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Abstract. The aim of this paper is to establish the existence of the first

(smallest) eigenvalue λ1 for a nonlinear elliptic problem driven by the non-
homogeneous (p, q)-Laplace operator −∆p − ∆q in a bounded domain with

a source term involving the exponent γ with q < γ ≤ p. We show that λ1

is simple and associated to a unique and bounded eigenfunction u1 > 0. In
the second part, using variational arguments, we study two types of nonlinear

problems involving the nonhomogeneous (p, q)-Laplace operator, in particular

we study two classes of sublinear and superlinear (p, q)-Laplacian problems
with parameters.

1. Introduction

In this paper, we are concerned with the study of a nonlinear eigenvalue problem
involving a differential operator of (p, q)-Laplacian type of the form

−∆pu−∆qu = λ|u|γ−2u in Ω,

u = 0 on ∂Ω,
(PQ)

where Ω is a smooth bounded domain in RN , N ≥ 2, 1 < q < γ ≤ p < +∞, λ is
a real parameter and ∆ru = div(|∇u|r−2∇u) denotes the classical r-Laplacian for
1 < r < ∞. Besides this, we pay our attention to the study of two kinds of problems
involving the (p, q)-Laplacian. Namely, we study some sublinear and superlinear
problems with parameters where the parameter is present only in the source term
in the sublinear case and in the differential operator for the superlinear problem.

When q = p = γ, problem (PQ) reduces to the well-known eigenvalue problem
div(|∇u|p−2∇u) + λ|u|p−2u = 0 in which the study of the properties of the first
eigenvalue problem and the associated eigenfunction has been extensively studied
by several authors both in regular and irregular domains, see e.g. Anane [1], Lê
[17], Lindqvist [19, 20], Kawohl and Lindqvist [16] for a detailed study. For the
case of nonlinear elliptic systems of two second order quasilinear partial differential
equations, in particular, de Thélin [10] obtained the existence of the first eigenvalue
associated to a unique and bounded eigenfunction for a weakly eigenvalue coupled
system where the interaction of variables is present only in the source terms, while
in both equations the differential terms involved the differential operators (∆p,∆q),
and have only one dependent variable each.

Let us also mention that several studies have been devoted recently to the in-
vestigation of related problems and a lot of papers have appeared dealing with
problems involving (p, q)-Laplacian in both bounded and unbounded domains. For
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the references and therein, see e.g. Baldelli and Filippucci [2], Baldelli, Brizi and
Filippucci [3, 4], Bobkov and Tanaka [6, 7, 8], Candito, Marano and Perera [9], El
Manouni, Perera and Winkert [14], Motreanu and Tanaka [23]. Let us point out
that the (p, q)-Laplacian has great background in applications, we mention e.g.,
biophysics, plasma physics, reaction-diffusion equations, and models of elementary
particles, etc.

Concerning problem (PQ), we show that there is a smallest eigenvalue λ1 > 0
associated to a unique eigenfunction u1 > 0 in Ω such that

∫
Ω
uγ
1 dx = 1. Moreover,

the regularity result in terms of global L∞-estimates is obtained via a technique
based on a construction argument of exponent sequences and an iteration scheme
as well as truncation arguments to bound the maximal norm of the solution. As
far as the uniqueness result is concerned, it should be noted that this appears to
be very interesting and is proven differently in the two cases q < γ < p and γ = p.

Regarding the sublinear case, let us point out that more works have been done in
this direction in the case of nonlinear problems involving the p-Laplacian. We can
cite Maya and Shivaji [22] in the semilinear case p = 2 and Perera [24] for scalar
equations and El Manouni and Perera [13] when p > 1 and p ̸= 2 for systems of
two second order quasilinear equations. Recently, El Manouni, Perera and Winkert
[14] have studied the existence and nonexistence of nontrivial solutions for some
quasilinear elliptic problems driven by the nonhomogeneous (p, q)-Laplace operator
depending on two parameters in bounded and unbounded domains.

Regarding the superlinear case, we consider a different type of problem with
one parameter for the (p, q)-Laplacian. In particular a parameter µ appears in the
differential operator side, that is, we consider −∆pu− µ∆qu, µ > 0. The idea is to
construct a problem involving −∆pu−∆qu, from which we deduce the existence of
a real number µ > 0 corresponding to a unique solution up to multiplication with
constants.

2. The first eigenvalue and associated positive eigenfunction of
−∆p −∆q

Let Ω ⊂ RN , N ≥ 2, be a bounded domain in RN with smooth boundary ∂Ω.
We consider the following Dirichlet problem

−∆pu−∆qu = λ|u|γ−2u in Ω,

u = 0 on ∂Ω,
(2.1)

where 1 < q < γ ≤ p < ∞ and λ is a real number.
In this section, we are interested to the first eigenvalue of the nonhomogeneous

operator div(|∇u|p−2∇u + |∇u|q−2∇u) as the least real number λ1 for which the
equation (2.1) has a nontrivial solution u1 with homogeneous Dirichlet boundary
value conditions. Namely, λ1 will be obtained as the minimum of a slight variant
of so called Rayleigh quotient

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

γ

p

∫
Ω

|∇u|p dx+
γ

q

∫
Ω

|∇u|q dx∫
Ω

|u|γ dx
. (2.2)

In this case, we say that λ1 is the first eigenvalue and the corresponding eigenfunc-
tion u1 is called the first eigenfunction.
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Remark that in the case γ = p, the first eigenvalue λ1 given in (2.2) coincides
with the first eigenvalue of the p-Laplacian. Indeed, it is clear that λ1 is greater
than or equal to the first eigenvalue of the p-Laplacian. Taking u = sφ1, where φ1

is a first eigenfunction of the p-Laplacian with s > 0, we get

λ1 ≤

∫
Ω

|∇φ1|p dx+ sq−p p

q

∫
Ω

|∇φ1|q dx∫
Ω

|φ1|p dx
.

Letting s → ∞ shows that λ1 is less than or equal to the first eigenvalue of the
p-Laplacian.

Next, we define the following functionals I and J on W 1,p
0 (Ω) by

I(u) =
γ

p

∫
Ω

|∇u|p dx+
γ

q

∫
Ω

|∇u|q dx,

J(u) =

∫
Ω

|u|γ dx.
(2.3)

Consider the minimization problem

inf
u∈W 1,p

0 (Ω)
I(u), J(u) = 1. (P)

By a weak solution of (2.1), we mean any u ∈ W 1,p
0 (Ω) such that∫

Ω

|∇u|p−2∇u · ∇φdx+

∫
Ω

|∇u|q−2∇u · ∇φdx = λ

∫
Ω

|u|γ−2uφdx (2.4)

is satisfied for all φ ∈ W 1,p
0 (Ω). The corresponding real number λ is called an

eigenvalue and u is an associated eigenfunction. Note that here we obtain solutions
of (P) that allow to find (λ, u) ∈ R×W 1,p

0 (Ω) satisfying (2.4). We point out that
the assumptions on p, q and γ guarantee that the integrals in (2.4) are well-defined

if u, φ ∈ W 1,p
0 (Ω).

Before we state the first main theorem of this section, we recall the following
result due to Berger [5, Theorem 6.3.2, p. 325].

Theorem 2.1. Suppose that the C1-functionals A and B defined on the reflexive
Banach space X have the following properties:

(i) A(x) is weakly lower semicontinuous and coercive on X ∩{B(x) ≤ const.};
(ii) B(x) is continuous with respect to weak sequential convergence and B′(x) =

0 only at x = 0.

Then the equation A′(x) = λB′(x) has a one-parameter family of nontrivial so-
lutions (xR, λR) for all R in the range of B(x) such that B(xR) = R and xR is
characterized as the minimum of A(x) over the set B(x) = R.

Theorem 2.2. Let 1 < q < γ ≤ p. Assume that for γ ̸= p, there is C ≫ 1 large
enough such that

q < γ ≤ qp(1 + C)

q + C p
< p. (2.5)

Then there exists a least eigenvalue λ1 associated to an eigenfunction u1 ̸= 0 with
u1 ≥ 0 satisfying (2.4). Moreover, u1 > 0 and u1 ∈ L∞(Ω) ∩ C1,η(Ω) for some
η > 0.
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Proof. It is well known that I and J are of class C1. Furthermore, the set {u ∈
W 1,p

0 (Ω): J(u) = 1} is closed for the weak sequential convergence. Indeed, let

un ∈ W 1,p
0 (Ω) be a sequence such that J(un) = 1 and un ⇀ u weakly in W 1,p

0 (Ω).
Since q < γ ≤ p, write γ = tp + (1 − t)q for t ∈ (0, 1]. Then by the Rellich-
Kondrachov compact embeddings, we get for a subsequence, still denoted by un,

that |un|tp 7→ |u|tp strongly in L
1
t (Ω) and |un|(1−t)q 7→ |u|(1−t)q strongly in L

1
1−t (Ω).

Now using the dominated convergence theorem and Hölder’s inequality, we get
|un|γ 7→ |u|γ strongly in L1(Ω), and so J(u) = 1. Also, J ′(u) = 0 implies that
J(u) = 0, and so u = 0. Hence, in view of Theorem 2.1, problem (P) has a solution
u1 ̸≡ 0 and there exists λ1 such that I ′(u1) = λ1J

′(u1). Thus we obtain the
existence of a non-trivial solution of (2.1) for λ = λ1. Also, we have u1 ≥ 0 since
I(u1) = I(|u1|).

Moreover, we show that λ1 is the least eigenvalue of (P). Indeed, for γ ̸= p,
remark first that (2.5) implies p−γ

p ≥ Cγ−q
q . Let u be a solution of (2.1) associated

to λ satisfying J(u) = 1. We have

p− γ

p

∫
Ω

|∇u|p dx− γ − q

q

∫
Ω

|∇u|q dx

≥ γ − q

q

(
C

∫
Ω

|∇u|p dx−
∫
Ω

|∇u|q dx
)

≥ 0.

Testing the weak formulation (2.4) by u and using the last inequality leads to

λ =

∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx ≥ I(u) ≥ I(u1).

Hence, λ ≥ λ1. On the other hand, as mentioned before for the case γ = p, λ1

coincides with the first eigenvalue of the p-Laplacian, and we have

λ =

∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx ≥
∫
Ω

|∇u|p dx ≥ λ1.

Hence λ1 is the smallest eigenvalue of problem (2.1). This shows the first assertion
of the theorem.

Now we prove the second assertion. For this purpose, let 1 < c < p∗

p such that

W 1,p
0 (Ω) ↪→ Lcp(Ω). Fix the following sequences of numbers

pk = pck, qk = qck, mk = (ck − 1)p.

Let us choose u1+mk
1 as a test function in (2.4). Then for more restrictions on c,

obviously u1+mk
1 ∈ W 1,p

0 (Ω), and it follows that∫
Ω

|∇u1|p−2∇u1 · ∇(u1+mk
1 ) dx+

∫
Ω

|∇u1|q−2∇u1 · ∇(u1+mk
1 ) dx

= λ1

∫
Ω

|u1|γ−2u1u
1+mk
1 dx.

On the one hand, we have∥∥∥uck

1

∥∥∥p
cp

≤ C1

∥∥∥∇(uck

1 )
∥∥∥p
p

= C1c
kp

∫
Ω

|∇u1|pumk
1 dx
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≤ C1c
kp

(∫
Ω

|∇u1|pumk
1 dx+

∫
Ω

|∇u1|qumk
1 dx

)
= C1

ckp

1 +mk

(∫
Ω

|∇u1|p−2∇u1∇(u1+mk
1 ) dx+

∫
Ω

|∇u1|q−2∇u1∇(u1+mk
1 ) dx

)
= λ1C1

ckp

1 +mk

∫
Ω

uγ+mk

1 dx,

where C1 is a positive constant. Since ck − 1 ≤ mk and γ = tp + (1 − t)q with
t ∈ (0, 1], it follows that(

∥u1∥pk+1

pk+1

) 1
c

=
∥∥∥uck

1

∥∥∥p
cp

≤ λ1C1c
k(p−1)

∫
Ω

u
tp+(1−t)q+mk

1 dx.

Since

tp+mk

pk
+

(1− t)q

qk
= 1,

we get (
∥u1∥pk+1

pk+1

) 1
c ≤ λ1C1c

k(p−1)
(
∥u1∥pk

pk

) tp+mk
pk

(
∥u1∥qkqk

) (1−t)q
qk .

On the other hand, since q < p and qk = qpk

p there is C2 > 0 such that

∥u1∥qkqk =

∫
Ω

uqk
1 dx =

∫
Ω

u
qpk
p

1 dx ≤ C2

(∫
Ω

upk

1 dx

) q
p

= C2

(
∥u1∥pk

pk

) q
p

.

Consequently, we deduce(
∥u1∥pk+1

pk+1

) 1
c ≤ λ1C1C

(1−t)q
qk

2 ck(p−1)
(
∥u1∥pk

pk

) tp+mk
pk

(
∥u1∥pk

pk

) (1−t)q
pk .

Put Ek = pk logmax{1, ∥u1∥pk
} and

a = c(p− 1) log c, b = c log λ1C1, αk =
1− t

ck−1
logC2, βk = c− (1− t)(p− q)

pck−1
.

This yields the relation

Ek+1 ≤ βkEk + αk + b+ ak.

Remark that βk ≥ 0, βk ≤ c for all k and αk is a bounded sequence. Then we have

Ek+1 ≤ cEk + µ+ ak,

where µ is a real number such that µ > 1. Set rk = µ+ ak, we obtain

Ek+1 ≤ cEk + rk ≤ ckE1 + rk + crk−1 + · · ·+ ck−1r1.

Thus

Ek+1 ≤ ck
(
E1 +

r1
c

+
r2
c2

+ · · ·+ rk
ck

)
.

This implies that

Ek+1 ≤ ck
(
E1 +

µ+ a

c
+

µ+ 2a

c2
+ · · ·+ µ+ ak

ck

)
= ck

(
E1 + µ

(
1

c
+

1

c2
+ · · ·+ 1

ck

)
+ a

(
1

c
+

2

c2
+ · · ·+ k

ck

))
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= ck
(
E1 +

µ

c− 1
+

a

(c− 1)2

)
.

Finally we derive

∥u1∥∞ ≤ lim sup
k→∞

e
Ek
pk ≤ lim sup

k→∞
e

dck−1

pk = e
d
pc ,

where d = E1 +
µ

c− 1
+

a

(c− 1)2
. Therefore u1 ∈ L∞(Ω). Furthermore, since

u1 ∈ L∞(Ω), due to the regularity result of Lieberman [18], u1 belongs to C1,η(Ω)
with some η ∈ (0, 1) and the maximum principle of Vázquez [26] shows that u1 > 0
in Ω. □

The next theorem states the uniqueness of the first eigenfunction associated to
the first eigenvalue λ1.

Theorem 2.3. If 1 < q < γ < p satisfying the following condition(
(
γ

p
− 1)(1− sγ) +

γ

p
sp−γ

)
ap1 +

(
(
γ

p
− 1)(1−

(1
s

)γ

) +
γ

p

(1
s

)p−γ)
ap2

+
(
(
γ

q
− 1)(1− sγ) +

γ

q

(1
s

)γ−q)
aq1 +

(
(
γ

q
− 1)(1−

(1
s

)γ

) +
γ

q
sγ−q

)
aq2

<
γ

p
(ap1 + ap2) +

γ

q
(aq1 + aq2),

(2.6)

where s, a1, a2 are positive real numbers with s ̸= 1, or if γ = p, then the first
eigenfunction u1 associated to λ1 is unique.

Proof. We will distinguish between two cases: q < γ < p with condition (2.6) and
γ = p. Let us first consider the case q < γ < p satisfying (2.6) and let u1, u2 be
two eigenfunctions associated to λ1 with u1 ̸= u2. We will use the two functions

u1 −
uγ
2

uγ−1
1

and u2 −
uγ
1

uγ−1
2

as test functions in (2.4). Then∫
Ω

−∆pu1

(
u1 −

uγ
2

uγ−1
1

)
dx+

∫
Ω

−∆pu2

(
u2 −

uγ
1

uγ−1
2

)
dx

+

∫
Ω

−∆qu1

(
u1 −

uγ
2

uγ−1
1

)
dx+

∫
Ω

−∆qu2

(
u2 −

uγ
1

uγ−1
2

)
dx

= λ1

∫
Ω

[
uγ−1
1

(
u1 −

uγ
2

uγ−1
1

)
+ uγ−1

2

(
u2 −

uγ
1

uγ−1
2

)]
dx.

Clearly, the right-hand side is equal to 0 and a simple calculation shows that

∇
(
u1 −

uγ
2

uγ−1
1

)
=

(
1 + (γ − 1)

(
u2

u1

)γ)
∇u1 − γ

(
u2

u1

)γ−1

∇u2.

Similarly for ∇
(
u2 − uγ

1

uγ−1
2

)
by interchanging u1 and u2. Thus we obtain∫

Ω

[(
1 + (γ − 1)

(u2

u1

)γ)
|∇u1|p +

(
1 + (γ − 1)

(u1

u2

)γ)
|∇u2|p

]
dx

−
∫
Ω

[
γ
(u2

u1

)γ−1

|∇u1|p−2∇u1 · ∇u2 + γ
(u1

u2

)γ−1

|∇u2|p−2∇u2 · ∇u1

]
dx
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+

∫
Ω

[(
1 + (γ − 1)

(u2

u1

)γ)
|∇u1|q +

(
1 + (γ − 1)

(u1

u2

)γ)
|∇u2|q

]
dx

−
∫
Ω

[
γ
(u2

u1

)γ−1

|∇u1|q−2∇u1 · ∇u2 + γ
(u1

u2

)γ−1

|∇u2|q−2∇u2 · ∇u1

]
dx

=: Γ1 + Γ2

= 0,

where

Γ1 =

∫
Ω

(ξ1 − ξ2)(|∇ log u1|p − |∇ log u2|p) dx

−
∫
Ω

pξ2|∇ log u1|p−2∇ log u1 · (∇ log u2 −∇ log u1) dx

−
∫
Ω

pξ1|∇ log u2|p−2∇ log u2 · (∇ log u1 −∇ log u2) dx

+

∫
Ω

(ξ′1 − ξ′2)(|∇ log u1|q − |∇ log u2|q) dx

−
∫
Ω

qξ′2|∇ log u1|q−2∇ log u1 · (∇ log u2 −∇ log u1) dx

−
∫
Ω

qξ′1|∇ log u2|q−2∇ log u2 · (∇ log u1 −∇ log u2) dx,

with

ξ1 =
γ

p

uγ
1

uγ−p
2

, ξ2 =
γ

p

uγ
2

uγ−p
1

, ξ′1 =
γ

q

uγ
1

uγ−q
2

and ξ′2 =
γ

q

uγ
2

uγ−q
1

,

and

Γ2 =

∫
Ω

[(
1− (1− γ

p
)
(u2

u1

)γ

− γ

p

(u2

u1

)p−γ)
|∇u1|p

+
(
1− (1− γ

p
)
(u1

u2

)γ

− γ

p

(u1

u2

)p−γ)
|∇u2|p

]
dx

+

∫
Ω

[(
1− (1− γ

q
)
(u2

u1

)γ

− γ

q

(u2

u1

)q−γ)
|∇u1|q

+
(
1− (1− γ

q
)
(u1

u2

)γ

− γ

q

(u1

u2

)q−γ)
|∇u2|q

]
dx

=

∫
Ω

[(γ
p
+ (1− γ

p
)(1−

(u2

u1

)γ

)− γ

p

(u2

u1

)p−γ)
|∇u1|p

+
(γ
p
+ (1− γ

p
)(1−

(u1

u2

)γ

)− γ

p

(u1

u2

)p−γ)
|∇u2|p

]
dx

+

∫
Ω

[(γ
q
+ (1− γ

q
)(1−

(u2

u1

)γ

)− γ

q

(u2

u1

)q−γ)
|∇u1|q

+
(γ
q
+ (1− γ

q
)(1−

(u1

u2

)γ

)− γ

q

(u1

u2

)q−γ)
|∇u2|q

]
dx.

On the one hand, by using the inequality |b|r ≥ |a|r + p|a|r−2a(b− a) for r ≥ 1, we
deduce that Γ1 ≥ 0. Hence it follows that Γ2 ≤ 0.
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On the other hand, in view of (2.6), we get

λ1 ≤

∫
Ω

(
(
γ

p
− 1)(1−

(u2

u1

)γ

) +
γ

p

(u2

u1

)p−γ)
|∇u1|p dx∫

Ω

(uγ
1 + uγ

2) dx

+

∫
Ω

(
(
γ

p
− 1)(1−

(u1

u2

)γ

) +
γ

p

(u1

u2

)p−γ)
|∇u2|p dx∫

Ω

(uγ
1 + uγ

2) dx

+

∫
Ω

(
(
γ

q
− 1)(1−

(u2

u1

)γ

) +
γ

q

(u2

u1

)q−γ)
|∇u1|q dx∫

Ω

(uγ
1 + uγ

2) dx

+

∫
Ω

(
(
γ

q
− 1)(1−

(u1

u2

)γ

) +
γ

q

(u1

u2

)q−γ)
|∇u2|q dx∫

Ω

(uγ
1 + uγ

2) dx

<

∫
Ω

(γ
p
|∇u1|p +

γ

p
|∇u2|p +

γ

q
|∇u1|q +

γ

q
|∇u2|q

)
dx∫

Ω

(uγ
1 + uγ

2) dx

=

λ1

∫
Ω

uγ
1 dx+ λ1

∫
Ω

uγ
2 dx∫

Ω

(uγ
1 + uγ

2) dx

= λ1,

which is a contradiction. Thus the first assertion is proved.
Suppose γ = p and let u1 and u2 be two positive eigenfunctions associated to

λ1. Using v = (up
1 + up

2)
1
p as test function in (2.4), we have for i = 1, 2

λ1 =

∫
Ω

|∇ui|p dx+
p

q

∫
Ω

|∇ui|q dx∫
Ω

|ui|p dx
≤

∫
Ω

|∇v|p dx+
p

q

∫
Ω

|∇v|q dx∫
Ω

|v|p dx
. (2.7)

A simple calculation shows that

∇v = v

(
up
1∇ log u1 + up

2∇ log u2

up
1 + up

2

)
.

By Jensen’s inequality for convex functions, it follows that

|∇v|p ≤ vp
(
up
1|∇ log u1|p

up
1 + up

2

+
up
2|∇ log u2|p

up
1 + up

2

)
= vp

(
|∇u1|p

up
1 + up

2

+
|∇u2|p

up
1 + up

2

)
= |∇u1|p + |∇u2|p.

(2.8)
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Similarly, since u1, u2 ≤ v and q < p, we have

|∇v|q ≤ vq
(
up
1|∇ log u1|q

up
1 + up

2

+
up
2|∇ log u2|q

up
1 + up

2

)
≤ vq−p

(
up−q
1 |∇u1|q + up−q

2 |∇u2|q
)

≤ |∇u1|q + |∇u2|q.

(2.9)

Note that the inequalities (2.8) and (2.9) are strict when ∇ log u1 ̸= ∇ log u2. Inte-
grating (2.8) and (2.9), using (2.7), and if ∇ log u1 ̸= ∇ log u2 on a set of positive
measure, we get the following contradiction

λ1 ≤

∫
Ω

|∇v|p dx+
p

q

∫
Ω

|∇v|q dx∫
Ω

(up
1 + up

2) dx

<

∫
Ω

|∇u1|p dx+
p

q

∫
Ω

|∇u1|q dx∫
Ω

(up
1 + up

2) dx

+

∫
Ω

|∇u2|p dx+
p

q

∫
Ω

|∇u2|q dx∫
Ω

(up
1 + up

2) dx

= λ1.

Therefore, ∇ log u1 = ∇ log u2, so that u2 = σu1 for some positive constant σ.
Moreover, since u2 is an eigenfunction associated to λ1, we have∫

Ω

|∇(σu1)|p dx+

∫
Ω

|∇(σu1)|q dx = λ1

∫
Ω

(σu1)
p dx.

It follows that

σp

∫
Ω

|∇u1|p dx+ σq

∫
Ω

|∇u1|q dx = σpλ1

∫
Ω

up
1 dx

= σp

(∫
Ω

|∇u1|p dx+

∫
Ω

|∇u1|q dx
)
,

which gives (σp − σq)

∫
Ω

|∇u1|q dx = 0, so that σ = 1 since q < p, and we obtain

u1 = u2. □

Remark 2.4. Note that in our case, due to the nonhomogeneous (p, q)-Laplace
eigenvalue problem (2.1) with γ = p, the previous theorem gives the uniqueness of
the first eigenfunction u1 while in Kawohl and Lindqvist [16], the authors proved
the uniqueness modulo scaling for the case of the p-Laplace eigenvalue problem

div(|∇u|p−2∇u) + λ|u|p−2u = 0.

Note also that for q < γ < p, the estimation argument, applying Jensen’s inequality,
does not work here.

We have the following nonexistence result for positive solutions of problem (2.1).

Theorem 2.5. For all λ satisfying
γλ

q
< λ1, problem (2.1) has no positive solu-

tions.

Proof. Suppose that (2.1) has a positive solution u ∈ W 1,p
0 (Ω). Testing the weak

formulation of (2.1) by u, using (2.2) gives∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx = λ

∫
Ω

uγ dx



10 S. EL MANOUNI, K. PERERA, AND P. WINKERT

≤ λ

λ1

(
γ

p

∫
Ω

|∇u|p dx+
γ

q

∫
Ω

|∇u|q dx
)

≤ λ

λ1

γ

q

(∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx
)

contrary to the assumption. Hence the assertion of the theorem follows. □

3. Sublinear eigenvalue problems involving (p, q)-Laplacian

In this section, we consider the following nonhomogeneous eigenvalue problem

−∆pu−∆qu = λf(x, u) in Ω,

u = 0 on ∂Ω,
(3.1)

where λ > 0, and f : Ω × [0,∞) → R is assumed to be a Carathéodory function
satisfying

|f(x, t)| ≤ Ctγ−1, for all (x, t) ∈ Ω× [0,∞), (3.2)

where 1 < q < γ ≤ p and for some C > 0.
Throughout this section, we will denote by

∥u∥ := ∥∇u∥p =

(∫
Ω

|∇u|p dx
) 1

p

the equivalent norm defined on W 1,p
0 (Ω).

We start by a nonexistence result for positive solutions of problem (3.1).

Theorem 3.1. There exists λ > 0 such that for all λ < λ, problem (3.1) has no
positive solutions.

Proof. Suppose that (3.1) has a positive solution u ∈ W 1,p
0 (Ω). Testing the weak

formulation of (3.1) by u, using (2.2) and (3.2) gives∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx = λ

∫
Ω

f(x, u)udx

≤ λC

∫
Ω

|u|γ dx

≤ λ
C

λ1

γ

q

(∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx
)
.

The assertion of the theorem follows with λ =
qλ1

Cγ
. □

The next theorem shows the existence of positive solutions for problem (3.1).

Theorem 3.2. Assume the following conditions:

(F1) there exists δ > 0 such that

F (x, t) :=

∫ t

0

f(x, τ) dτ ≤ 0 for 0 ≤ t ≤ δ,

(F2) there exists t0 > 0 such that F (x, t0) > 0 for a.e.x ∈ Ω;
(F3) it holds

lim sup
t→∞

F (x, t)

tγ
≤ 0 uniformly for a.e.x ∈ Ω.

Then there exists λ such that (3.1) has at least two positive solutions for λ ≥ λ.
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Proof. We set
f(x, t) = 0 if t < 0 for a.e. x ∈ Ω. (3.3)

Consider the C1-functional Φλ : W
1,p
0 (Ω) → R given by

Φλ(u) =

∫
Ω

1

p
|∇u|p dx+

∫
Ω

1

q
|∇u|q dx−

∫
Ω

λF (x, u) dx

for all u ∈ W 1,p
0 (Ω). If u is a critical point of Φλ, denoting by u− the negative part

of u, we have

0 = ⟨Φ′
λ,µ(u)), u

−⟩

=

∫
Ω

|∇u|p−2∇u · ∇u− dx+

∫
Ω

|∇u|q−2∇u · ∇u− dx−
∫
Ω

λf(x, u)u− dx

= ∥∇u−∥pp + ∥∇u−∥qq
≥ ∥u−∥p.

This implies that u ≥ 0. Furthermore, we proceed as in the proof of Theorem 2.2 to
show that u ∈ L∞(Ω) and the regularity results of Lieberman [18] give u ∈ C1,α(Ω),
so the positivity of u now follows from the weak Harnack type inequality proved
by Trudinger [25, Theorem 1.1], that is, either u > 0 or u ≡ 0. Thus, nontrivial
critical points of Φλ are positive solutions of (3.1).

By the condition (3.2) we get

|F (x, t)| ≤ C ′|t|γ for all (x, t) ∈ Ω× R, (3.4)

for some positive constant C ′. By (F3) there is Bλ > 0 such that

F (x, t) ≤ λ1

2γλ
|t|γ for all |t| ≥ Bλ. (3.5)

Combining (3.4) and (3.5), there is a constant Cλ > 0 such that

λF (x, t) ≤ λ1

2γ
|t|γ + Cλ for all (x, t) ∈ Ω× R. (3.6)

Hence, since q < p, by applying (3.6) and (2.2), it follows that

Φλ(u) ≥
∫
Ω

(
1

p
|∇u|p + 1

q
|∇u|q − λ1

2γ
|u|γ − Cλ

)
dx,

≥
∫
Ω

(
1

p
|∇u|p + 1

q
|∇u|q − 1

2

(
1

p
|∇u|p + 1

q
|∇u|q

)
− Cλ

)
dx

≥ µ∥u∥p − Cλ|Ω|N .

where µ = 1
2p and | · |N is the Lebesgue measure in RN . Hence, Φλ is bounded from

below and coercive. In addition, Φλ is sequentially weakly lower semicontinuous
which implies the existence of a global minimizer w1 ∈ W 1,p

0 (Ω) of Φλ(u).

Claim 1: There exists λ > 0 such that inf Φλ < 0 for λ ≥ λ.
In order to prove this, we take a sufficiently large compact subset Ω′ of Ω and

u0 ∈ W 1,p
0 (Ω) such that u0 = t0 on Ω′ and 0 ≤ u0 ≤ t0 on Ω \ Ω′, where t0 is as in

(F2). Then we have∫
Ω

F (x, u0) dx ≥
∫
Ω′

F (x, t0) dx− C ′|t0|γ |Ω \ Ω′|N > 0,
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for |Ω \ Ω′|N sufficiently small. This yields

Φλ(u0) ≤
∫
Ω

(
1

p
|∇u0|p +

1

q
|∇u0|q

)
dx− λ

∫
Ω

F (x, u0) dx < 0

for λ large enough. This proves the Claim 1.
From the Claim 1, choosing λ ≥ λ, we get Φλ(w1) < 0 = Φλ(0) and so w1 ̸= 0.

Now, let us fix λ with λ ≥ λ and consider

f̃(x, t) =

f(x, t), if t ≤ w1(x),

f(x,w1(x)), if t > w1(x),
and F̃ (x, t) =

∫ t

0

f̃(x, τ) dτ.

Let

Φ̃λ(u) =

∫
Ω

1

p
|∇u|p dx+

∫
Ω

1

q
|∇u|q dx−

∫
Ω

λF̃ (x, u) dx.

If u is a critical point of Φ̃λ, then u ≥ 0 as before by the positivity of w1 and (3.3).
Further, we have

0 =
(
Φ̃′

λ(u)− Φ′
λ(w1), (u− w1)

+
)

=

∫
Ω

(
|∇u|p−2∇u− |∇w1|p−2∇w1

)
· ∇(u− w1)

+ dx

+

∫
Ω

(
|∇u|q−2∇u− |∇w1|q−2∇w1

)
· ∇(u− w1)

+ dx

− λ

∫
Ω

(
f̃(x, u)− f(x,w1)

)
(u− w1)

+ dx

=

∫
{u>w1}

(
|∇u|p−2∇u− |∇w1|p−2∇w1

)
· (∇u−∇w1) dx

+

∫
{u>w1}

(
|∇u|q−2∇u− |∇w1|q−2∇w1

)
· (∇u−∇w1) dx.

Thus by the elementary inequality
(
|b|r−2b− |a|r−2a, b− a

)
≥ 0 for r > 1 and any

a, b ∈ RN (see e.g. Lindqvist[21]), it follows that

0 ≤
∫
{u>w1}

(
|∇u|p−2∇u− |∇w1|p−2∇w1

)
· (∇u−∇w1) dx

= −
∫
{u>w1}

(
|∇u|q−2∇u− |∇w1|q−2∇w1

)
· (∇u−∇w1) dx

≤ 0.

Hence u ≤ w1. So u is a solution of (3.1) in the order interval [0, w1].

The second critical point w2 with Φ̃λ(w2) > 0 will be obtained via the mountain-

pass theorem, which would complete the proof since Φ̃λ(0) = 0 > Φ̃λ(w1).

Claim 2: The origin is a strict local minimizer of Φ̃λ.
Let u ∈ W 1,p

0 (Ω). We set Ωu = {x ∈ Ω: u(x) > min{w1(x), δ}}, where δ > 0 is

given in (F1). By hypothesis (F1), F̃ (x, u) ≤ 0 on Ω \ Ωu. Then we have

Φ̃λ(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qp − λ

∫
Ωu

F̃ (x, u) dx− λ

∫
Ω\Ωu

F̃ (x, u) dx

≥ 1

p
∥u∥p − λ

∫
Ωu

F̃ (x, u) dx.

(3.7)
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Applying (3.4), Hölder’s inequality, the Sobolev embedding theorem and since q <
γ ≤ p, it follows that

λ

∫
Ωu

|F̃ (x, u)|dx ≤ λC ′
∫
Ωu

|u|γ dx

≤ λC ′|Ωu|
1− γ

p

N

∫
Ωu

|u|p dx

≤ λC ′′|Ωu|
1− γ

p

N ∥u∥p,

(3.8)

for some positive constant C ′′. It suffices to show that |Ωu|N → 0 as ∥u∥ → 0. Let
ε > 0 be arbitrary and take a compact subset Ωε of Ω such that |Ω \Ωε|N < ε and
let Ωu,ε = Ωu ∩ Ωε. Then

∥u∥pp ≥
∫
Ωu,ε

up dx ≥
(
min

{
min
Ωε

w1, δ
})p

|Ωu,ε|N ,

knowing that min
{
min
Ωε

w1, δ
}
> 0. Applying again the Sobolev embedding theorem

and letting ∥u∥ tend to 0, gives |Ωu,ε|N → 0. Now, since Ωu ⊂ Ωu,ε ∪ (Ω \ Ωε), we
have

|Ωu|N < |Ωu,ε|+ ε,

for all ε > 0. Hence |Ωu|N → 0 as ∥u∥ → 0 and Claim 2 follows from (3.7) and
(3.8).

Note that Φ̃λ is also coercive by an argument similar to the one used for Φλ.

So every Palais-Smale sequence of Φ̃λ is bounded and hence contains a convergent

subsequence. Now the mountain-pass theorem gives a critical point w2 of Φ̃λ at the
level

c := inf
γ∈Γ

max
u∈γ([0,1])

Φ̃λ(u) > 0

where Γ =
{
γ ∈ C([0, 1],W 1,p

0 (Ω)) : γ(0) = 0, γ(1) = w1

}
is the class of paths

joining the origin to w1. Then w2 ≤ w1, and so w2 is a critical point of Φλ since

f̃(x,w2) = f(x,w2). Therefore there are two positive solutions w1, w2 such that

Φλ(w1) = Φ̃λ(w1) < 0 = Φ̃λ(0) = Φλ(0) < Φ̃λ(w2) = Φλ(w2).

This achieves the proof of the theorem. □

4. Superlinear problems involving (p, q)-Laplacian

In this section, we consider the following nonhomogeneous eigenvalue problem

−∆pu− µ∆qu = |u|γ−2u in Ω,

u = 0 on ∂Ω,
(4.1)

where Ω ⊂ RN is a bounded domain, 1 < p < N, 1 < q < p < γ < p∗ = Np
N−p and

µ > 0 is a real parameter. The associated energy functional to (4.1) is given by

I(u) =

∫
Ω

(
1

p
|∇u|p + µ

q
|∇u|q

)
dx−

∫
Ω

1

γ
|u|γ dx.
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Let

Cγ = inf
u∈W 1,p

0 (Ω)

{
1

2p

[(∫
Ω

|∇u|p dx
) 1

p

+

(∫
Ω

|∇u|q dx
) 1

q

]p

:

∫
Ω

|u|γ dx = 1

}
.

By standard arguments using a minimizing sequence and compact embedding,
this infimum is achieved. Indeed, for completeness and reader’s convenience, we
present it here with some details.

Proposition 4.1. There exists uγ ∈ W 1,p
0 (Ω) such that

uγ ≥ 0 in Ω,

∫
Ω

|uγ |γ dx = 1 and

Cγ = 1
2p

[(∫
Ω

|∇uγ |p dx
) 1

p

+

(∫
Ω

|∇uγ |q dx
) 1

q

]p

.
(4.2)

Proof. Let M =

{
u ∈ W 1,p

0 (Ω) :

∫
Ω

|u|γ dx = 1

}
and consider the following func-

tional

E(u) =
1

2p

[(∫
Ω

|∇u|p dx
) 1

p

+

(∫
Ω

|∇u|q dx
) 1

q

]p

, u ∈ M.

Then Cγ = inf
u∈M

E(u). Clearly, Cγ ≥ 0. Let (uj) be a minimizing sequence. Since

E(uj) → Cγ , (uj) is bounded in W 1,p
0 (Ω) and hence converges weakly in W 1,p

0 (Ω) to

some uγ ∈ W 1,p
0 (Ω), strongly in Lγ(Ω), and a.e. in Ω. In particular, uγ ∈ M. Since E

is weakly lower semicontinuous, we have

Cγ ≤ E(uγ) ≤ lim inf E(uj) = Cγ ,

and so E(uγ) = Cγ . Then |uγ | ∈ M and E(|uγ |) = Cγ , so |uγ | ≥ 0 is also a minimizer.
□

Clearly, we have(∫
Ω

|u|γ dx
) 1

γ

≤ 1

2
C

−1
p

γ

[(∫
Ω

|∇u|p dx
) 1

p

+

(∫
Ω

|∇u|q dx
) 1

q

]
for any u ∈ W 1,p

0 (Ω) and equality holds if and only if u = us := suγ for some s ∈ R.

Now, we state and prove the main result of this section.

Theorem 4.2. Let 1 < p < N and 1 < q < p < γ < p∗. Then there exists µ > 0
such that problem (4.1) has a unique, up to multiplication with constants, positive
weak solution u ∈ L∞(Ω) ∩ C1,α(Ω) for some α > 0.

Proof. Let η = 2C
1
p
γ and consider the nonhomogeneous elliptic problem

−∆pu−∆qu = η|u|γ−2u in Ω, u = 0 on ∂Ω. (4.3)

By standard application of the Lagrange multiplier, us is a weak solution of (4.3).
By Moser-type iterations (see, e.g., Drábek, Kufner and Nicolosi [12]), the regularity
results of Lieberman [18] and the Harnack-type inequality by Trudinger [25] imply
that for s > 0, we have us > 0 in Ω and us ∈ L∞(Ω) ∩ C1,α(Ω) for some α > 0.
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Regarding the uniqueness of the solution of (4.3), we define

Ĩ(w) =

(∫
Ω

|∇w|p dx
) 1

p

+

(∫
Ω

|∇w|q dx
) 1

q

− η

(∫
Ω

|w|γ dx
) 1

γ

, w ∈ W 1,p
0 (Ω).

Let u, v ∈ W 1,p
0 (Ω) satisfying (4.2). We have u, v ∈ L∞(Ω) ∩ C1,α(Ω) for some

α > 0, u, v > 0 in Ω and Ĩ(u) = Ĩ(v) = 0. We use an argument similar to Drábek

[11] and Idogawa and Ôtani [15]. Let t > 0, and set

u(t, x) = max{u(x), tv(x)}, u(t, x) = min{u(x), tv(x)}.
Then, we have

0 ≤ Ĩ(u) + Ĩ(u)

=
(∫

Ω

|∇u|p dx
) 1

p

+
(∫

Ω

|∇u|q dx
) 1

q − η
(∫

Ω

|u|γ dx
) 1

γ

+
(∫

Ω

|∇u|p dx
) 1

p

+
(∫

Ω

|∇u|q dx
) 1

q − η
(∫

Ω

|u|γ dx
) 1

γ

=
(∫

u>tv

|∇u|p dx
) 1

p

+
(∫

u>tv

|∇u|q dx
) 1

q − η
(∫

u>tv

|u|γ dx
) 1

γ

+
(∫

u≤tv

|∇u|p dx
) 1

p

+
(∫

u≤tv

|∇u|q dx
) 1

q − η
(∫

u≤tv

|u|γ dx
) 1

γ

+
(∫

u>tv

|∇u|p dx
) 1

p

+
(∫

u>tv

|∇u|q dx
) 1

q − η
(∫

u>tv

|u|γ dx
) 1

γ

+
(∫

u≤tv

|∇u|p dx
) 1

p

+
(∫

u≤tv

|∇u|q dx
) 1

q − η
(∫

u≤tv

|u|γ dx
) 1

γ

= Ĩ(u) + Ĩ(tv)

= Ĩ(u) + tĨ(v)

= 0.

It follows that Ĩ(u) = Ĩ(u) = 0. Then u and u are weak solutions of problem (4.3)
and thus the first assertion of Proposition 4.1 applies to u and u. Let x0 ∈ Ω and

set t0 = u(x0)
v(x0)

> 0. Let ξ be any unit vector. Since u(t0, x0) = u(x0) = t0v(x0) we

have

u(x0 + hξ)− u(x0) ≤ u(t0, x0 + hξ)− u(t0, x0),

t0v(x0 + hξ)− t0v(x0) ≤ u(t0, x0 + hξ)− u(t0, x0).

Dividing these inequalities by h > 0 and h < 0, then letting h tend to 0+ and 0−,
we get

∇u(x0) = ∇u(t0, x0) = t0∇v(x0).

Hence,

∇
(u
v

)
(x0) =

v(x0)∇u(x0)− u(x0)∇v(x0)

(v(x0))2

=
v(x0)(∇u(x0)− t0∇v(x0))

(v(x0))2

= 0.
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Thus, u(x)
v(x) is constant in Ω, namely, u(x)

v(x) = θ > 0. Due to (4.2), we have

1 =

∫
Ω

|u|γ dx = θγ
∫
Ω

|v|γ dx = θγ .

Hence θ = 1, and therefore, the uniqueness of uγ follows.
Since uγ is a weak solution of (4.3), we have∫

Ω

|∇uγ |p−2∇uγ · ∇φdx+

∫
Ω

|∇uγ |q−2∇uγ · ∇φdx

= η

∫
Ω

|uγ |γ−2uγφdx = η
γ−1
γ−p η

1−p
γ−p

∫
Ω

|uγ |γ−2uγφdx,

for all φ ∈ W 1,p
0 (Ω). This implies that∫

Ω

|∇(η
1

γ−puγ)|p−2∇(η
1

γ−puγ) · ∇φdx

+ η
p−q
γ−p

∫
Ω

|∇(η
1

γ−puγ)|q−2∇(η
1

γ−puγ) · ∇φdx

= η
γ−1
γ−p

∫
Ω

|uγ |γ−2uγφdx

=

∫
Ω

|(η
1

γ−puγ)|γ−2(η
1

γ−p )φdx,

for all φ ∈ W 1,p
0 (Ω). Hence for µ = η

p−q
γ−p , the function u = η

1
γ−puγ is a positive

weak solution of (4.1), u is unique up to multiplication with constants, and u ∈
L∞(Ω) ∩ C1,α(Ω), for some α > 0. □
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