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Abstract. In this paper we study quasilinear elliptic systems given by

−∆p1u1 = −|u1|p1−2u1 in Ω,

−∆p2u2 = −|u2|p2−2u2 in Ω,

|∇u1|p1−2∇u1 · ν = g1(x, u1, u2) on ∂Ω,

|∇u2|p2−2∇u2 · ν = g2(x, u1, u2) on ∂Ω,

where ν(x) is the outer unit normal of Ω at x ∈ ∂Ω, ∆pi denotes the pi-
Laplacian and gi : ∂Ω × R × R → R are Carathéodory functions that satisfy

general growth and structure conditions for i = 1, 2. In the first part we

prove the existence of a positive minimal and a negative maximal solution
based on an appropriate construction of sub- and supersolution along with

a certain behavior of gi near zero related to the first eigenvalue of the pi-

Laplacian with Steklov boundary condition. The second part is related to the
existence of a third nontrivial solution by imposing a variational structure,

that is, (g1, g2) = ∇g with a smooth function (s1, s2) 7→ g(x, s1, s2). By using

the variational characterization of the second eigenvalue of the Steklov eigen-
value problem for the pi-Laplacian together with the properties of the related

truncated energy functionals, which are in general nonsmooth, we show the ex-

istence of a nontrivial solution whose components lie between the components
of the positive minimal and the negative maximal solution.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. For i = 1, 2 and
1 < pi < ∞ we consider the following pi-Laplacian system with nonlinear boundary
conditions

−∆p1
u1 = −|u1|p1−2u1 in Ω,

−∆p2u2 = −|u2|p2−2u2 in Ω,

|∇u1|p1−2∇u1 · ν = g1(x, u1, u2) on ∂Ω,

|∇u2|p2−2∇u2 · ν = g2(x, u1, u2) on ∂Ω,

(1.1)

where ν(x) is the outer unit normal of Ω at x ∈ ∂Ω, ∆pi denotes the pi-Laplacian
given by

∆pi
ui = div

(
|∇ui|pi−2∇ui

)
for ui ∈ W 1,pi(Ω), i = 1, 2,

and gi : ∂Ω×R×R → R are Carathéodory functions that satisfy appropriate growth
and structure conditions, see Sections 3 and 4 for the detailed assumptions.
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We are interested in the multiplicity of solutions of the system (1.1). In the
first part, under general local conditions on the vector field (g1, g2), we prove the
existence of a positive minimal and a negative maximal solution (see Definition
2.4) by constructing suitable pairs of sub- and supersolution to the system (1.1)
using a specific behavior of gi near zero corresponding to the first eigenvalue of
the pi-Laplacian with Steklov boundary condition (see (2.6)). In the second part
of this paper we suppose a variational structure of the system (1.1) which means
that (g1, g2) = ∇g with a smooth function (s1, s2) 7→ g(x, s1, s2). Then, by means
of the extremal positive and negative solutions obtained in the first part, we are
going to show the existence of a third nontrivial solution whose components lie
between the components of the positive minimal and the negative maximal solution
of (1.1). The proof uses a variational characterization of the second eigenvalue of
the Steklov eigenvalue problem for the pi-Laplacian together with the properties
of the corresponding truncated energy functionals. The main difficulty is the fact
that the truncated energy functionals turn out to be nonsmooth independently
of the smoothness of ∇g. This situation is different to the scalar case and needs
further investigations in terms of Clarke’s generalized gradient of locally Lipschitz
functionals.

Our work is motivated by the papers of Carl-Motreanu [6] and Winkert [36]. In
[6] the authors study a Dirichlet system of the form

−∆p1
u1 = f1(x, u1, u2) in Ω,

−∆p2u2 = f2(x, u1, u2) in Ω,

u1 = u2 = 0 on ∂Ω,

(1.2)

where fi : Ω×R×R → R are Carathéodory functions having a certain local behav-
ior near zero. It is shown that the system (1.2) has at least three nontrivial solu-
tions whereby the first and the second eigenvalue of the pi-Laplacian with Dirichlet
boundary condition have been used. On the other hand, in [36], a scalar equation
with nonlinear boundary condition of the form

−∆pu = f(x, u)− λ|u|p−2u in Ω,

|∇u|p−2∇u · ν = λ|u|p−2u+ g(x, u) on ∂Ω,
(1.3)

has been considered. Here, the nonlinearities f : Ω × R → R and g : ∂Ω × R → R
are Carathéodory functions which are bounded on bounded sets and which sat-
isfy appropriate conditions near zero and at infinity. If λ is larger than the second
eigenvalue of the eigenvalue problem of the p-Laplacian with Steklov boundary con-
dition, then the existence of three nontrivial solutions has been shown whereby two
of them have constant sign and the third one turns out to be sign-changing. In our
paper we combine the ideas of both papers to show multiplicity of solutions for the
coupled system given in (1.1). We also refer to El Manouni-Papageorgiou-Winkert
[12] which extends problem (1.3) to more general, nonhomogeneous operators of
type (p, q).

As far as we know there are only few works for elliptic systems with nonlinear
boundary condition and with a variational structure. In 2016, de Godoi-Miyagaki-
Rodrigues [10] studied the following Laplacian system

−∆u+ C(x)u = f(x, u) in Ω,

∇u · ν = g(x, u) on ∂Ω,
(1.4)
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where

C(x) =

(
a(x) b(x)
b(x) c(x)

)
is a positive definite matrix for a.a.x ∈ Ω and the nonlinearities f : Ω× R2 → R2,
g : ∂Ω × R2 → R2 satisfy suitable growth and structure conditions. The authors
prove existence results for (1.4) when resonance or nonresonance conditions occur
by using variational tools. For systems with nonlinear boundary conditions but
without a variational structure we refer to the works by Guarnotta-Livrea-Winkert
[18] who developed a sub-supersolution method for variable exponent double phase
systems and Frisch-Winkert [15] for boundedness, existence and uniqueness results
for coupled gradient dependent elliptic systems, see also the paper of Guarnotta-
Marano-Moussaoui [21] for singular convective systems based on perturbation tech-
niques along with fixed point arguments.

We should also mention the following special case of (1.1) treated by Fernández
Bonder-Pinasco-Rossi in [13], who proved the existence of nontrivial strong solu-
tions to the system

∆u = u, ∆v = v

on a bounded set Ω of RN with nonlinear coupled boundary conditions given by

∇u · ν = Hv(x, u, v), ∇v · ν = Hu(x, u, v),

for x ∈ ∂Ω, where they just suppose general structure conditions on the Hamiltonian
H and its derivatives. Unlike in [13], here we not only provide an existence result,
but prove the existence of multiple solutions with precise sign information.

Systems with homogeneous Neumann boundary conditions have been studied in
the papers by Chabrowski [7] by constrained minimization based on the concentra-
tion compactness principle, by Guarnotta-Marano [19, 20] getting infinitely many
solutions for convection problems by appropriate pairs of sub-supersolution and by
Motreanu-Perera [29] who studied p-Laplace systems via Morse theory. Finally,
in case of systems with Dirichlet boundary conditions, we refer to the works by
Carl-Motreanu [5] for convective p-Laplace systems based on a sub-supersolution
approach, de Morais Filho-Souto [11] using the concentration compactness princi-
ple, Gambera-Marano-Motreanu [17] for (p, q)-problems via Brouwer’s fixed point
theorem, Hai-Shivaji [22] for parametric p-Laplacian systems, Liu-Nguyen-Winkert-
Zeng [25] for coupled double phase obstacle systems involving nonlocal functions
and convection terms, Marino-Winkert [26] for existence and uniqueness results of
convection systems, Motreanu-Moussaoui-Pereira [28] for p-Laplacian systems via
sub-supersolution method and the Leray-Schauder topological degree, Motreanu-
Vetro-Vetro [31, 32] for systems involving (p, q)-Laplacians, see also the references
therein.

The paper is organized as follows. In Section 2 we present the main tools which
are needed in the sequel including the properties of the eigenvalue problem for the
r-Laplacian (1 < r < ∞) with Steklov boundary condition. Section 3 deals with the
existence of extremal positive and negative solutions where positive (resp. negative)
means that both components are positive (resp. negative). Finally, in Section 4 we
are going to assume a variational structure of (1.1) and prove the existence of a
third nontrivial solution whose components lie between the related components of
the positive and the negative solution.
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2. Preliminaries

In this section we recall the main tools that will be needed in the sequel. For
1 ≤ r < ∞ we denote by Lr(Ω) and Lr(Ω;RN ) the usual Lebesgue spaces with
norm ∥ · ∥r and by W 1,r(Ω) the corresponding Sobolev space with norm ∥ · ∥1,r =
∥∇ · ∥r + ∥ · ∥r. We equip the spaces Vi := W 1,pi(Ω) with the equivalent norms

∥u∥1,pi =
(
∥∇u∥pi

pi
+ ∥u∥pi

pi

) 1
pi for all u ∈ Vi,

where 1 < p1, p2 < ∞. Moreover, we denote by Lr(∂Ω) the boundary Lebesgue
space with norm ∥ · ∥r,∂Ω for any r ∈ [1,∞]. For s ∈ R, we set s± = max{±s, 0}
and for u ∈ W 1,r(Ω) we define u±(·) = u(·)±. We have

u± ∈ W 1,r(Ω), |u| = u+ + u−, u = u+ − u−.

The space Lpi(Ω) is endowed with the natural partial ordering given by the positive
cone

Lpi(Ω)+ = {u ∈ Lpi(Ω): u(x) ≥ 0 a.e. in Ω} ,

which implies a related partial ordering in its subspace W 1,pi(Ω). The positive cone

L+ = Lp1(Ω)+ × Lp2(Ω)+

induces the componentwise partial ordering on the product space

L = Lp1(Ω)× Lp2(Ω).

This implies the componentwise partial ordering in the subspace W = V1 × V2.

Definition 2.1. We say that (u1, u2) ∈ W is a weak solution of problem (1.1) if∫
Ω

|∇u1|p1−2∇u1 · ∇φ1 dx+

∫
Ω

|u1|p1−2u1φ1 dx =

∫
∂Ω

g1(x, u1, u2)φ1 dσ (2.1)

and∫
Ω

|∇u2|p2−2∇u2 · ∇φ2 dx+

∫
Ω

|u2|p2−2u2φ2 dx =

∫
∂Ω

g2(x, u1, u2)φ2 dσ (2.2)

hold true for all (φ1, φ2) ∈ W and all the integrals in (2.1) and (2.2) are finite.
Here, σ denotes the (N − 1)-dimensional Hausdorff surface measure on ∂Ω.

Next, we introduce the notion of weak sub- and supersolution to (1.1).

Definition 2.2. We say that (u1, u2), (u1, u2) ∈ W form a pair of weak sub- and
supersolution of problem (1.1) if ui ≤ ui a.e. in Ω for i = 1, 2 and∫

Ω

(
|∇u1|p1−2∇u1 · ∇φ1 + |u1|p1−2u1φ1

)
dx−

∫
∂Ω

g1(x, u1, w2)φ1 dσ

+

∫
Ω

(
|∇u2|p2−2∇u2 · ∇φ2 + |u2|p2−2u2φ2

)
dx

−
∫
∂Ω

g2(x,w1, u2)φ2 dσ ≤ 0

(2.3)
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and ∫
Ω

(
|∇u1|p1−2∇u1 · ∇φ1 + |u1|p1−2u1φ1

)
dx−

∫
∂Ω

g1(x, u1, w2)φ1 dσ

+

∫
Ω

(
|∇u2|p2−2∇u2 · ∇φ2 + |u2|p2−2u2φ2

)
dx

−
∫
∂Ω

g2(x,w1, u2)φ2 dσ ≥ 0

(2.4)

for all (φ1, φ2) ∈ W with φ1, φ2 ≥ 0 a.e. in Ω and for all (w1, w2) ∈ W such that
ui ≤ wi ≤ ui for i = 1, 2 and with all integrals in (2.3) and (2.4) to be finite.

If u = (u1, u2), u = (u1, u2) is a pair of weak sub- and supersolution, then the
order interval [u, u] = [u1, u1]× [u2, u2] is called trapping region, whereby

[ui, ui] =
{
u ∈ W 1,pi(Ω) : ui ≤ u ≤ ui a.e. in Ω

}
.

For 1 < pi < ∞, i = 1, 2, let Api
: Vi → V∗

i be the operator given by

⟨Api
(ui), φi⟩Vi

=

∫
Ω

|∇ui|pi−2∇ui · ∇φi dx (2.5)

for ui, φi ∈ Vi, where ⟨ · , · ⟩Vi
denotes the duality pairing between Vi and its dual

space V∗
i . The following proposition summarizes the main properties of Api

, see,
for example, Carl-Le-Motreanu [4, Lemma 2.111].

Proposition 2.3. Let pi ∈ (1,∞) and let Api
: Vi → V∗

i be given by (2.5). Then Api

is well-defined, bounded, continuous, monotone and of type (S+), that is, u
k
i ⇀ ui

in Vi and lim supk→∞ ⟨Api(u
k
i ), u

k
i − ui⟩ ≤ 0 imply uk

i → ui in Vi for i = 1, 2.

Next, we want to explain the notion of minimal and maximal constant sign
solutions.

Definition 2.4. An element m ∈ W is said to be a minimal positive solution of
(1.1) if m is a positive solution of (1.1) and if for any positive solution u with
u ≤ m it follows that m = u. Similarly, we define a maximal negative solution.

Let C1(Ω) be equipped with norm ∥ · ∥C1(Ω) and let C1(Ω)+ be its positive cone

defined by

C1(Ω)+ =
{
u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω

}
.

This cone has a nonempty interior given by

int
(
C1(Ω)+

)
=

{
u ∈ C1(Ω)+ : u(x) > 0 for all x ∈ Ω

}
.

Let us recall some basic facts about the Steklov eigenvalue problem for the r-
Laplacian with r ∈ (1,∞) which is given by

−∆ru = −|u|r−2u in Ω,

|∇u|r−2∇u · ν = λ|u|r−2u on ∂Ω.
(2.6)

From Lê [23] we know that the set of eigenvalues of (2.6), denoted by σ(r), has a
smallest element λ1,r which is positive, isolated, simple and can be characterized
by

λ1,r = inf
u∈W 1,r(Ω)

{
∥∇u∥rr + ∥u∥rr : ∥u∥rr,∂Ω = 1

}
.
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We further point out that every eigenfunction corresponding to the first eigenvalue
λ1,r does not change sign in Ω. In fact it turns out that every eigenfunction asso-
ciated to an eigenvalue λ ̸= λ1,r changes sign on ∂Ω.

In what follows we denote by u1,r the normalized (i.e., ∥u1,r∥r,∂Ω = 1) positive
eigenfunction corresponding to λ1,r. As shown in Lê [23], thanks to the nonlin-
ear regularity theory and the nonlinear maximum principle, we can suppose that
u1,r ∈ int

(
C1(Ω)+

)
. Additionally, due to the fact that λ1,r is isolated, the second

eigenvalue λ2,r is well-defined by

λ2,r = inf [λ ∈ σ(r) : λ > λ1,r] .

Now, let ∂Br,∂Ω
1 = {u ∈ Lr(∂Ω) : ∥u∥r,∂Ω = 1} and Sr = W 1,r(Ω) ∩ ∂Br,∂Ω

1 .
Then, due to Mart́ınez-Rossi [27], we have a variational characterization of λ2,r

given by

λ2,r = inf
γ̂∈Γ̂(r)

max
−1≤t≤1

[
∥∇γ̂(t)∥rr + ∥γ̂(t)∥rr

]
,

where Γ̂(r) = {γ̂ ∈ C([0, 1], Sr) : γ̂(0) = −u1,r, γ̂(1) = u1,r}.
Next, we recall some basic notions in nonsmooth analysis that are required in

the sequel. We refer to the monograph of Carl-Le-Motreanu [4]. For a real Banach
space (X, ∥ · ∥X), we denote by X∗ its dual space and by ⟨·, ·⟩ the duality pairing
between X and X∗. A function f : X → R is said to be locally Lipschitz if for every
x ∈ X there exist a neighborhood Ux of x and a constant Lx ≥ 0 such that

|f(y)− f(z)| ≤ Lx∥y − z∥X for all y, z ∈ Ux.

For a locally Lipschitz function f : X → R on a Banach space X, the generalized
directional derivative of f at the point x ∈ X along the direction y ∈ X is defined
by

f◦(x; y) := lim sup
z→x,t→0+

f(z + ty)− f(z)

t
,

see Clarke [9, Chapter 2]. Note that if f : X → R is strictly differentiable, that is,
for all x ∈ X, f ′(x) ∈ X∗ exists such that

lim
z→x
t→0+

f(z + ty)− f(z)

t
= ⟨f ′(x), y⟩ for all y ∈ X,

then the usual directional derivative f ′(x; y) given by

f ′(x; y) = lim
t→0+

f(x+ ty)− f(x)

t

exists and coincides with the generalized directional derivative f◦(x; y).
If f1, f2 : X → R are locally Lipschitz functions, then we have

(f1 + f2)
◦(x; y) ≤ f◦

1 (x; y) + f◦
2 (x; y) for all x, y ∈ X.

The generalized gradient of a locally Lipschitz function f : X → R at x ∈ X is the
set

∂f(x) := {x∗ ∈ X∗ : ⟨x∗, y⟩ ≤ f◦(x; y) for all y ∈ X} .
Based on the Hahn-Banach theorem we easily verify that ∂f(x) is nonempty. An
element x ∈ X is said to be a critical point of a locally Lipschitz function f : X → R
if there holds

f◦(x; y) ≥ 0 for all y ∈ X
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or, equivalently, 0 ∈ ∂f(x), see Chang [8].
The nonsmooth mountain-pass theorem due to Chang is stated as follows [8,

Theorem 3.4].

Theorem 2.5. Let X be a reflexive real Banach space and let J : X → R be a locally
Lipschitz functional satisfying the nonsmooth Palais-Smale condition. If there exist
x0, x1 ∈ X and a constant r > 0 such that ∥x1−x0∥ > r and max{J(x0), J(x1)} <
infx∈∂Br(x0) J(x), then J has a critical point u0 ∈ X such that

inf
x∈∂Br(x0)

J(x) ≤ J(u0) = inf
π∈Π

max
t∈[0,1]

J(π(t)),

where Π = {π ∈ C([0, 1], X) : π(0) = x0, π(1) = x1} and ∂Br(x0) = {u ∈ X : ∥u −
x0∥ = r}.

3. Constant-sign solutions

In this section we prove the existence of maximal and minimal constant sign
solutions for problem (1.1). We suppose the following hypotheses:

(H0) For i = 1, 2, the functions gi : ∂Ω×R×R → R are Carathéodory functions
such that gi(x, 0, 0) = 0 for a.a.x ∈ ∂Ω and

|gi(x, s1, s2)| ≤ Hi(x) for a.a.x ∈ ∂Ω,

for all (s1, s2) ∈ M , whereby M is a bounded set and Hi ∈ L∞(∂Ω).
Moreover, it holds

|gi(x1, s1, t1)− gi(x2, s2, t2)|
≤ Li (|x1 − x2|αi + |s1 − s2|αi + |t1 − t2|αi)

(3.1)

for all (x1, s1, t2), (x2, s2, t2) ∈ ∂Ω × [−Ki,Ki] × [−Ki,Ki], where Ki is a
positive constant, αi ∈ (0, 1] and ∥Hi∥∞,∂Ω ≤ Li.

(H1) There exist constants ki > 0 and di < 0 for i = 1, 2 such that

g1(x, k1, s2) ≤ 0 for a.a.x ∈ ∂Ω and for all s2 ∈ [0, k2],

g1(x, d1, s2) ≥ 0 for a.a.x ∈ ∂Ω and for all s2 ∈ [d2, 0],

g2(x, s1, k2) ≤ 0 for a.a.x ∈ ∂Ω and for all s1 ∈ [0, k1],

g2(x, s1, d2) ≥ 0 for a.a.x ∈ ∂Ω and for all s1 ∈ [d1, 0].

(H2) For i = 1, 2, there exist constants ci > λ1,pi
such that

lim inf
s1→0+

g1(x, s1, s2)

sp1−1
1

≥ c1

uniformly for a.a.x ∈ ∂Ω and for all s2 ∈ (0, k2],

lim inf
s1→0−

g1(x, s1, s2)

|s1|p1−2s1
≥ c1

uniformly for a.a.x ∈ ∂Ω and for all s2 ∈ [d2, 0),

lim inf
s2→0+

g2(x, s1, s2)

sp2−1
2

≥ c2

uniformly for a.a.x ∈ ∂Ω and for all s1 ∈ (0, k1],

lim inf
s2→0−

g2(x, s1, s2)

|s2|p2−2s2
≥ c2
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uniformly for a.a.x ∈ ∂Ω and for all s1 ∈ [d1, 0).

Remark 3.1. Note that (3.1) is needed for the usage of the regularity results of
Lieberman [24]. Indeed, if u = (u1, u2) is a solution of (1.1) such that (0, 0) ≤
(u1, u2) ≤ (k1, k2) and both not identically zero, then (u1, u2) ∈ int

(
C1(Ω)+

)
×

int
(
C1(Ω)+

)
. Let us verify this just for u1, the case for u2 works in the same way.

First, from the boundedness of u1 and (3.1) along with Theorem 2 in Lieberman
[24], we know that u ∈ C1,α(Ω) for some α ∈ (0, 1). From the first line in (1.1)

we have ∆p1
u1 ≤ up1−1

1 for a.a.x ∈ Ω. Taking β(s) = sp1−1 for all s > 0,
we get from Vázquez’s strong maximum principle (see [34]) that u1(x) > 0 in Ω
since

∫
0+

1

(sβ(s))
1
p1

ds = +∞. Suppose there exists x0 ∈ ∂Ω such that u1(x0) = 0.

Applying again the maximum principle we obtain ∇u1(x0) · ν(x0) < 0. In view of
hypothesis (H2) first line, for ε > 0 small enough such that c1 − ε > 0, there exists
δ > 0 such that for all s1 ∈ (0, δ) we get

g1(x0, s1, s2) ≥ (c1 − ε)sp1−1
1 uniformly for all s2 ∈ (0, k2],

which yields by the continuity of g1 as s1 → 0+

g1(x0, 0, s2) ≥ 0 uniformly for all s2 ∈ (0, k2].

The continuity of g1 then shows that g1(x0, 0, s2) ≥ 0 for all s2 ∈ [0, k2], in partic-
ular for s2 = u2(x0) ∈ [0, k2], that is, we have g1(x0, 0, u2(x0)) ≥ 0, and thus from
the third line of (1.1) it follows

∇u1(x0) · ν(x0) ≥ 0,

which is in contradiction to ∇u1(x0) · ν(x0) < 0. Hence, u1 > 0 in Ω and so
u1 ∈ int

(
C1(Ω)+

)
. A similar result holds for a solution (v1, v2) such that (d1, d2) ≤

(v1, v2) ≤ (0, 0), both not identically zero, then (v1, v2) ∈ (− int
(
C1(Ω)+

)
) ×

(− int
(
C1(Ω)+

)
).

Theorem 3.2. Let hypotheses (H0), (H1) and (H2) be satisfied. Then there exist
a positive solution (u1, u2) ∈ W and a negative solution (v1, v2) ∈ W of the system
(1.1).

Proof. From (H1) we directly obtain

−g1(x, k1, s2) ≥ 0 for a.a.x ∈ ∂Ω and for all s2 ∈ [0, k2],

−g2(x, s1, k2) ≥ 0 for a.a.x ∈ ∂Ω and for all s1 ∈ [0, k1].
(3.2)

Hypothesis (H2) implies that there exists δ ∈ (0,min{k1, k2}) such that

g1(x, s1, s2) > λ1,p1
sp1−1
1 (3.3)

for a.a.x ∈ ∂Ω, for all s1 ∈ (0, δ) and for all s2 ∈ (0, k2],

g2(x, s1, s2) > λ1,p2s
p2−1
2 (3.4)

for a.a.x ∈ ∂Ω, for all s1 ∈ (0, k1] and for all s2 ∈ (0, δ).
From the Steklov eigenvalue problem for the pi-Laplacian multiplied with εpi−1 >

0 we know that∫
Ω

|∇(εu1,pi
)|pi−2∇(εu1,pi

) · ∇φi dx+

∫
Ω

(εu1,pi
)pi−1φi dx

= λ1,pi

∫
∂Ω

(εu1,pi)
pi−1φi dσ

(3.5)
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holds for all φi ∈ Vi with φi ≥ 0 and i = 1, 2. We choose ε > 0 small enough such
that

εu1,pi
(x) < δ for all x ∈ Ω and i = 1, 2. (3.6)

Using (3.5) and (3.6) along with (3.3) and (3.4) in (2.3) for

(u1, u2) := (εu1,p1 , εu1,p2) and (u1, u2) := (k1, k2)

gives ∫
∂Ω

(
λ1,p1

(εu1,p1
)p1−1 − g1(x, εu1,p1

, w2)
)
φ1 dσ

+

∫
∂Ω

(
λ1,p2

(εu1,p2
)p2−1 − g2(x,w1, εu1,p2

)
)
φ2 dσ ≤ 0.

On the other hand, we get from (3.2) and (2.4) that∫
Ω

(
|∇k1|p1−2∇k1 · ∇φ1 + kp1−1

1 φ1

)
dx +

∫
∂Ω

(−g1(x, k1, w2))φ1 dσ

+

∫
Ω

(
|∇k2|p2−2∇k2 · ∇φ2 + kp2−1

2 φ2

)
dx+

∫
∂Ω

(−g2(x,w1, k2))φ2 dσ ≥ 0

for all (φ1, φ2) ∈ W with φ1, φ2 ≥ 0 a.e. in Ω and for all (w1, w2) ∈ W such that
ui ≤ wi ≤ ui for i = 1, 2. Therefore, (u1, u2) ∈ W and (u1, u2) ∈ W form a
pair of sub- and supersolution related to Definition 2.2. From Guarnotta-Livrea-
Winkert [18] (for µ ≡ 0) we know that a solution (u1, u2) ∈ W of the system (1.1)
exists such that ui ≤ ki. Moreover, the nonlinear regularity theory implies that
(u1, u2) ∈ int(C1(Ω)+)× int(C1(Ω)+), see Remark 3.1.

Similarly, one can show that (d1, d2) and (−εu1,p1 ,−εu1,p2) form a pair of sub-
and supersolution in the sense of Definition 2.2 for the system (1.1) provided the
parameter ε > 0 is sufficiently small. Therefore, we obtain a negative solution
(v1, v2) ∈ (− int(C1(Ω)+))× (− int(C1(Ω)+)) satisfying vi ≥ di for i = 1, 2. □

Next, we are going to prove the existence of a minimal positive and of a maximal
negative solution of the system (1.1) in the trapping region constructed in the proof
of Theorem 3.2.

Theorem 3.3. Let hypotheses (H0), (H1) and (H2) be satisfied. Then, for a given
solution (u1, u2) ∈ W of problem (1.1) in [εu1,p1

, k1] × [εu1,p2
, k2] for some ε > 0

there exists a minimal solution (uε
1, u

ε
2) of (1.1) in [εu1,p1

, k1] × [εu1,p2
, k2] such

that uε
i ≤ ui for i = 1, 2. Furthermore, given a solution (v1, v2) ∈ W of problem

(1.1) in [d1,−εu1,p1 ]× [d2,−εu1,p2 ] for some ε > 0, there exists a maximal solution
(vε1, v

ε
2) of (1.1) in [d1,−εu1,p1 ]× [d2,−εu1,p2 ] such that vεi ≥ vi for i = 1, 2.

Proof. We are going to prove just the first assertion of the theorem, the second one
can be shown using similar arguments.

We choose ε > 0 sufficiently small (like in the proof of Theorem 3.2). Then,
Theorem 3.2 guarantees that a solution (u1, u2) ∈ W of (1.1) exists in [εu1,p1

, k1]×
[εu1,p2

, k2]. Denote by Sε the set of all solutions (h1, h2) of (1.1) such that (h1, h2) ∈
[εu1,p1

, k1] × [εu1,p2
, k2] satisfying hi ≤ ui for i = 1, 2. Apparently, Sε is not

empty. We are going to prove that Sε has a minimal element by applying Zorn’s
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Lemma. For this purpose, let C be a chain in Sε. Then we can find a sequence
{uk

1 , u
k
2}k≥1 ⊂ C such that uk+1

i ≤ uk
i for i = 1, 2 and for all k ≥ 1 satisfying

inf C = inf
k≥1

(uk
1 , u

k
2).

Since (uk
1 , u

k
2) ∈ C we know that (uk

1 , u
k
2) solves system (1.1). Testing (2.1) with

φ1 = uk
1 and (2.2) with φ2 = uk

2 and using (H0) together with the trace theorem,
we get that

∥uk
i ∥

pi−1
1,pi

≤ Ci

for Ci > 0 independent of uk
i and for all uk

i ∈ Vi. Hence, the sequence {uk
1 , u

k
2}k≥1

is bounded in W. Therefore, up to a subsequence if necessary, not relabeled, we
may assume that

uk
i ⇀ ûi in Vi, i = 1, 2,

uk
i (x) → ûi(x) for a.a.x ∈ Ω

uk
i (x) → ûi(x) for a.a.x ∈ ∂Ω.

(3.7)

From (3.7) we conclude that (û1, û2) ∈ [εu1,p1 , k1] × [εu1,p2 , k2] and ûi ≤ ui for
i = 1, 2. Furthermore, testing the corresponding weak formulations with uk

i − ûi

and using (3.7) along with (H0) we get that

lim sup
k→∞

⟨Api
(uk

i ), u
k
i − ûi⟩ ≤ 0 for i = 1, 2.

Combining this with (3.7) and the fact that Api fulfills the (S+)-property on Vi,
see Proposition 2.3, we conclude that

uk
i → ûi in Vi, i = 1, 2. (3.8)

Applying (3.8) to the corresponding weak formulations shows that (û1, û2) is a
solution of (1.1) that belongs to Sε and inf C = (û1, û2) ∈ Sε. From Zorn’s Lemma,
see Papageorgiou-Winkert [33, p. 36], we conclude that Sε has a minimal element
(uε

1, u
ε
2). □

In order to get maximal and minimal solutions of (1.1), we have to suppose
further conditions on the vector field (g1, g2) near zero as follows.

(H3) There exist constants αi ≥ ci, i = 1, 2, such that

lim sup
s1→0+

g1(x, s1, s2)

sp1−1
1

≤ α1

uniformly for a.a.x ∈ ∂Ω and for all s2 ∈ (0, k2],

lim sup
s1→0−

g1(x, s1, s2)

|s1|p1−2s1
≤ α1

uniformly for a.a.x ∈ ∂Ω and for all s2 ∈ [d2, 0),

lim sup
s2→0+

g2(x, s1, s2)

sp2−1
2

≤ α2

uniformly for a.a.x ∈ ∂Ω and for all s1 ∈ (0, k1],

lim sup
s2→0−

g2(x, s1, s2)

|s2|p2−2s2
≤ α2

uniformly for a.a.x ∈ ∂Ω and for all s1 ∈ [d1, 0).
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Now we can state and prove our main result on maximal and minimal solutions
of (1.1).

Theorem 3.4. Let hypotheses (H0)–(H3) be satisfied. Then, problem (1.1) admits
a positive solution (u1,+, u2,+) ∈ int(C1(Ω)+)× int(C1(Ω)+) such that ui,+ ≤ ki for
i = 1, 2, which is minimal among the positive solutions of (1.1). Moreover, problem
(1.1) admits a negative solution (u1,−, u2,−) ∈ (− int(C1(Ω)+)) × (− int(C1(Ω)+))
such that ui,− ≥ di for i = 1, 2, which is maximal among the negative solutions of
(1.1).

Proof. As before, we only show the existence of a minimal positive solution of (1.1),
the proof for the maximal negative solution works in a similar way. The application
of Theorems 3.2 and 3.3 gives us a sequence {(un

1 , u
n
2 )}n≥n0

⊆ W for n0 sufficiently
large such that for every integer n ≥ n0 we have that (un

1 , u
n
2 ) is a solution of (1.1)

that is minimal in the trapping region [ 1nu1,p1
, k1]×[ 1nu1,p2

, k2] such that un+1
i ≤ un

i

for i = 1, 2. From this and (H0) we may suppose, for a subsequence if necessary,
not relabeled, that, for i = 1, 2,

un
i ⇀ ui,+ in Vi,

un
i → ui,+ in Lpi(Ω) and pointwisely a.e. in Ω,

un
i → ui,+ in Lpi(∂Ω) and pointwisely a.e. in ∂Ω.

for some (u1,+, u2,+) ∈ W. As in the proof of Theorem 3.3 by applying the (S+)-
property of Api on Vi, see Proposition 2.3, we conclude that (u1,+, u2,+) is a solution
of (1.1).
Claim : ui,+ ̸= 0 for i = 1, 2.
Suppose this is not the case and assume that u1,+ = 0. For each n ≥ n0 we set

wn =
un
1

∥un
1∥1,p1

and ξn =
g1(x, u

n
1 , u

n
2 )

(un
1 )

p1−1
wp1−1

n .

Clearly the sequence {wn}n≥n0 ⊆ V1 is bounded and due to hypotheses (H2) and
(H3) we may assume that

wn ⇀ w in V1,

wn(x) → w(x) in Lp1(Ω) and pointwisely a.e. in Ω,

wn(x) → w(x) in Lp1(∂Ω) and pointwisely a.e. in ∂Ω,

ξn ⇀ ξ in L
p1

p1−1 (∂Ω),

(3.9)

for some w ∈ V1 and ξ ∈ L
p1

p1−1 (∂Ω). Since (un
1 , u

n
2 ) ∈ W is a solution of (1.1), we

have from (2.1) with φ1 = wn − w ∈ V1 and the representation un
1 = ∥un

1∥1,p1wn

that ∫
Ω

|∇wn|p1−2∇wn · ∇(wn − w) dx+

∫
Ω

|wn|p1−2wn(wn − w) dx

=

∫
∂Ω

ξn(wn − w) dσ.

(3.10)

From (3.10) and (3.9) we obtain that

lim
n→∞

∫
Ω

|∇wn|p1−2∇wn · ∇(wn − w) dx = 0.
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Thus, again by the (S+)-property of Ap1
on V1 it follows that wn → w in V1 which

implies that w ̸= 0 since ∥wn∥1,p1 = 1. Moreover, from the strong convergence in
V1 and the fact that (un

1 , u
n
2 ) ∈ W is a solution of (1.1) as well as the representation

un
1 = ∥un

1∥1,p1
wn it follows from (2.1) that∫
Ω

|∇w|p1−2∇w · ∇φdx+

∫
Ω

|w|p1−2wφdx =

∫
∂Ω

ξφdσ

for all φ ∈ V1.
Taking (H2) and (H3) into account, for any given ε > 0 there exists an integer

n(x) for a.a.x ∈ ∂Ω such that for every n ≥ n(x) it holds

(c1 − ε)wn(x)
p1−1 ≤ ξn(x) ≤ (α1 + ε)wn(x)

p1−1 for a.a.x ∈ ∂Ω.

Since ε > 0 is arbitrary, letting n → ∞, we get via Mazur’s theorem

c1w(x)
p1−1 ≤ ξ(x) = µ(x)w(x)p1−1 ≤ α1w(x)

p1−1 for a.a.x ∈ ∂Ω

with c1 ≤ µ(x) ≤ α1 for a.a.x ∈ ∂Ω and

µ(x) =
g1(x, u1,+(x), u2,+(x))

u1,+(x)p1−1
> 0 for a.a.x ∈ ∂Ω.

Hence w is an eigenfunction associated to the eigenvalue 1 of the weighted eigenvalue
problem with weight µ(x) > 0

−∆p1w = −wp1−1 in Ω,

|∇w|p1−2∇w · ν = µ(x)wp1−1 on ∂Ω.
(3.11)

We consider now the V (x)-weighted eigenvalue problem

−∆p1wV = −wp1−1
V in Ω,

|∇wV |p1−2∇wV · ν = λ(V )V (x)wp1−1
V on ∂Ω,

(3.12)

with V (x) > 0, λ(V ) the eigenvalue for the weight V (x) and wV the corresponding
eigenfunctions. In the following, we call λ1(V ) the first eigenvalue of (3.12). Since
w is nonnegative, due to Fernández Bonder-Rossi [14, Theorem 1.2 and Proposi-
tion 3.1], we know that λ1(µ) = 1 because of (3.11). We consider now problem
(3.12) with weights c1 and λ1,p1

and related first eigenvalues λ1(c1) and λ1(λ1,p1
),

respectively. Since λ1,p1
< c1 ≤ µ(x) for a.a.x ∈ ∂Ω, we have with [14, Theorem

1.3] that

1 = λ1(µ) ≤ λ1(c1) < λ1(λ1,p1
). (3.13)

Since λ1,p1
is the smallest eigenvalue of (2.6) with eigenfunction u1,p1

> 0 we see
that λ1(λ1,p1

) = 1. This is a contradiction to (3.13). Hence, ui,+ ̸= 0 for i = 1, 2.
Since ui,+ ∈ [0, ki] for i = 1, 2, by the nonlinear regularity theory, see Remark 3.1,

we conclude that (u1,+, u2,+) ∈ int
(
C1(Ω)+

)
× int

(
C1(Ω)+

)
.

It remains to show that (u1,+, u2,+) is a minimal positive solution of problem
(1.1). To this end, let (v1, v2) ∈ W be any positive solution of (1.1) such that
v1 ≤ u1,+ and v2 ≤ u2,+. Again, by the nonlinear regularity theory and the strong

maximum principle, we know that (v1, v2) ∈ int
(
C1(Ω)+

)
× int

(
C1(Ω)+

)
. This

fact along with the construction of (u1,+, u2,+) ensures that

1

n
u1,pi

≤ vi ≤ ui,+ ≤ un
i ≤ ki for i = 1, 2 (3.14)
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whenever n is sufficiently large. However, since (un
1 , u

n
2 ) is a minimal solution in

[ 1nu1,p1 , k1] × [ 1nu1,p2 , k2], we get from (3.14) that un
i ≤ vi for i = 1, 2. But then,

again because of (3.14), it follows that u1,+ = v1 and u2,+ = v2. This completes
the proof of the theorem. □

4. Another nontrivial solution

In this section we are interested in a third nontrivial solution of the system (1.1)
under the assumption that (1.1) has a variational structure. To be more precise we
consider the system

−∆p1
u1 = −|u1|p1−2u1 in Ω,

−∆p2
u2 = −|u2|p2−2u2 in Ω,

|∇u1|p1−2∇u1 · ν = gs1(x, u1, u2) on ∂Ω,

|∇u2|p2−2∇u2 · ν = gs2(x, u1, u2) on ∂Ω,

(4.1)

where

(g1(x, s1, s2), g2(x, s1, s2)) = (gs1(x, s1, s2), gs2(x, s1, s2)) =: ∇g(x, s1, s2),

with g : ∂Ω×R×R → R being a Carathéodory function which is twice differentiable
with respect to the second and third variable (s1, s2) ∈ R2. Moreover, we suppose
that the partial derivatives gs1 , gs2 , gs1s1 , gs1s2 , gs2s2 are Carathéodory functions on
∂Ω × R2 and gs1 , gs2 are supposed to be bounded on bounded sets. Without any
loss of generality, we assume that g(x, 0, 0) = 0 for a.a. ∂Ω.

To avoid having to write down all the conditions again, let us now assume
that (H0)–(H3) hold true replacing (g1, g2) by (gs1 , gs2). Taking Theorem 3.4
into account, we can find a minimal positive solution (u1,+, u2,+) of problem (4.1)
with ui,+ ≤ ki for i = 1, 2. Based on this, we introduce the truncation func-
tion τ+ : ∂Ω × R2 → R2 assigning to each (x, s1, s2) ∈ ∂Ω × R2 the projection
τ+(x, s1, s2) of (s1, s2) on the closed convex subset [0, u1,+(x)]× [0, u2,+(x)] of R2.
In the same way, by applying the maximal negative solution (u1,−, u2,−) of (4.1)
with ui,− ≥ di for i = 1, 2 obtained in Theorem 3.4, we define the truncation
function τ− : ∂Ω× R2 → R2 as the projection τ−(x, s1, s2) of (s1, s2) on the closed
convex subset [u1,−(x), 0]× [u2,−(x), 0] of R2. Lastly, we introduce the truncation
function τ0 : ∂Ω × R2 → R2 as the projection τ0(x, s1, s2) of (s1, s2) on the closed
convex subset [u1,−(x), u1,+(x)]× [u2,−(x), u2,+(x)] of R2.

With the help of the truncation functions τ+, τ−, τ0 : ∂Ω × R2 → R2 we can
introduce truncated functions related to g : ∂Ω× R× R → R in the following way:

g+(x, s1, s2) = g(x, τ+(x, s1, s2))

+ (s1 − u1,+(x))
+gs1(x, τ+(x, s1, s2))

+ (s2 − u2,+(x))
+gs2(x, τ+(x, s1, s2))

− s−1 gs1(x, τ+(x, s1, s2))

− s−2 gs2(x, τ+(x, s1, s2)),

g−(x, s1, s2) = g(x, τ−(x, s1, s2))

− (s1 − u1,−(x))
−gs1(x, τ−(x, s1, s2))

− (s2 − u2,−(x))
−gs2(x, τ−(x, s1, s2))
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+ s+1 gs1(x, τ−(x, s1, s2))

+ s+2 gs2(x, τ−(x, s1, s2)),

g0(x, s1, s2) = g(x, τ0(x, s1, s2))

− (s1 − u1,−(x))
−gs1(x, τ0(x, s1, s2))

− (s2 − u2,−(x))
−gs2(x, τ0(x, s1, s2))

+ (s1 − u1,+(x))
+gs1(x, τ0(x, s1, s2))

+ (s2 − u2,+(x))
+gs2(x, τ0(x, s1, s2)).

These truncated mappings g−, g+, g0 : ∂Ω×R2 → R are Carathéodory functions be-
ing locally Lipschitz continuous with respect to the variables (s1, s2) ∈ R2. There-
fore, their generalized gradients in the sense of Clarke exist. Applying Clarke’s
calculus according to [9, Theorem 2.5.1], we have the following representations:

∂(s1,s2)g+(x, s1, s2) = {∇g(x, s1, s2)}
for a.a.x ∈ ∂Ω and for all (s1, s2) ∈ [0, u1,+(x)]× [0, u2,+(x)],

(4.2)

∂(s1,s2)g−(x, s1, s2) = {∇g(x, s1, s2)}
for a.a.x ∈ ∂Ω and for all (s1, s2) ∈ [u1,−(x), 0]× [u2,−(x), 0],

(4.3)

∂(s1,s2)g0(x, s1, s2) = {∇g(x, s1, s2)}
for a.a.x ∈ ∂Ω and for all (s1, s2) ∈ [u1,−(x), u1,+(x)]× [u2,−(x), u2,+(x)].

(4.4)

Taking the modified truncated functions g−, g+, g0 : ∂Ω× R2 → R into account,
we introduce the related truncated, nonsmooth functionals E+, E−, E0 : W → R
defined by

E+(u1, u2) =
1

p1
∥u1∥p1

1,p1
+

1

p2
∥u2∥p2

1,p2
−

∫
∂Ω

g+(x, u1, u2) dσ,

E−(u1, u2) =
1

p1
∥u1∥p1

1,p1
+

1

p2
∥u2∥p2

1,p2
−

∫
∂Ω

g−(x, u1, u2) dσ,

E0(u1, u2) =
1

p1
∥u1∥p1

1,p1
+

1

p2
∥u2∥p2

1,p2
−

∫
∂Ω

g0(x, u1, u2) dσ.

These functionals are locally Lipschitz and so their generalized gradients exist.
Before we consider the location of the critical points of these functionals, we need
to suppose an additional condition:

(H4) (i) The function s2 7→ gs1(x, s1, s2) is nondecreasing on the interval [d2, k2]
for a.a.x ∈ ∂Ω and for all s1 ∈ [d1, k1].

(ii) The function s1 7→ gs2(x, s1, s2) is nondecreasing on the interval [d1, k1]
for a.a.x ∈ ∂Ω and for all s2 ∈ [d2, k2].

Next, we are interested in the location of critical points of the functionals
E+, E−, E0 : W → R.

Proposition 4.1. Let hypotheses (H0)–(H3) be satisfied, where (g1, g2) is replaced
by ∇g and suppose (H4). Then, the following assertions hold:

(i) If (v1, v2) ∈ W is a critical point of E+, then

0 ≤ v1(x) ≤ u1,+(x) and 0 ≤ v2(x) ≤ u2,+(x)

for a.a.x ∈ ∂Ω.
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(ii) If (v1, v2) ∈ W is a critical point of E−, then

u1,−(x) ≤ v1(x) ≤ 0 and u2,−(x) ≤ v2(x) ≤ 0

for a.a.x ∈ ∂Ω.
(iii) If (v1, v2) ∈ W is a critical point of E0, then

u1,−(x) ≤ v1(x) ≤ u1,+(x) and u2,−(x) ≤ v2(x) ≤ u2,+(x)

for a.a.x ∈ ∂Ω.

Proof. We only prove the assertion in (i), the cases (ii) and (iii) can be shown
using similar arguments. To this end, let (v1, v2) be a critical point of E+, that is,
(0, 0) ∈ ∂E+(v1, v2) which means that

−∆p1
v1 = −|v1|p1−2v1 in Ω,

−∆p2v2 = −|v2|p2−2v2 in Ω,

|∇v1|p1−2∇v1 · ν = h1(x) on ∂Ω,

|∇v2|p2−2∇v2 · ν = h2(x) on ∂Ω,

(4.5)

where

(h1(x), h2(x)) ∈ ∂(s1,s2)g+(x, v1(x), v2(x)), (4.6)

which follows from Clarke [9, Theorem 2.7.5]. Note that the precise expressions of
the functions h1 and h2 can be found in Carl [2, 3]. Using the fact that (u1,+, u2,+)
solves problem (4.1), we obtain, due to (4.5) and (4.6), by choosing the test function
(v1 − u1,+)

+ ∈ V1, that∫
Ω

(
|∇v1|p1−2∇v1 − |∇u1,+|p1−1∇u1,+

)
· ∇(v1 − u1,+)

+dx

+

∫
Ω

(
|v1|p1−2v1 − up1−1

1,+

)
(v1 − u1,+)

+ dx

=

∫
{v1>u1,+}

(h1(x)− gs1(x, u1,+, u2,+)) (v1 − u1,+) dσ

=

∫
{v1>u1,+,v2<0}

(gs1(x, u1,+, 0)− gs1(x, u1,+, u2,+)) (v1 − u1,+) dσ

+

∫
{v1>u1,+,0≤v2≤u2,+}

(gs1(x, u1,+, v2)− gs1(x, u1,+, u2,+)) (v1 − u1,+) dσ,

since

∂(s1,s2)g+(x, s1, s2) = {∇g(x, u1,+(x), u2,+(x))} for a.a.x ∈ ∂Ω

provided s1 > u1,+(x) and s2 > u2,+(x). Applying (H4) (i) gives us∫
Ω

(
|∇v1|p1−2∇v1 − |∇u1,+|p1−1∇u1,+

)
· ∇(v1 − u1,+)

+ dx

+

∫
Ω

(
|v1|p1−2v1 − up1−1

1,+

)
(v1 − u1,+)

+ dx ≤ 0.

Therefore, v1 ≤ u1,+. In the same way, using (H4) (ii), we show that v2 ≤ u2,+.
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From hypotheses (H2) and (H3) we get that gs1(x, 0, s2) = 0 for a.a.x ∈ ∂Ω and
for all s2 ∈ [0, k2]. Using −v−1 ∈ V1 as test function, taking (4.5) and (4.6) again
into account, it follows that∫

Ω

|∇v1|p1−2∇v1 · ∇(−v−1 )dx+

∫
Ω

|v1|p1−2v1
(
−v−1

)
dx

= −
∫
{v1<0}

h1v1 dσ

= −
∫
{v1<0,v2<0}

gs1(x, 0, 0)v1 dσ −
∫
{v1<0,0≤v2≤u2,+}

gs1(x, 0, v2)v1 dσ

−
∫
{v1<0,v2>u2,+}

gs1(x, 0, u2,+)v1 dσ = 0.

Thus, v1 ≥ 0. In the same way, we prove that v2 ≥ 0. □

In the next proposition we are going to compare the minimal and maximal
constant-sign solutions obtained in Theorem 3.4 with the minimizers of the con-
structed nonsmooth functionals.

Proposition 4.2. Let hypotheses (H0)–(H3) be satisfied, where (g1, g2) is replaced
by ∇g and suppose (H4). Then the minimal positive solution (u1,+, u2,+) of prob-
lem (4.1) is the unique global minimizer of E+ and a local minimizer of E0 while
the maximal negative solution (u1,−, u2,−) of problem (4.1) is the unique global
minimizer of E− and a local minimizer of E0.

Proof. Due to the truncated function g+ : ∂Ω × R2 → R, it is clear that the func-
tional E+ : W → R is coercive and sequentially weakly lower semicontinuous. This
guarantees the existence of a global minimizer (w1, w2) ∈ W of E+ which is a criti-
cal point of E+ in the sense of nonsmooth analysis, see Section 2. From Proposition
4.1 (i) and ui,+ ≤ ki for i = 1, 2, it follows that

0 ≤ wi(x) ≤ ui,+(x) ≤ ki for a.a.x ∈ ∂Ω and for i = 1, 2.

Recall that u1,pi
is the first eigenfunction of the Steklov eigenvalue problem given

in (2.6) with ∥u1,pi
∥pi,∂Ω = 1. This implies that

∥∇u1,pi∥pi
pi

+ ∥u1,pi∥pi
pi

= λ1,pi
, (4.7)

where λ1,pi
> 0 is the associated first eigenvalue. Then, from hypothesis (H2) and

(H4) along with the mean value theorem applied to g+, we know that for every
ε > 0 there exists t > 0 such that

E+(tu1,p1
, tu1,p2

) ≤ (λ1,p1
− c1 + ε)

tp1

p1
+ (λ1,p2

− c2 + ε)
tp2

p2
,

where we have used (4.7). Therefore, taking ε > 0 such that ε < min{c1−λ1,p1 , c1−
λ1,p1}, we see that E+(tu1,p1 , tu1,p2) < 0. Therefore, (w1, w2) ̸= (0, 0).

Next, let us now prove that both components of wi are nontrivial. Suppose that
w1 ̸= 0 and w2 = 0. From hypothesis (H2) we find a number δ > 0 small enough
such that

g(x, s1, s2)− g(x, s1, 0) > λ1,p2

sp2

2

p2



ELLIPTIC p-LAPLACIAN SYSTEMS WITH NONLINEAR BOUNDARY CONDITION 17

for a.a.x ∈ ∂Ω, for all s1 ∈ (0, k1] and for all s2 ∈ (0, δ]. Using this fact together
with ∥u1,p2∥

p2

p2,∂Ω
= 1, we obtain for t > 0 small enough that

E+(w1, tu1,p2
) = E+(w1, 0) + λ1,p2

tp2

p2

−
∫
∂Ω

(g(x,w1, tu1,p2)− g(x,w1, 0)) dσ

< E+(w1, 0),

which is a contradiction since (w1, 0) is the global minimizer of E+. A similar
argument can be used in order to show that w2 ̸= 0. Therefore, we have that
w1 ̸= 0 and w2 ̸= 0.

As a critical point of E+ is understood in the sense of (4.5) with (4.6), we know
from Proposition 4.1 (i) along with (4.2) that (w1, w2) is a solution of problem (4.1).
Applying the regularity theory, as before, yields that (w1, w2) ∈ int

(
C1(Ω)+

)
×

int
(
C1(Ω)+

)
. Then, combining Proposition 4.1 and the fact that (u1,+, u2,+) is

the minimal positive solution of (4.1), we conclude that (w1, w2) = (u1,+, u2,+).

Therefore, we know that (u1,+, u2,+) is a local minimizer of E0 on C1(Ω)× C1(Ω)

since the functionals coincide on int
(
C1(Ω)+

)
× int

(
C1(Ω)+

)
. Then, from Bai-

Gasiński-Winkert-Zeng [1], we know that (u1,+, u2,+) is a local minimizer of E0 on
W. In a similar way, by using (ii) instead of (i) in Proposition 4.1 (2) and (4.3)
instead of (4.2), we can show the results of (u1,−, u2,−). □

For the next result, we need associated scalar problems of (4.1) defined by

−∆p1
u1 = −|u1|p1−2u1 in Ω,

|∇u1|p1−2∇u1 · ν = gs1(x, u1, 0) on ∂Ω,
(4.8)

and
−∆p2

u2 = −|u2|p2−2u2 in Ω,

|∇u2|p2−2∇u2 · ν = gs2(x, 0, u2) on ∂Ω.
(4.9)

We have the following result.

Proposition 4.3. Let hypotheses (H0)–(H3) be satisfied, where (g1, g2) is replaced
by ∇g and suppose (H4). Then there exists (u+, v+) ∈ int

(
C1(Ω)+

)
× int

(
C1(Ω)+

)
such that u+ is a solution of (4.8) and v+ is a solution of (4.9) satisfying

u+ ≤ u1,+, v+ ≤ u2,+, E+(u+, 0) = inf E+(·, 0), E+(0, v+) = inf E+(0, ·).

Furthermore, there exists (u−, v−) ∈ (− int
(
C1(Ω)+

)
)×(− int

(
C1(Ω)+

)
) such that

u− is a solution of (4.8) and v− is a solution of (4.9) satisfying

u− ≥ u1,−, v− ≥ u2,−, E−(u−, 0) = inf E−(·, 0), E−(0, v−) = inf E−(0, ·).

Proof. Note that E+(·, 0) : W 1,p1(Ω) → R is coercive and sequentially weakly lower
semicontinuous. Hence, we can find u+ ∈ W 1,p1(Ω) such that

E+(u+, 0) = inf E+(·, 0).
Therefore, u+ is a critical point of E+(·, 0), that is, 0 ∈ ∂E+(·, 0)(u+). By means
of (H4) we have with nonnegative test function φ1∫

Ω

|∇u1,+|p1−2∇u1,+ · ∇φ1 dx+

∫
Ω

up1−1
1,+ φ1 dx
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=

∫
∂Ω

gs1(x, u1,+, u2,+)φ1 dσ ≥
∫
∂Ω

gs1(x, u1,+, 0)φ1 dσ.

Using this and the fact that u+ solves∫
Ω

|∇u+|p1−2∇u+ · ∇φ1 dx+

∫
Ω

|u+|p1−2u+φ1 dx =

∫
∂Ω

(g+)s1(x, u+, 0)φ1 dσ

we get, with the test function (u+ − u1,+)
+ ∈ W 1,p1(Ω), that∫

Ω

(
|∇u+|p1−2∇u+ − |∇u1,+|p1−2∇u1,+

)
∇(u+ − u1,+)

+dx

+

∫
Ω

(
|u+|p1−2u+ − up1−1

1,+

)
(u+ − u1,+)

+ dx

≤
∫
{u+>u1,+}

((g+)s1(x, u+, 0)− gs1(x, u1,+, u2,+)) (u+ − u1,+) dσ

=

∫
{u+>u1,+}

(gs1(x, u1,+, 0)− gs1(x, u1,+, u2,+)) (u+ − u1,+) dσ ≤ 0.

This implies 0 ≤ u+(x) ≤ u1,+(x) for a.a.x ∈ ∂Ω. Therefore, u+ is a solu-
tion of (4.8). Applying again the regularity results, as before, we get that u+ ∈
int

(
C1(Ω)+

)
. The proofs for v+, u− and v− can be done in a very similar way. □

For our main result, we need the following sub-homogeneous conditions on the
right-hand sides of (4.8) and (4.9).

(H5) For any t ∈ [0, 1] the following hold:
(i) gs1(x, ts1, 0) ≤ tp1−1gs1(x, s1, 0) for a.a.x ∈ ∂Ω and for all s1 ∈ [d1, 0];
(ii) gs1(x, ts1, 0) ≥ tp1−1gs1(x, s1, 0) for a.a.x ∈ ∂Ω and for all s1 ∈ [0, k1].

(H6) For any t ∈ [0, 1] the following hold:
(i) gs2(x, 0, ts2) ≤ tp2−1gs2(x, 0, s2) for a.a.x ∈ ∂Ω and for all s2 ∈ [d2, 0];
(ii) gs2(x, 0, ts2) ≥ tp2−1gs2(x, 0, s2) for a.a.x ∈ ∂Ω and for all s2 ∈ [0, k2].

Now we can formulate and prove our main result.

Theorem 4.4. Let hypotheses (H0)–(H3) be satisfied, where (g1, g2) is replaced by
∇g and suppose (H4)–(H6). Moreover, we replace in (H2) the eigenvalues λ1,pi

by λ2,pi for i = 1, 2, where λ2,pi is the second eigenvalue of the pi-Laplacian with
Steklov boundary condition. Then, the system (4.1) has at least three nontrivial
solutions, that is, a minimal positive solution

(u1,+, u2,+) ∈ int
(
C1(Ω)+

)
× int

(
C1(Ω)+

)
,

a maximal negative solution

(u1,−, u2,−) ∈ (− int
(
C1(Ω)+

)
)× (− int

(
C1(Ω)+

)
),

and a third solution (u1,0, u2,0) ∈ C1(Ω)×C1(Ω) such that (u1,0, u2,0) ̸= (0, 0) and

u1,− ≤ u1,0 ≤ u1,+ and u2,− ≤ u2,0 ≤ u2,+.

Proof. The existence of a minimal positive solution (u1,+, u2,+) ∈ int
(
C1(Ω)+

)
×

int
(
C1(Ω)+

)
and a maximal negative solution (u1,−, u2,−) ∈ (− int

(
C1(Ω)+

)
) ×

(− int
(
C1(Ω)+

)
) of (4.1) follows from Theorem 3.4. By Proposition 4.2 we know

that both pairs (u1,+, u2,+) and (u1,−, u2,−) are local minimizers of the functional
E0. Since they are extremal positive and negative solutions of (4.1), taking Propo-
sition 4.1 into account, we can suppose that they are strict local minimizers. We



ELLIPTIC p-LAPLACIAN SYSTEMS WITH NONLINEAR BOUNDARY CONDITION 19

also point out that the functional E0 fulfills the nonsmooth Palais-Smale condition
(see, for example, Motreanu-Rădulescu [30, Definitions 1.5–1.7]) since E0 is coer-
cive. This allows us to apply the nonsmooth version of the mountain-pass theorem
stated in Theorem 2.5 which gives us a critical point (u1,0, u2,0) ∈ W of E0, that
is,

(0, 0) ∈ ∂E0(u1,0, u2,0)

satisfying
max {E0(u1,+, u2,+), E0(u1,−, u2,−)}
< E0(u1,0, u2,0) = inf

γ∈Γ
max

−1≤t≤1
E0(γ(t)),

(4.10)

where

Γ = {γ ∈ C([0, 1],W) : γ(0) = (u1,−, u2,−), γ(1) = (u1,+, u2,+)} . (4.11)

Clearly, from (4.4) as well as Proposition 4.1 (iii) and the expression of the gener-
alized gradient ∂E0(u1,0, u2,0), we see that (u1,0, u2,0) is a solution of (4.1). Fur-
thermore, because of (4.10), we directly conclude that

(u1,0, u2,0) ̸= (u1,+, u2,+) and (u1,0, u2,0) ̸= (u1,−, u2,−).

It remains to show that (u1,0, u2,0) ̸= (0, 0). The idea is to construct a path γ̃ ∈ Γ
such that

E0(γ̃(t)) < 0 for all t ∈ [0, 1].

From Proposition 4.3 we know that u+ and v+ are the positive solutions of (4.8)
and (4.9) while u− and v− are the negative solutions of (4.8) and (4.9), respectively.
Let us assume that

E+(u+, 0) ≤ E+(0, v+), (4.12)

the case E+(0, v+) < E+(u+, 0) can be handled in the same way. For ε > 0
sufficiently small we set

m := E+(u1,+, u2,+) and c = E+(u+, εu1,p2
). (4.13)

Since (u1,+, u2,+) is the unique global minimizer of E+, see Proposition 4.2, we see
that m < c.

Claim: There are no other critical values of E+ in the interval (m, c].
Due to Proposition 4.1 (i), the representation of the generalized gradient in (4.2)

and the fact that (u1,+, u2,+) is a minimal positive solution of problem (4.1), it is
clear that we cannot have critical points of E+ whose both components are positive
others than (u1,+, u2,+). Using again hypothesis (H2) we have for ε > 0 small
enough that

g(x, u+, εu1,p2
)− g(x, u+, 0) > λ1,p2

εp2

p2
up2

1,p2
(4.14)

for a.a.x ∈ ∂Ω. From (4.14) we obtain, since ∥u1,p2∥
p2

p2,∂Ω
= 1, that

E+(u+, εu1,p2
) = E+(u+, 0) + λ1,p2

εp2

p2

−
∫
∂Ω

(g(x, u+, εu1,p2
)− g(x, u+, 0)) dσ

< E+(u+, 0).

(4.15)
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Therefore, from (4.15), (4.12), (4.13) and Proposition 4.3 we conclude that there
are no critical values of E+ in the interval (m, c] associated to critical points with
one positive component and the other one equal to zero. This proves the Claim.

Because of the Claim, we can now apply the nonsmooth version of the second
deformation lemma to the functional E+, see Gasiński-Papageorgiou [16, Theo-
rem 2.1.1]. This gives us a continuous map η = (η1, η2) : [0, 1] × E−1

+ ((−∞, c]) →
E−1

+ ((−∞, c]) such that

η(0, u1, u2) = (u1, u2), η(1, u1, u2) = (u1,+, u2,+),

E+(η(t, u1, u2)) ≤ E+(u1, u2)
(4.16)

for all t ∈ [0, 1] and for all (u1, u2) ∈ E−1
+ ((−∞, c]). Based on (4.16), we define a

path γ+ ∈ C([0, 1],W) by

γ+(t) = (η1(t, u+, εu1,p2
)+, η2(t, u+, εu1,p2

)+) for all t ∈ [0, 1].

Obviously, the path γ+ joins (u+, εu1,p2
) and (u1,+, u2,+). Taking (4.16) and (4.15)

into account, we derive that

E0(γ+(t)) = E+(γ+(t)) ≤ E+(η1(t, u+, εu1,p2)
+, η2(t, u+, εu1,p2)

+)

≤ E+(u+, εu1,p2) < E+(u+, 0) ≤ E+(0, v+)
(4.17)

for all t ∈ [0, 1] and for ε > 0 sufficiently small.
Next, we can suppose, without any loss of generality, that

E−(u−, 0) ≤ E−(0, v−).

Then, as above, we can construct a path γ− ∈ C([0, 1],W) such that γ−(0) =
(u−,−εu1,p2

), γ−(1) = (u1,−, u2,−) and

E0(γ−(t)) < E−(u−, 0) ≤ E−(0, v−) < 0 (4.18)

for all t ∈ [0, 1] and for ε > 0 sufficiently small.

Now, let Si = W 1,pi(Ω) ∩ ∂Bpi,∂Ω
1 with ∂Bpi,∂Ω

1 = {u ∈ Lpi(∂Ω): ∥u∥pi,∂Ω = 1}
be endowed with the topology induced by W 1,pi(Ω) for i = 1, 2 and let Si,C =

Si ∩ C1(Ω) be endowed with the topology induced by C1(Ω). We set

Γ0,i = {γ ∈ C([0, 1], Si) : γ(0) = −u1,pi
, γ(1) = u1,pi

} ,
Γ0,i,C = {γ ∈ C([0, 1], Si,C) : γ(0) = −u1,pi

, γ(1) = u1,pi
}

for i = 1, 2.
Now let us fix constants µ̃ ∈ (0, c2 − λ2,p2

) and µ̂ ∈ (0, c2 − λ2,p2
− µ) with c2 as

in (H2). Then, the density of S2,C in S2 (which implies the density of Γ0,2,C in Γ0,2,
see Winkert [35] for a proof of it), guarantees that we can find a path γ0,2 ∈ Γ0,2,C

such that

max
u∈γ0,2([0,1])

∥u∥p2

1,p2
< λ2,p2

+ µ̂. (4.19)

Note that we supposed hypothesis (H2) with λ1,pi replaced by λ2,pi . Then it follows
that we can find δ > 0 such that

g(x, s1, s2)− g(x, s1, 0) > (c2 − µ̃)
sp2

2

p2
(4.20)

for a.a.x ∈ ∂Ω, for all s1 ∈ [d1, k1] and for all s2 ∈ (0, δ). Now, we can choose ε > 0
sufficiently small such that

ε|γ0,2(t)(x)| < δ for all t ∈ [0, 1] and for a.a.x ∈ ∂Ω. (4.21)
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Combining (4.19), (4.20), (4.21) and the fact that ∥γ0,2(t)∥p2

p2,∂Ω
= 1 for all t ∈ [0, 1],

we obtain

E0(v, εγ0,2(t)) =
1

p1
∥v∥p1

1,p1
+

εp2

p2
∥γ0,2(t)∥p2

1,p2
−

∫
∂Ω

g(x, v, εγ0,2(t)) dσ

= E(v, 0) +
εp2

p2
∥γ0,2(t)∥p2

1,p2

+

∫
∂Ω

(g(x, v, 0)− g(x, v, εγ0,2(t))) dσ

≤ E(v, 0) +
εp2

p2
(λ2,p2

+ µ̂− c2 + µ̃)

(4.22)

for all t ∈ [0, 1] and for all v ∈ W 1,p1(Ω) with v ∈ [u1,−, u2,+]. Now we take a

continuous path γ1 : [0, 1] → C1(Ω) such that γ1(0) = u−, γ1(1) = u+ and we set
γ0(t) = (γ1(t), εγ0,2(t)). Then we get a path with the endpoints (u−,−εu1,p2

) and
(u+, εu1,p2

) such that, due to (4.22),

E0(γ0(t)) ≤ E0(γ1(t), 0) +
εp2

p2
(λ2,p2

+ µ̂− c2 + µ̃) (4.23)

for all t ∈ [0, 1]. The concatenation of the paths γ−, γ0 and γ+ generates a path γ̃
which satisfies, because of (4.17), (4.18), and (4.23)

E0(γ̃(t)) ≤ max
t∈[0,1]

E0(γ1(t), 0) +
εp2

p2
(λ2,p2

+ µ̂− c2 + µ̃)

for all t ∈ [0, 1]. From (4.10) and (4.11) we see that

E0(u1,0, u2,0) ≤ max
t∈[0,1]

E0(γ1(t), 0) +
εp2

p2
(λ2,p2

+ µ̂− c2 + µ̃) . (4.24)

Recall that µ̂ ∈ (0, c2 − λ2,p2
− µ). Therefore,

εp2

p2
(λ2,p2

+ µ̂− c2 + µ̃) < 0. (4.25)

This means, with regard to (4.24) and (4.25), we only have to prove the existence
of a continuous path s 7→ γ1(s) with γ1(0) = u− and γ1(1) = u+ satisfying

E0(γ1(s), 0) ≤ 0 for all s ∈ [0, 1]. (4.26)

We define the path γ1 by

γ1(s) =

{
(1− 2s)u− if s ∈

[
0, 1

2

]
,

(2s− 1)u+ if s ∈
[
1
2 , 1

]
.

Applying g0(·, (1− 2s)u−, 0) = g(·, (1− 2s)u−, 0), we get for s ∈ [0, 1
2 ]

E0(γ1(s), 0) =
1

p1
(1− 2s)p1∥u−∥p1

1,p1
−
∫
∂Ω

g(x, (1− 2s)u−, 0) dσ. (4.27)

Since u− is a solution of (4.8), it holds

∥u−∥p1

1,p1
=

∫
∂Ω

gs1(x, u−, 0)u− dσ. (4.28)
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Combining (4.27) and (4.28) yields

E0(γ1(s), 0)

=

∫
∂Ω

(
1

p1
(1− 2s)p1gs1(x, u−, 0)u− − g(x, (1− 2s)u−, 0)

)
dσ.

(4.29)

We observe that ∫
∂Ω

1

p1
(1− 2s)p1gs1(x, u−, 0)u− dσ

=

∫
∂Ω

∫ 1

0

∂

∂t

tp1

p1
(1− 2s)p1gs1(x, u−, 0)u− dtdσ

=

∫
∂Ω

∫ 1

0

tp1−1(1− 2s)p1gs1(x, u−, 0)u− dtdσ

(4.30)

and∫
∂Ω

g(x, (1− 2s)u−, 0) dσ =

∫
∂Ω

∫ 1

0

∂

∂t
g(x, t(1− 2s)u−, 0) dtdσ

=

∫
∂Ω

∫ 1

0

gs1(x, t(1− 2s)u−, 0)(1− 2s)u− dtdσ.

(4.31)

Using (4.30) and (4.31) in (4.29) and hypothesis (H5) (i) leads to

E0(γ1(s), 0)

=

∫
∂Ω

∫ 1

0

(1− 2s)u−
(
(t(1− 2s))p1−1gs1(x, u−, 0)− gs1(x, t(1− 2s)u−, 0)

)
dtdσ

≤ 0.

Using similar arguments, one can show that E0(γ1(s), 0) ≤ 0 for [ 12 , 1]. Hence, we
have shown that (4.26) is satisfied. This completes the proof. □

Example 4.5. For the sake of simplicity, we have omitted the x-dependence on g
and consider the problem

−∆p1u1 = −|u1|p1−2u1 in Ω,

−∆p2
u2 = −|u2|p2−2u2 in Ω,

|∇u1|p1−2∇u1 · ν = −α(p1 + q1)|u1|p1+q1−2u1

+ βp1(u
+
1 )

p1−1(u+
2 )

p2 + γp1|u1|p1−2u1 on ∂Ω,

|∇u2|p2−2∇u2 · ν = −α(p2 + q2)|u2|p2+q2−2u2

+ βp2(u
+
2 )

p2−1(u+
1 )

p1 + γp2|u2|p2−2u2 on ∂Ω,

with constants p1, p2 > 2, α, β, q1, q2 > 0 and

γ > max

{
λ1,p1

p1
,
λ2,p2

p2

}
.

Then, the potential is given by

g(s1, s2) = −α
(
|s1|p1+q1 + |s2|p2+q2

)
+ β(s+1 )

p1(s+2 )
p2 + γ (|s1|p1 + |s2|p2)

with the partial derivatives

gs1(s1, s2) = g1(s1, s2)

= −α(p1 + q1)|s1|p1+q1−2s1 + βp1(s
+
1 )

p1−1(s+2 )
p2 + γp1|s1|p1−2s1,
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gs2(s1, s2) = g2(s1, s2)

= −α(p2 + q2)|s2|p2+q2−2s2 + βp2(s
+
1 )

p1(s+2 )
p2−1 + γp2|s2|p2−2s2.

Then, for any constants k1, k2 > 0 and d1, d2 < 0, Hypotheses (H0)–(H6) are
satisfied provided α > 0 is sufficiently large. Let us prove this for g1, the same
arguments can be used for g2.

Since g1 is continuous in (s1, s2) ∈ R × R, it is a Carathéodory function. Fur-
thermore we have with

s := max
(s1,s2)∈M

{|s1|, |s2|},

where M is a bounded set, that

|g1(s1, s2)| ≤ α(p1 + q1)s
p1+q1−1 + βp1s

p1+p2−1 + γp1s
p1−1

:= C ∈ L∞(∂Ω).

Furthermore, for t1, s1, t2, s2 ∈ [−K1,K1], we have

|g1(s1, t1)− g1(s2, t2)|
≤ α(p1 + q1)||s1|p1+q1−2s1 − |s2|p1+q1−2s2|
+ βp1|(s+1 )p1−1(t+1 )

p2 − (s+2 )
p1−1(t+2 )

p2 |
+ γp1||s1|p1−2s1 − |s2|p1−2s2|

≤ α(p1 + q1)||s1|p1+q1−2s1 − |s2|p1+q1−2s2|

+ βp1

(
|(s+1 )p1−1(t+1 )

p2 − (s+1 )
p2−1(t+2 )

p2 |

+ |(s+1 )p2−1(t+2 )
p2 − (s+2 )

p1−1(t+2 )
p2 |

)
+ γp1||s1|p1−2s1 − |s2|p1−2s2|

≤ α(p1 + q1)||s1|p1+q1−2s1 − |s2|p1+q1−2s2|

+ βp1

(
|(s+1 )|p1−1|(t+1 )p2 − (t+2 )

p2 |+ |(t+2 )p2 ||(s+1 )p2−1 − (s+2 )
p1−1|

)
+ γp1||s1|p1−2s1 − |s2|p1−2s2|

≤ α(p1 + q1)||s1|p1+q1−2s1 − |s2|p1+q1−2s2|

+ βp1

(
Kp1−1

1 |(t+1 )p2 − (t+2 )
p2 |+Kp2

1 |(s+1 )p2−1 − (s+2 )
p1−1|

)
+ γp1||s1|p1−2s1 − |s2|p1−2s2|.

(4.32)

Now we consider the function f(x) := |x|Px for x ∈ [−K1,K1]. Because of f ′(x) =
(P+1)|x|P we see that f is continuously differentiable with sup |f ′(x)| = (P+1)KP

1 ,
so it is a Lipschitz constant. Hence

|f(x1)− f(x2)| ≤ (P + 1)KP
1 |x1 − x2|.

This can be used for the first and third term in (4.32). For the second term we

consider f̃(x) = |x|Q for x ∈ [−K1,K1] \ {0}. In a similar way it then can be

shown that supf̃ ′(x) = supQ|x|Q−2x ≤ QKQ−1
1 and therefore

|f̃(x1)− f̃(x2)| ≤ QKQ−1
1 |x1 − x2|.
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This helps to estimate the second term in (4.32) for s1, s2, t1, t2 ∈ [−K1,K1] \ {0}.
In the case where t1 = t2 = 0 or t1 > 0 and t2 < 0 we directly get |(t+1 )p2+(t+2 )

p2 | ≤
|t1 − t2|. So, all together yields

|g1(s1, t1)− g1(s2, t2)|
≤ α(p1 + q1)||s1|p1+q1−2s1 − |s2|p1+q1−2s2|

+ βp1

(
Kp1−1

1 |(t+1 )p2 − (t+2 )
p2 |+Kp2

1 |(s+1 )p2−1 − (s+2 )
p1−1|

)
+ γp1||s1|p1−2s1 − |s2|p1−2s2|

≤ α(p1 + q1)(p1 + q1 − 2)Kp1+q1−2
1 |s1 − s2|

+ βp1

(
Kp1−1

1 p2K
p2−1
1 |t1 − t2|+Kp2

1 (p2 − 1)Kp2−2
1 |s1 − s2|

)
+ γp1(p1 − 2 + 1)Kp1−2

1 |s1 − s2|
≤ L1(|s1 − s2|+ |t1 − t2|)

for L1 > 0 sufficiently large. This shows (H0).
Let k1, k2 > 0 and s2 ∈ [0, k2]. Then

g1(k1, s2) = −α(p1 + q1)k
p1+q1−1
1 + βp1k

p1−1
1 (s+2 )

p2 + γp1k
p1−1
1

≤ −α(p1 + q1)k
p1+q1−1
1 + βp1k

p1−1
1 kp2

2 + γp1k
p1−1
1

≤ 0

for α > 0 sufficiently large. Let d1, d2 < 0 and s2 ∈ [d2, 0]. Then

g1(x, d1, s2) = −α(p1 + q1)|d1|p1+q1−2d1 + γp1|d1|p1−2d1 ≥ 0

for α > 0 sufficiently large. This shows (H1).
For every s2 ∈ (0, k2] we have that

lim inf
s1→0+

g1(s1, s2)

sp1−1
1

= lim inf
s1→0+

−α(p1 + q1)|s1|p1+q1−2s1 + βp1(s
+
1 )

p1−1(s+2 )
p2 + γp1|s1|p1−2s1

sp1−1
1

= lim inf
s1→0+

(
−α(p1 + q1)s

q1
1 + βp1(s

+
2 )

p2 + γp1
)

= βp1(s
+
2 )

p2 + γp1

= lim sup
s1→0+

g1(s1, s2)

sp1−1
1

.

Therefore there exist constants ĉ1, α̂1 > 0 with α̂1 ≥ ĉ1 > λ1,p1
such that

ĉ1 ≤ βp1(s
+
2 )

p2 + γp1 ≤ α̂1.

Furthermore, for every s2 ∈ [d2, 0), we have

lim inf
s1→0−

g1(s1, s2)

|s1|p1−2s1

= lim inf
s1→0−

−α(p1 + q1)|s1|p1+q1−2s1 + γp1|s1|p1−2s1
|s1|p1−2s1

= lim inf
s1→0−

(−α(p1 + q1)|s1|q1 + γp1)
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= γp1

= lim sup
s1→0−

g1(s1, s2)

|s1|p1−2s1
.

Thus, there exist constants c̃1, α̃1 > 0 with α̃1 ≥ c̃1 > λ1,p1 such that

c̃1 ≤ γp1 ≤ α̃1.

We now set

c1 := min{ĉ1, c̃2} and α1 := max{α̂1, α̃2}
to get (H2) and (H3).

Let x ∈ ∂Ω and s1 ∈ [d1, k1]. We want to show that gs1(s1, ·) is nondecreasing
on the interval [d2, k2]. For this let s̃2, ŝ2 ∈ [d2, k2] with s̃2 ≤ ŝ2. Then

gs1(s1, s̃2)

= −α(p1 + q1)|s1|p1+q1−2s1 + βp1(s
+
1 )

p1−1(s̃+2 )
p2 + γp1|s1|p1−2s1

≤ −α(p1 + q1)|s1|p1+q1−2s1 + βp1(s
+
1 )

p1−1(ŝ+2 )
p2 + γp1|s1|p1−2s1

= gs1(s1, ŝ2).

This shows (H4).
Let t ∈ [0, 1]. Then we have

gs1(ts1, 0)

= −α(p1 + q1)t
p1+q1−1|s1|p1+q1−2s1 + γp1t

p1−1|s1|p1−2s1

= tp1−1
(
−α(p1 + q1)t

q1 |s1|p1+q1−2s1 + γp1|s1|p1−2s1
)
.

Therefore

gs1(ts1, 0) ≤ tp1−1gs1(·, s1, 0) for d1 ≤ s1 ≤ 0,

gs1(ts1, 0) ≥ tp1−1gs1(·, s1, 0), for 0 ≤ s1 ≤ k1.

This shows (H5). Hypothesis (H6) can be shown in a similar way.
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[16] L. Gasiński, N.S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary

value problems, Chapman & Hall/CRC, Boca Raton, FL, 2005.

[17] L. Gambera, S.A. Marano, D. Motreanu, Quasilinear Dirichlet systems with competing op-
erators and convection, J. Math. Anal. Appl. 530 (2024), no. 2, Paper No. 127718, 11.

[18] U. Guarnotta, R. Livrea, P. Winkert, The sub-supersolution method for variable exponent

double phase systems with nonlinear boundary conditions, Atti Accad. Naz. Lincei Rend.
Lincei Mat. Appl. 34 (2023), no. 3, 617–639.

[19] U. Guarnotta, S.A. Marano, Infinitely many solutions to singular convective Neumann sys-

tems with arbitrarily growing reactions, J. Differential Equations 271 (2021), 849–863.
[20] U. Guarnotta, S.A. Marano, Corrigendum to “Infinitely many solutions to singular convective

Neumann systems with arbitrarily growing reactions” [J. Differential Equations 271 (2021)
849–863], J. Differential Equations 274 (2021), 1209–1213.

[21] U. Guarnotta, S.A. Marano, A. Moussaoui, Singular quasilinear convective elliptic systems

in RN , Adv. Nonlinear Anal. 11 (2022), no. 1, 741–756.
[22] D.D. Hai, R. Shivaji, An existence result on positive solutions for a class of p-Laplacian

systems, Nonlinear Anal. 56 (2004), no. 7, 1007–1010.
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