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ABSTRACT. The aim of this paper is to establish the existence of the first
(smallest) eigenvalue A1 for a nonlinear elliptic problem driven by the non-
homogeneous (p, g)-Laplace operator —A, — Ay in a bounded domain with
a source term involving the exponent v with ¢ < v < p. We show that A
is simple and associated to a unique and bounded eigenfunction u; > 0. In
the second part, using variational arguments, we study two types of nonlinear
problems involving the nonhomogeneous (p, ¢)-Laplace operator, in particular
we study two classes of sublinear and superlinear (p, ¢)-Laplacian problems
with parameters.

1. INTRODUCTION

In this paper, we are concerned with the study of a nonlinear eigenvalue problem
involving a differential operator of (p, ¢)-Laplacian type of the form

—Apu — Aju = Au|"?u in Q,

u=0 on 0, (PQ)

where (2 is a smooth bounded domain in RN, N > 2, 1 < g <y < p < +o0, A is
a real parameter and A,u = div(|Vu|"~2Vu) denotes the classical r-Laplacian for
1 < r < 0o. Besides this, we pay our attention to the study of two kinds of problems
involving the (p, ¢)-Laplacian. Namely, we study some sublinear and superlinear
problems with parameters where the parameter is present only in the source term
in the sublinear case and in the differential operator for the superlinear problem.

When ¢ = p = v, problem (PQ) reduces to the well-known eigenvalue problem
div(|VulP~2Vu) + Alu/P~2u = 0 in which the study of the properties of the first
eigenvalue problem and the associated eigenfunction has been extensively studied
by several authors both in regular and irregular domains, see e.g. Anane [1], Lé
[17], Lindqvist [19, 20], Kawohl and Lindqvist [16] for a detailed study. For the
case of nonlinear elliptic systems of two second order quasilinear partial differential
equations, in particular, de Thélin [10] obtained the existence of the first eigenvalue
associated to a unique and bounded eigenfunction for a weakly eigenvalue coupled
system where the interaction of variables is present only in the source terms, while
in both equations the differential terms involved the differential operators (A,, A,),
and have only one dependent variable each.

Let us also mention that several studies have been devoted recently to the in-
vestigation of related problems and a lot of papers have appeared dealing with
problems involving (p, ¢)-Laplacian in both bounded and unbounded domains. For
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the references and therein, see e.g. Baldelli and Filippucci [2], Baldelli, Brizi and
Filippucci [3, 4], Bobkov and Tanaka [0, 7, 8], Candito, Marano and Perera [9], El
Manouni, Perera and Winkert [14], Motreanu and Tanaka [23]. Let us point out

that the (p,¢)-Laplacian has great background in applications, we mention e.g.,
biophysics, plasma physics, reaction-diffusion equations, and models of elementary
particles, etc.

Concerning problem (PQ), we show that there is a smallest eigenvalue A; > 0
associated to a unique eigenfunction u; > 0 in §2 such that fQ u] dz = 1. Moreover,
the regularity result in terms of global L°°-estimates is obtained via a technique
based on a construction argument of exponent sequences and an iteration scheme
as well as truncation arguments to bound the maximal norm of the solution. As
far as the uniqueness result is concerned, it should be noted that this appears to
be very interesting and is proven differently in the two cases ¢ < v < p and v = p.

Regarding the sublinear case, let us point out that more works have been done in
this direction in the case of nonlinear problems involving the p-Laplacian. We can
cite Maya and Shivaji [22] in the semilinear case p = 2 and Perera [24] for scalar
equations and El Manouni and Perera [13] when p > 1 and p # 2 for systems of
two second order quasilinear equations. Recently, El Manouni, Perera and Winkert
[14] have studied the existence and nonexistence of nontrivial solutions for some
quasilinear elliptic problems driven by the nonhomogeneous (p, ¢)-Laplace operator
depending on two parameters in bounded and unbounded domains.

Regarding the superlinear case, we consider a different type of problem with
one parameter for the (p, q)-Laplacian. In particular a parameter p appears in the
differential operator side, that is, we consider —Apu — pAgu, p > 0. The idea is to
construct a problem involving —Apu — Aju, from which we deduce the existence of
a real number p > 0 corresponding to a unique solution up to multiplication with
constants.

2. THE FIRST EIGENVALUE AND ASSOCIATED POSITIVE EIGENFUNCTION OF
_Ap - Aq
Let Q ¢ RY,N > 2, be a bounded domain in RY with smooth boundary 99.
We consider the following Dirichlet problem
—Apu— Agu = Nu|"?u in €,
u=0 on 012,
where 1 < ¢ <y < p < oo and A is a real number.
In this section, we are interested to the first eigenvalue of the nonhomogeneous
operator div(|Vu[P=2Vu + |[Vu|?72Vu) as the least real number A; for which the

equation (2.1) has a nontrivial solution w; with homogeneous Dirichlet boundary
value conditions. Namely, A; will be obtained as the minimum of a slight variant

of so called Rayleigh quotient
1/ |VulP dz + l/ |[Vu|?dx
A= inf PJg 4 /g . (2.2)

weW P (@)\{0} / uf? de
Q

(2.1)

In this case, we say that \; is the first eigenvalue and the corresponding eigenfunc-
tion u; is called the first eigenfunction.
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Remark that in the case v = p, the first eigenvalue A1 given in (2.2) coincides
with the first eigenvalue of the p-Laplacian. Indeed, it is clear that \; is greater
than or equal to the first eigenvalue of the p-Laplacian. Taking u = s, where ¢
is a first eigenfunction of the p-Laplacian with s > 0, we get

/\V%\pdl"*Sq ,,p/ V| da
Q

/ o1 [P da

Letting s — oo shows that A\; is less than or equal to the first eigenvalue of the
p-Laplacian.
Next, we define the following functionals I and .J on W, "*(£2) by

/ [Vul|P do + = / |Vu|?de,

(2.3)
w) :/ |u|” dz.
Q
Consider the minimization problem
inf  I(w), J(u)=1L1. (P)

u€EW, P ()

By a weak solution of (2.1), we mean any u € W, () such that
/ |VulP2Vu - Vodz + / |Vu|T2Vu - Vodz = /\/ |u|" 2 up dx (2.4)
Q Q Q

is satisfied for all ¢ € VVO1 P(Q). The corresponding real number X is called an
eigenvalue and u is an associated eigenfunction. Note that here we obtain solutions
of (P) that allow to find (\,u) € R x WyP(Q) satisfying (2.4). We point out that
the assumptions on p, ¢ and -y guarantee that the integrals in (2.4) are well-defined
if u, o € Wy P(Q).

Before we state the first main theorem of this section, we recall the following
result due to Berger [5, Theorem 6.3.2, p. 325].

Theorem 2.1. Suppose that the C'-functionals A and B defined on the reflexive
Banach space X have the following properties:
(i) A(x) is weakly lower semicontinuous and coercive on X N{B(z) < const.};
(ii) B(x) is continuous with respect to weak sequential convergence and B'(x) =
0 only at x = 0.
Then the equation A'(x) = A\B'(x) has a one-parameter family of nontrivial so-
lutions (xg,Ar) for all R in the range of B(x) such that B(zg) = R and xR is
characterized as the minimum of A(x) over the set B(x) = R.

Theorem 2.2. Let 1 < g < v < p. Assume that for v # p, there is C> 1 large
enough such that

gp(1+0)

q+Cp
Then there exists a least eigenvalue A1 associated to an eigenfunction uy # 0 with
up > 0 satisfying (2.4). Moreover, u; > 0 and u; € L>®(Q) N CH(Q) for some
n > 0.

g<v< (2.5)
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Proof. Tt is well known that I and J are of class C'. Furthermore, the set {u €
WyP(Q): J(u) = 1} is closed for the weak sequential convergence. Indeed, let
u, € Wy (Q) be a sequence such that J(u,) =1 and u, — u weakly in W, ().
Since ¢ < v < p, write v = tp + (1 — t)q for t € (0,1]. Then by the Rellich-
Kondrachov compact embeddings, we get for a subsequence, still denoted by wu,,,
that [un|® — |u|tP strongly in LT (Q) and |u, |29 — [u| 1= strongly in LT ().
Now using the dominated convergence theorem and Holder’s inequality, we get
|un|” +— |ul” strongly in L'(Q), and so J(u) = 1. Also, J'(u) = 0 implies that
J(u) =0, and so u = 0. Hence, in view of Theorem 2.1, problem (P) has a solution
u; #Z 0 and there exists A; such that I'(u;) = A;J'(u1). Thus we obtain the
existence of a non-trivial solution of (2.1) for A = A;. Also, we have u; > 0 since
I(u1) = I(Jual).

Moreover, we show that A; is the least eigenvalue of (P). Indeed, for v # p,
remark first that (2.5) implies 222 > CI7-1. Let u be a solution of (2.1) associated
to A satisfying J(u) = 1. We have

m/ |Vu‘pdz7u/ |Vul? da:
P Ja qa Ja

>1"4 (C/ |Vul? dz —/ |Vu|qu> > 0.
q Q Q

Testing the weak formulation (2.4) by u and using the last inequality leads to
A= / IVl dz +/ Vul?de > I(u) > I(u).
Q Q

Hence, A > A;. On the other hand, as mentioned before for the case v = p, \;
coincides with the first eigenvalue of the p-Laplacian, and we have

/\:/ |Vu|pdx—|—/ \Vu\qd$2/|Vu|pdx2)\1.
Q Q Q

Hence A, is the smallest eigenvalue of problem (2.1). This shows the first assertion
of the theorem.
Now we prove the second assertion. For this purpose, let 1 < ¢ < % such that

WyP(Q) < LP(Q). Fix the following sequences of numbers
pr=p  ar=qc", mp= (" ~1)p.

Let us choose u} ™™ as a test function in (2.4). Then for more restrictions on ¢,

obviously uj ™™ € Wy (), and it follows that

/ |V [P=2Vuy - V(ug 7)) da +/ |Vur [172Vuy - V(u ™™ ) da
Q Q

= )\1/ g |7~ 2ugul T da.
Q
On the one hand, we have

[u'] < e[|

= C’lckp/ [Vuy [Pul™ da
Q

k
uy

cp
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< Cyctr </ |V [Pui™ da + / V| dx)
[¢) Q
ckp

1
1+my
ckp

=\C u T Ay,
! 11+mk/9 !

where Oy is a positive constant. Since ¢ — 1 < my, and v = tp + (1 — t)q with
t € (0,1], it follows that

=C

(/ |V [P~2Vuy V(ug T da —|—/ |Vu1|q2Vu1V(u}+m’“)dx>
Q Q

: P -
(||U1|§ﬁﬂ) :’u‘{k ’ < Alclck(l’*l)/ WPHODTEm g
cp Q
Since
t 1—t
P+ my n ( )q _1
Pk qx
we get

tpt a—t
DPk+1 ¢ k(p—1) Pk Pp:lk qk qk't !
[[ua| < MiCic lJwa I,y [Jwt Iy

Prk+1

On the other hand, since ¢ < p and ¢ = % there is Co > 0 such that

q
9Pk P 4q
bt = [t e = [ ar s ([ utra) "o 1wift)”
Q Q Q

Consequently, we deduce

1 (1—t)g tptmy (A-t)q
c — k(p— . PE . Pk
(lale ) < aaacy ™ =D () ™ (Jlua2)
Put Ej, = py logmax{l, [[u1]],, } and
1-t¢ 1—-1%)(p—
a=c(p—1)loge, b=cloghiCi, a;=——logCs, ﬁk:c—w.
c pe

This yields the relation
Ept1 < BuEy + o + b+ ak.
Remark that 8 > 0, 8 < ¢ for all £ and «y is a bounded sequence. Then we have
Epy1 < cEp + p+ ak,
where p is a real number such that p > 1. Set 7, = p + ak, we obtain
Epy1 < cEp+ry <PE drp ey + -+
Thus
Ek+1§ck<E1+%+%+---+Z—:>.

This implies that

+a + 2a + ak
E/c+1S0k<E1-i-M—|—'u 5 +.+ £ - )
c c c

N 11 1 12 k
=FBitpl-+5++5)tal-+5+ -+
C C & C C &
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Finally we derive
ck—1
lur]l o < hmsupei"k < hmsupe PL = ere
k— o0 k— o0

)

where d = F; + L — + ﬁ. Therefore u; € L*°(2). Furthermore, since
c—

up € L>*(), due to the regularity result of Lieberman [15], u; belongs to C1"(Q)

with some 7 € (0,1) and the maximum principle of Vézquez [26] shows that u; > 0

in Q. O

The next theorem states the uniqueness of the first eigenfunction associated to
the first eigenvalue \;.

Theorem 2.3. If1 < g < v < p satisfying the following condition

(E-na-s+To)a+ (E-na-(5))+2(5)" e

P s/ 7
+ ((% (- s+ g(i)w)a‘{ + ((% —- (- (%)W) + gsw’)ag (2.6)
< (af +af) & (o] +a),

where s,a1,as are positive real numbers with s # 1, or if v = p, then the first
etgenfunction uy associated to A1 is unique.

Proof. We will distinguish between two cases: ¢ < v < p with condition (2.6) and
v = p. Let us first consider the case ¢ < 7 < p satisfying (2.6) and let uq,us be
two eigenfunctions associated to A\; with u; # us. We will use the two functions

v ¥

Ug Uq
and ug —

y—1 y—1

Uy Ug

Uy —

as test functions in (2.4). Then

uy
/ —Apui | ug — Apua | ug — — dx
Ug
) u?
/ —Agug (ul Uz ) dz —|—/ —Agug (uQ L) dx
ul ™t uy
v ¥
—1 u —1 u

:Al/S]{uY (ul—ufl)—kug (ug—uw 1)} dz.

1 2

Clearly, the right-hand side is equal to 0 and a simple calculation shows that

V(u1 - u}%) - (1 - 1)($>7>VU1 _7<i‘j)7_lvu2.
Similarly for v( -
/Q[(1+(7—1)(:Z)V)Vu1|f’+( +o-n(2 ))mﬂ dz

y—1 y—1
- / {7(1@) \Vu1|p*2Vu1 -Vusg + v(g) |Vuz|p72VuQ . Vul] dz
QO (751 U2

3§1> by interchanging w; and us. Thus we obtain
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+/Q {(H(v—l)(z)v)lvuﬂu (1+(7—1)(Z;)7)|vu2|ﬂ dz

7/9 |:"Y(zj>’y_1vU1|q2VU1'VUQ+V<;L;>’Y_IVU2|(I2VU2'VU1:| dz
=T1+4+71
Whe;e |
= [ (6= &)V logul? - [Viogul) do
— /Qp§2|V10g ul\p_QVlogul - (Vlogug — Vloguy) dz
—/Qp§1|Vloqu\P_2V10gu2 - (Vloguy — Vlogus) dx
+ [ (6 - @)V Iogun]" = [V log " do
- /Q q&h|V logu1 |72V loguy - (Vlogus — Vloguy) da
- /Q q&1|V log ug |72V log us - (Vlogu, — Vloguy) dz,
with
v 0 v
& %ugip, & %u}%p, 4 gugiq and &) = g%
and
Y p="
e 00y
- 2 ]
vy g\ 49—
ooy e
+(1-(- g)(%y - g(%)q_AY)Wuﬂq_ dz
v p—7
L[ e
vy u p—
+ (%+(1— %)(1_ (uf) ) — %(i) )|qu|p} dw
U\ 9=
s G a-Dua-(2))-1(2)"7) @l
+(2+a- g)u - (%)W) - %(%)‘H) Vu2|q] dz.

On the one hand, by using the inequality |b|" > |a|” + p|a|"~2a(b—a) for r > 1, we
deduce that I'; > 0. Hence it follows that I'y < 0.
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On the other hand, in view of (2.6), we get
J_ AN A L P
L (=00 (2))+1(2) ) wupas
/(u]-ﬁ-ug)dx
Q
Y u\"” Y u\PY
oo (2L Aty P
/Q((p )( (UQ))+p(u2) )|Vu2| da
JRCERILE
Q
Y U\ Y Y U2\

Loy (22 A 2 q
+/Q((q )( (u1> )+q(u1) ) Vs d
/Q(u’f—l—ug)dx
T _ (T (T q
L (@00 (424 2 ()7 ) ualra
/Q(uzf—kug)dx

/ (L1Vuy [P + L Vugl? + Vs |9 + L Vusl?) da
Q P p q q

/(u?+u;)dx
Q
Al/u¥dx+)\1/ugdx

Q Q

/{)(u? +ug)dz
- >\1a

which is a contradiction. Thus the first assertion is proved.
Suppose v = p and let u; and us be two positive eigenfunctions associated to

A1. Using v = (uf + uz); as test function in (2.4), we have for ¢ = 1,2

/|Vul|pdx+ /\Vu1|qu /|Vv\pdx+ /|Vv|qu
(2.7)

/|ul|pdx /|U|pdm

A simple calculation shows that
; u)Vlogui + ubVlogus .
ufl + ub

AL <

+

+

<

Vo =

By Jensen’s inequality for convex functions, it follows that
ul|Viogui|P  ub|Vlogus|P
‘V’U|p§’l}p l‘p gpl‘ + 2|p gp2|
Uy + Uy Uy + Uy
Vuq|P Vugl|P 2.

:,Up<|p 1|p+‘p 2|p> ( 8)
uy tuy uy Uy
= [Vur [P + [Vug|*.
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Similarly, since u1,us < v and ¢ < p, we have
uf|Viogui|? — ub|Vlogus|?
p p + p p
uy + uy uy + up
< vTP (W V|7 4wy Vu|?)
S |VU1|q + |VU2|q.

Note that the inequalities (2.8) and (2.9) are strict when Vlogu; # Vloguz. Inte-
grating (2.8) and (2.9), using (2.7), and if Vlogu; # Vlogus on a set of positive
measure, we get the following contradiction

/|Vv|pdx—|—g/ |Vo|?da
A < 22 q4Jo

(uf + ub) da

Q
/|Vu1|pdx+£/ |Vui|?de /|Vu2|pdx+2/|Vu2|qu
< JQ q4Jo + J0 q4Jo
JRCRRALE JRCERLE
Q Q

Therefore, Vlogu; = Vlogus, so that us = ou; for some positive constant o.
Moreover, since us is an eigenfunction associated to A1, we have

/Q|V(au1)|pdx+/ﬂ|wau1)|qax:Al/ﬂ(auly’dx.

It follows that
ap/ |Vuq|P do + O'q/ |Vui|?de = oP A / ul dz
Q Q Q

=oP (/ \Vu1|pdx—|—/ |Vu1qu>,
Q Q

which gives (o? — aq)/ |[Vuq|?dz = 0, so that ¢ = 1 since ¢ < p, and we obtain
Q

=\

U = u2. O

Remark 2.4. Note that in our case, due to the nonhomogeneous (p,q)-Laplace
eigenvalue problem (2.1) with v = p, the previous theorem gives the uniqueness of
the first eigenfunction uy while in Kawohl and Lindquist [16], the authors proved
the uniqueness modulo scaling for the case of the p-Laplace eigenvalue problem

div(|VuP~2Vu) + AulP~?u = 0.

Note also that for g < v < p, the estimation argument, applying Jensen’s inequality,
does not work here.

We have the following nonexistence result for positive solutions of problem (2.1).

A
Theorem 2.5. For all A satisfying e < A1, problem (2.1) has no positive solu-
q

tions.

Proof. Suppose that (2.1) has a positive solution u € Wol’p(Q). Testing the weak
formulation of (2.1) by u, using (2.2) gives

/|Vu|pdx+/ \Vu\qu:)\/u"’dx
Q Q Q
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A (7/ |Vu|pdx+l/ qudx>
AP Ja qJo

A (/ |Vu|pdx+/ |Vu|qu)
A g \Ja Q

contrary to the assumption. Hence the assertion of the theorem follows. [

IN

IN

3. SUBLINEAR EIGENVALUE PROBLEMS INVOLVING (p, q)—LAPLACIAN

In this section, we consider the following nonhomogeneous eigenvalue problem
—Apu — Agu = Af(z,u) in Q,

u=~0 on 0f,

where A > 0, and f: Q x [0,00) — R is assumed to be a Carathéodory function
satisfying

(3.1)

|f(z,t)] < C7L for all (2,t) € Q x [0,00), (3.2)
where 1 < ¢ <~ < p and for some C' > 0.

Throughout this section, we will denote by
1

ull = [Vl = ( / |Vu|pdx)

the equivalent norm defined on W, ().
We start by a nonexistence result for positive solutions of problem (3.1).

Theorem 3.1. There exists A > 0 such that for all X < )\, problem (3.1) has no
positive solutions.

Proof. Suppose that (3.1) has a positive solution u € Wy?(Q). Testing the weak
formulation of (3.1) by u, using (2.2) and (3.2) gives

/|Vu|pdx+/|Vu|qu:)\/f(x,u)udx
Q Q Q
S)\C/ |u|? de
Q

< AQZ (/ [Vul|P dx+/ |qudx> .
Ag \Jo Q

A
The assertion of the theorem follows with A\ = (é—l g
v
The next theorem shows the existence of positive solutions for problem (3.1).

Theorem 3.2. Assume the following conditions:
(F1) there exists § > 0 such that

t
F(x,t):z/f(x,7)d7§0 for 0 <t <o,
0

(F2) there exists to > 0 such that F(x,tg) > 0 for a.e.xz € Q;
(F3) it holds

F(x,t
lim sup (2,7) <0 wuniformly for a.e.z € Q.
t—o00 tY

Then there exists X such that (3.1) has at least two positive solutions for X > .
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Proof. We set
flz,t)=0 if t<O0 forae x€. (3.3)

Consider the C'-functional ®y: W,?(Q) — R given by
1 1
Dy (u) = / —|VulP dz +/ —|Vul?dz —/ AF(z,u)dx
QP Qd Q

for all u € VVO1 P(Q). If u is a critical point of @y, denoting by u~ the negative part
of u, we have

0= () ,(w),u")
= / |VulP~2Vu - Vu~ dz + / |Vu|T2Vu - Vu~ dr — / M (z,u)u™ dr
Q Q Q

= [[Vu |5 + IVu~lg
> Jlu”|”.

This implies that u > 0. Furthermore, we proceed as in the proof of Theorem 2.2 to
show that u € L>° () and the regularity results of Lieberman [15] give u € C1*(Q),
so the positivity of u now follows from the weak Harnack type inequality proved
by Trudinger [25, Theorem 1.1], that is, either u > 0 or w = 0. Thus, nontrivial
critical points of @) are positive solutions of (3.1).

By the condition (3.2) we get

|F(z,t)] < C'|t]Y for all (z,t) € Q xR, (3.4)
for some positive constant C’. By (F3) there is By > 0 such that
A
F(z,t) < %ﬁw for all [t| > Biy. (3.5)

Combining (3.4) and (3.5), there is a constant C > 0 such that
A
AF(z,t) < iw +Cy forall (z,t) € QxR. (3.6)

Hence, since g < p, by applying (3.6) and (2.2), it follows that

1 1 A
D (u) > / <|Vu|p + = |Vaul? — Y - C,\> dz,
Q \P q 2y

1 1 1/1 1
> / <|Vu|p + —|Vul|?— = (|Vu|p + |Vu|q> - C)\) dz
Q \p q 2\p q
2 pllull? = CAI2n -

where p = ﬁ and |- |y is the Lebesgue measure in RY. Hence, ®) is bounded from

below and coercive. In addition, ®, is sequentially weakly lower semicontinuous
which implies the existence of a global minimizer w; € Wy (Q) of ®5(u).
Claim 1: There exists A > 0 such that inf &, < 0 for A > .

In order to prove this, we take a sufficiently large compact subset €’ of Q and
ug € Wol’p(Q) such that ug = tp on Q" and 0 < ug < tg on )\ ', where tg is as in
(F2). Then we have

/F(w,uo)dxz/ F(x,tg)dx — C'|to|"|Q\ Qv > 0,
Q !/
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for |\ €|y sufficiently small. This yields

1 1
D) (up) S/ (|Vuo|p+|Vu0|q) dx—)\/ F(z,ug)dz <0
Q \P q Q

for A large enough. This proves the Claim 1.
From the Claim 1, choosing A > A, we get ®,(w;) < 0 = ®,(0) and so w; # 0.
Now, let us fix A\ with A > X and consider
~ f(z,1), if t <wy(z), - t
flx,t) = and F(z,t) :/ f(z,7)dr.
flz,wi(x)), ift>wi(x), 0

Let
<T>)\(u):/ 1|Vu|pdﬂv—|—/ 1|Vu|qda:—/)\ﬁ(ac,u)d;v.
Qb Q4 Q

If u is a critical point of 5A, then u > 0 as before by the positivity of wy and (3.3).
Further, we have

0= (4 (u) — Py (wr), (u—wi)T)

= / (|[VulP2Vu — |Vw [P?Vwy) - V(u—w)t da
Q
+ / (|Vu|??Vu — |V |97 *Vwy ) - V(u — wy) T dz
Q

DY / (Flasw) — flaswn))(u — wn)* da

= / (|VulP~>Vu — |Vw [P*Vwy) - (Vu — V) dz
{u>w1}

+/ (|Vu|??Vu — Vw92V ) - (Vu — Vwy) da.
{u>wy}

Thus by the elementary inequality (|b|"~2b — |a|""?a,b—a) >0 for r > 1 and any
a,b € RY (see e.g. Lindqvist[21]), it follows that

0= / (IVuP=2Vu — [V [PV, ) - (Vu = V) da
{u>w1}

- 7/ (IVu|T2Vu = [V, " *Vwy) - (Vu — V) da
{u>w1}

<0.

Hence v < w;. So w is a solution of (3.1) in the order interval [0, w1].
The second critical point wy with @ (ws) > 0 will be obtained via the mountain-
pass theorem, which would complete the proof since ®5(0) =0 > ®(wy).

Claim 2: The origin is a strict local minimizer of ®,.
Let u € Wy P(Q). We set Q, = {z € Q: u(x) > min{w, (x),0}}, where § > 0 is

given in (F1). By hypothesis (F1), F(z,u) <0 on Q\ €,. Then we have

~ 1 1 ~ ~
@A(u):f||Vu||§+fHVquf)\/ F(x,u)d:c—/\/ F(x,u)dx
p q u O\Qy

' ) (3.7)
> L - /\/ Fla,u) da.
p Qy
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Applying (3.4), Holder’s inequality, the Sobolev embedding theorem and since ¢ <
v < p, it follows that

A/ |ﬁ(x,u)\dx90’/ lu|? dz
Q

u Qy

gAc’\Qulij%/ ulP da (3.8)

1-2 ’
< ACQuly " lull”,

for some positive constant C”. Tt suffices to show that |Q,|x — 0 as ||Jul| — 0. Let
€ > 0 be arbitrary and take a compact subset 2. of §2 such that |2\ .|y < e and
let . = Q, N Q. Then

p
flullh > /Q uP da > (min{rginwl,é}) 1 el N,

knowing that min { rr§121n wi, 0 } > 0. Applying again the Sobolev embedding theorem
and letting ||u|| tend to 0, gives |, ¢|n — 0. Now, since Q,, C 2, U (2\ Q¢), we
have
|Qu|N < |Qu,€| +¢,

for all € > 0. Hence |Q,|ny — 0 as ||ul]| = 0 and Claim 2 follows from (3.7) and
(3.8).

Note that ®, is also coercive bX an argument similar to the one used for ®,.
So every Palais-Smale sequence of @, is bounded and hence contains a convergent

subsequence. Now the mountain-pass theorem gives a critical point wy of @ at the
level

c:=inf max ®x(u)>0
Y€l uex([0,1])

where I' = {y € C([0, 1, WP (Q)): 4(0) = 0,4(1) = wy } is the class of paths
joining the origin to wy. Then wy < wy, and so ws is a critical point of @) since
f(z,wa) = f(x,ws). Therefore there are two positive solutions wy, ws such that

Dy (w1) = Pa(wy) <0 =Bx(0) = Bx(0) < By(wa) = Dy (ws).
This achieves the proof of the theorem. O
4. SUPERLINEAR PROBLEMS INVOLVING (p, q)-LAPLACIAN

In this section, we consider the following nonhomogeneous eigenvalue problem

—Apu— pAgu = |u]""?u in Q,
P HRq |ul (4.1)
u=0 on 012,
where Q C RY is a bounded domain, 1 < p < N, 1<q<p<'y<p*:&and

N—p
> 0 is a real parameter. The associated energy functional to (4.1) is given by

1 1
I(u) :/ <|Vu|p + #|qu) dx —/ —|u|” dz.
Q\P q Q7
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Let

1 1P
Cy= inf {Qp [(/ |Vul? dx) + (/ [Vul? dx) ] : / |u]" dz = 1} :
ueW, P () Q Q

By standard arguments using a minimizing sequence and compact embedding,
this infimum is achieved. Indeed, for completeness and reader’s convenience, we
present it here with some details.

Proposition 4.1. There exists u, € Wy () such that

v >0 in g, /|u,y|7da:—1 and

C =L [(/ |Vuvpda:> (/ |Vu7|qu) r

Proof. Let M = {u € WP (Q) : / lu|” dz = 1} and consider the following func-
Q

1 19p
(/ |Vu|pdx)P+</ |Vu|qu>q1 , u €M
Q Q

Then C, = ng{E(u) Clearly, C, > 0. Let (u;) be a minimizing sequence. Since
u

E(u;) — O, (u;) is bounded in W, *(Q) and hence converges weakly in W, () to
some u, € W, P(Q), strongly in L(Q), and a.e.in Q. In particular, u, € M. Since E
is weakly lower semicontinuous, we have

Cy <E(uy) < liminfE(u;) = C,,

(4.2)

tional

and so E(uy) = Cy. Then |u,| € Mand E(|u,|) = C,, so |uy| > 0 is also a minimizer.
O

Clearly, we have

(/ﬂ dey = (/leuwdx); + (/Q|Vu|qdm);1

for any u € Wol’p(Q) and equality holds if and only if u = u := su, for some s € R.

—1

o

N =

Now, we state and prove the main result of this section.

Theorem 4.2. Let 1 <p < N and1 < q<p <y <p*. Then there exists p > 0
such that problem (4.1) has a unique, up to multiplication with constants, positive
weak solution u € L () N CH*(Q) for some a > 0.

1
Proof. Let n =2C5 and consider the nonhomogeneous elliptic problem
~Apu—Agu=nlul"?u inQ, wu=0 on . (4.3)
By standard application of the Lagrange multiplier, us is a weak solution of (4.3).
By Moser-type iterations (see, e.g., Drabek, Kufner and Nicolosi [12]), the regularity

results of Lieberman [18] and the Harnack-type inequality by Trudinger [25] imply
that for s > 0, we have us > 0 in Q and ugs € L*°(Q) N C12(Q) for some a > 0.
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Regarding the uniqueness of the solution of (4.3), we define

T(w) = (/Q|Vw|”d:c>; + (/Q |Vw|qu>; e (/Q |w|7dx>i, we WP (Q).

Let u,v € WyP(Q) satistying (4.2). We have u,v € L=(Q) N CH*(Q) for some
a>0,u,v>0in Q and I(u) = I(v) = 0. We use an argument similar to Dréabek
[11] and Idogawa and Otani [15]. Let t > 0, and set

u(t, ) = max{u(z),tv(z)}, wu(t,x2) = min{u(x),tv(z)}.
Then, we have

0 < I(@) + I(u)

:( 2|Va|zvdac % /\Vul“dx (1’—77(/ ‘de ;
(/ Iw|pdx /|Vu|qdm _,7(/ de)%
(/um'v“'pd ) (/um Iqudf)f —77(/u>w Iﬂlwxf

(/Sm vap dr)” + (/w Valdz)’ _"(/ugw " do)
- (/um wa’dxf - (/m |vu|qu)% _,7(/u>m de)%

(/) ) (/<tv|vu|qu)3 [ u az)’

_|_

_|_

+

— I(u )+I(tv)
= T(u) + tI(v)

Il
e

It follows that I(z) = I(w) = 0. Then % and u are weak solutions of problem (4.3)
and thus the first assertion of Proposition 4.1 applies to u and u. Let 2y € Q and

set tg = ZEZZE; > 0. Let € be any unit vector. Since U(tg, o) = u(zg) = tov(zg) we

have
u(xo + h&) — u(zo) < u(to, zo + hE) — u(to, o),
tov(zo + h&) — tov(zo) < U(to, zo + hE) — u(to, xo)-

u
Dividing these inequalities by h > 0 and h < 0, then letting h tend to 0T and 0~
we get

Vu(xo) = VE(to,l‘o) = toV’U(l‘o).

Hence,

v (u) (z0) v(xo)Vu(x((q)J)(m—O;L)gxo)Vv(xo)
v(xo)(Vu(zo) — toVu(zo))
(v(20))?

=0.



16 S. EL MANOUNI, K. PERERA, AND P. WINKERT

uw@) _

Thus, % is constant in €2, namely, @) = 6 > 0. Due to (4.2), we have

1 :/ |u|? dz = 9"’/ [v[" dx = 0".
Q Q

Hence § = 1, and therefore, the uniqueness of u., follows.
Since u is a weak solution of (4.3), we have

/ |V, [P~?Vu, - Vodr + / |V, |7 ?Vu, - Vodz
Q Q

—1 1—

:77/ |u7|7*2u7¢dx:nﬁnﬁ/ |u7\7*2uvcpdx,
Q Q
for all ¢ € W, ?(Q). This implies that
_1 _ _1
/Q V(17 u)P2Y (175 us) - Vi da
+05% [ WO )T - Veds
Q
-1 2
:nwfp/|uvlfy_ u7<pda:
Q
- /Q |75 1) P2 (757 ) i,

for all ¢ € WOI”’(Q). Hence for u = n7#, the function u = nﬁuv is a positive
weak solution of (4.1), u is unique up to multiplication with constants, and u €
L () N Ch2(Q), for some a > 0. O
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