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Abstract. In the present paper, we are concerned with the study of a variable exponent double
phase obstacle problem which involves a nonlinear and nonhomogeneous partial differential

operator, a multivalued convection term, a general multivalued boundary condition and an

obstacle constraint. Under the framework of anisotropic Musielak-Orlicz Sobolev spaces, we
establish the nonemptiness, boundedness and closedness of the solution set of such problems by

applying a surjectivity theorem for multivalued pseudomonotone operators and the variational
characterization of the first eigenvalue of the Steklov eigenvalue problem for the p-Laplacian. In

the second part, we consider a nonlinear inverse problem which is formulated by a regularized

optimal control problem to identify the discontinuous parameters for the variable exponent
double phase obstacle problem. We then introduce the parameter-to-solution map, study a

continuous result of Kuratowski type and prove the solvability of the inverse problem.

1. Introduction

In this paper we investigate an inverse problem to an elliptic differential inclusion problem
driven by the variable exponent double phase operator and involving a multivalued convection
term, a multivalued boundary condition as well as an obstacle constraint. In order to formulate
our problem, let us assume that Ω ⊆ RN (N ≥ 2) is a bounded domain with Lipschitz continuous
boundary Γ := ∂Ω and suppose that Γ is divided into three mutually disjoint parts Γ1, Γ2, and
Γ3 where Γ1 is supposed to have positive Lebesgue measure. We consider the following problem

−Dp(·),q(·)u+ g(x, u) + µ(x)|u|q(x)−2u ∈ f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
= h(x) on Γ2,

∂u

∂νa
∈ U(x, u) on Γ3,

u(x) ≤ Φ(x) in Ω,

(1.1)

where p, q : Ω → (1,+∞) are continuous functions with p(x) < N and p(x) < q(x) < p∗(x) for all
x ∈ Ω, 0 ≤ µ(·) ∈ L∞(Ω), f : Ω× R× RN → 2R and U : Γ3 × R → 2R are two given multivalued
functions, Φ: Ω → R is an obstacle function and the differential operator Dp(·),q(·) is defined by

Dp(·),q(·)u := div
(
a(x)|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
for all u ∈ W 1,H(Ω), (1.2)

while W 1,H(Ω) stands for the anisotropic Musielak-Orlicz Sobolev space and

∂u

∂νa
:=
(
a(x)|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ν,

with ν being the outward unit normal vector on Γ. Here, a : Ω → (0,+∞) and h : Γ2 → R are
two given discontinuous functions.
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The current paper is devoted to study the variable exponent elliptic obstacle inclusion problem
(1.1) from the following two perspectives:

• we apply a surjectivity theorem for multivalued pseudomonotone mappings, the theory of
nonsmooth analysis and the variational characterization of the Steklov eigenvalue problem
for the p-Laplacian, to examine the solvability of problem (1.1).

• a nonlinear inverse problem governed by the variable exponent elliptic obstacle problem
(1.1) is introduced and a general framework for determining the existence of solutions to
the inverse problem is established.

To the best of our knowledge, this is the first work for studying the identification of discon-
tinuous parameters to nonlinear elliptic equation which combines the variable exponent double
phase differential operator along with an obstacle constraint, a multivalued convection term and
a multivalued mixed boundary condition.

The first interesting phenomena is the fact that the right-hand side of (1.1) is on the one hand
multivalued which is motivated by several physical applications (see, for example, Panagiotopou-
los [41, 42], Carl-Le [6] and the references therein) and on the other hand it depends on the gra-
dient of the solution. Such right-hand sides are often called multivalued convection terms. This
dependence makes the study of such problems quite complicated since standard variational tools
cannot be applied due to the lack of a variational structure. Nevertheless, several works exist in
this direction using different treatments as the frozen variable method or properties of correspond-
ing eigenvalue problems. We refer, for example, to the papers of El Manouni-Marino-Winkert [14],
Faraci-Motreanu-Puglisi [15], Faraci-Puglisi [16], Figueiredo-Madeira [18], Gasiński-Papageorgiou
[21], Liu-Motreanu-Zeng [30], Liu-Papageorgiou [31], Marano-Winkert [33], Motreanu-Winkert
[40], Papageorgiou-Rădulescu-Repovš [43] and Zeng-Papageorgiou [54], see also the references
therein.

A second interesting phenomenon is the studying of inverse problems of parameter identifica-
tion which is an important field in mathematics motivated by several applications. One interesting
work in the direction of inverse problems of mixed quasi-variational inequalities has been done
by Migórski-Khan-Zeng [37] who treated the problem

⟨T (a, u), v − u⟩+ φ(v)− φ(u) ≥ ⟨m, v − u⟩ for all v ∈ K(u),

where K : C → 2C is a multivalued mapping, T : B × V → V ∗ is a nonlinear map, φ : V →
R ∪ {+∞} is a functional and m ∈ V ∗, while V is a real reflexive Banach space, B is another
Banach space and C is a nonempty, closed, convex subset of V . These abstract results are quite
interesting and can be applied to several types of operators, for example the p-Laplacian in form
of hemivariational inequalities, see also [36]. Without guarantee of completeness, we refer to the
results of Clason-Khan-Sama-Tammer [8] for noncoercive variational problems, Gwinner [25] for
variational inequalities of second kind, Gwinner-Jadamba-Khan-Sama [26] for an optimization
setting and Migórski-Ochal [38] for nonlinear parabolic problems.

Finally, a third interesting phenomenon is the used weighted double phase operator with vari-
able exponents given in (1.2). This operator was just studied in [12] and has several applications
in Mechanics, Physics and Engineering Sciences. If a ≡ 1, the energy functional corresponding
to (1.2) is given by

ω 7→
∫
Ω

(
|∇ω|p(x)

p(x)
+ µ(x)

|∇ω|q(x)

q(x)

)
dx, (1.3)

where the integrand H(x, ξ) = 1
p(x) |ξ|

p(x) + µ(x)
q(x) |ξ|

q(x) for all (x, ξ) ∈ Ω × RN has unbalanced

growth, that is,

b1|ξ|p(x) ≤ H(x, ξ) ≤ b2

(
1 + |ξ|q(x)

)
for a. a.x ∈ Ω and for all ξ ∈ RN with b1, b2 > 0.

The main feature of the functional (1.3) is the change of ellipticity on the set where the weight
function is zero, that is, on the set {x ∈ Ω : µ(x) = 0}. This means, that the energy density
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of (1.3) exhibits ellipticity in the gradient of order q(x) on the points x where µ(x) is positive
and of order p(x) on the points x where µ(x) vanishes. So the integrand H switches between
two different phases of elliptic behaviours. Functionals of the form (1.3) have been initially
introduced by Zhikov [55] in 1986 in order to describe models for strongly anisotropic materials
and it also turned out its relevance in the study of duality theory as well as in the context of the
Lavrentiev phenomenon, see Zhikov [56]. For example, in the elasticity theory, the modulating
coefficient µ(·) dictates the geometry of composites made of two different materials with distinct
power hardening exponents p and q, see Zhikov [57]. Note that functionals of type (1.3) have
been considered concerning regularity of local minimizers by several authors. We mention the
significant works of Baroni-Colombo-Mingione [2, 3], Byun-Oh [5], Colombo-Mingione [10, 11],
Marcellini [34, 35] and Ragusa-Tachikawa [48].

Moreover, we refer to recent existence results for double phase equations with different right-
hand sides and different treatments. We mention the works of Bahrouni-Rădulescu-Winkert [1],
Biagi-Esposito-Vecchi [4], Colasuonno-Squassina [9], Fiscella [19], Farkas-Winkert [17], Gasiński-
Papageorgiou [20], Gasiński-Winkert [22, 23, 24], Liu-Dai [29], Liu-Winkert [32], Papageorgiou-
Vetro-Vetro [44], Perera-Squassina [46], Stegliński [50] and Zeng-Bai-Gasiński-Winkert [51, 52,
53].

The rest of the paper is organized as follows. In Section 2, we review some basic notation
and necessary results for anisotropic Musielak-Orlicz Lebesgue and anisotropic Musielak-Orlicz
Sobolev spaces, the p-Laplacian eigenvalue problem with Steklov boundary condition and the
theory of pseudomonotone multivalued operators. In Section 3, we apply a surjectivity theorem
for multivalued pseudomonotone operators to prove the nonemptiness and compactness of the
solution set of problem (1.1). Section 4 is devoted to introduce the nonlinear inverse problem
and develops a new existence result to such inverse problem.

2. Preliminaries

In this section, we recall some basic definitions and preliminaries which will be applied in the
next sections to derive the main results of the paper.

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary Γ := ∂Ω such that Γ is decomposed
into three mutually disjoint parts Γ1, Γ2 and Γ3 such that Γ1 has positive Lebesgue measure. By
M(Ω) we denote the space of all measurable functions u : Ω → R and we identify two of such
functions when they differ on a Lebesgue-null set. Let D be a nonempty subset of Ω. For any
r ∈ [1,∞), we denote by Lr(D) := Lr(D;R) and Lr(D;RN ) the usual Lebesgue spaces equipped
with the norm ∥ · ∥r,D defined as

∥u∥r,D :=

(∫
D

|u|r dx
) 1

r

for all u ∈ Lr(D).

We set

Lr(D)+ := {u ∈ Lr(D) : u(x) ≥ 0 for a. a.x ∈ D} .

The corresponding Sobolev space W 1,r(Ω) is endowed with the norm ∥ · ∥1,r,Ω given by

∥u∥1,r,Ω := ∥u∥r,Ω + ∥∇u∥r,Ω for all u ∈ W 1,r(Ω).

Moreover, we recall that the r-Laplacian eigenvalue problem with Steklov boundary condition
for r ∈ (1,∞) is given by

−∆ru = −|u|r−2u in Ω,

|u|r−2u · ν = λ|u|r−2u on Γ.
(2.1)
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It is known that (2.1) has a smallest eigenvalue λS
1,r > 0 which turns out to be isolated and

simple. Furthermore, λS
1,r > 0 has the variational characterization given by

λS
1,r = inf

u∈W 1,r(Ω)\{0}

∥∇u∥rr,Ω + ∥u∥rr,Ω
∥u∥rr,Γ

, (2.2)

see Lê [28].
Next, we introduce a subset C+(Ω) of C(Ω) defined by

C+(Ω) :=
{
a ∈ C(Ω) : 1 < a(x) for all x ∈ Ω

}
.

For any r ∈ C+(Ω), we define

r− := min
x∈Ω

r(x) and r+ := max
x∈Ω

r(x)

and r′ ∈ C+(Ω) stands for the conjugate variable exponent to r, namely,

1

r(x)
+

1

r′(x)
= 1 for all x ∈ Ω.

Also, we denote by r∗ and r∗ the critical Sobolev variable exponents to r ∈ C+(Ω) in the domain
and on the boundary, respectively, given by

r∗(x) =

{
Nr(x)
N−r(x) if r(x) < N,

+∞ if r(x) ≥ N,
for all x ∈ Ω (2.3)

and

r∗(x) =

{
(N−1)r(x)
N−r(x) if r(x) < N,

+∞ if r(x) ≥ N,
for all x ∈ Ω. (2.4)

For r ∈ C+(Ω) fixed, the variable exponent Lebesgue space Lr(·)(Ω) is defined by

Lr(·)(Ω) =

{
u ∈ M(Ω) :

∫
Ω

|u|r(x) dx < +∞
}
,

equipped with the Luxemburg norm

∥u∥r(·) := inf

{
λ > 0 :

∫
Ω

(
|u|
λ

)r(x)

dx ≤ 1

}
.

We know that Lr(·)(Ω) is a separable and reflexive Banach space. Moreover, the dual space of

Lr(·)(Ω) is Lr′(·)(Ω) and the following Hölder type inequality holds∫
Ω

|uv|dx ≤
[
1

r−
+

1

r′−

]
∥u∥r(·)∥v∥r′(·) ≤ 2∥u∥r(·)∥v∥r′(·)

for all u ∈ Lr(·)(Ω) and for all v ∈ Lr′(·)(Ω). Clearly, if r1, r2 ∈ C+(Ω) are such that r1(x) ≤ r2(x)
for all x ∈ Ω, then we have the continuous embedding

Lr2(·)(Ω) ↪→ Lr1(·)(Ω).

For any r ∈ C+(Ω), we consider the modular function ρr(·) : L
r(·)(Ω) → R given by

ρr(·)(u) =

∫
Ω

|u|r(x) dx for all u ∈ Lr(·)(Ω). (2.5)

The following proposition states some important relations between the norm of Lr(·)(Ω) and the
modular function ρr(·) defined in (2.5).

Proposition 2.1. If r ∈ C+(Ω) and u, un ∈ Lr(·)(Ω), then we have the following assertions:

(i) ∥u∥r(·) = λ ⇐⇒ ρr(·)
(
u
λ

)
= 1 with u ̸= 0;

(ii) ∥u∥r(·) < 1 (resp. = 1, > 1) ⇐⇒ ρr(·)(u) < 1 (resp. = 1, > 1);
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(iii) ∥u∥r(·) < 1 =⇒ ∥u∥r+r(·) ≤ ρr(·)(u) ≤ ∥u∥r−r(·);
(iv) ∥u∥r(·) > 1 =⇒ ∥u∥r−r(·) ≤ ρr(·)(u) ≤ ∥u∥r+r(·);
(v) ∥un∥r(·) → 0 ⇐⇒ ρr(·)(un) → 0;
(vi) ∥un∥r(·) → +∞ ⇐⇒ ρr(·)(un) → +∞.

For r ∈ C+(Ω), we denote by W 1,r(·)(Ω) the variable exponent Sobolev space given by

W 1,r(·)(Ω) =
{
u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)

}
.

We know that W 1,r(·)(Ω) equipped with the norm

∥u∥1,r(·) = ∥u∥r(·) + ∥∇u∥r(·) for all u ∈ W 1,r(·)(Ω)

is a separable and reflexive Banach space, where ∥∇u∥r(·) := ∥ |∇u| ∥r(·). We also consider the

subspace W
1,r(·)
0 (Ω) of W 1,r(·)(Ω) defined by

W
1,r(·)
0 (Ω) = C∞

0 (Ω)
∥·∥1,r(·)

.

From Poincaré’s inequality we know that we can endow the space W
1,r(·)
0 (Ω) with the equivalent

norm

∥u∥1,r(·),0 = ∥∇u∥r(·) for all u ∈ W
1,r(·)
0 (Ω).

We suppose the following hypotheses on the weight function µ and the variable exponents p,
q in problem (1.1) satisfy the following conditions:

(H1): p, q ∈ C+(Ω) and 0 ≤ µ(·) ∈ L∞(Ω) such that
(i) p(x) < N for all x ∈ Ω;
(ii) p(x) < q(x) < p∗(x) for all x ∈ Ω.

Now we introduce the nonlinear function H : Ω× [0,+∞) → [0,+∞) defined as

H(x, t) = tp(x) + µ(x)tq(x) for all (x, t) ∈ Ω× [0,+∞).

In addition, we denote by ρH(·) the modular function given by

ρH(u) =

∫
Ω

H(x, u) dx =

∫
Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx. (2.6)

Then, LH(Ω) stands for the corresponding Musielak-Orlicz Lebesgue space related to the
function H defined by

LH(Ω) = {u ∈ M(Ω) : ρH(u) < +∞} ,
which is, equipped with the Luxemburg norm

∥u∥H := inf
{
λ > 0 : ρH

(u
λ

)
≤ 1
}

for all u ∈ LH(Ω),

uniformly convex and so a reflexive Banach space, see Crespo-Blanco-Gasiński-Harjulehto-Winkert
[12, Proposition 2.12]. Similarly, we introduce the Musielak-Orlicz Sobolev spaces W 1,H(Ω) and

W 1,H
0 (Ω) given by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
,

W 1,H
0 (Ω) = C∞

0 (Ω)
∥·∥1,H

,

where the norm ∥ · ∥1,H for both spaces is defined by

∥u∥1,H := ∥u∥H + ∥∇u∥H for all u ∈ W 1,H(Ω) resp. W 1,H
0 (Ω).

Furthermore, we introduce the seminormed space L
q(·)
µ (Ω) defined by

Lq(·)
µ (Ω) :=

{
u ∈ M(Ω) :

∫
Ω

µ(x)|u|q(x) dx < +∞
}
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endowed with the seminorm

∥u∥q(·),µ := inf

{
λ > 0 :

∫
Ω

µ(x)

(
|u|
λ

)q(x)

dx ≤ 1

}
for all u ∈ Lq(·)

µ (Ω).

From Crespo-Blanco-Gasiński-Harjulehto-Winkert [12, Proposition 2.13] and Rǎdulescu-Repovš
[47], we have the following proposition.

Proposition 2.2. Let hypotheses (H1) be satisfied and let ρH be defined by (2.6). Then, we have

(i) if u ̸= 0, then ∥u∥H = λ if and only if ρH(uλ ) = 1;
(ii) ∥u∥H < 1 (resp.> 1, = 1) if and only if ρH(u) < 1 (resp.> 1, = 1);
(iii) if ∥u∥H < 1, then ∥u∥q+H ⩽ ρH(u) ⩽ ∥u∥p−

H ;
(iv) if ∥u∥H > 1, then ∥u∥p−

H ⩽ ρH(u) ⩽ ∥u∥q+H ;
(v) ∥u∥H → 0 if and only if ρH(u) → 0;
(vi) ∥u∥H → +∞ if and only if ρH(u) → +∞.

Next, we collect some useful embedding results for the spaces LH(Ω), W 1,H(Ω) and W 1,H
0 (Ω).

We refer to Crespo-Blanco-Gasiński-Harjulehto-Winkert [12, Proposition 2.16].

Proposition 2.3. Let hypotheses (H1) be satisfied and let p∗(·) be the critical exponent to p(·)
given in (2.3) with s = p. Then the following embeddings hold:

(i) LH(Ω) ↪→ Lr(·)(Ω), W 1,H(Ω) ↪→ W 1,r(·)(Ω), W 1,H
0 (Ω) ↪→ W

1,r(·)
0 (Ω) are continuous for

all r ∈ C(Ω) with 1 ≤ r(x) ≤ p(x) for all x ∈ Ω;

(ii) W 1,H(Ω) ↪→ Lr(·)(Ω) and W 1,H
0 (Ω) ↪→ Lr(·)(Ω) are compact for all r ∈ C(Ω) with 1 ≤

r(x) < p∗(x) for all x ∈ Ω;

(iii) LH(Ω) ↪→ L
q(·)
µ (Ω) is continuous;

(iv) Lq(·)(Ω) ↪→ LH(Ω) is continuous.

We now equip the space W 1,H(Ω) with the equivalent norm

∥u∥ϱH := inf

{
λ > 0 :

∫
Ω

[∣∣∣∣∇u

λ

∣∣∣∣p(x) + µ(x)

∣∣∣∣∇u

λ

∣∣∣∣q(x) + ∣∣∣uλ ∣∣∣p(x) + µ(x)
∣∣∣u
λ

∣∣∣q(x)] dx ≤ 1

}
,

where the modular ϱH is given by

ϱH(u) :=

∫
Ω

(
|∇u|p(x) + µ|∇u|q(x)

)
dx+

∫
Ω

(
|u|p(x) + µ|u|q(x)

)
dx (2.7)

for all u ∈ W 1,H(Ω). Moreover, let us introduce a subspace V of W 1,H(Ω) defined by

V := {u ∈ W 1,H(Ω) : u = 0 for a. a.x ∈ Γ1}.

It is obvious that V equipped the norm ∥·∥ϱH becomes a reflexive Banach space. In what follows,
we denote by ∥ · ∥V := ∥ · ∥ϱH the norm of V . Clearly, if we replace the space W 1,H(Ω) by V in
Proposition 2.3, then the embeddings (ii) and (iii) remain valid.

The next proposition can be found in Crespo-Blanco-Gasiński-Harjulehto-Winkert [12, Propo-
sition 2.14].

Proposition 2.4. Let hypotheses (H1) be satisfied, let u ∈ W 1,H(Ω) and let ϱH be defined by
(2.7). Then, we have

(i) if u ̸= 0, then ∥u∥ϱH = λ if and only if ϱH(uλ ) = 1;
(ii) ∥u∥ϱH < 1 (resp.> 1, = 1) if and only if ϱH(u) < 1 (resp.> 1, = 1);
(iii) if ∥u∥ϱH < 1, then ∥u∥q+ϱH ⩽ ρϱH(u) ⩽ ∥u∥p−

ϱH ;
(iv) if ∥u∥ϱH > 1, then ∥u∥p−

ϱH ⩽ ρϱH(u) ⩽ ∥u∥q+ϱH ;
(v) ∥u∥ϱH → 0 if and only if ϱH(u) → 0;
(vi) ∥u∥ϱH → +∞ if and only if ϱH(u) → +∞.
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Throughout the paper we denote by the symbols ”
w−→ ” and ”→” the weak and the strong

convergence in various spaces, respectively. Moreover, for a Banach space (X, ∥ · ∥X) we denote
its dual space by X∗ and by ⟨·, ·⟩X∗×X the duality pairing between X∗ and X. We write ⟨·, ·⟩
instead of ⟨·, ·⟩X∗×X if it is clear from the context.

Let a ∈ L∞(Ω)+ be such that infx∈Ω a(x) > 0 and consider the nonlinear map F : V → V ∗

given by

⟨F (u), v⟩ :=
∫
Ω

(
a(x)|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx

+

∫
Ω

(
|u|p(x)−2u+ µ(x)|u|q(x)−2u

)
v dx,

(2.8)

for u, v ∈ V . We have the following properties of F , see Crespo-Blanco-Gasiński-Harjulehto-
Winkert [12, Proposition 3.5].

Proposition 2.5. Under hypotheses (H1) and a ∈ L∞(Ω)+ with infx∈Ω a(x) > 0, the operator F
defined by (2.8) is bounded, continuous, monotone (hence maximal monotone) and of type (S+),
that is,

un
w−→ u in V and lim sup

n→∞
⟨Fun, un − u⟩ ≤ 0,

imply un → u in V .

We recall the notions of pseudomonotonicity and generalized pseudomonotonicity, see Migórski-
Ochal-Sofonea [39, Definition 3.57] or Carl-Le [6, Definitions 2.39 and 2.40].

Definition 2.6. Let X be a reflexive real Banach space. The operator A : X → 2X
∗
is called

(a) pseudomonotone if the following conditions hold:
(i) the set A(u) is nonempty, bounded, closed and convex for all u ∈ X;
(ii) A is upper semicontinuous from each finite-dimensional subspace of X to the weak

topology on X∗;

(iii) if {un}n∈N ⊂ X with un
w−→ u in X and u∗

n ∈ A(un) are such that

lim sup
n→∞

⟨u∗
n, un − u⟩X∗×X ≤ 0,

then to each element v ∈ X, there exists u∗(v) ∈ A(u) with

⟨u∗(v), u− v⟩X∗×X ≤ lim inf
n→∞

⟨u∗
n, un − v⟩X∗×X .

(b) generalized pseudomonotone if the following holds: Let {un}n∈N ⊂ X and {u∗
n}n∈N ⊂ X∗

with u∗
n ∈ A(un). If un

w−→ u in X and u∗
n

w−→ u∗ in X∗ and if

lim sup
n→∞

⟨u∗
n, un − u⟩X∗×X ≤ 0,

then the element u∗ lies in A(u) and

⟨u∗
n, un⟩X∗×X → ⟨u∗, u⟩X∗×X as n → ∞.

It is well known that every pseudomonotone operator is generalized pseudomonotone, see
Carl-Le-Motreanu [7, Proposition 2.122]. The converse statement also holds under an additional
boundedness hypothesis, see Carl-Le-Motreanu [7, Proposition 2.123].

Proposition 2.7. Let X be a reflexive real Banach space and assume that A : X → 2X
∗
satisfies

the following conditions:

(i) for each u ∈ X we have that A(u) is a nonempty, closed and convex subset of X∗;
(ii) A : X → 2X

∗
is bounded;

(iii) A is generalized pseudomonotone.

Then the operator A : X → 2X
∗
is pseudomonotone.
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The following definition about Kuratowski limits can be found in Papageorgiou-Winkert [45,
Definition 6.7.4].

Definition 2.8. Let (X, τ) be a Hausdorff topological space and let {An}n∈N ⊂ 2X be a sequence
of sets. The τ -Kuratowski lower limit of the sets An is defined by

τ - lim inf
n→∞

An :=
{
x ∈ X : x = τ - lim

n→∞
xn, xn ∈ An for all n ≥ 1

}
,

and the τ -Kuratowski upper limit of the sets An is given by

τ - lim sup
n→∞

An :=

{
x ∈ X : x = τ - lim

k→∞
xnk

, xnk
∈ Ank

, n1 < n2 < . . . < nk < . . .

}
.

If A = τ - lim inf
n→∞

An = τ - lim sup
n→∞

An, then A is called τ -Kuratowski limit of the sets An.

We end this section by recalling the following surjectivity theorem for multivalued mappings,
see Le [27, Theorem 2.2].

Theorem 2.9. Let X be a real reflexive Banach space, let G : D(G) ⊂ X → 2X
∗
be a maximal

monotone operator, let F : D(F) = X → 2X
∗
be a bounded multivalued pseudomonotone operator,

let L ∈ X∗ and let BR(0) := {u ∈ X : ∥u∥X < R}. Assume that there exist u0 ∈ X and
R ≥ ∥u0∥X such that D(G) ∩BR(0) ̸= ∅ and

⟨ξ + η − L, u− u0⟩X∗×X > 0 (2.9)

for all u ∈ D(G) with ∥u∥X = R, for all ξ ∈ G(u) and for all η ∈ F(u). Then the inclusion

F(u) + G(u) ∋ L

has a solution in D(G).

We point out that if

lim
∥u∥X→+∞
u∈D(G)

⟨ξ + η, u− u0⟩X∗×X

∥u∥X
= +∞, (2.10)

is fulfilled, then (2.9) holds for some R large enough. We will use (2.10) in Section 3.

3. Obstacle double phase problems with variable exponents

In this section we are going to prove the existence of at least one nontrivial weak solution
of problem (1.1) by using the variational characterization of the first eigenvalue of the Steklov
eigenvalue problem for the p−-Laplacian. First we state the full assumptions on the data of
problem (1.1).

(H2): The multivalued mapping f : Ω×R×RN → 2R has nonempty, compact and convex values
such that f(x, 0, 0) ̸= {0} for a. a.x ∈ Ω and
(i) x 7→ f(x, s, ξ) has a measurable selection for all (s, ξ) ∈ R× RN ;
(ii) (s, ξ) 7→ f(x, s, ξ) is upper semicontinuous for a. a.x ∈ Ω;

(iii) there exist 0 ≤ αf (·) ∈ L
r(·)

r(·)−1 (Ω) and af , bf ≥ 0 such that

|η| ≤ af |ξ|
p(x)(r(x)−1)

r(x) + bf |s|r(x)−1 + αf (x)

for all η ∈ f(x, s, ξ), for all s ∈ R, for all ξ ∈ RN and for a. a.x ∈ Ω, where r ∈ C+(Ω)
is such that

r(x) < p∗(x) for all x ∈ Ω

with p∗ being the critical Sobolev variable exponent of p given in (2.3) with s = p;
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(iv) there exist βf ∈ L1
+(Ω) and cf , df ≥ 0 satisfying

ηs ≤ cf |ξ|p(x) + df |s|p(x) + βf (x)

for all η ∈ f(x, s, ξ), for all s ∈ R, for all ξ ∈ RN and for a. a.x ∈ Ω.

(H3): The function g : Ω× R → R is such that
(i) x 7→ g(x, s) is measurable for all s ∈ R;
(ii) s 7→ g(x, s) is continuous for a. a.x ∈ Ω;
(iii) there exist ag > 0 and bg ∈ L1(Ω) such that

g(x, s)s ≥ ag|s|ς(x) − bg(x)

for all s ∈ R and a. a.x ∈ Ω, where ς ∈ C(Ω) is such that

p(x) < ς(x) < p∗(x) for all x ∈ Ω;

(iv) for any u, v ∈ Lp∗(·)(Ω), the function x 7→ g(x, u(x))v(x) belongs to L1(Ω).

(H4): The function Φ: Ω → [0,∞) is such that Φ ∈ M(Ω).

(H5): U : Γ3 × R → 2R satisfies the following conditions:
(i) U(x, s) is a nonempty, bounded, closed and convex set in R for a. a.x ∈ Γ3 and for

all s ∈ R;
(ii) x 7→ U(x, s) is measurable on Γ3 for all s ∈ R;
(iii) s 7→ U(x, s) is u.s.c. for a. a. x ∈ Γ3;

(iv) there exist 0 ≤ αU (·) ∈ Lδ′(·)(Γ3) and aU ≥ 0 such that

|U(x, s)| ≤ αU (x) + aU |s|δ(x)−1

for a. a.x ∈ Γ3 and for all s ∈ R, where δ ∈ C+(Ω) is such that

δ(x) < p∗(x) for all x ∈ Ω

with the critical exponent p∗ of p on the boundary Γ given in (2.4);
(v) there exist 0 ≤ βU (·) ∈ L1(Γ3) and bU ≥ 0 such that

ξs ≤ bU |s|p− + βU (x)

for all ξ ∈ U(x, s), for all s ∈ R and for a. a.x ∈ Γ3.

(H6): a ∈ L∞(Ω) is such that infx∈Ω a(x) ≥ cΛ > 0 and h ∈ Lp′(·)(Γ2).

(H7): The inequality holds

cΛ − cf − bU
(
λS
1,p−

)−1
> 0,

where λS
1,p−

is the first eigenvalue of the p−-Laplacian with Steklov boundary condition,

see (2.1) and (2.2) for r = p−.

Finally the obstacle set K is defined by

K = {u ∈ V : u(x) ≤ Φ(x) for a. a.x ∈ Ω} .

Note that under hypotheses (H4) it is clear that K is a nonempty, closed and convex subset of
V .

We understand weak solutions of problem (1.1) as follows.

Definition 3.1. We say that u ∈ K is a weak solution of problem (1.1), if there exist functions

η ∈ Lr′(·)(Ω) and ξ ∈ Lδ′(·)(Γ3) such that η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω as well as
ξ(x) ∈ U(x, u(x)) for a. a.x ∈ Γ3 and if∫

Ω

(
a(x)|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx

+

∫
Ω

g(x, u)(v − u) dx+

∫
Ω

µ(x)|u|q(x)−2u(v − u) dx
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≥
∫
Ω

η(x)(v − u) dx+

∫
Γ2

h(x)(v − u) dΓ +

∫
Γ3

ξ(x)(v − u) dΓ

is satisfied for all v ∈ K.

The main result in the present section is given by the following theorem.

Theorem 3.2. Assume that (H1)–(H7) are satisfied. Then, the solution set of problem (1.1)

corresponding to (a, h) ∈ L∞(Ω)×Lp′(·)(Ω), denoted by S(a, h), is nonempty, bounded and weakly
closed (hence, weakly compact).

Proof. Part I Nonemptiness of S(a, h): Let F : V → V ∗, G : V ⊂ Lς(·)(Ω) → Lς′(·)(Ω) and

L : Lp(·)(Ω) → Lp′(·)(Ω) be nonlinear mappings defined by

⟨Fu, v⟩ :=
∫
Ω

(
a(x)|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx

+

∫
Ω

(
|u|p(x)−2u+ µ(x)|u|q(x)−2u

)
v dx,

⟨Gu,w⟩Lς′(·)(Ω)×Lς(·)(Ω) :=

∫
Ω

g(x, u)w dx,

⟨Ly, z⟩Lp′(·)(Ω)×Lp(·)(Ω) :=

∫
Ω

|y|p(x)−2yz dx

for all u, v ∈ V , for all w ∈ Lς(·)(Ω) and for all y, z ∈ Lp(·)(Ω). Applying the Yankov-von
Neumann-Aumann selection theorem (see Papageorgiou-Winkert [45, Theorem 2.7.25]), for any
fixed u ∈ V , along with hypotheses (H2)(i), (ii), the multivalued function x 7→ f(x, u(x),∇u(x))
has at least a measurable selection, that is, there exists a measurable function η : Ω → R such
that η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω. From (H2)(iii) we find M1 > 0 such that∫

Ω

|η(x)|r(x)
′
dx

≤
∫
Ω

(
af |∇u|

p(x)

r(x)′ + bf |u|r(x)−1 + αf (x)

)r(x)′

dx

≤ M1

∫
Ω

(
|∇u|p(x) + |u|r(x) + αf (x)

r(x)′
)
dx

= M1

(
ρp(·)(|∇u|) + ρr(·)(u) + ρr′(·)(αf )

)
≤ M1

(
max

{
∥∇u∥p−

p(·), ∥∇u∥p+

p(·)

}
+max

{
∥u∥r−r(·), ∥u∥

r+
r(·)

}
+max

{
∥αf∥

r′−
r′(·), ∥αf∥

r′+
r′(·)

})
< +∞.

(3.1)

Note that we have used Proposition 2.1(iii), (iv) and the inequality∫
Ω

c
r(x)
2 dx ≤ max

{
|Ω|cr−2 , |Ω|cr+2

}
for any c2 > 0,

and the fact that the embeddings of V into W 1,p(·)(Ω) and of V into Lr(·)(Ω) are continuous.

Therefore, we conclude that η ∈ Lr′(·)(Ω). Using this consideration, we can introduce the Ne-

mytskij operator Nf : V ⊂ Lr(·)(Ω) → 2L
r′(·)(Ω) related to the multivalued mapping f given

by

Nf (u) :=
{
η ∈ Lr′(·)(Ω) : η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω

}
for all u ∈ V .
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Let u ∈ Lδ(·)(Γ3) be fixed. Analogously, taking hypotheses (H5)(i)–(iii) into account, we find
a measurable selection ξ : Γ3 → R of x 7→ U(x, u(x)) and M2 > 0 such that∫

Γ3

|ξ(x)|δ
′(x) dΓ ≤

∫
Γ3

(
αU (x) + aU |u|δ(x)−1

)δ′(x)
dΓ

≤ M2

∫
Γ3

(
αU (x)

δ′(x) + |u|δ(x)
)
dΓ

= M2

(
ρδ′(·)(αU ) + ρδ(·)(u)

)
≤ M2

(
max

{
∥αU∥

δ′−
δ′(·), ∥αU∥

δ′+
δ′(·)

}
+max

{
∥u∥δ−δ(·), ∥u∥

δ+
δ(·)

})
.

(3.2)

So, we consider the Nemytskij operator NU : Lδ(·)(Γ3) → 2L
δ′(·)(Γ3) corresponding to the multi-

valued mapping U defined by

NU (u) :=
{
η ∈ Lδ′(·)(Γ3) : η(x) ∈ U(x, u(x)) for a. a.x ∈ Γ3

}
for all u ∈ Lδ(·)(Γ3).

We denote by ι : V → Lr(·)(Ω), ω : V → Lς(·)(Ω) and β : V → Lp(·)(Ω) the embedding opera-
tors of V to Lr(·)(Ω), of V to Lς(·)(Ω) and of V to Lp(·)(Ω), respectively. Moreover, we denote

its adjoint operators by ι∗ : Lr′(·)(Ω) → V ∗, ω∗ : Lς′(·)(Ω) → V ∗ and β∗ : Lp′(·)(Ω) → V ∗, respec-
tively. Additionally, the trace operator of V into Lδ(·)(Γ3) is denoted by γ : V → Lδ(·)(Γ3) and

γ∗ : Lδ′(·)(Γ3) → V ∗ stands for its adjoint operator. Next, we consider the indicator function of
set K given by

IK(u) :=

{
0 if u ∈ K,

+∞ if u ̸∈ K.

Based on the considerations above we know that u ∈ K is a weak solution of problem (1.1) if and
only if it satisfies the following inclusion problem:

Fu+ ω∗Gu− β∗Lu− ι∗Nf (u)− γ∗NU (u) + ∂cIK(u) ∋ h in V ∗,

with ∂cIK being the convex subdifferential operator of IK .
First, we see that F , G and L are bounded operators. Using this along with (3.1), (3.2) and

hypotheses (H2) and (H5) guarantee that for every fixed u ∈ V the set

H(u) := Fu+ ω∗Gu− β∗Lu− ι∗Nf (u)− γ∗NU (u)

is nonempty, bounded, closed and convex in V ∗. Let us now prove the pseudomonotonicity of the
operator H. To this end, let {un}n∈N ⊂ V , {ζn}n∈N ⊂ V ∗ be sequences and let (u, ζ) ∈ V × V ∗

be such that

ζn ∈ H(un) for each n ∈ N, ζn
w−→ ζ and lim sup

n→∞
⟨ζn, un − u⟩ ≤ 0. (3.3)

Hence, for each n ∈ N, we can find functions ηn ∈ Nf (un) and ξn ∈ NU (un) such that

ζn = Fun + ω∗Gun − β∗Lun − ι∗ηn − γ∗ξn for all n ∈ N.

By virtue of (3.1) and (3.2), it can be easily shown that the sequences {ηn}n∈N ⊂ Lr′(·)(Ω)

and {ξn}n∈N ⊂ Lδ′(·)(Γ3) are bounded. Furthermore, we can find functions (η, ξ) ∈ Lr′(·)(Ω) ×
Lδ′(·)(Γ3) such that

ηn
w−→ η in Lr′(·)(Ω) and ξn

w−→ ξ in Lδ′(·)(Γ3).
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Due to the compactness of V into Lς(·)(Ω), Lr(·)(Ω), Lp(·)(Ω), respectively, and the compactness
of γ : V → Lδ(·)(Γ3) we obtain

lim
n→∞

⟨ω∗Gun, un − u⟩ = lim
n→∞

⟨Gun, ω(un − u)⟩Lς′(·)(Ω)×Lς(·)(Ω) = 0,

lim
n→∞

⟨β∗Lun, un − u⟩ = lim
n→∞

⟨Lun, β(un − u)⟩Lp′(·)(Ω)×Lp(·)(Ω) = 0,

lim
n→∞

⟨ι∗ηn, un − u⟩ = lim
n→∞

⟨ηn, ι(un − u)⟩Lr′(·)(Ω)×Lr(·)(Ω) = 0,

lim
n→∞

⟨γ∗ξn, un − u⟩ = lim
n→∞

⟨ξn, γ(un − u)⟩Lδ′(·)(Γ3)×Lδ(·)(Γ3)
= 0.

(3.4)

Now, using (3.4) and (3.3) gives

0 ≥ lim sup
n→∞

⟨ζn, un − u⟩

≥ lim sup
n→∞

⟨Fun, un − u⟩+ lim inf
n→∞

⟨ω∗Gun, un − u⟩ − lim sup
n→∞

⟨β∗Lun, u− un⟩

+ lim inf
n→∞

⟨ι∗ηn, u− un⟩+ lim inf
n→∞

⟨γ∗ξn, u− un⟩

≥ lim sup
n→∞

⟨Fun, un − u⟩.

Since F satisfies the (S+)-property, we conclude that

un → u in V,

see Proposition 2.5. If we pass to a subsequence if necessary, we may suppose that

un(x) → u(x) and ∇un(x) → ∇u(x) for a. a.x ∈ Ω. (3.5)

Taking Mazur’s theorem into account, we are able to find a sequence {χn}n∈N of convex combi-
nations of {ηn}n∈N such that

χn → η in Lr′(·)(Ω).

Thus, we may assume that χn(x) → η(x) for a. a.x ∈ Ω. From the convexity of f we conclude
that

χn(x) ∈ f(x, un(x),∇un(x)) for a. a.x ∈ Ω.

Additionally, we apply the upper semicontinuity of f , hypotheses (H2)(i), (ii) and Denkowski-
Migórski-Papageorgiou [13, Proposition 4.1.9] to obtain that the graph of (s, ξ) 7→ f(x, s, ξ) is
closed for a. a.x ∈ Ω. Also, (3.5) and χn(x) → η(x) for a. a.x ∈ Ω turn out that

η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω.

Hence η ∈ Nf (u). Similarly, we can show that ξ ∈ NU (u). The continuity of F , G as well as
L and the convergence properties in (3.3) imply that

ζn = Fun + ω∗Gun − β∗Lun − ι∗ηn − γ∗ξn
w−→ Fu+ ω∗Gu− β∗Lu− ι∗η − γ∗ξ = ζ in V ∗.

This shows that ζ ∈ H(u) and

lim
n→∞

⟨ζn, un⟩

= lim
n→∞

⟨Fun + ω∗Gun − β∗Lun − ι∗ηn − γ∗ξn, un⟩

= lim
n→∞

⟨Fun + ω∗Gun − β∗Lun, un⟩ − lim
n→∞

⟨ηn, ιun⟩Lr′(·)(Ω)×Lr(·)(Ω)

− lim
n→∞

⟨ξn, γun⟩Lδ′(·)(Γ3)×Lδ(·)(Γ3)

= ⟨Fu+ ω∗Gu− β∗Lu− ι∗η − γ∗ξ, u⟩ = ⟨ζ, u⟩.

Therefore, H is a generalized pseudomonotone operator and due to Proposition 2.7 we infer that
H is pseudomonotone as well.
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Now we are going to prove thatH is coercive. To this end, let u ∈ V and ζ ∈ H(u) be arbitrary.
Hence, there exist functions η ∈ Nf (u) and ξ ∈ NU (u) satisfying ζ = Fu+ω∗Gu−β∗Lu−ι∗η−γ∗ξ
and

⟨ζ, u⟩
= ⟨Fu, u⟩+ ⟨ω∗Gu− β∗Lu, u⟩ − ⟨η, u⟩Lr′(·)(Ω)×Lr(·)(Ω) − ⟨ξ, u⟩Lδ′(·)(Γ3)×Lδ(·)(Γ3)

≥ cΛ

∫
Ω

|∇u|p(x) dx+

∫
Ω

µ(x)|∇u|q(x) dx+

∫
Ω

µ(x)|u|q(x) dx+

∫
Ω

ag|u|ς(x) − bg(x) dx

−
∫
Ω

cf |∇u|p(x) + df |u|p(x) + βf (x) dx−
∫
Γ3

bU |u|p− + βU (x) dΓ

≥ (cΛ − cf )

∫
Ω

|∇u|p(x) dx+

∫
Ω

µ(x)|∇u|q(x) dx+

∫
Ω

µ(x)|u|q(x) dx+

∫
Ω

|u|p(x) dx

+

∫
Ω

ag|u|ς(x) dx− ∥bg∥1,Ω − (df + 1)

∫
Ω

|u|p(x) dx− ∥βf∥1,Ω − bU∥u∥p−
p−,Γ3

− ∥βU∥1,Γ3
.

(3.6)

We choose ε =
ag

2
(
(λS

1,p)
−1

bU+df+1
) and recall that we have the inequality

bU∥u∥p−
p−,Γ3

≤ bU

(
λS
1,p−

)−1 (
∥∇u∥p−

p−,Ω + ∥u∥p−
p−,Ω

)
(3.7)

from the p−-Laplacian eigenvalue problem with Steklov boundary condition, see (2.1) and (2.2).
Moreover, since ς(x) > p(x) for all x ∈ Ω, it follows from Young’s inequality that∫

Ω

|u|p(x) dx ≤ ε

∫
Ω

|u|ς(x) dx+ c1(ε)

∥u∥p−
p−,Ω ≤ ε

∫
Ω

|u|ς(x) dx+ c2(ε)

∥∇u∥p−
p−,Ω ≤

∫
Ω

|∇u|p(x) dx+ c3

(3.8)

with some c1(ε), c2(ε), c3 > 0. Then, from (3.6), (3.7) and (3.8) we can find a constant c4(ε) > 0
such that

⟨ζ, u⟩

≥
(
cΛ − cf − bU

(
λS
1,p−

)−1 )∫
Ω

|∇u|p(x) dx+

∫
Ω

µ(x)|∇u|q(x) dx

+

∫
Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx+

ag
2

∫
Ω

|u|ς(x) dx− ∥bg∥1,Ω − ∥βf∥1,Ω − ∥βU∥1,Γ3

≥ M̂0ϱH(u) +
ag
2

∫
Ω

|u|ς(x) dx− ∥bg∥1,Ω − ∥βf∥1,Ω − ∥βU∥1,Γ3 − c4(ε)

≥ M̂0 min
{
∥u∥p−

V , ∥u∥q+V
}
+

ag
2

min
{
∥u∥ς−ς(·), ∥u∥

ς+
ς(·)

}
− ∥bg∥1,Ω − ∥βf∥1,Ω − ∥βU∥1,Γ3

− c4(ε),

(3.9)

where we have used Proposition 2.4 and M̂0 > 0 is defined by

M̂0 := min

{
cΛ − cf − bU

(
λS
1,p−

)−1

, 1

}
.

Due to cΛ − cf − bU

(
λS
1,p−

)−1

> 0 by (H7), we infer that H is coercive.

We know that IK is a proper, convex and l.s.c. function and it holds

IK(u) ≥ αK∥u∥V for all u ∈ V with some αK < 0.

Therefore, we have

⟨κ, u⟩ ≥ IK(u)− IK(0) ≥ αK∥u∥V for all κ ∈ ∂cIK(u) and for all u ∈ K, (3.10)
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since 0 ∈ K. Combining (3.10) and (3.9) leads to

⟨ζ + κ− h, u⟩

≥ M̂0 min
{
∥u∥p−

V , ∥u∥q+V
}
+

ag
2

min
{
∥u∥ς−ς(·), ∥u∥

ς+
ς(·)

}
− ∥bg∥1,Ω − ∥βf∥1,Ω − ∥βU∥1,Γ3 − c4(ε)

− |αK |∥u∥V −M3∥h∥p′(·),Γ2
∥u∥V

for all ζ ∈ H(u) and for all κ ∈ ∂cIK(u) with for some M3 > 0. Thus, we see that (2.10) is
fulfilled by taking u0 = 0, G = ∂cIK and F = H. Now we can apply Theorem 2.9 which ensures
the existence of at least one nontrivial solution u ∈ K of problem (1.1).

Part II Boundedness of S(a, h): Let us assume the assertion is not true, so we suppose that
the set S(a, h) is unbounded. Then we are able to find a sequence {un}n∈N ⊂ S(a, h) satisfying
∥un∥V → +∞. Using the same treatment as in Part I, we have

0 ≥M̂0 min
{
∥un∥p−

V , ∥un∥q+V
}
+

ag
2

min
{
∥un∥ς−ς(·), ∥un∥ς+ς(·)

}
− ∥bg∥1,Ω − ∥βf∥1,Ω − ∥βU∥1,Γ3

−M4∥h∥p′(·),Γ2
∥un∥V −M5

(3.11)

for all n ∈ N and for some M4,M5 > 0. Letting n → ∞ in (3.11), this leads to a contradiction
and so, the solution set S(a, h) is bounded in V .

Part III Weak closedness of S(a, h): Let {un}n∈N ⊂ S(a, h) be such that

un
w−→ u in V

for some u ∈ K. Then, we can find functions ηn ∈ Nf (un) and ξn ∈ NU (un) satisfying

⟨Fun + ω∗Gun − β∗Lun, v − un⟩

≥
∫
Ω

ηn(v − un) dx+

∫
Γ2

h(x)(v − un) dΓ +

∫
Γ3

ξn(x)(v − un) dΓ
(3.12)

for all v ∈ K. From the boundedness of the operators Nf and NU there exist functions η ∈
Lr′(·)(Ω) and ξ ∈ Lδ′(·)(Γ3) satisfying

ηn
w−→ η in Lr′(·)(Ω) and ξn

w−→ ξ in Lδ′(·)(Γ3).

Now we can choose v = u in (3.12) and pass to the upper limit as n → ∞. This yields

lim sup
n→∞

⟨Fun, un − u⟩

≤ lim
n→∞

∫
Ω

(ηn + |un|p(x)−2un + g(x, un))(u− un) dx+ lim
n→∞

∫
Γ2

h(x)(u− un) dΓ

+ lim
n→∞

∫
Γ3

ξn(u− un) dΓ

≤ 0.

From Proposition 2.5 we conclude that un → u in V . Then, by the upper semicontinuity of f
and U , we have η ∈ Nf (u) and ξ ∈ NU (u). Passing to the upper limit as n → ∞ in (3.12), we
obtain u ∈ S(a, h). Thus, S(a, h) is weakly closed. □

4. Inverse problem for variable exponents double phase obstacle system

In this section we study and solve a nonlinear inverse problem which is formulated by a
regularized optimal control problem to identify the discontinuous parameters in problem (1.1).

In order to formulate the problem, we first recall the notion of total variation and bounded
variation functions. To this end, for any fixed g ∈ L1(Ω), we denote by TV(g) the total variation
of function g defined by

TV(g) := sup
φ∈C1(Ω;RN )

{∫
Ω

g(x) divφ(x) dx : |φ(x)| ≤ 1 for all x ∈ Ω

}
.
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Furthermore, BV(Ω) stands for the function space of all integrable functions with bounded vari-
ation given by

BV(Ω) :=
{
g ∈ L1(Ω) : TV(g) < +∞

}
,

equipped with the norm

∥g∥BV(Ω) := ∥g∥1,Ω +TV(g) for all g ∈ BV(Ω).

We know that (BV(Ω), ∥ · ∥BV(Ω)) is a Banach space.

Moreover, let H be a nonempty, closed and convex subset of Lp′(·)(Γ2) and denote by Λ the
set of admissible parameters for the anisotropic double phase differential operator given in (1.2)
defined by

Λ := {a ∈ BV(Ω) : 0 < cΛ ≤ a(x) ≤ dΛ for a. a.x ∈ Ω} ,
where cΛ and dΛ are given positive constants. It is clear that Λ is a closed and convex subset of
BV(Ω) and L∞(Ω).

Now, let κ > 0 and τ > 0 be two given regularization parameters and let z ∈ Lp(·)(Ω;RN )
be the known or measured datum. We study the inverse problem formulated in the following
regularized optimal control setting:

Problem 4.1. Find a∗ ∈ Λ and h∗ ∈ H such that

inf
a∈Λ and h∈H

C(a, h) = C(a∗, h∗), (4.1)

where the cost functional C : Λ×H → R is defined by

C(a, h) := min
u∈S(a,h)

∫
Ω

|∇u− z|p(x) dx+ κ TV(a) + τ

∫
Γ2

|h|p
′(x) dΓ. (4.2)

Here, S(a, h) stands for the solution set of problem (1.1) related to a ∈ L∞(Ω) and h ∈ Lp′(·)(Γ2).

Our main result in this section reads as follows.

Theorem 4.2. Assume that (H1)–(H7) are satisfied. Then the solution set of Problem 4.1 is
nonempty and weakly compact.

Proof. We are going to show the proof within four steps.
Step I: The functional C defined by (4.2) is well-defined.
We point out that it is enough to prove that for any fixed (a, h) ∈ Λ×H the optimal problem

min
u∈S(a,h)

∫
Ω

|∇u− z|p(x) dx

is solvable. For this purpose, let {un}n∈N ⊂ S(a, h) be a minimizing sequence of the following
problem

inf
u∈S(a,h)

∫
Ω

|∇u− z|p(x) dx = lim
n→∞

∫
Ω

|∇un − z|p(x) dx.

First, we observe that {un}n∈N is bounded in V due to Theorem 3.2. This permits us to find a

subsequence of {un}n∈N, not relabeled, such that un
w−→ u∗ in V for some u∗ ∈ V . Since S(a, h)

is weakly closed, we infer that u∗ ∈ S(a, h). By the weak lower semicontinuity of the function

u 7→
∫
Ω

|∇u− z|p(x) dx

(in fact, it is convex and lower semicontinuous), we obtain

inf
u∈S(a,h)

∫
Ω

|∇u− z|p(x) dx = lim inf
n→∞

∫
Ω

|∇un − z|p(x) dx

≥
∫
Ω

|∇u∗ − z|p(x) dx
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≥ inf
u∈S(a,h)

∫
Ω

|∇u− z|p(x) dx.

From this we see that for each (a, h) ∈ Λ×H we can find u∗ ∈ S(a, h) such that

inf
u∈S(a,h)

∫
Ω

|∇u− z|p(x) dx =

∫
Ω

|∇u∗ − z|p(x) dx,

which implies that C is well-defined.
Note that, for any fixed (a, h) ∈ Λ×H and u ∈ S(a, h), by (3.11), we have

0 ≥M̂0 min
{
∥u∥p−

V , ∥u∥q+V
}
+

ag
2

min
{
∥u∥ς−ς(·), ∥u∥

ς+
ς(·)

}
− ∥bg∥1,Ω − ∥βf∥1,Ω − ∥βU∥1,Γ3

−M6∥h∥p′(·),Γ2
∥u∥V −M7

for some M6,M7 > 0. This shows that S maps bounded sets of Λ×H ⊂ BV(Ω)×Lp′(·)(Γ2) into
bounded sets of K.

Step II: If {(an, hn)}n∈N ⊂ Λ × H is such that {an}n∈N is bounded in BV(Ω), an → a in

L1(Ω) and hn
w−→ h in H for some (a, h) ∈ L1(Ω)×H, then a ∈ Λ and

∅ ≠ w– lim sup
n→∞

S(an, hn) ⊂ S(a, h). (4.3)

To this end, let {(an, hn)}n∈N ⊂ Λ × H be a sequence such that an → a in L1(Ω) and

hn
w−→ h in H for some (a, h) ∈ L1(Ω) × H. From the definition of Λ, it is not difficult to

see that (a, h) ∈ Λ×H. Because {an} ⊂ BV(Ω) ∩ L∞(Ω) is bounded and S is a bounded map,
we know that ∪n≥1S(an, hn) is bounded in K as well. Moreover, from the reflexivity of V we
conclude that the set w– lim supn→∞ S(an, hn) is nonempty.

Let u ∈ w– lim supn→∞ S(an, hn) be arbitrary. Passing to a subsequence if necessary, we are
able to find a sequence {un}n∈N ⊂ K satisfying

un ∈ S(an, hn) and un
w−→ u in V.

So, for every n ∈ N, there exist functions ηn ∈ Nf (un) and ξn ∈ NU (un) such that∫
Ω

(
an(x)|∇un|p(x)−2∇un + µ(x)|∇un|q(x)−2∇un

)
· ∇(v − un) dx

+

∫
Ω

µ(x)|un|q(x)−2un(v − un) dx+

∫
Ω

g(x, un)(v − un) dx

≥
∫
Ω

ηn(x)(v − un) dx+

∫
Γ2

hn(x)(v − un) dΓ +

∫
Γ3

ξn(x)(v − un) dΓ

(4.4)

for all v ∈ K. If we choose v = u in (4.4), then we obtain∫
Ω

(
an(x)|∇un|p(x)−2∇un + µ(x)|∇un|q(x)−2∇un

)
· ∇(u− un) dx

+

∫
Ω

µ(x)|un|q(x)−2un(u− un) dx+

∫
Ω

g(x, un)(u− un) dx

≥
∫
Ω

ηn(x)(u− un) dx+

∫
Γ2

hn(x)(u− un) dΓ +

∫
Γ3

ξn(x)(u− un) dΓ.

(4.5)

From assumptions (H2)(iii) and (H5)(iv) we know that the sequences {ηn}n∈N and {ξn}n∈N
are bounded in Lr′(·)(Ω) and Lδ′(·)(Γ3), respectively. Recall that V is compactly embedded into
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Lς(·)(Ω), Lr(·)(Ω), Lp(·)(Γ2) and Lδ(·)(Γ3), respectively. From this we have

lim
n→∞

∫
Ω

µ(x)|un|q(x)−2un(un − u) dx = 0,

lim
n→∞

∫
Ω

g(x, un)(u− un) dx = 0,

lim
n→∞

∫
Ω

ηn(x)(u− un) dx = 0,

lim
n→∞

∫
Γ2

hn(x)(u− un) dΓ = 0,

lim
n→∞

∫
Γ3

ξn(x)(u− un) dΓ = 0.

(4.6)

On the other hand, from Hölder’s inequality, we get

∫
Ω

(
(an(x)− a(x))|∇u|p(x)−2∇u

)
· ∇(un − u) dx

≥ −
∫
Ω

|an(x)− a(x)||∇u|p(x)−1|∇(un − u)|dx

≥ −
[
1

p−
+

1

p′−

] ∥∥|an(·)− a(·)||∇u|
∥∥

p(·)
p(·)−1

,Ω
∥∇(u− un)∥p(·),Ω

≥ −
[
1

p−
+

1

p′−

]
∥∇(u− un)∥p(·),Ω ×min

{(∫
Ω

|an(x)− a(x)|
p(x)

p(x)−1 |∇u|p(x) dx
)( p

p−1 )−
,

(∫
Ω

|an(x)− a(x)|
p(x)

p(x)−1 |∇u|p(x) dx
)( p

p−1 )+
}

where the last inequality is obtained by using Proposition 2.1. Since an → a in L1(Ω), we may
assume that an(x) → a(x) for a. a.x ∈ Ω. The boundedness of {un}n∈N ⊂ V and {an}n∈N ⊂
L∞(Ω) along with Lebesgue’s dominated convergence theorem gives

lim
n→∞

(∫
Ω

|an(x)− a(x)|
p(x)

p(x)−1 |∇u|p(x) dx
)( p

p−1 )±
×
[
1

p−
+

1

p′−

]
∥∇(u− un)∥p(·),Ω = 0.

Hence, we have

lim
n→∞

∫
Ω

(
(an(x)− a(x))|∇u|p(x)−2∇u

)
· ∇(un − u) dx ≥ 0. (4.7)

Note that un
w−→ u in V . This implies

lim
n→∞

[∫
Ω

(
a(x)|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇(u− un) dx

]
= 0. (4.8)
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From the monotonicity of s 7→ |s|q(x)−2s, we have∫
Ω

(
an(x)|∇un|p(x)−2∇un + µ(x)|∇un|q(x)−2∇un

)
· ∇(un − u) dx

=

∫
Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
(an(x)− a(x))|∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
a(x)|∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
µ(x)|∇un|q(x)−2∇un

)
· ∇(un − u) dx

≥
∫
Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
(an(x)− a(x))|∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
a(x)|∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Ω

(
µ(x)|∇u|q(x)−2∇u

)
· ∇(un − u) dx.

(4.9)

Letting go to the limes superior in (4.5) as n → ∞ and using (4.6), (4.7), (4.8) and (4.9) results
in

lim sup
n→∞

∫
Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx ≤ 0.

The latter combined with the nonnegativity of (|s|p(x)−2s − |t|p(x)−2t)(s − t) for all s, t ∈ RN

implies

lim
n→∞

∫
Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx = 0. (4.10)

Next, we recall the well-known inequalities of Simon [49, formula (2.2)], namely

Ms|ξ − η|s ≤
(
|ξ|s−2ξ − |η|s−2η

)
· (ξ − η), if s ≥ 2, (4.11)

Ms|ξ − η|2 ≤
(
|ξ|s−2ξ − |η|s−2η

)
· (ξ − η) (|ξ|s + |η|s)

2−s
s , if 1 < s < 2, (4.12)

for all ξ, η ∈ RN , where the constants Ms, Ms > 0 are independent of ξ, η ∈ RN given by

Ms = 5
2−s
2 and Ms = (s− 1)2

(s−1)(s−2)
s .

We set

cp := min
x∈Ω

5
2−p(x)

2 and Cp := min
x∈Ω

(p(x)− 1)2
(p(x)−1)(p(x)−2)

p(x) .

For p ∈ C+(Ω) we split the domain Ω into two mutually disjoint parts Ωp≥2 and Ωp<2, that
is, Ω = Ωp≥2 ∪ Ωp<2 and Ωp≥2 ∩ Ωp<2 = ∅, where Ωp≥2 and Ωp<2 are given by

Ωp≥2 := {x ∈ Ω : p(x) ≥ 2} and Ωp<2 := {x ∈ Ω : p(x) < 2}.
In the domain Ωp≥2, we can use (4.11) to get∫

Ωp≥2

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

≥
∫
Ωp≥2

an(x)Mp(x)|∇un −∇u|p(x) dx

≥ cΛcpρp(·),Ωp≥2
(|∇un −∇u|).

(4.13)
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We set

Ωn = {x ∈ Ω : ∇un ̸= 0} ∪ {x ∈ Ω : ∇u ̸= 0} and Σn = {x ∈ Ω : ∇u = ∇un = 0}.

Then, we have Ω = Ωn ∪ Σn and Ωn ∩ Σn = ∅. Using the absolute continuity of the Lebesgue
integral gives ∫

Σn

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx = 0.

This implies ∫
Ω

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

=

∫
Ωn

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

+

∫
Σn

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

=

∫
Ωn

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx.

Concerning the part Ωp<2, it follows from (4.12) that∫
Ωp<2

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

=

∫
Ωn∩Ωp<2

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)

· ∇(un − u)

(
|∇un|p(x) + |∇un|p(x)

) 2−p(x)
p(x)(

|∇un|p(x) + |∇un|p(x)
) 2−p(x)

p(x)

dx

≥
∫
Ωn∩Ωp<2

Mp(x)an(x) |∇un −∇u|2
(
|∇un|p(x) + |∇un|p(x)

) p(x)−2
p(x)

dx

≥ Cp

∫
Ωn∩Ωp<2

an(x) |∇un −∇u|2
(
|∇un|p(x) + |∇un|p(x)

) p(x)−2
p(x)

dx

≥ cΛCp

∫
Ωn∩Ωp<2

|∇un −∇u|2
(
|∇un|p(x) + |∇un|p(x)

) p(x)−2
p(x)

dx.

Since 1 < p(x) < 2, we have 2
p(x) > 1. From Hölder’s inequality, we obtain∫

Ωn∩Ωp<2

|∇un −∇u|p(x) dx

=

∫
Ωn∩Ωp<2

|∇un −∇u|2×
p(x)
2 dx

=

∫
Ωn∩Ωp<2

(
|∇un −∇u|2

(
|∇un|p(x) + |∇u|p(x)

) p(x)−2
p(x)

) p(x)
2

×
(
|∇un|p(x) + |∇u|p(x)

) 2−p(x)
2

dx

≤

 1(
2
p

)
−

+
1(
2

2−p

)
−

 ∥l1∥ 2
p(·) ,Ωn∩Ωp<2

∥l2∥ 2
2−p(·) ,Ωn∩Ωp<2

,
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where functions l1, l2 are given by

l1(x) =

(
|∇un −∇u|2

(
|∇un|p(x) + |∇u|p(x)

) p(x)−2
p(x)

) p(x)
2

,

l2(x) =
(
|∇un|p(x) + |∇u|p(x)

) 2−p(x)
2

,

respectively. Comparing the norm and the modular, see Proposition 2.1, we obtain

∥l1∥ 2
p(·) ,Ωn∩Ωp<2

∥l2∥ 2
2−p(·) ,Ωn∩Ωp<2

≤ max


(∫

Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )−

,

(∫
Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )+


×max


(∫

Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )−

,

(∫
Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )+

 .

From the last two inequalities we infer∫
Ωn∩Ωp<2

|∇un −∇u|p(x) dx

≤

 1(
2
p

)
−

+
1(
2

2−p

)
−

max


(∫

Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )−

,

(∫
Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )+


×max


(∫

Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )−

,

(∫
Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )+

 ,

that is, 1(
2
p

)
−

+
1(
2

2−p

)
−


−1 ∫

Ωn∩Ωp<2

|∇un −∇u|p(x) dx

×

max


(∫

Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )−

,

(∫
Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )+


−1

≤ max


(∫

Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )−

,

(∫
Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )+

 .

Let M0 > 0 be such that

M0 ≥ max


(∫

Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )−

,

(∫
Ωn∩Ωp<2

l2(x)
2

2−p(x) dx

) 1

( 2
2−p )+


×

 1(
2
p

)
−

+
1(
2

2−p

)
−
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for all n ∈ N thanks to the boundedness of {un}n∈N. From (4.10) it follows that the limit superior

of

∫
Ω

l1(x)
2

p(x) dx is strictly smaller than one. Therefore, we have

max


(∫

Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )−

,

(∫
Ωn∩Ωp<2

l1(x)
2

p(x) dx

) 1

( 2
p )+


=

(∫
Ωn∩Ωp<2

l1(x)
2

p(x) dx

) p−
2

.

Hence, we obtain∫
Ωp<2

an(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇(un − u) dx

≥ cΛCp

∫
Ωn∩Ωp<2

|∇un −∇u|2
(
|∇un|p(x) + |∇un|p(x)

) p(x)−2
p(x)

dx

≥ cΛCp

(
M

−1

0

∫
Ωn∩Ωp<2

|∇un −∇u|p(x) dx

) p−
2

= cΛCp

(
M

−1

0

∫
Ωp<2

|∇un −∇u|p(x) dx

) p−
2

.

Inserting the inequality above and (4.13) into (4.10) gives

ρp(·)(|∇un −∇u|) =
∫
Ω

|∇un −∇u|p(x) dx → 0.

The latter combined with Proposition 2.1 implies

un → u in W 1,p(·)(Ω).

In addition, the boundedness of {ηn}n∈N and {ξn}n∈N as well as the reflexivity of Lr′(·)(Ω)

and Lδ′(·)(Γ3) point out that there exist subsequences of {ηn}n∈N and {ξn}n∈N, not relabeled,

and functions η ∈ Lr′(·)(Ω) and ξ ∈ Lδ′(·)(Γ3) satisfying

ηn
w−→ η in Lr(·)′(Ω) and ξn

w−→ ξ in Lδ(·)′(Γ3).

Since un → u in W 1,p(·) we may assume that ∇un(x) → ∇u(x) and un(x) → u(x) for a. a.x ∈
Ω. Using the same arguments as in the proof of Theorem 3.2, we conclude that η ∈ Nf (u) and
ξ ∈ NU (u). Using Lebesgue’s dominated convergence theorem leads to

lim
n→∞

∫
Ω

(
an(x)|∇un|p(x)−2∇un + µ(x)|∇un|q(x)−2∇un

)
· ∇(v − un) dx

=

∫
Ω

lim
n→∞

(
an(x)|∇un|p(x)−2∇un + µ(x)|∇un|q(x)−2∇un

)
· ∇(v − un) dx

=

∫
Ω

(
a(x)|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx,

due to the boundedness of {an}n∈N ⊂ L∞(Ω) and {un}n∈N ⊂ V . Letting n → ∞ in equality
(4.4), from the convergence results above, we obtain that∫

Ω

(
a(x)|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇(v − u) dx

+

∫
Ω

µ(x)|u|q(x)−2u(v − u) dx+

∫
Ω

g(x, u)(v − u) dx
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≥
∫
Ω

η(x)(v − u) dx+

∫
Γ2

h(x)(v − u) dΓ +

∫
Γ3

ξ(x)(v − u) dΓ

for all v ∈ K. This implies that u ∈ K is a solution of problem (1.1) related to (a, h) ∈ Λ ×H.
Thus, u ∈ S(a, h) and so we have ∅ ≠ w– lim supn→∞ S(an, hn) ⊂ S(a, h) which shows (4.3).

Step III: If {(an, hn)}n∈N ⊂ Λ × H is such that {an}n∈N is bounded in BV(Ω), an → a in

L1(Ω) and hn
w−→ h in Lp′(·)(Γ2) for some (a, h) ∈ L1(Ω)×H, then

C(a, h) ≤ lim inf
n→∞

C(an, hn). (4.14)

Let {(an, hn)}n∈N ⊂ Λ × H be such that an → a in L1(Ω) and hn
w−→ h in Lp′(·)(Γ2) for

some (a, h) ∈ L1(Ω)×H. Using Step II, it follows that a ∈ Λ. Now, {un}n∈N ⊂ K be such that

un ∈ S(an, hn) and inf
u∈S(an,hn)

∫
Ω

|∇u− z|p(x) dx =

∫
Ω

|∇un − z|p(x) dx (4.15)

for each n ∈ N. Since ∪n≥1S(an, hn) is bounded, passing to a subsequence if necessary, we have

un
w−→ u∗ in V for some u∗ ∈ K. Hence, u∗ ∈ w– lim supn→∞ S(an, hn). Again from Step II, we

have u∗ ∈ S(a, h). Therefore, the lower semicontinuity of the function L1(Ω) ∋ a 7→ TV(a) ∈ R

and the weak lower semicontinuity of V ∋ u 7→
∫
Ω

|∇u− z|p(x) dx ∈ R as well as Lp′(·)(Γ2) ∋ h 7→∫
Ω

|h(x)|p
′(x) dΓ ∈ R imply that

lim inf
n→∞

C(an, hn)

= lim inf
n→∞

[∫
Ω

|∇un − z|p(x) dx+ κTV(an) + τ

∫
Γ2

|hn(x)|p
′(x) dΓ

]
≥ lim inf

n→∞

∫
Ω

|∇un − z|p(x) dx+ lim inf
n→∞

κTV(an) + lim inf
n→∞

τ

∫
Γ2

|hn(x)|p
′(x) dΓ

≥
∫
Ω

|∇u∗ − z|p(x) dx+ κTV(a) + τ

∫
Γ2

|h(x)|p
′(x) dΓ

≥ inf
u∈S(a,h)

∫
Ω

|∇u− z|p(x) dx+ κTV(a) + τ

∫
Γ2

|h(x)|p
′(x) dΓ

= C(a, h).

This shows (4.14).
Step IV: The solution set of Problem 4.1 is nonempty and weakly compact.
First we observe that C is bounded from below by definition. Now, let {(an, hn)}n∈N ⊂ Λ×H

be a minimizing sequence of problem (4.1), that is,

inf
a∈Λ and h∈H

C(a, h) = lim
n→∞

C(an, hn). (4.16)

This shows the boundedness of the sequences {an}n∈N ⊂ Λ and {hn}n∈N ⊂ Lp′(·)(Γ2) in BV(Ω)

and Lp′(·)(Γ2), respectively. Passing to a subsequence if necessary, we can assume that

an → a∗ in L1(Ω) and hn
w−→ h∗ in Lp′(·)(Γ2) (4.17)

for some (a∗, h∗) ∈ Λ × Lp′(·)(Γ2), where we have used the closedness of Λ in L1(Ω) and the
compactness of the embedding of BV(Ω) to L1(Ω).

Next, let us consider a sequence {un}n∈N ⊂ K satisfying (4.15). From the convergence prop-
erties in (4.17) along with the boundedness of S we infer that {un}n∈N is bounded in V . Thus,

we find a subsequence of {un}n∈N, not relabeled, such that un
w−→ u∗ in V for some u∗ ∈ K.
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Clearly, u∗ ∈ S(a∗, h∗) because of Step II. Using these observations we get

lim inf
n→∞

C(an, hn)

= lim inf
n→∞

[∫
Ω

|∇un − z|p(x) dx+ κTV(an) + τ

∫
Γ2

|hn(x)|p
′(x) dΓ

]
≥ lim inf

n→∞

∫
Ω

|∇un − z|p(x) dx+ lim inf
n→∞

κTV(an) + lim inf
n→∞

τ

∫
Γ2

|hn(x)|p
′(x) dΓ

≥
∫
Ω

|∇u∗ − z|p(x) dx+ κTV(a∗) + τ

∫
Γ2

|h∗(x)|p
′(x) dΓ

≥ inf
u∗∈S(a∗,h∗)

∫
Ω

|∇u∗ − z|p(x) dx+ κTV(a∗) + τ

∫
Γ2

|h∗(x)|p
′(x) dΓ

= C(a∗, h∗).

(4.18)

Combining (4.18) with (4.16) proves that (a∗, h∗) ∈ Λ×H is a solution to Problem 4.1.
In the last part we have to show that the solution set of Problem (4.1) is weakly compact.

For this purpose, let {(an, hn)}n∈N be a sequence of solutions to Problem 4.1. First, it is easy

to see that {an}n∈N ⊂ Λ is bounded in BV(Ω) and {hn}n∈N is bounded in Lp′(·)(Γ2). Therefore,

we may assume that (4.17) holds with some (a∗, h∗) ∈ Λ × Lp′(·)(Γ2). Likewise, we can find a

sequence {un}n∈N such that (4.15) is satisfied such that un
w−→ u∗ in V for some u∗ ∈ S(a∗, h∗).

As before, we can show that (4.18) is fulfilled which means that (a∗, h∗) ∈ Λ×H is a solution to
Problem 4.1. But this means that the solution set of Problem 4.1 is weakly compact and so the
proof is complete. □

Remark 4.3. We point out that our results in this section also hold if the functional (4.2) is
replaced by the following regularized cost functional

C(a, h) = min
u∈S(a,h)

(∫
Ω

|∇u− z|p(x) dx
) 1

p−
+ κ TV(a) + τ

(∫
Γ2

|h|p(x)
′
dΓ

) 1
p′−

.
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