
ON THE FUČÍK SPECTRUM OF THE p-LAPLACIAN WITH

NO-FLUX BOUNDARY CONDITION
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Abstract. In this paper, we study the quasilinear elliptic problem

−∆pu = a
(
u+
)p−1 − b

(
u−
)p−1

in Ω,

u = constant on ∂Ω,

0 =

∫
∂Ω
|∇u|p−2∇u · ν dσ,

where the operator is the p-Laplacian and the boundary condition is of type

no-flux. In particular, we consider the Fuč́ık spectrum of the p-Laplacian with

no-flux boundary condition which is defined as the set Πp of all pairs (a, b) ∈ R2

such that the problem above has a nontrivial solution. It turns out that this

spectrum has a first nontrivial curve C being Lipschitz continuous, decreasing
and with a certain asymptotic behavior. Since (λ2, λ2) lies on this curve C,
with λ2 being the second eigenvalue of the corresponding no-flux eigenvalue

problem for the p-Laplacian, we get a variational characterization of λ2. This
paper extends corresponding works for Dirichlet, Neumann, Steklov and Robin

problems.

1. Introduction

In this paper, we are interested in the so-called Fuč́ık spectrum of the p-Laplacian
with no-flux boundary condition which is defined as the set Πp of all pairs (a, b) ∈ R2

such that the problem

−∆pu = a
(
u+
)p−1 − b

(
u−
)p−1

in Ω,

u = constant on ∂Ω,

0 =

∫
∂Ω

|∇u|p−2∇u · ν dσ

(1.1)

has a nontrivial weak solution, where Ω ⊂ RN , N ≥ 2, is a bounded domain with
smooth boundary ∂Ω, ∆pu = div(|∇u|p−2∇u) is the p-Laplace differential operator
with 1 < p < +∞, ν(x) denotes the outer unit normal of Ω at the point x ∈ ∂Ω
and u± = max{±u, 0} are the positive and negative parts of u, respectively. The
boundary condition is of type no-flux and such problems have their origin in plasma
physics. Temam [25] studied the problem of the equilibrium of a plasma in a cavity
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which occurred for the first time in Mercier [20] and has the form

Lu = −λbu in Ωρ,

Lu = 0 in Ων = Ω− Ωρ (the vacuum),

u = 0 on Γρ = ∂Ωρ,

du

dν
is continuous on Γρ,

u = constant = γ on Γ (γ unknown),

I =

∫
Γρ

1

x1

du

dν
dΓ,

u does not vanish in Ωρ,

(1.2)

where I > 0 is given, u, λ and Ωρ are the unknowns, while λ plays the role of
an eigenvalue of the self-adjoint operator L. The solution of (1.2) determines the
shape at equilibrium of a confined plasma. A simplified model of (1.2) has been
presented by the same author in [26] given by

−∆u = −λu− in Ω,

u = constant = γ on ∂Ω,

I =

∫
∂Ω

du

dν
dσ.

(1.3)

In (1.3) the region u < 0 is the region filled by the plasma and the region u > 0
corresponds to the vacuum. These regions can be found when we solve problem
(1.3). The region u = 0 corresponds to the free boundary which separates the
plasma and the vacuum. For other models of type (1.3) we refer to the works of
Berestycki-Brézis [3], Gourgeon-Mossino [15], Kinderlehrer-Spruck[16], Puel [23],
Schaeffer [24], Zou [28, 29] and the references therein. A nice overview about no-
flux problems also in the case of variable exponent problems can be found in the
book chapter of Boureanu [4].

In (1.1) we assume that I = 0 and so it corresponds to nonresonant surfaces
called no-flux surfaces on which the wave number of the perturbation parallel to
the equilibrium magnetic field is zero, see Afrouzi-Mirzapour- Rădulescu [1]. Note
that when N = 1 and Ω = (a, b), problem (1.1) becomes the periodic boundary
value problem

−
(
|u′|p−2u′

)′
= λ|u|p−2u in (a, b),

u(a) = u(b),

u′(a) = u′(b).

In this paper, we are interested in the nontrivial parts of Πp and we show that
there exists a first nontrivial curve C ⊂ Πp which turns out to be Lipschitz contin-
uous, decreasing and with a certain asymptotic behavior. With this work we close
the gap in the literature where the Fuč́ık spectrum of the p-Laplacian has been
already studied for Dirichlet, Neumann, Steklov and Robin boundary condition,
respectively.

The idea of considering the set Σ of all pairs (a, b) ∈ R2 such that

Tu = au+ − bu−
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has a nontrivial solution with T being self-adjoint, goes back to Fuč́ık [12] (see also
Dancer [9]) who recognized that the set Σ plays an important role in the study of
semilinear equations of type

Tu = f(x, u),

where f : Ω×R→ R is a Carathéodory function with jumping nonlinearities satis-
fying

f(x, s)

s
→ a as s→ +∞, f(x, s)

s
→ b as s→ −∞.

Indeed, a systematic study of this spectrum for the one-dimensional Laplacian with
periodic boundary condition has been done by Fuč́ık [13] who proved that this spec-
trum is composed of two families of curves in R2 emanating from the points (λk, λk)
determined by the eigenvalues λk. After this, several works on this spectrum have
been published for the negative Laplacian with Dirichlet boundary condition on
bounded domains. In particular, Dancer [9] showed that the lines R × {λ1} and
{λ1} × R are isolated in Σ2, where Σ2 is the Fuč́ık spectrum of −∆ with Dirichlet
condition and λ1 > 0 is the first eigenvalue of −∆. A starting work on the Fuč́ık
spectrum of the p-Laplacian with Dirichlet condition has been done by Cuesta-de
Figueiredo-Gossez [8] who proved the existence of a first nontrivial curve in this
spectrum, see also a similar result for −∆ by de Figueiredo-Gossez [10]. These
results have been transferred to Neumann, Steklov and Robin boundary conditions
by Arias-Campos-Gossez [2], Mart́ınez-Rossi [19] and Motreanu-Winkert [21], re-
spectively. We refer to the book chapter of Motreanu-Winkert [22] concerning the
differences in these works.

In our work, we are going to transfer the techniques of [2], [8], [19] and [21] to
our problem (1.1) with no-flux boundary condition. One difference is that in our
problem the first eigenvalue of the corresponding eigenvalue problem is zero. Indeed,
if a = b = λ, problem (1.1) becomes the following no-flux eigenvalue problem for
the p-Laplacian

−∆pu = λ|u|p−2u in Ω,

u = constant on ∂Ω,

0 =

∫
∂Ω

|∇u|p−2∇u · ν dσ,

(1.4)

which has been treated by Lê [17]. Since the first eigenvalue λ1 in (1.4) is zero,
all nonzero constants are corresponding eigenfunctions. Thus, λ1 is simple. Fur-
thermore, from Lê [17] we know that λ1 is isolated, the spectrum of (1.4) is closed
and each eigenfunction corresponding to an eigenvalue λ > 0 changes sign in Ω.
The first eigenfunction can be given as Lp-normalized constant by ϕ1 = 1

|Ω|
1
p

. As

a consequence of our results, we obtain a variational characterization of the second
eigenvalue λ2 of (1.4) by

λ2 = inf
γ∈Γ

max
u∈γ[−1,1]

[∫
Ω

|∇u|p dx

]
,

where

Γ = {γ ∈ C ([−1, 1] , S) : γ(−1) = −ϕ1, γ(1) = ϕ1} ,
S = {u ∈ V : ‖u‖p = 1} ,
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V =
{
u ∈W 1,p(Ω) : u |∂Ω= constant

}
.

It turns out that the point (λ2, λ2) lies on the first nontrivial curve C of Πp, see
Figure 1.

a

b

(λ2, λ2)

(λ1, λ1)

C

Figure 1. The curve C
Finally, we mention some existence results for elliptic problems with no-flux

boundary condition. As we already noted, there are only few works in this direction.
We refer to Le-Schmitt [18] for a sub-supersolution approach involving general
nonhomogeneous operators, Zhao-Zhao-Xie [27] for a mountain-pass solution, Fan-
Deng [11] for an application on a variational principle due to Ricceri in variable
exponent Sobolev spaces and Boureanu-Udrea [5, 6] for isotropic and anisotropic
variable exponent problems. Other references can be found in the book chapter of
Boureanu [4].

The paper is organized as follows. In Section 2 we present some results on the
function spaces, the p-Laplacian and state the weak formulation of problem (1.1).
Moreover, we recall the mountain-pass theorem for manifolds. In Section 3 we
describe the Fuč́ık spectrum Πp via critical points of the corresponding functional
and show the existence of a curve of elements of Πp. In Section 4 we prove that
this curve is indeed the first nontrivial curve in Πp. As a consequence we derive
a variational characterization of the second eigenvalue λ2 of (1.4), see Corollary
4.4. Finally, in Section 5, we prove that this first nontrivial curve is Lipschitz
continuous, decreasing and converging in the cases p ≤ N and p > N separately,
see Proposition 5.1 and Theorems 5.2 and 5.4.

2. Preliminaries

In this section we recall some facts about the function space, the operator and
tools from critical point theory. To this end, let Ω be a bounded domain in RN ,
N ≥ 2, with smooth boundary ∂Ω and let 1 ≤ p < ∞. We denote by Lp(Ω) :=
Lp(Ω;R) and Lp(Ω;RN ) the usual Lebesgue spaces endowed with the norm ‖ · ‖p
while W 1,p(Ω) stands for the Sobolev space endowed with the norm ‖ ·‖1,p, namely,

‖u‖1,p :=

(∫
Ω

|∇u|p dx+

∫
Ω

|u|p dx

) 1
p

for all u ∈W 1,p(Ω).
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Let

V =
{
u ∈W 1,p(Ω) : u |∂Ω= constant

}
.

Then V is a closed subspace of W 1,p(Ω) and so a reflexive Banach space with norm
‖ · ‖1,p, see Le-Schmitt [18] or Zhao-Zhao-Xie [27, Lemma 2.1]. Note that for any
v ∈ V we have that v+, v− ∈ V .

A function u ∈ V is said to be a weak solution of (1.1) if∫
Ω

|∇u|p−2∇u · ∇v dx =

∫
Ω

a
((
u+
)p−1 − b

(
u−
)p−1

)
v dx (2.1)

is satisfied for all v ∈ V .
For 1 < p <∞, we consider the nonlinear operator A : V → V ∗ defined by

〈A(u), v〉 :=

∫
Ω

|∇u|p−2∇u · ∇v dx (2.2)

for u, v ∈ V with 〈·, ·〉 being the duality pairing between V and its dual space V ∗.
The properties of the operator A : V → V ∗ can be summarized as follows, see, for
example, Carl-Le-Motreanu [7, Lemma 2.111].

Proposition 2.1. The operator A defined by (2.2) is bounded, continuous, mono-
tone (hence maximal monotone) and of type (S+), that is,

un ⇀ u in V and lim sup
n→∞

〈Aun, un − u〉 ≤ 0,

imply un → u in V .

Let X be a reflexive Banach space, let X∗ be its dual space and let ϕ ∈ C1(X,R).
We say that {un}n∈N ⊂ X is a Palais-Smale sequence ((PS)-sequence for short) for
ϕ if {ϕ(un)}n∈N ⊆ R is bounded and

ϕ′(un)→ 0 in X∗ as n→∞.

We say that ϕ satisfies the Palais-Smale condition ((PS)-condition for short) if any
(PS)-sequence {un}n∈N of ϕ admits a convergent subsequence in X.

The following version of the mountain-pass theorem in the sense of manifolds
will be used in the sequel. We refer to Ghoussoub [14, Theorem 3.2].

Theorem 2.2. Let X be a Banach space and let g, f ∈ C1(X,R). Further, suppose
that 0 is a regular value of g and let M = {u ∈ X : g(u) = 0}, u0, u1 ∈ M and
ε > 0 such that ‖u1 − u0‖X > ε and

inf {f(u) : u ∈M and ‖u− u0‖X = ε} > max {f(u0), f(u1)} .

Assume that f satisfies the (PS)-condition on M and that

Γ = {γ ∈ C ([−1, 1],M) : γ(−1) = u0 and γ(1) = u1}

is nonempty. Then

c = inf
γ∈Γ

max
u∈γ[−1,1]

f(u),

is a critical value of f|M .
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3. The Fuč́ık spectrum through critical points

In this section, we are going to determine the elements of the Fuč́ık spectrum
Πp through critical points.

Let s ∈ R be a real nonnegative parameter and consider the functional Js : V →
R defined by

Js(u) =

∫
Ω

|∇u|p dx− s
∫

Ω

(
u+
)p

dx. (3.1)

It is clear that Js ∈ C1 (V,R). Recall that

S =

{
u ∈ V : I(u) =

∫
Ω

|u|p dx = 1

}
.

We know that S is a smooth submanifold of V and so, J̃s = Js|S is a C1-function
in the sense of manifolds.

Applying the Lagrange multiplier rule, we note that u ∈ S is a critical point of J̃s
(in the sense of manifolds) if and only if there exists t ∈ R such that J ′s(u) = tI ′(u),
that is ∫

Ω

|∇u|p−2∇u · ∇v dx− s
∫

Ω

(
u+
)p−1

v dx = t

∫
Ω

|u|p−2uv dx (3.2)

for all v ∈ V .
First, we investigate the relationship between the critical points of J̃s and the

Fuč́ık spectrum Πp.

Lemma 3.1. Let s be a nonnegative real parameter. The point (s + t, t) ∈ R2

belongs to the spectrum Πp if and only if there exists a critical point u ∈ S of J̃s
such that t = Js(u).

Proof. From the definition of a weak solution of (1.1), see (2.1), we observe that
(t + s, t) ∈ Πp if and only if there exists u ∈ S that solves the following no-flux
problem

−∆pu = (t+ s)
(
u+
)p−1 − t

(
u−
)p−1

in Ω,

u = constant on ∂Ω,

0 =

∫
∂Ω

|∇u|p−2∇u · ν dσ.

However, the corresponding weak solution of the problem above is given in (3.2).
Taking v = u in (3.2) we have that t = Js(u) and the proof is complete. �

Lemma 3.1 allows us to find points in Πp by the critical points of J̃s. Next we

are going to look for minimizers of J̃s.

Proposition 3.2. There hold:

(i) the first eigenfunction ϕ1 = 1

|Ω|
1
p

is a global minimizer of J̃s;

(ii) the point (0,−s) ∈ R2 belongs to Πp.

Proof. (i) Since s ≥ 0 we have for u ∈ S

J̃s(u) =

∫
Ω

|∇u|p dx− s
∫

Ω

(
u+
)p

dx ≥ −s
∫

Ω

(
u+
)p

dx ≥ −s = Js(ϕ1)
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for all u ∈ S. Hence, the first eigenfunction ϕ1 = 1

|Ω|
1
p
∈ V is a global minimizer of

J̃s.
(ii) From (i) and Lemma 3.1 we get the assertion. �

Now we obtain a second critical point of J̃s as local minimizer.

Proposition 3.3. There hold:

(i) the negative eigenfunction −ϕ1 = − 1

|Ω|
1
p

is a strict local minimizer of J̃s;

(ii) the point (s, 0) ∈ R2 belongs to Πp.

Proof. (i) Suppose by contradiction that there exists a sequence {un}n∈N ⊂ S with
un 6= −ϕ1, un → −ϕ1 in V and

J̃s(un) ≤ 0 = λ1 = J̃s(−ϕ1). (3.3)

We claim that un changes sign for n sufficiently large. Observe that, since
un → −ϕ1, un must be < 0 somewhere. Suppose that un ≤ 0 for a. a.x ∈ Ω. Then
we obtain

J̃s(un) =

∫
Ω

|∇un|p dx > 0 = λ1,

since un 6= −ϕ1 and un 6= ϕ1 contradicting J̃s(un) ≤ 0 = λ1. Therefore, un changes
sign. We set

wn =
u+
n∥∥u+
n

∥∥
p

and rn = ‖∇wn‖p . (3.4)

Claim: rn → +∞ as n→ +∞
Arguing by contradiction, suppose {rn}n∈N ⊆ R is bounded. Then from (3.4) we

know that {wn}n∈N is bounded in V . Hence we find a subsequence (still denoted
by {wn}n∈N) such that wn → w in Lp(Ω) for some w ∈ X. Since ‖wn‖p = 1 and

wn ≥ 0 for a. a.x ∈ Ω, we see that ‖w‖p = 1 and w ≥ 0. Therefore, the Lebesgue

measure of the set {x ∈ Ω : un(x) > 0} does not approach 0 when n → +∞.
However, this contradicts the assumption that un → −ϕ1 in Lp(Ω) which means
that {x ∈ Ω : un(x) > 0} → 0. This proves the Claim.

From (3.3) and (3.4) we get that

0 ≥ J̃s(un) =

∫
Ω

∣∣∇u+
n

∣∣p dx+

∫
Ω

∣∣∇u−n ∣∣p dx− s
∫

Ω

(
u+
n

)p
dx

≥ (rn − s)
∫

Ω

(
u+
n

)p
dx.

Hence, 0 ≥ rn − s which contradicts the Claim. This completes the proof of (i).
(ii) This follows from Lemma 3.1 since Js(−ϕ1) = 0. �

Using the two local minima from Proposition 3.2 and 3.3 we are looking for
a third critical point of J̃s by using the mountain-pass theorem in its version on
C1-manifolds.

First, we define a norm of the derivative of the restriction J̃s of Js to S at the
point u ∈ S by ∥∥∥J̃ ′s(u)

∥∥∥
∗

= min
{
‖J ′s(u)− tT ′(u)‖∗ : t ∈ R

}
with T (·) = ‖ · ‖pp and ‖ · ‖∗ being the norm in the dual space V ∗ of V .
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Lemma 3.4. The functional J̃s : S → R satisfies the (PS)-condition on S in the
sense of manifolds.

Proof. Let {un}n∈N ⊆ S be a (PS)-sequence, that is, {J̃s(un)}n∈N is bounded and

‖J̃ ′s(un)‖∗ → 0 as n→∞. Then we find a sequence {tn}n∈N ⊆ R such that∣∣∣∣∫
Ω

|∇un|p−2∇un · ∇v dx− s
∫

Ω

(
u+
n

)p−1
v dx− tn

∫
Ω

|un|p−2unv dx

∣∣∣∣
≤ εn ‖v‖1,p ,

(3.5)

for all v ∈ V with εn → 0+.
Since {un}n∈N ⊆ S we have Js(un) ≥ ‖∇un‖pp− s and because {Js(un)}n∈N ⊆ R

is bounded, we know that {un}n∈N is bounded in V . So we may assume, for a
subsequence if necessary, that

un ⇀ u in V and un → u in Lp(Ω).

We choose v = un in (3.5) and note again that {un}n∈N ⊆ S. Hence, the sequence
{tn}n∈N ⊆ R is bounded. Taking v = un − u in (3.5) we obtain that∫

Ω

|∇un|p−2∇un · ∇(un − u) dx

= s

∫
Ω

(
u+
n

)p−1
(un − u) dx+ tn

∫
Ω

|un|p−2un(un − u) dx+O(εn),

(3.6)

where the right-hand side of (3.6) goes to zero as n→∞. Hence, we have∫
Ω

|∇un|p−2∇un · ∇(un − u) dx→ 0 as n→∞.

From the (S+)-property of −∆p (see Proposition 2.1), we conclude that un → u in

V . Thus, J̃s fulfills the (PS)-condition. �

Now we prove the existence of a third critical point of J̃s which is different from
ϕ1 and −ϕ1.

Proposition 3.5.

(i) Let

Γ =
{
γ ∈ C ([−1, 1], S) : γ(−1) = −ϕ1, γ(1) = ϕ1

}
.

For each s ≥ 0 we have that

c(s) =: inf
γ∈Γ

max
u∈γ[−1,1]

Js(u) (3.7)

is a critical value of J̃s such that c(s) > max{J̃s(−ϕ1), J̃s(ϕ1)} = 0.
(ii) The point (s+ c(s), c(s)) belongs to Πp.

Proof. (i) First note that −ϕ1 is a strict local minimizer of J̃s with J̃s (−ϕ1) = 0 by

Proposition 3.3 and ϕ1 is a global minimizer of J̃s with J̃s (ϕ1) = −s by Proposition
3.2. Similar to the proof of Lemma 2.9 in Cuesta-de Figueiredo-Gossez [8] we can
show by using Ekeland’s variational principle that

inf
{
J̃s(u) : u ∈ S and ‖u− (−ϕ1)‖1,p = ε

}
> max{J̃s(−ϕ1), J̃s(ϕ1)} = λ1,

with small ε > 0. We choose ε > 0 small enough such that

2 ‖ϕ1‖1,p = ‖ϕ1 − (−ϕ1)‖1,p > ε.
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Moreover, from Lemma 3.4 we know that J̃s : S → R satisfies the (PS)-condition
on the manifold S. Therefore, we can apply the mountain-pass theorem, stated as
Theorem 2.2, which guarantees that c(s) introduced in (3.7) is a critical value of

J̃s with c(s) > 0. Hence, we have a third critical point different from −ϕ1 and ϕ1.

(ii) Using the fact that c(s) given in (3.7) is a critical value of J̃s in combination
with Lemma 3.1 shows that (s+ c(s), c(s)) ∈ Πp. �

4. The first nontrivial curve

In Proposition 3.5 (ii) we have shown that the point (s + c(s), c(s)) belongs to
Πp for s ≥ 0. Since Πp is symmetric with respect to the diagonal, we can complete
it with its symmetric part and obtain the following curve in Πp

C =
{

(s+ c(s), c(s)), (c(s), s+ c(s)) : s ≥ 0
}
. (4.1)

In this section, we are going to prove that the curve C is the first nontrivial curve
in Πp. We start by showing that the lines {0} ×R and R× {0} are isolated in Πp.

Proposition 4.1. There is no sequence {an, bn}n∈N ∈ Πp with an > 0 and bn > 0
such that {an, bn}n∈N → {a, b} with a = 0 or b = 0.

Proof. We argue by contradiction and suppose there exist sequences {an, bn}n∈N ⊆
Πp and {un}n∈N ⊆ V with an → 0, bn → b, an > 0, bn > 0, ‖un‖p = 1 and

−∆pun = an
(
u+
n

)p−1 − bn
(
u−n
)p−1

in Ω,

un = constant on ∂Ω,

0 =

∫
∂Ω

|∇un|p−2∇un · ν dσ.

(4.2)

The weak formulation of (4.2) is given by∫
Ω

|∇un|p−2∇un · ∇v dx = an

∫
Ω

(
u+
n

)p−1
v dx− bn

∫
Ω

(
u−n
)p−1

v dx (4.3)

for all v ∈ V . We first test (4.3) with v = un and obtain

‖∇un‖pp = an

∫
Ω

(
u+
n

)p−1
un dx− bn

∫
Ω

(
u−n
)p−1

un dx

= an

∫
Ω

(
u+
n

)p
dx+ bn

∫
Ω

(
u−n
)p

dx ≤ an + bn.

Hence, {un}n∈N is bounded in V . We may assume, for a subsequence if necessary,
that

un ⇀ u in V and un → u in Lp(Ω).

Testing (4.3) with v = un − u gives∫
Ω

|∇un|p−2∇un · ∇(un − u) dx

= an

∫
Ω

(
u+
n

)p−1
(un − u) dx− bn

∫
Ω

(
u−n
)p−1

(un − u) dx.

This implies

lim
n→+∞

∫
Ω

|∇un|p−2∇un · ∇(un − u) dx = 0.
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From the (S+)-property of −∆p (see Proposition 2.1), we conclude that un → u in
V . Hence, u solves the equation∫

Ω

|∇u|p−2∇u · ∇v dx = −b
∫

Ω

(
u−
)p−1

v dx, (4.4)

for all v ∈ V . If we take v = u+ in (4.4), we see that∫
Ω

∣∣∇u+
∣∣p dx = 0.

This means that either u+ = 0 or u+ = ϕ1 since ‖u‖p = 1.
Let us first suppose that u+ = 0. Then u ≤ 0 and from (4.3) we know that u

is an eigenfunction of the p-Laplacian with no-flux boundary condition, see (1.4).
Therefore, u = −ϕ1 since the only eigenfunctions that have constant sign are those
related to λ1 = 0. We conclude that {un}n∈N converges either to ϕ1 or to −ϕ1 in
Lp(Ω). This implies that either

|{x ∈ Ω : un(x) < 0}| → 0 or |{x ∈ Ω : un(x) > 0}| → 0, (4.5)

respectively, with | · | being the Lebesgue measure.
Taking v = u+

n as test function in (4.3) along with Hölder’s inequality and the
continuous embedding V ↪→ Lr(Ω) for any r ∈ (p, p∗] with embedding constant
C > 0 we get ∫

Ω

∣∣∇u+
n

∣∣p dx+

∫
Ω

(
u+
n

)p
dx

= an

∫
Ω

(
u+
n

)p
dx+

∫
Ω

(
u+
n

)p
dx

= (an + 1)

∫
Ω

(
u+
n

)p
dx

≤ (an + 1)Cp |{x ∈ Ω : un(x) > 0}|1−
p
r
∥∥u+

n

∥∥p
1,p
.

From this we conclude that

|{x ∈ Ω : un(x) > 0}|1−
p
r ≥ (an + 1)−1C−p (4.6)

Similarly, if we use v = u−n in (4.3) we obtain

|{x ∈ Ω : un(x) < 0}|1−
p
r ≥ (bn + 1)−1C−p. (4.7)

Because {an, bn}n∈N ⊆ Πp does not belong to the trivial lines of Πp, we have that
un changes sign. Hence, from (4.6) and (4.7) we reach a contradiction to (4.5).
This completes the proof. �

Before we state the main result in this section, we need the following lemma.

Lemma 4.2. For every r > infS Js = −s, each connected component of {u ∈ S :

Js(u) < r} contains a critical point which is a local minimizer of J̃s.

Proof. Let C be a connected component of {u ∈ S : Js(u) < r} and let d =
inf{Js(u) : u ∈ C}.

Claim: There exists u0 ∈ C such that J̃s(u0) = d.

Let {un}n∈N ⊂ C be a sequence such that J̃s(un) ≤ d + 1
n2 . From Ekeland’s

variational principle applied to J̃s on C we get a sequence {vn}n∈N ⊂ C such that

J̃s(vn) ≤ J̃s(un), (4.8)
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‖un − vn‖1,p ≤
1

n
, (4.9)

J̃s(vn) ≤ J̃s(v) +
1

n
‖v − vn‖1,p , (4.10)

for all v ∈ C.
From (4.8) and n sufficiently large we have that

J̃s(vn) ≤ J̃s(un) ≤ d+
1

n2
< r.

Moreover, applying (4.10), we are able to show that {vn}n∈N is a (PS)-sequence

for J̃s. Then by Lemma 3.4 and (4.9) we conclude, for a subsequence if necessary,

that un → u0 in V with u0 ∈ C and J̃s(u0) = d. Finally, note that u0 6∈ ∂C since
otherwise the maximality of C as a connected component would be contradicted.
Thus, u0 is a local minimizer of J̃s. �

The next results show that C is the first nontrivial curve in Πp.

Theorem 4.3. Let s ≥ 0. Then (s+ c(s), c(s)) ∈ C is the first nontrivial point of
Πp in the intersection between Πp and the line (s, 0) + t(1, 1) with t > 0.

Proof. We are going to show the assertion by contradiction. Let 0 < µ < c(s) and
suppose that (s + µ, µ) ∈ Πp. Taking Proposition 4.1 and the closedness of Πp

into account, we may suppose that µ is the minimum number with the required
property. By using Lemma 3.1 it is clear that µ is a critical value of the functional
J̃s and there is no critical value of J̃s in the interval (0, µ).

Let u ∈ S be a critical point of J̃s at level µ. We have for all v ∈ V∫
Ω

|∇u|p−2∇u · ∇v dx = (s+ µ)

∫
Ω

(
u+
)p−1

v dx− µ
∫

Ω

(
u−
)p−1

v dx,

see Lemma 3.1. Choosing v = u+ gives∫
Ω

∣∣∇u+
∣∣p dx = (s+ µ)

∫
Ω

(
u+
)p

dx. (4.11)

Similarly, if we take v = −u− we obtain∫
Ω

∣∣∇u−∣∣p dx = µ

∫
Ω

(
u−
)p

dx. (4.12)

Using (4.11) and (4.12) we see that

J̃s

(
u+

‖u+‖p

)
= J̃s

(
−u−

‖u−‖p

)
= µ,

and

J̃s

(
u−

‖u−‖p

)
= µ− s. (4.13)

Now, we introduce for all t ∈ [0, 1] the following paths defined by

u1(t) =
(1− t)u+ tu+

‖(1− t)u+ tu+‖p
,

u2(t) =
tu+ + (1− t)u−

‖tu+ + (1− t)u−‖p
,
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u3(t) =
−tu− + (1− t)u
‖−tu− + (1− t)u‖p

.

Note that these paths are well-defined in S. It is easy to see that u1(t) goes from

u to u+

‖u+‖p
, u2(t) goes from u+

‖u+‖p
to u−

‖u−‖p
and u3(t) goes from u to −u−

‖u−‖p
.

By means of (4.11) and (4.12) it is easy to see that

J̃s(u1(t)) = µ = J̃s(u3(t)),

J̃s(u2(t)) = µ− stp
‖u−‖pp

‖tu+ + (1− t)u−‖pp
≤ µ

for all t ∈ [0, 1].

From this we know that we can move from u to u−

‖u−‖p
via u1(t) and u2(t) which

lies at level µ− s, so we stay at level ≤ µ. Let us investigate the levels below µ− s.
We introduce

Υ = {v ∈ S : J̃s(v) < µ− s}.

We observe that ϕ1 ∈ Υ and −ϕ1 ∈ Υ if µ > s. Due to the minimality property
of µ, we know that ϕ1 and −ϕ1 are the only possible critical points of J̃s in Υ. Since
u−

‖u−‖p
does not change sign and vanishes on a set of positive measure, it cannot

be a critical point of J̃s. Hence, we find a path β : [−ε, ε] → S of class C1 with

β(0) = u−

‖u−‖p
and d

dt J̃s(β(t))|t=0 6= 0. Using this path and (4.13) we can move from

u−

‖u−‖p
to a point v by a path in S such that J̃s(v) < µ− s. In particular, we have

v ∈ Υ.
Applying Lemma 4.2 we obtain that the connected component of Υ containing

v crosses {ϕ1,−ϕ1}. Let us suppose that we can continue from v to ϕ1, the case
continuing to −ϕ1 can be argued similarly. Therefore, there exists a path u4(t) in

Υ from u−

‖u−‖p
to ϕ1, whose symmetric path −u4(t) goes from − u−

‖u−‖p
to −ϕ1. As

u4(t) ∈ S, we have that

J̃s(−u4(t)) ≤ J̃s(u4(t)) + s < µ− s+ s = µ,

since for each û ∈ S it holds ∣∣∣J̃s(û)− J̃s(−û)
∣∣∣ ≤ s.

We already observed that we go from −ϕ1 to −u−

‖u−‖p
via −u4(t) by staying at

level lower then µ. Finally from the path u3(t) we go from u to −u−

‖u−‖p
by staying

at level µ.
In summary, we have shown that we constructed a path joining u and ϕ1 via

u1(t), u2(t) as well as u4(t) and we have a path joining u and −ϕ1 via u3(t)
and −u4(t). Putting these paths together we have a path γ(t) on S joining ϕ1

and −ϕ1 with J̃s(γ(t)) ≤ µ. In particular we have that J̃s has a critical value µ
with λ1 < µ < c(s), but there is no critical value in the interval ]λ1, µ[ and this
contradicts the definition of c(s) in (3.7). �

A direct consequence of Theorem 4.3 is a variational characterization of the
second eigenvalue λ2 of problem (1.4).
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Corollary 4.4. The second eigenvalue λ2 of (1.4) has the following variational
characterization

λ2 = inf
γ∈Γ

max
u∈γ[−1,1]

[∫
Ω

|∇u|p dx

]
.

Proof. We apply Theorem 4.3, Proposition 3.5 (i) and (3.1) for s = 0 in order to
get

c(0) = inf
γ∈Γ

max
u∈γ[−1,1]

J0(u) = inf
γ∈Γ

max
u∈γ[−1,1]

[∫
Ω

|∇u|p dx

]
.

�

5. Properties of the first curve

In this section, we are going to prove some properties of the curve C defined in
(4.1) and we study its asymptotic behavior.

Proposition 5.1. The curve s 7→ (s + c(s), c(s)) is Lipschitz continuous with
Lipschitz constant L ≤ 1 and decreasing.

Proof. Let s1 and s2 be such that s1 < s2. Then we have J̃s1(u) ≥ J̃s2(u) for all
u ∈ S and so c(s1) ≥ c(s2).

For every ε > 0 we find a path γ ∈ Γ such that

max
u∈γ[−1,1]

J̃s2(u) ≤ c(s2) + ε,

This implies

0 ≤ c(s1)− c(s2) ≤ max
u∈γ[−1,1]

J̃s1(u)− max
u∈γ[−1,1]

J̃s2(u) + ε.

Let u0 ∈ γ[−1, 1] be such that

max
u∈γ[−1,1]

J̃s1(u) = J̃s1(u0),

from which we conclude that

0 ≤ c(s1)− c(s2) ≤ J̃s1(u0)− J̃s2(u0) + ε = s1 − s2 + ε.

As ε > 0 was arbitrary, we obtain that the curve s 7→ (s + c(s), c(s)) is Lipschitz
continuous with Lipschitz constant L ≤ 1.

Let us prove that the curve is decreasing. To this end, let 0 < s1 < s2. Theorem
4.3 implies that s1+c(s1) < s2+c(s2) since (s1+c(s1), c(s1)), (s2+c(s2), c(s2)) ∈ Πp.
From the first part of the proof, we already mentioned that c(s1) ≥ c(s2). This
completes the proof. �

Next, we study the asymptotic behavior of the curve C. Since c(s) is decreasing
and positive, there exists lims→∞ c(s). As it was done in [2], [19] and [21], we
distinguish between the two cases p ≤ N and p > N . We define for 1 < p <∞

λ(N, p) = inf

{∫
Ω

|∇u|p dx : u ∈ S and u changes sign in Ω

}
and for p > N

λ = inf

{∫
Ω

|∇u|p dx : u ∈ S and u vanishes somewhere in Ω

}
. (5.1)



14 G. D’AGUÌ, A. SCIAMMETTA, AND P. WINKERT

Since W 1,p
0 (Ω) is compactly embedded in C0(Ω) when p > N , the definition (5.1)

makes sense and the infimum is achieved. So, λ > 0. Moreover, we see that
λ(N, p) = λ when p > N and λ(N, p) = 0 when p ≤ N , see Arias-Campos-Gossez
[2]. Note that the sequences defined in [2, Remark 2.7] can be also used in our
setting.

We start with the case p ≤ N .

Theorem 5.2. Let p ≤ N . Then

lim
s→+∞

c(s) = 0.

Proof. Arguing by contradiction we assume that there exists ε > 0 such that

max
u∈γ[−1,1]

J̃s(u) ≥ ε (5.2)

for all γ ∈ Γ and for all s ≥ 0. Since p ≤ N , we can choose a function φ ∈ V which
is unbounded from above. Consider the path γ ∈ Γ defined by

γ(t) =
tϕ1 + (1− |t|)φ
‖tϕ1 + (1− |t|)φ‖p

for t ∈ [−1, 1]. The maximum of J̃s on γ[−1, 1] is achieved at ts ∈ [−1, 1], that is

max
u∈γ[−1,1]

J̃s (γ(t)) = J̃s (γ(ts)) .

Taking vs = tsϕ1 + (1− |ts|)φ we obtain from (5.2) that

J̃s (vs) ≥ ε ‖vs‖pp ,

that is ∫
Ω

|∇vs|p dx− s
∫

Ω

(
v+
s

)p
dx ≥ ε

∫
Ω

|vs|p dx. (5.3)

If we let s → +∞, we may assume that ts → t̂ ∈ [−1, 1] (for a subsequence if
necessary). Since vs is bounded in V , from (5.3) we have that∫

Ω

(
v+
s

)p
dx→ 0 as s→ +∞,

from which we conclude that

t̂ϕ1 + (1− |t̂|)φ ≤ 0.

Since φ is unbounded from above, this is only possible for t̂ = −1. Then taking
t̂ = −1 and passing to the limit in (5.3) we get

0 =

∫
Ω

|∇ϕ1|p dx ≥ ε
∫

Ω

|ϕ1|p dx.

This implies ε ≤ 0 and so we have a contradiction. �

Let Π̃p be the nontrivial part of Πp, that is, Π̃p = Πp \ {(0 × R) ∪ (R × 0)}.
Theorem 5.2 implies the following corollary.

Corollary 5.3. Let p ≤ N . Then there does not exist ε > 0 such that Π̃p is
contained in the set {(a, b) ∈ R2 : a and b > ε}.

Let us now study the case p > N .
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Theorem 5.4. Let p > N . Then

lim
s→+∞

c(s) = λ > 0, (5.4)

where λ is defined in (5.1).

Proof. By contradiction we suppose that there exists ε > 0 such that

max
u∈γ[−1,1]

J̃s(u) > λ+ ε (5.5)

for all γ ∈ Γ and for all s ≥ 0. Let u be a minimizer of (5.1) and consider the path
γ ∈ Γ defined by

γ(t) =
tϕ1 + (1− |t|)u
‖tϕ1 + (1− |t|)u‖p

for t ∈ [−1, 1]. The path is well defined because u vanishes somewhere, but ϕ1 does
not and it belongs to Γ.

As in the proof of Theorem 5.2, for every s > 0, we fix ts ∈ [−1, 1] such that

max
u∈γ[−1,1]

J̃s (γ(t)) = J̃s (γ(ts)) .

Denoting vs = tsϕ1 + (1− |ts|)u, from (5.5) it follows

J̃s (vs) ≥
(
λ+ ε

)
‖vs‖pp ,

that is, ∫
Ω

|∇vs|p dx− s
∫

Ω

(v+
s )p dx ≥

(
λ+ ε

) ∫
Ω

|vs|p dx. (5.6)

Letting s→ +∞, we can assume, for a subsequence, ts → t ∈ [−1, 1]. The uniform
boundedness of vs implies

∫
Ω

(v+
s )p dx → 0 due to (5.6). Since vs → vt̂ in V , we

have v+
t̂

= 0 in Ω, then

t̂ϕ1 ≤ −(1− |t̂|)u in Ω. (5.7)

Since u vanishes somewhere in Ω and ϕ1 ≡ 1

|Ω|
1
p
> 0, from (5.7) we obtain that

t̂ ≤ 0. Passing to the limit in (5.6) we obtain∫
Ω

∣∣∇ (t̂ϕ1 + (1− |t̂|)u
)∣∣p dx ≥

(
λ+ ε

) ∫
Ω

|t̂ϕ1 + (1− |t̂|)u|p dx.

Since ∇ϕ1 ≡ 0 and due to (c+ d)p ≥ cp + dp for c, d ≥ 0, we arrive at(
1− |t̂|

)p ∫
Ω

|∇u|p dx ≥
(
λ+ ε

) ∫
Ω

|t̂ϕ1 + (1− |t̂|)u|p dx

≥
(
λ+ ε

) [
|t̂|p
∫

Ω

ϕp1 dx+ (1− |t̂|)p
∫

Ω

|u|p dx

]
.

(5.8)

If t̂ = −1, (5.8) becomes

0 ≥
(
λ+ ε

) ∫
Ω

ϕp1 dx,

Thus, λ+ ε ≤ 0 which is a contradiction.
If t̂ ∈]− 1, 0], since u is a minimizer of (5.1), (5.8) becomes(

1− |t̂|
)p
λ ≥

(
λ+ ε

) (
1− |t̂|

)p
.
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So, ε ≤ 0, a contradiction. This shows (5.4). �

As a consequence of Theorem 5.4, we have the following result.

Proposition 5.5. Let p > N . Then Π̃p is contained in the open set {(a, b) ∈
R2 : a and b > λ}, where λ is the largest number such that this inclusion holds. In
particular, λ2 > λ.

First, we prove the following lemma.

Lemma 5.6. Let p > N and let u be a minimizer of (5.1). Then u does not change
sign in Ω and u vanishes at exactly one point in Ω.

Proof. Let u be a minimizer of (5.1), let x0 ∈ Ω and let

Vx0 = {v ∈ V : v(x0) = 0}.
We are going to show that, if u vanishes at x0, then∫

Ω

|∇u|p−2∇u · ∇v dx = λ

∫
Ω

|u|p−2uv dx (5.9)

for all v ∈ Vx0 . We have that

λ = inf

{∫
Ω

|∇v|p dx : v ∈ S and v ∈ Vx0

}
and the infimum is achieved at u. The Lagrange multiplier rule implies that∫

Ω

|∇u|p−2∇u · ∇v dx = λ

∫
Ω

|u|p−2uv dx (5.10)

for all v ∈ Vx0
and for some λ ∈ R. If we take v = u in (5.10), we obtain that λ = λ

and so (5.9) is true.
Let us now assume that u vanishes in at least two points x1, x2 ∈ Ω. The function

w = |u| is also a minimizer in (5.1) which vanishes at x1 and x2, that is, w fulfills
(5.9) for all v ∈ Vx1

and also for all v ∈ Vx2
. Note that any v ∈ V can be written

as v = v1 + v2 with v1 ∈ Vx1
and v2 ∈ Vx2

. Therefore, w satisfies (5.9) for all
v ∈ V . If we then choose v = 1 in (5.9), we see that w ≥ 0 changes sign which is a
contradiction.

Finally, we want to show that the minimizer u does not change sign. Let u+ 6≡ 0

with u(x0) = 0. This implies u+(x0) = 0. Taking v = u+ in (5.9) we see that u+

‖u+‖p
is a minimizer in (5.1). Hence, due to the first part of the proof, u+ vanishes only
at x0 and so u ≥ 0. �

Now we can prove Proposition 5.5.

Proof of Proposition 5.5. Let (a, b) ∈ Π̃p and let u 6≡ 0 be a corresponding solution
of (1.1). Choosing v = 1 as test function in (2.1) we obtain that∫

Ω

(
a
(
u+
)p−1 − b(u−)p−1

)
dx = 0.

Hence, u changes sign in Ω. Note that u+ and u− both vanish somewhere since u
changes sign. Testing (2.1) with v = u+ and v = u− we get that

a =

∫
Ω

|∇u+|p dx∫
Ω

|u+|p dx

≥ λ and b =

∫
Ω

|∇u−|p dx∫
Ω

|u−|p dx

≥ λ. (5.11)
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Next, we want to show that a, b > λ. Let us assume that a = λ. Then we see

from (5.11) that u+

‖u+‖p
is a minimizer in (5.1). Since u changes sign, u+ vanishes

in many points (at least in more than one point) which contradicts Lemma 5.6.
Hence a > λ and in the same way we can show that b > λ. Therefore, c(s) > λ and
from Theorem 5.4 we know that lims→+∞ c(s) = λ.

Proposition 3.5 (ii) implies that (s + c(s), c(s)) ∈ Π̃p ⊂ Πp and in particular,

(c(0), c(0)) = (λ2, λ2) ∈ Π̃p. Since c(s) > λ from the first part of the proof, it

follows that λ < λ2. �

Acknowledgment

The first two authors are members of the Gruppo Nazionale per l’Analisi Matem-
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[1] G.A. Afrouzi, M. Mirzapour, V.D. Rădulescu, The variational analysis of a nonlinear

anisotropic problem with no-flux boundary condition, Rev. R. Acad. Cienc. Exactas F́ıs.
Nat. Ser. A Mat. RACSAM 109 (2015), no. 2, 581–595.

[2] M. Arias, J. Campos, J.-P. Gossez, On the antimaximum principle and the Fučik spectrum
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