

→ (Iµ ∗ F (wΩ)) (f(wΩ)wΩ − F (wΩ)) in L1(RN ).

Moreover, by (f4), we also get

(Iµ ∗ F (wn)) f(wn)wn → (Iµ ∗ F (wΩ)) f(wΩ)wΩ in L1(RN ), (4.5)

(Iµ ∗ F (wn))F (wn) → (Iµ ∗ F (wΩ))F (wΩ) in L1(RN ),

∥wn∥λn
→ ∥wΩ∥Ω, (4.6)

∥wn∥1 → ∥wΩ∥1,
as n → +∞. For each v ∈ BL(Ω), let us consider the extension of ṽ of v(x) given
by

ṽ(x) =

{
0 if x ∈ RN \ Ω,
v(x) if x ∈ Ω,

and note that

∥ṽ∥λn
=

∫
RN

|∆ṽ|+
∫
RN

|∇ṽ|dx+

∫
RN

(1 + λnV (x)) |ṽ|dx

=

∫
Ω

|∆ṽ|+
∫
Ω

|∇ṽ|dx+

∫
∂Ω

|ṽ|dHN−1 +

∫
Ω

|ṽ|dx

= ∥ṽ∥Ω.
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Then, using the lower limit in (4.3) and taking (4.5) and (4.6) into account, it
follows that

∥ṽ∥Ω − ∥wΩ∥Ω ≥
∫
Ω

(Iµ ∗ F (wΩ)) f (wΩ) (ṽ − wΩ) dx,

which shows that wΩ is a solution of problem (4.1). The proof is complete. □

Now we can give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let {λn}n∈N ⊂ [λ∗,+∞) be any sequence with λn →
+∞ and let un := uλn

be critical points of Φλn
obtained by Theorem 1.1, which

implies Φλn
(un) = cλn

.
For a given u ∈ BL(Ω), denoting by u its extension by zero on RN \Ω, it follows

from Green’s Formula for BL-functions that∫
RN

|∆u|+
∫
RN

|∇u|dx+

∫
RN

|u|dx

=

∫
Ω

|∆u|+
∫
Ω

|∇u|dx+

∫
Ω

|u|dx+

∫
∂Ω

|u|dHN−1.

Then u ∈ Xλ and ΦΩ(u) = Φλ(u) for each λ > 0. Hence, for each γ ∈ ΓΩ, it follows
that γ ∈ Γλ. This fact shows that

cλ = inf
γ∈Γλ

max
t∈[0,1]

Φλ(γ(t)) ≤ inf
γ∈ΓΩ

max
t∈[0,1]

ΦΩ(γ(t)) = cΩ, (4.7)

for every λ > 0, which implies that, up to a subsequence, Φλn
(un) = d ∈ [0, cΩ] as

n → +∞. Since un satisfies (4.3) with τn = 0, it follows that (un)n∈N is indeed a
(PS)d,∞-sequence.

Finally, by Lemma 3.4, we have d > 0, hence d ≥ cΩ from Lemma 4.2. Then,
from the last inequality and (4.7), we obtain d = cΩ and (un)n∈N is a (PS)cΩ,∞-
sequence. Again by Lemma 4.2, there exists uΩ ∈ BL(RN ) such that, up to a
subsequence, un → uΩ in Lq

loc

(
RN
)
for 1 ≤ q < 1∗, uΩ ≡ 0 a.e. in RN \ Ω, uΩ is a

solution of problem (4.1), and

∥un∥λn
− ∥uΩ∥Ω → 0 as n → +∞.

Hence, Theorem 1.2 is proved. □
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ods”, Springer, Cham, 2019.
[27] E. Parini, B. Ruf, C. Tarsi, The eigenvalue problem for the 1-biharmonic operator, Ann. Sc.

Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 2, 307–332.

[28] E. Parini, B. Ruf, C. Tarsi, Limiting Sobolev inequalities and the 1-biharmonic operator,

Adv. Nonlinear Anal. 3 (2014), suppl. 1, s19–s36.
[29] E. Parini, B. Ruf, C. Tarsi, Higher-order functional inequalities related to the clamped 1-

biharmonic operator, Ann. Mat. Pura Appl. (4) 194 (2015), no. 6, 1835–1858.
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