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Abstract. In this paper we study a new kind of coupled elliptic obstacle problems driven by double
phase operators and with multivalued right-hand sides depending on the gradients of the solutions.

Based on an abstract existence theorem for generalized mixed variational inequalities involving mul-

tivalued mappings due to Kenmochi [20], we prove the nonemptiness and compactness of the weak
solution set of the coupled elliptic obstacle system.

1. Introduction

Given a bounded domain Ω ⊂ RN , N ≥ 2, with smooth boundary ∂Ω, we are concerned with the
study of the following coupled double phase obstacle system

−div
(
a1(u1)|∇u1|p1−2∇u1 + µ1(x)|∇u1|q1−2∇u1

)
∈ f1(x, u1, u2,∇u1,∇u2) in Ω,

−div
(
a2(u2)|∇u2|p2−2∇u2 + µ2(x)|∇u2|q2−2∇u2

)
∈ f2(x, u1, u2,∇u1,∇u2) in Ω,

u1(x) ≤ Φ1(x) and u2(x) ≤ Φ2(x) on Ω,

u1 = u2 = 0 on ∂Ω,

(1.1)

where, for i = 1, 2, Φi : Ω → R are measurable obstacle functions, fi : Ω × R × R × RN × RN → 2R

are multivalued convection functions, ai : L
p∗
i (Ω) → (0,+∞) are nonlocal terms (see (H2)-(H4) for the

precise assumptions) and the exponents pi, qi as well as the weight functions µi satisfy the following
conditions:

(H1): 1 < pi < N , pi < qi < p∗i and 0 ≤ µi(·) ∈ L∞(Ω) for i = 1, 2, where p∗i is the critical exponent
of pi for i = 1, 2 given by

p∗i :=
Npi

N − pi
. (1.2)

The operators involved in problem (1.1) are called nonlocal double phase operators given by

div
(
ai(ui)|∇ui|pi−2∇ui + µi(x)|∇ui|qi−2∇ui

)
, u ∈ W 1,Hi

0 (Ω), (1.3)

with W 1,Hi

0 (Ω) being an appropriate Musielak-Orlicz Sobolev space for i = 1, 2. Note that if ai ≡ 1
and µi ≡ 0, the operators in (1.1) reduce to the pi-Laplacians for i = 1, 2. If ai ≡ 1, (1.3) become the
usual double phase operators which are related to the energy functionals

Ψi(u) =

∫
Ω

(
|∇u|pi + µi(x)|∇u|qi

)
dx. (1.4)

Functionals of the form (1.4) appeared for the first time as examples in models in order to describe
strongly anisotropic materials in the context of homogenization and elasticity, see Zhikov [32], we
refer also to applications in the study of duality theory and of the Lavrentiev gap phenomenon, see
Zhikov [33, 34]. A first mathematical framework for such type of functionals in (1.4) has been done
by Baroni-Colombo-Mingione [2], see also the related works by the same authors in [3, 4] and of De
Filippis-Mingione [9] about nonautonomous integrals.
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In this paper, our main goal is to study the nonlocal obstacle system (1.1) involving multivalued
convection in the right-hand sides concerning the nonemptiness and compactness of the weak solution

set of (1.1). Note that if Φi(x) = +∞ for a. a.x ∈ Ω, ai(ui) = 1 for all ui ∈ W 1,Hi

0 (Ω), and fi are
single-valued operators for i = 1, 2, then problem (1.1) reduces to the one studied by Marino-Winkert
[26]. However, the main method applied in the present paper is completely different from the one
used in [26]. Indeed, we make use of an abstract existence theorem for generalized mixed variational
inequalities involving multivalued mappings due to Kenmochi [20], but in [26], the authors applied the
main surjectivity theorem for pseudomonotone operators to obtain the existence of a weak solution.

To the best of our knowledge, this is the first work dealing with nonlocal double phase systems
with multivalued right-hand sides. However, even without nonlocal terms (that is, ai ≡ 1 for i = 1, 2)
and single-valued right-hand sides with convection, besides the work of Marino-Winkert [26] men-
tioned above, there exists only another paper recently published by Guarnotta-Livrea-Winkert [17] for
nonlinear Neumann double phase systems with variable exponents by developing a sub-supersolution
approach. In the case of a nonlocal problem with a single equations we refer to the current work of
Liu-Zeng-Gasiński-Kim [25].

Finally, we mention some recent results for elliptic systems with convection term for p-Laplace or
(p, q)-Laplace operator. We refer the works of Carl-Motreanu [5], Guarnotta-Marano [15], Guarnotta-
Marano-Moussaoui [18], Guarnotta-Marano-Moussaoui [18] and Faria-Miyagaki-Pereira [11], see also
Godoi-Miyagaki-Rodrigues [10] for Neumann systems without convection. For single equations involv-
ing the double phase operator with different type of right-hand sides we mention the following papers
by Colasuonno-Squassina [7], Farkas-Winkert [12], Gasiński-Winkert [13, 14], Kim-Kim-Oh-Zeng [21],
Liu-Dai [23], Liu-Migórski-Nguyen-Zeng [24], Perera-Squassina [28], Zeng-Bai-Gasiński-Winkert [29],
Zeng-Rădulescu-Winkert [30, 31], Cen-Khan-Motreanu-Zeng [6] see also the references therein.

The paper is organized as follows. In Section 2 we recall some main properties of Musielak-Orlicz
Sobolev spaces, the nonlocal double phase operator as well as the Dirichlet eigenvalue problem for the
r-Laplacian (1 < r < ∞). In Section 3 we first state the hypotheses on the data of problem (1.1),
formulate the definition of a weak solution and prove our main result about the nonemptiness and
compactness of the weak solution set of system (1.1), see Theorem 3.4.

2. Preliminaries

In this section we recall some facts about Musielak-Orlicz Sobolev spaces and the properties of the
double phase operator. To this end, let Ω ⊂ RN , N ≥ 2, be a bounded domain with smooth boundary
∂Ω. We denote by Lr(Ω) and Lr(Ω;RN ) the usual Lebesgue spaces endowed with the norm ∥ · ∥r,Ω
for any 1 ≤ r ≤ ∞. Suppose that condition (H1) holds and let M(Ω) be the space of all measurable
functions u : Ω → R, then the Musielak-Orlicz space LHi(Ω) is defined by

LHi(Ω) =

{
u ∈ M(Ω) :

∫
Ω

(
|u|pi + µi(x)|u|qi

)
dx < +∞

}
equipped with the Luxemburg norm

∥u∥Hi
= inf

{
τ > 0 :

∫
Ω

(∣∣∣u
τ

∣∣∣pi

+ µi(x)
∣∣∣u
τ

∣∣∣qi) dx ≤ 1

}
for i = 1, 2. The Musielak-Orlicz Sobolev space W 1,Hi(Ω) is defined by

W 1,Hi(Ω) =
{
u ∈ LHi(Ω) : |∇u| ∈ LHi(Ω)

}
equipped with the norm

∥u∥1,Hi = ∥∇u∥Hi + ∥u∥Hi ,

where ∥∇u∥Hi = ∥ |∇u| ∥Hi and i = 1, 2. Moreover, the completion of C∞
0 (Ω) in W 1,Hi(Ω) is denoted

by Vi := W 1,Hi

0 (Ω) and from Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.12] we
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know that Vi are reflexive Banach spaces for i = 1, 2. Due to Proposition 2.18 of Crespo-Blanco-
Gasiński-Harjulehto-Winkert [8] we can equip Vi with the equivalent norm

∥u∥Vi := ∥∇u∥Hi for all u ∈ Vi and i = 1, 2.

Furthermore, we define

Lqi
µi
(Ω) =

{
u ∈ M(Ω) :

∫
Ω

µi(x)|u|qi dx < +∞
}

and endow it with the seminorm

∥u∥qi,µi,Ω =

(∫
Ω

µi(x)|u|qi dx
) 1

qi

for i = 1, 2.
The following proposition can be found in Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposi-

tion 2.13].

Proposition 2.1. Let hypotheses (H1) be satisfied and let

ρHi
(u) :=

∫
Ω

Hi(x, |u|) dx =

∫
Ω

(
|u|pi + µi(x)|u|qi

)
dx.

For i = 1, 2 we have the following assertions.

(i) If u ̸= 0, then ∥u∥Hi
= λ if and only if ρHi

(uλ ) = 1.
(ii) ∥u∥Hi

< 1 (resp.> 1, = 1) if and only if ρHi
(u) < 1 (resp.> 1, = 1).

(iii) If ∥u∥Hi < 1, then ∥u∥qiHi
⩽ ρHi(u) ⩽ ∥u∥pi

Hi
.

(iv) If ∥u∥Hi
> 1, then ∥u∥pi

Hi
⩽ ρHi

(u) ⩽ ∥u∥qiHi
.

(v) ∥u∥Hi → 0 if and only if ρHi(u) → 0.
(vi) ∥u∥Hi → +∞ if and only if ρHi(u) → +∞.
(vii) ∥u∥Hi

→ 1 if and only if ρHi
(u) → 1.

(viii) If un → u in LHi(Ω), then ρHi
(un) → ρHi

(u).

Moreover, from Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.16] we have the com-
pact embedding

W 1,Hi

0 (Ω) ↪→ Lri(Ω) (2.1)

whenever 1 ≤ r1 < p∗i with p∗i being the critical Sobolev exponent given in (1.2) for i = 1, 2.
For i = 1, 2 let Ei : Vi → V ∗

i be defined by

⟨Ei(ui), vi⟩Vi :=

∫
Ω

(
|∇ui|pi−2∇ui + µi(x)|∇ui|qi−2∇ui

)
· ∇vi dx (2.2)

for all ui, vi ∈ Vi, where ⟨ · , · ⟩Vi
is the duality pairing between Vi and its dual space V ∗

i for i = 1, 2. The
operators Ei : Vi → V ∗

i have the following properties, see Crespo-Blanco-Gasiński-Harjulehto-Winkert
[8, Proposition 3.4] for i = 1, 2.

Proposition 2.2. Let hypotheses (H1) be satisfied. Then, the operators defined in (2.2) are bounded,
continuous, strictly monotone and of type (S+) for i = 1, 2.

Now, let us consider the eigenvalue problem for the r-Laplacian with homogeneous Dirichlet bound-
ary condition and 1 < r < ∞ defined by

−∆ru = λ|u|r−2u in Ω,

u = 0 on ∂Ω.
(2.3)

It is known that the first eigenvalue λ1,r of (2.3) is positive, simple, and isolated. Moreover, it can
be variationally characterized through

λ1,r = inf
u∈W 1,r(Ω)

{∫
Ω

|∇u|r dx :

∫
Ω

|u|r dx = 1

}
, (2.4)
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see Lê [22]. Hence, we get from (2.4) the inequality

∥u∥rr,Ω ≤
(
λ−1
1,r

)
∥∇u∥r,Ω for all u ∈ W 1,r

0 (Ω). (2.5)

3. Main results

In this section we state and prove our main result about the solvability of the system (1.1). First
we are going to formulate our precise assumptions on the nonlocal terms, the obstacle functions and
the right-hand sides of (1.1).

(H2): ai : L
p∗
i (Ω) → (0,+∞) are bounded and continuous such that cai := infu∈Vi ai(u) > 0 for

i = 1, 2 and Φi : Ω → R are measurable functions for i = 1, 2.

(H3): For i = 1, 2, the multivalued mappings fi : Ω × R × R × RN × RN → 2R are such that
0 /∈ fi(x, 0, 0, 0, 0) for a. a.x ∈ Ω, and fulfill the following conditions:
(i) for all (s1, s2, η1, η2) ∈ R × R × RN × RN and for a. a.x ∈ Ω, the sets fi(x, s1, s2, η1, η2)

are nonempty, bounded, closed and convex in R;
(ii) for all (s1, s2, η1, η2) ∈ R×R×RN ×RN , the multivalued functions x 7→ fi(x, s1, s2, η1, η2)

are measurable in Ω, and R×R×RN ×RN ∋ (s1, s2, η1, η2) 7→ f(x, s1, s2, η1, η2) ⊂ R are
u.s.c. for a. a.x ∈ Ω;

(iii) there exist constants

α1,i, α2,i, α3,i, α4,i, α5,i, α6,i, β1,i, β2,i, β3,i, β4,i, β5,i, β6,i, β7,i, β8,i ≥ 0

and functions δi ∈ L
ri

ri−1 (Ω)+ such that

|fi(x, s1, s2, η1, η2)| ≤ α1,i|s1|β1,i + α2,i|s2|β2,i + α3,i|s1|β3,i |s2|β4,i + α4,i|η1|β5,i

+ α5,i|η2|β6,i + α6,i|η1|β7,i |η2|β8,i + δi(x)

for a. a.x ∈ Ω and for all (s1, s2, η1, η2) ∈ R× R× RN × RN , where 1 < ri < p∗i and the
following compatibility conditions hold:

(I) β1,1 ≤ r1 − 1, (II) β2,1 ≤ r2
r′1

, (III)
β3,1

r1
+

β4,1

r2
≤ 1

r′1
,

(IV) β5,1 ≤ p1
r′1

, (V) β6,1 ≤ p2
r′1

, (VI)
β7,1

p1
+

β8,1

p2
≤ 1

r′1
,

(VII) β1,2 ≤ r1
r′2

, (VIII) β2,2 ≤ r2 − 1, (IX)
β3,2

r1
+

β4,2

r2
≤ 1

r′2
,

(X) β5,2 ≤ p1
r′2

, (XI) β6,2 ≤ p2
r′2

, (XII)
β7,2

p1
+

β8,2

p2
≤ 1

r′2
.

(H4): There exist constants πi ≥ 0 and a function 0 ≤ ω(·) ∈ L1(Ω) satisfying the following inequality
for a. a.x ∈ Ω and for all (s1, s2, η1, η2) ∈ R× R× RN × RN

θ1s1 + θ2s2 ≤ π1 (|η1|p1 + |η2|p2) + π2 (|s1|p1 + |s2|p2) + ω(x)

for all θi ∈ fi(x, s1, s2, η1, η2) for i = 1, 2.

Next, we give the definition of a weak solution of the system (1.1).

Definition 3.1. We say that a pair of functions (u1, u2) ∈ K1 × K2 is a weak solution of problem

(1.1), if there exist functions ξi ∈ Lr′i(Ω) with ξi(x) ∈ fi(x, u1, u2, ,∇u1,∇u2) for a. a.x ∈ Ω such that
the following inequalities hold∫

Ω

(ai(ui)|∇ui|pi−2∇ui + µi(x)|∇ui|qi−2∇ui) · ∇(wi − ui) dx ≥
∫
Ω

ξi(x)(wi − ui) dx

for all wi ∈ Ki where Ki are defined by

Ki := {ui ∈ Vi : ui(x) ≤ Φi(x) for a. a.x ∈ Ω}
for i = 1, 2.
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Remark 3.2. From the choices of r1, r2 in (H2)(iii) along with (2.1) we have the compact embedding

(V1 × V2, ∥ · ∥V1
+ ∥ · ∥V2

) ↪→ (Lr1(Ω)× Lr2(Ω), ∥ · ∥r1,Ω + ∥ · ∥r2,Ω) .

Remark 3.3. The following functions satisfy hypothesis (H2)

a1(u1) := e∥u1∥V1 , a1(u1) := ca1
+ ∥u1∥V1

, a1(u1) := ca1
+ ln(1 + ∥u1∥V1

)

a2(u2) := ca2
+

∥u2∥2V2

1 + ∥u2∥p2,Ω
, a2(u2) := ca2

+ ∥u2∥p2,Ω∥u2∥V2
,

a2(u2) := e∥u2∥V2 + ln(1 + ∥u2∥µ2,q2,Ω)

for all u1 ∈ V1 and for all u2 ∈ V2 with ca1
, ca2

> 0.

The main result of this paper is stated by the next theorem.

Theorem 3.4. Let hypotheses (H1)– (H4) be satisfied. Then the weak solution set of problem (1.1) is
nonempty and compact in V1 × V2 provided one of the following assertions is satisfied:

(i) a1 and a2 are coercive in V1 and V2, respectively;
(ii) min

{
ca1

− π1 − π2λ
−1
1,p1

, ca2
− π1 − π2λ

−1
1,p2

}
> 0, where λ1,pi

is the first eigenvalue of the pi-
Laplace problem with homogeneous Dirichlet boundary condition for i = 1, 2.

Proof. From hypotheses (H3)(i), (ii) and the Yankov-von Neumann-Aumann selection theorem (see
Papageorgiou-Winkert [27, Theorem 2.7.25]) it follows that for each (u1, u2) ∈ V1 × V2 we find mea-
surable selections ξi : Ω → R such that ξi(x) ∈ fi(x, u1, u2,∇u1,∇u2) for a. a.x ∈ Ω. From hypotheses
(H3) along with Hölder’s inequality we obtain

∥ξ1∥
r′1
r′1,Ω

=

∫
Ω

|ξ1(x)|r
′
1 dx

≤
∫
Ω

(
α1,1|u1|β1,1 + α2,1|u2|β2,1 + α3,1|u1|β3,1 |u2|β4,1 + α4,1|∇u1|β5,1

+α5,1|∇u2|β6,1 + α6,1|∇u1|β7,1 |∇u2|β8,1 + δ1(x)
)r′1 dx

≤ C0

(
∥u1∥

β1,1r
′
1

β1,1r′1,Ω
+ ∥u2∥

β2,1r
′
1

β2,1r′1,Ω
+ ∥u1∥

β3,1r
′
1

r1,Ω
∥u2∥

β4,1r
′
1(

r1
β3,1r′1

)′
β4,1r′1,Ω

+ ∥∇u1∥
β5,1r

′
1

β5,1r′1,Ω

+ ∥∇u2∥
β6,1r

′
1

β6,1r′1,Ω
+ ∥δ1∥

r′1
r′1,Ω

+ ∥∇u1∥
β7,1r

′
1

p1,Ω
∥∇u2∥

β8,1r
′
1(

p1
β7,1r′1

)′
β8,1r′1,Ω

)
< ∞

(3.1)

for some C0 > 0. Similarly, we can show that ∥ξ2∥
r′2
r′2,Ω

< ∞ via using again Hölder’s inequality and

(H3). Therefore, we can introduce the Nemytskii operators Fi : V1 × V2 ⊂ Lr1(Ω)× Lr2(Ω) → 2L
r′i (Ω)

of fi defined by

Fi(u, v) :=
{
ξ ∈ Lr′i(Ω) : ξ(x) ∈ fi(x, u, v,∇u,∇v) for a. a.x ∈ Ω

}
,

which are well-defined and bounded for i = 1, 2.

We are going to show now that Fi : V1 × V2 ⊂ Lr1(Ω) × Lr2(Ω) → 2L
r′i (Ω) are strongly-weakly

u.s.c. for i = 1, 2. By symmetry, we only need to prove that F1 is strongly-weakly. Indeed, if we can
prove that the set F−

1 (W ) is closed for each weakly closed set W ⊂ Lr′1(Ω) such that F−
1 (W ) ̸= ∅,

then we obtain the desired conclusion via employing Theorem 1.1.1 of Kamenskii-Obukhovskii-Zecca
[19].

Assume that W ⊂ Lr′1(Ω) is weakly closed such that F−
1 (W ) ̸= ∅ and let {(un, vn)}n∈N ⊂ F−

1 (W )
be a sequence such that (un, vn) → (u, v) in V1 × V2 with (u, v) ∈ V1 × V2. Then, we are able to find

a sequence {ξn}n∈N ⊂ Lr′1(Ω) satisfying ξn ∈ F1(un, vn) ∩ W . From (3.1) it follows that {ξn}n∈N is

bounded in Lr′1(Ω). Without any loss of generality, we may assume that

ξn
w−→ ξ in Lr′1(Ω) for some ξ ∈ Lr′1(Ω) ∩W
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due to the weak closedness of W . Recall that R×RN ×R×RN ∋ (u, ξ, v, η) 7→ f1(x, u, v, ξ, η) ⊂ R is
u.s.c. for a. a.x ∈ Ω. Hence, we can apply the Aubin-Cellina convergence theorem (see Aubin-Cellina
[1, Theorem 1, p.60]) to get that ξ ∈ F1(u, v). Therefore, we have (u, v) ∈ F−

1 (W ). Using Theorem
1.1.1 of Kamenskii-Obukhovskii-Zecca [19] proves that F1 is strongly-weakly closed.

Let IK1
and IK2

be the indicator functions of K1 and K2, respectively, and let ι1 : V1 → Lr1(Ω)
and ι2 : V2 → Lr2(Ω) be the embedding operators of V1 to Lr1(Ω) and of V2 to Lr2(Ω), respectively.
Invoking a standard procedure, it is not difficult to prove that (u, v) ∈ K1 ×K2 solves problem (1.1)
if and only if it is a solution to the following mixed variational inequality: find (u, v) ∈ V1 × V2 and

(u∗, v∗) ∈ U(u, v) := (A1(u)− ι∗1F1(u, v),A2(v)− ι∗2F2(u, v))

such that

⟨(u∗, v∗), (w, z)− (u, v)⟩+ IK1
(w) + IK2

(z)− IK1
(u)− IK2

(v) ≥ 0 for all (w, z) ∈ K1 ×K2, (3.2)

where ⟨(u∗, v∗), (w, z)⟩ := ⟨u∗, w⟩V1 + ⟨v∗, z⟩V2 stands for the duality paring between V1 × V1 and
V ∗
1 × V ∗

2 and A1 : Vi → V ∗
i are defined by

⟨Ai(ui), vi⟩Vi
:=

∫
Ω

(
ai(ui)|∇ui|pi−2∇ui + µi(x)|∇ui|qi−2∇ui

)
· ∇vi dx

for i = 1, 2.
Next, we are going to apply Proposition 4.1 of Kenmochi [20] to prove the existence of a nontrivial

weak solution of problem (3.2). From the closedness and convexity of fi and the definition of the
Nemytskii operators F1 for i = 1, 2, it is not hard to prove that for every (u, v) ∈ V1 × V2, the set
U(u, v) is nonempty, bounded, closed and convex in V ∗

1 × V ∗
2 . Let {(un, vn)}n∈N ⊂ V1 × V2 and

{(u∗
n, v

∗
n)}n∈N ⊂ V ∗

1 × V ∗
2 be sequences such that

(un, vn)
w−→ (u, v) in V1 × V2 and lim sup

n→∞
⟨(u∗

n, v
∗
n), (un − u, vn − v)⟩ ≤ 0, (3.3)

and (u∗
n, v

∗
n) ∈ U(un, vn). Then, we can find sequences {ξn}n∈N ⊂ Lr′1(Ω) and {ηn}n∈N ⊂ Lr′2(Ω) such

that

u∗
n = A1(un)− ι∗1ξn and v∗n = A2(vn)− ι∗2ηn.

Recalling that F1 and F2 are bounded, we infer that {ξn}n∈N ⊂ Lr′1(Ω) and {ηn}n∈N ⊂ Lr′2(Ω) are
bounded as well. So, we may suppose that

ξn
w−→ ξ in Lr′1(Ω) and ηn

w−→ η in Lr′2(Ω)

for some (ξ, η) ∈ Lr′1(Ω) × Lr′2(Ω) due to (2.1) and (H3). The latter combined with the compactness

of the embedding V1 × V2 to Lr′1(Ω)× Lr′2(Ω) (see Remark 3.2) implies that

⟨(ι∗1ξn, ι∗2ηn), (un − u, vn − v)⟩ → 0 as n → ∞.

Hence, by (3.3), we have

lim sup
n→∞

⟨(A1(un),A2(vn)), (un − u, vn − v)⟩ ≤ 0.

However, from the boundedness of a1 and a2, we have

lim sup
n→∞

∫
Ω

(
a1(un)|∇un|p1−2∇un + µ1(x)|∇un|q1−2∇un

)
· ∇(un − u) dx ≤ 0, (3.4)

and

lim sup
n→∞

∫
Ω

(
a2(vn)|∇vn|p2−2∇vn + µ2(x)|∇vn|q2−2∇vn

)
· ∇(vn − v) dx ≤ 0. (3.5)

Then, from (3.4), we have

0 ≥ lim sup
n→∞

∫
Ω

(
a1(un)|∇un|p1−2∇un + µ1(x)|∇un|q1−2∇un

)
· ∇(un − u) dx
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≥ lim inf
n→∞

∫
Ω

(
a1(un)−

ca1

2

)
|∇u|p1−2∇u · ∇(un − u) dx

+ lim sup
n→∞

∫
Ω

(ca1

2
|∇un|p1−2∇un + µ1(x)|∇un|q1−2∇un

)
· ∇(un − u) dx

= lim sup
n→∞

∫
Ω

(ca1

2
|∇un|p1−2∇un + µ1(x)|∇un|q1−2∇un

)
· ∇(un − u) dx.

From the (S+)-property of differential operator div
( ca1

2 |∇un|p1−2∇un + µ1(x)|∇un|q1−2∇un

)
(see

Proposition 2.2) we conclude that un → u in V1. Similarly, by using (3.5), we can show that vn → v
in V2. Employing the strongly-weakly upper semicontinuity of F1 and F2 gives ξ ∈ F1(u, v) and
η ∈ F2(u, v). Whereas, we use the continuity of a1 and a2 to find that

u∗
n = A1(un)− ι∗1ξn

w−→ u∗ = A1(u)− ι∗1ξ in V ∗
1

v∗n = A2(vn)− ι∗2ηn
w−→ v∗ = A2(v)− ι∗2η in V ∗

2 .

This means that the following equality holds

lim
n→∞

⟨(u∗
n, v

∗
n), (w, z)− (un, vn)⟩ = ⟨(u∗, v∗), (w, z)− (u, v)⟩

with (u∗, v∗) ∈ U(u, v) for all (w, z) ∈ V1 × V2.
Now we are going to show that U is coercive. To this end, we distinguish between the cases (i) and

(ii).

• Suppose first (i) is satisfied, that is, a1 and a2 are coercive. Then, for any (u, v) ∈ V1×V2 and
(ξ, η) ∈ (F1(u, v),F2(u, v)) with ∥u∥V1

> 1, ∥v∥V2
> 1 and

min
{(

a1(v)− π1 − λ−1
1,p1

π2

)
,
(
a2(v)− π1 − λ−1

1,p2
π2

)}
≥ 1

we have by using (H4), (2.5) for r = p1 and r = p2 as well as Proposition 2.1(iv)

⟨(A1(u)− ι∗1ξ,A2(v)− ι∗2η), (u, v)⟩

≥ a1(u)∥∇u∥p1

p1,Ω
+ ∥∇u∥q1µ1,q1,Ω

+ a2(v)∥∇v∥p2

p2,Ω
+ ∥∇v∥q2µ2,q2,Ω

−
∫
Ω

π1 (|∇u|p1 + |∇v|p2) dx

−
∫
Ω

π2 (|u|p1 + |v|p2) dx−
∫
Ω

ω(x) dx

≥
(
a1(u)− π1 − λ−1

1,p1
π2

)
∥∇u∥p1

p1,Ω
+ ∥∇u∥q1µ1,q1,Ω

+
(
a2(v)− π1 − λ−1

1,p2
π2

)
∥∇v∥p2

p2,Ω

+ ∥∇v∥q2µ2,q2,Ω
− ∥ω∥1,Ω

≥
(
a1(u)− π1 − λ−1

1,p1
π2

)
∥u∥p1

V1
+
(
a2(v)− π1 − λ−1

1,p2
π2

)
∥v∥p2

V2
− ∥ω∥1,Ω

≥ ∥u∥p1

V1
+ ∥v∥p2

V2
− ∥ω∥1,Ω.

This shows the coercivity in case (i).
• Let us now assume that the inequality

min
{
ca1 − π1 − π2λ

−1
1,p1

, ca2 − π1 − π2λ
−1
1,p2

}
> 0

is satisfied. Then, for any (u, v) ∈ V1 × V2 and (ξ, η) ∈ (F(u, v),G(u, v)) with ∥u∥V1
> 1 and

∥v∥V2
> 1 we have, similar to case (i), by applying (H4), (H2), (2.5) and Proposition 2.1(iv)

⟨(A1(u)− ι∗1ξ,A2(v)− ι∗2η), (u, v)⟩
≥

(
ca1

− π1 − λ−1
1,p1

π2

)
∥u∥p1

V1
+
(
ca2

− π1 − λ−1
1,p2

π2

)
∥v∥p2

V2
− ∥ω∥1,Ω

≥ M0

(
∥u∥p1

V1
+ ∥v∥p2

V2

)
− ∥ω∥1,Ω,

where M0 > 0 is defined by

M0 := min
{
ca − π1 − λ−1

1,p1
π2, cb − π1 − λ−1

1,p2
π2, 1

}
.
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So we have proved the coercivity also in this case, that is,

⟨(A1(u)− ι∗1ξ,A2(v)− ι∗2η), (u, v)⟩
∥u∥V1 + ∥v∥V2

→ +∞ as ∥u∥V1 + ∥v∥V2 → ∞.

Therefore, all conditions of Proposition 4.1 of Kenmochi [20] are fulfilled which implies that problem
(1.1) has at least one nontrivial weak solution, because of 0 ̸∈ fi(x, 0, 0, 0, 0) for a. a.x ∈ Ω and i = 1, 2.

Finally, we are going to prove that the solution set of problem (1.1) is compact. Assume that
{(un, vn)}n∈N is a sequence of solutions of problem (1.1). Hence, we can find ξn ∈ F1(un, vn) and
ηn ∈ F2(un, vn) such that

⟨(A1(un)− ι∗1ξn,A2(vn)− ι∗2ηn), (w − un, z − vn)⟩ ≥ 0 (3.6)

for all (w, z) ∈ K1 × K2. By the coercivity of U and the boundedness of Ai for i = 1, 2, we easily

obtain that {(un, vn)}n∈N ⊂ V1 × V2 and {(ξn, ηn)}n∈N ⊂ Lr′1(Ω)×Lr′2(Ω) are bounded. So, there are

functions (u, v) ∈ K1 ×K2 and (ξ, η) ∈ Lr′1(Ω)× Lr′2(Ω) such that

(un, vn)
w−→ (u, v) in V1 × V2 and (ξn, ηn)

w−→ (ξ, η) in Lr′1(Ω)× Lr′2(Ω).

Inserting (u, v) ∈ K1 × K2 into (3.6) and taking the lower upper limit as n → ∞ for the resulting
inequality yields

lim sup
n→∞

⟨(A1(un)− ι∗1ξn,A2(vn)− ι∗2ηn), (un − u, vn − v)⟩ ≤ 0.

Arguing as before, we can show that un → u in V1 and vn → v in V2. However, the closedness of F1

and F2 reveals that ξ ∈ F1(u, v) and η ∈ F2(u, v). Passing to the limit as n → ∞ in (3.6), we deduce
that (u, v) ∈ V1 × V2 is a weak solution of problem (1.1). Consequently, the solution set of problem
(1.1) is compact in V1 × V2. □
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[29] S. Zeng, Y. Bai, L. Gasiński, P. Winkert, Existence results for double phase implicit obstacle problems involving
multivalued operators, Calc. Var. Partial Differential Equations 59 (2020), no. 5, 176.
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