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Abstract. We study a double phase problem with mixed boundary value

conditions with reaction terms that resonate at the first eigenvalue of the
related eigenvalue problem. Based on the maximum principle and homological

local linking, we are going to prove the existence of at least two bounded

nontrivial solutions for this problem.

1. Introduction

In this paper, we study the following double phase problems with mixed bound-
ary conditions

A(u) + |u|p−2
u+ a(x) |u|q−2

u = f(x, u) in Ω,

u = 0 on σ,(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
· ν = g(x, u) on Γ,

(1.1)

where

A(u) := − div
(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
is the double phase operator, Ω is a bounded domain of RN , N ≥ 2, with a C1

boundary ∂Ω such that ∂Ω = σ ∪ Γ and σ ∩ Γ = ∅, ν(x) denotes the outer unit
normal of Ω at x ∈ Γ,

1 < p < N, p < q < p∗ =
(N − 1)p

N − p
and 0 < a(·) ∈ L∞(Ω). (1.2)

Clearly, q < p∗ implies q < p∗ = Np
N−p . The nonlinearities f and g satisfy the

following hypotheses:

(H) f : Ω×R → R and g : Γ×R → R are Carathéodory functions such that the
following hold:
(i) There exist constants C1, C2 > 0 such that

|f(x, t)| ≤ C1

(
1 + |t|r1−1

)
for a.a.x ∈ Ω,

|g(x, t)| ≤ C2

(
1 + |t|r2−1

)
for a.a.x ∈ Γ,

for all t ∈ R, where q < r1 < p∗ and q < r2 < p∗, respectively.
(ii)

lim
t→±∞

qF (x, t)

|t|q
≤ λ1(q) uniformly for a.a.x ∈ Ω,
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lim
t→±∞

qG(x, t)

|t|q
≤ λ1(q) uniformly for a.a.x ∈ Γ,

where F (x, t) =
∫ t

0
f(x, s) ds and G(x, t) =

∫ t

0
g(x, s) ds;

(iii)

lim
|t|→+∞

[f(x, t)t− qF (x, t)] = +∞ uniformly for a.a.x ∈ Ω;

lim
|t|→+∞

[g(x, t)t− qG(x, t)] = +∞ uniformly for a.a.x ∈ Γ;

(iv) There exist δ > 0, θ > λ̃1(p) and 0 < λ̃ < λ̃2(p) such that

θ |t|p ≤ pF (x, t) ≤ λ̃ |t|p for a.a.x ∈ Ω and for all |t| ≤ δ,

θ |t|p ≤ pG(x, t) ≤ λ̃ |t|p for a.a.x ∈ Γ and for all |t| ≤ δ.

where λ1(q) stands for the first eigenvalue of the weighted q-Laplace mixed bound-

ary condition problem while λ̃1(p) and λ̃2(p) represent the first and the second
eigenvalues of the p-Laplace mixed boundary condition problem, respectively, see
Section 2 for more details.

The solutions of problem (1.1) are understood in the weak sense, that is, u ∈ X
is a solution of (1.1) if∫

Ω

(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
· ∇v dx

+

∫
Ω

(
|u|p−2u+ a(x)|u|q−2u

)
v dx

=

∫
Ω

f(x, u)v dx+

∫
Γ

g(x, u)v dS,

is satisfied for all v ∈ X, where X = {u ∈ W 1,H(Ω) : u|σ = 0} is a closed subspace
of W 1,H(Ω), which will be defined in Section 2.

The differential operator

div
(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
, u ∈ W 1,H(Ω) (1.3)

involved in problem (1.1) is the so-called double phase operator. The integral form
of it is denoted by ∫

Ω

(
|∇u|p + a(x)|∇u|q

)
dx, (1.4)

which was first introduced by Zhikov [40] to describe the phenomenon that hard-
ening properties of strongly anisotropic materials drastically change with the point
in the domain. The function a(·) was used as an aid to regulating the mixture
between two different materials, with power hardening of rates p and q, respec-
tively, see for instance the works of Zhikov [40–42]. The energy density of (1.4)
exhibits ellipticity in the gradient of order q on the points x where a(x) is positive
and of order p on the points x where a(x) vanishes. This is the reason why we
call (1.3) as the double phase operator. Both theoretical and applications aspects
of functionals of type (1.4) have been intensively studied by many researchers, see
for example, Baroni-Colombo-Mingione [2–4], Baroni-Kuusi-Mingione [5], Byun-
Oh [6], Colombo-Mingione [8, 9], De Filippis-Mingione [11], De Filippis-Palatucci
[12], Gasiński-Winkert [14,15], Liu-Dai [18–20], Liu-Dai-Papageorgiou-Winkert [21],
Liu-Winkert [22], Marcellini [24, 25], Ok [27, 28], Papageorgiou-Rădulescu-Repovš



EXISTENCE OF SOLUTIONS FOR RESONANT DOUBLE PHASE PROBLEMS 3

[30, 31], Perera-Squassina [36], Ragusa-Tachikawa [37], Zeng-Bai-Gasiński-Winkert
[38,39] and the references therein.

The purpose of this paper is to study the multiplicity of solutions for problem
(1.1). There are two main characteristics of this problem: one is that the reaction
terms resonate at the corresponding eigenvalues; the other one is the appearance
of nonlinear boundary conditions and mixed boundary conditions.

The main result in this paper is the following theorem.

Theorem 1.1. Let hypotheses (1.2) and (H) be satisfied, then problem (1.1) has
at least two nontrivial solutions u1, u2 ∈ X ∩ L∞(Ω).

Theorem 1.1 is related to the recent results obtained in Liu-Zeng-Gasiński-Kim
[23], Papageorgiou-Rădulescu-Repovš [31] and Papageorgiou-Rădulescu-Zhang [33].
Papageorgiou-Rădulescu-Repovš [31] investigated the existence of multiple solu-
tions to a double phase Robin problem when resonating at the first eigenvalue of
the weighted p-Laplace Robin problem, applying the local linking of the Morse
theory to derive the existence of at least two bounded solutions. Papageorgiou-
Rădulescu-Zhang [33] considered the existence of multiple solutions to the Dirich-
let double phase problem when resonating at the first eigenvalue of the weighted
p-Laplace Dirichlet equation, using variational methods together with Morse the-
ory to yield the existence of at least two bounded nontrivial solutions. Liu-Zeng-
Gasiński-Kim [23] studied a nonlinear complementarity problem (NCP) with a dou-
ble phase differential operator and a generalized multivalued boundary condition.
By using the Moreau-Yosida approximation method, the regularization problem
corresponding to NCP was introduced, and finally, the properties of the solution
set of NCP were obtained. Inspired by the above papers, we are going to study
the resonant double phase equations under mixed boundary conditions given in
(1.1) in the present paper. The reaction terms resonate at the first eigenvalue of
the weighted q-Laplace equation with the mixed boundary, which is different from
Papageorgiou-Rădulescu-Repovš [31] and Papageorgiou-Rădulescu-Zhang [33]. The
mixed boundary conditions are divided into two parts, one is the Dirichlet bound-
ary condition and the other is the nonlinear boundary condition, which is different
from Liu-Zeng-Gasiński-Kim [23]. These differences bring new challenges. In order
to overcome these difficulties, we need to require more elaborate calculations to get
the compactness condition and the homological local linking.

The proof of Theorem 1.1 is based on variational methods and Morse theoretic
aspects, especially the homological local linking. First, by the hypotheses (H)(i)
and (H)(iii), we show that the corresponding energy functional J of (1.1) satisfies
the Cerami condition. Second, by (H)(ii) and (H)(iii), we prove that J is coercive,
and then by the Weierstrass-Tonelli theorem, it is concluded that there exists u1 ̸= 0
such that J ′(u1) = 0. Finally, in order to obtain the second solution u2, we verify
that J has a local (1, 1)-linking at 0 by hypothesis (H)(ii). In addition, we study
the eigenvalue problem of the weighted q-Laplace equation with mixed boundary
conditions.

The rest of this paper is organized as follows. In Section 2 we recall some main
variational tools and introduce the Musielak-Orlicz spaces LH(Ω) and W 1,H(Ω)
including some of its properties. We also present some properties of the weighted
q-Laplace equation with mixed boundary conditions and the related first eigenvalue
and its eigenfunction. The proof of the Theorem 1.1 is then given in Section 3.
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2. Preliminaries

In this section, we first recall the main properties on the theory of Musielak-Orlicz
spaces LH(Ω) and W 1,H(Ω), respectively. We refer to Colasuonno-Squassina [7],
Crespo-Blanco-Gasiński-Harjulehto-Winkert [10], Harjulehto-Hästö [16] and Musie-
lak [26] for the main results in this direction.

Suppose (1.2) and let H : Ω× [0,∞) → [0,∞) be the function defined by

H(x, t) = tp + a(x)tq.

Then, the Musielak-Orlicz space LH(Ω) is defined by

LH(Ω) =
{
u
∣∣∣ u : Ω → R is measurable and ρH(u) < +∞

}
equipped with the Luxemburg norm

∥u∥H = inf
{
τ > 0 ρH

(u
τ

)
≤ 1
}
,

where the modular function ρH(·) is given by

ρH(u) :=

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p + a(x)|u|q

)
dx.

We know that the space LH(Ω) is a reflexive Banach space. Moreover, we define
the weighted Lebesgue space Lq

a(Ω)

Lq
a(Ω) =

{
u
∣∣∣ u : Ω → R is measurable and

∫
Ω

a(x)|u|q dx < +∞
}
,

which is endowed with the seminorm

∥u∥q,a =

(∫
Ω

a(x)|u|q dx
) 1

q

.

It is not easy to check the validity of the following continuous embeddings

Lq(Ω) ↪→ LH(Ω) ↪→ Lq
a(Ω) ∩ Lp(Ω).

The Musielak-Orlicz Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

∥u∥1,H = ∥∇u∥H + ∥u∥H,

where ∥∇u∥H = ∥ |∇u| ∥H.
Similarly, we define

W 1,K(Ω) = {u ∈ Lq
a(Ω) : |∇u| ∈ Lq

a(Ω)} ,

which is endowed with the norm

∥u∥1,K = ∥∇u∥q,µ + ∥u∥q,µ.

We know that W 1,H(Ω) and W 1,K(Ω) are reflexive Banach spaces. Moreover, we
have the following embedding results, see for example Crespo-Blanco-Gasiński-
Harjulehto-Winkert [10, Proposition 2.16] or Gasiński-Winkert [15, Proposition 2.2].
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Proposition 2.1. Let (1.2) be satisfied and let

p∗ :=
Np

N − p
and p∗ :=

(N − 1)p

N − p
.

Then the following embedding hold:

(i) W 1,H(Ω) ↪→ Lr(Ω) is continuous for all r ∈ [1, p∗] and compact for all
r ∈ [1, p∗);

(ii) W 1,H(Ω) ↪→ Lr(∂Ω) is continuous for all r ∈ [1, p∗] and compact for all
r ∈ [1, p∗);

(iii) W 1,H(Ω) ↪→ W 1,K(Ω) is continuous.

Let

ϱ(u) =

∫
Ω

(
|∇u|p + a(x)|∇u|q + |u|p + a(x)|u|q

)
dx. (2.1)

The norm ∥ · ∥ and the modular function ϱ are related as follows, see Liu-Dai [18,
Proposition 2.1] or Crespo-Blanco-Gasiński-Harjulehto-Winkert [10, Proposition
2.14].

Proposition 2.2. Let (1.2) be satisfied, let u ∈ W 1,H(Ω) and let ϱ be defined by
(2.1). Then the following hold:

(i) If u ̸= 0, then ∥u∥ = λ if and only if ϱ(uλ ) = 1;
(ii) ∥u∥ < 1 (resp.> 1, = 1) if and only if ϱ(u) < 1 (resp.> 1, = 1);
(iii) If ∥u∥ < 1, then ∥u∥q ≤ ϱ(u) ≤ ∥u∥p;
(iv) If ∥u∥ > 1, then ∥u∥p ≤ ϱ(u) ≤ ∥y∥q;
(v) ∥u∥ → 0 if and only if ϱ(u) → 0;
(vi) ∥u∥ → +∞ if and only if ϱ(u) → +∞.

Let L : W 1,H(Ω) → W 1,H(Ω)∗ be the nonlinear operator given by

⟨L(u), v⟩H =

∫
Ω

(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
· ∇v dx

+

∫
Ω

(
|u|p−2u+ a(x)|u|q−2u

)
v dx

(2.2)

for all u, v ∈ W 1,H(Ω). Here, ⟨ · , · ⟩H stands for the the duality pairing between
W 1,H(Ω) and its dual space W 1,H(Ω)∗. The operator L : W 1,H(Ω) → W 1,H(Ω)∗

has the following properties, see Liu-Dai [18] or Crespo-Blanco-Gasiński-Harjulehto-
Winkert [10, Proposition 3.5].

Proposition 2.3. The operator L defined by (2.2) is bounded (that is, it maps
bounded sets into bounded sets), continuous, strictly monotone (hence maximal
monotone) and it is of type (S+).

Next, we recall some definitions and tools that will be used in this paper.

Definition 2.4. Let X be a real Banach space and let X∗ be its dual space. We
say that J ∈ C1(X) satisfies the Cerami-condition (C-condition for short), if for
any {un}n∈N ⊆ X such that {J(un)}n∈N ⊆ R is bounded and (1+ ∥un∥)J ′(un) → 0
in X∗, admits a strongly convergent subsequence.

The following result can be found in Ambrosetti-Malchiodi [1, Theorem 5.5].
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Proposition 2.5. Suppose that X is a reflexive Banach space. If J : X → R is
coercive and sequentially weakly lower semi-continuous on X, then I is bounded
from below on X and has a minimum in X.

Let X be a Banach space, J ∈ C1(X,R) and c ∈ R. We introduce the following
sets

Jc = {u ∈ X : J(u) ≤ c},
KJ = {u ∈ X : J ′(u) = 0} ,
Kc

J = {u ∈ KJ : J(u) = c} ,

where KJ is the set of all critical points of J .
Consider a topological pair (A,B) such that B ⊆ A ⊆ X. For every k ∈

N0 we denote by Hk(A,B) the kth-relative singular homology group with integer
coefficients for the pair (A,B). If u ∈ Kc

J is isolated, the critical groups of J at u
are defined by

Ck(J, u) = Hk(J
c ∩ U, Jc ∩ U \ {u}) for all k ≥ 0,

with U being a neighborhood of u such that KJ ∩ Jc ∩ U = {u}. The excision
property of singular homology implies that this definition is independent of the
choice of the isolating neighborhood U .

If J ∈ C1(X,R) satisfies the C-condition (see Definition 2.4), inf J(KJ) > −∞
and c < inf J(KJ), then the critical groups of J at infinity are defined by

Ck(J,∞) = Hk(X, Jc) for all k ≥ 0.

Taking Corollary 5.3.12 of Papageorgiou-Rădulescu-Repovš [32] into account,
this definition is independent of the choice of the level c < inf J(KJ).

We use the local (m,n)-linking method to prove the existence of a solution of
problem (1.1). The following definition is originally due to Perera [35] (see also
Papageorgiou-Rădulescu-Repovš [32, Definition 6.6.13]).

Definition 2.6. Let X be a Banach space, J ∈ C1(X,R), and 0 an isolated critical
point of J with J(0) = 0. Let m,n ∈ N. Suppose there exist a neighborhood U of 0
and nonempty sets E0 ⊆ E ⊆ U , D ⊆ X such that E0 ∩D = ∅ and

(a) J0 ∩ U ∩KJ = {0};
(b) dim im i∗ − dim im j∗ ≥ n, where

i∗ : Hm−1(E0) → Hm−1(X \D) and j∗ : Hm−1(E0) → Hm−1(E)

are the homomorphisms induced by the inclusion map i : E0 → X \D and
j : E0 → E;

(c) J |E ≤ 0 < J |U∩D\{0}.

Then we say that J has a “local (m,n)-linking” near the origin.

A very helpful result is the following corollary, see Papageorgiou-Rădulescu-
Repovš [32, Corollary 6.7.10].

Proposition 2.7. If X is a Banach space, J ∈ C1(X) is bounded below and satisfies
the C-condition, J has a local (m,n)-linking at 0 with m,n ∈ N and 0 is not a global
minimizer of J , then J has at least three critical points.
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Next, we want to study an appropriate eigenvalue problem following the ideas
of Papageorgiou-Rădulescu-Repovš [31] and Li-Liu-Cheng [17]. We consider the
following weighted q-Laplacian eigenvalue problem with mixed boundary conditions

− div
(
a(x)|∇u|q−2∇u

)
+ a(x)|u|q−2u = λ|u|q−2u in Ω,

u = 0 on σ,(
a(x)|∇u|q−2∇u

)
· ν = λ|u|q−2u on Γ,

(2.3)

where q and a(·) satisfy the hypothesis (1.2). The first eigenvalue λ1(q) > 0 of (2.3)
has the following variational characterization

λ1(q) = inf


∫
Ω

a(x)
(
|∇u|q + |u|q

)
dx∫

Ω

|u|q dx+

∫
Γ

|u|q dS
: u ∈ W 1,K(Ω) \ {0}

 . (2.4)

The corresponding eigenfunction u1 ∈ W 1,K(Ω) to the first eigenvalue λ1 > 0
satisfies u1 ∈ L∞(Ω) and u1(x) > 0 for a.a.x ∈ Ω which can be shown similar to
Proposition 3 of Papageorgiou-Rădulescu-Zhang [33].

Furthermore, let λ̃1(p) be the first eigenvalue of the following p-Laplacian mixed
boundary value problem

−div
(
|∇u|p−2∇u

)
= λ|u|p−2u in Ω,

u = 0 on σ,(
|∇u|p−2∇u

)
· ν = λ|u|p−2u on Γ.

(2.5)

Based on the results of Li-Liu-Cheng [17] we know that the first eigenvalue λ̃1(p) of
(2.5) is positive, simple and isolate. Let ũ1 be the positive eigenfunction associated

with λ̃1(p), then ũ1 ∈ L∞(Ω). Moreover, the second eigenvalue λ̃2(p) of (2.5) can
be written as

λ̃2(p) = inf
{
λ̃(p) : λ̃(p) is an eigenvalue of (2.5) with λ̃(p) > λ̃1(p)

}
,

see Li-Liu-Cheng [17, Proposition 5.2].

3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. Recall that X = {u ∈
W 1,H(Ω) : u|σ = 0} and let ∥u∥ = ∥u∥1,H for all u ∈ X be the norm of X. The
corresponding energy functional J : X → R related to problem (1.1) is given by

J(u) =
1

p

∫
Ω

(|∇u|p + |u|p) dx+
1

q

∫
Ω

a(x) (|∇u|q + |u|q) dx

−
∫
Ω

F (x, u) dx−
∫
Γ

G(x, u) dS.

Under our assumptions, it is standard to check that J : X → R is well-defined and
of class C1 and the solutions of problem (1.1) are the critical points of J : X → R.
First, we will show that J : X → R satisfies the C-condition.

Proposition 3.1. Let hypotheses (1.2) and (H) be satisfied, then the energy func-
tional J : X → R satisfies the C-condition.
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Proof. Let {un}n∈N ⊆ X be a sequence such that

|J(un)| ≤ M1 for some M1 > 0 (3.1)

and

(1 + ∥un∥)J ′(un) → 0 in X∗ for n → ∞. (3.2)

By (3.2) and (2.2), we have

|⟨J ′(un), v⟩| =
∣∣∣∣⟨L(un), v⟩H −

∫
Ω

f(x, un)v dx−
∫
Γ

g(x, un)v dS

∣∣∣∣
≤ εn∥v∥

1 + ∥un∥

(3.3)

for all v ∈ X with εn → 0+, which implies that

− εn∥v∥
1 + ∥un∥

≤ ⟨J ′(un), v⟩ ≤
εn∥v∥

1 + ∥un∥
. (3.4)

Taking v = un in (3.3), it follows from (3.3) and (3.4) that,

−
∫
Ω

[
(|∇un|p + |un|p) + a(x)(|∇un|q + |un|q)

]
dx

+

∫
Ω

f(x, un)un dx+

∫
Γ

g(x, un)un dS ≤ εn.

(3.5)

for all n ∈ N. Moreover, by (3.1) we obtain∫
Ω

(
q

p
(|∇un|p + |un|p) + a(x)(|∇un|q + |un|q)

)
dx

−
∫
Ω

qF (x, un) dx−
∫
Γ

qG(x, un) dS ≤ qM1.

(3.6)

Adding (3.5) and (3.6) we have(
q

p
− 1

)∫
Ω

(|∇un|p + |un|p) dx+

∫
Ω

(f(x, un)un − qF (x, un)) dx

+

∫
Γ

(g(x, un)un − qG(x, un)) dS ≤ M2,

(3.7)

for some M2 > 0. Since p < q, we get in particular that∫
Ω

(f(x, un)un − qF (x, un)) dx+

∫
Γ

(g(x, un)un − qG(x, un)) dS ≤ M2. (3.8)

Claim: {un}n∈N ⊆ X is bounded.
Suppose that ∥un∥ → ∞. We take vn = un

∥un∥ which implies that ∥vn∥ = 1. Then

we may assume that

vn ⇀ v in X and vn → v in Lr1(Ω) and Lr2(∂Ω)

for some v ∈ X, see Proposition 2.1 (ii), (iv).

Suppose v = 0. Let µ ≥ 1 and put ṽn = (qµ)
1
q vn for all n ∈ N. So we have

ṽn → 0 in Lr1(Ω) and Lr2(∂Ω), which implies that∫
Ω

F (x, ṽn) dx+

∫
Γ

G(x, ṽn) dS → 0 as n → ∞.
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Thus, for all ε > 0 we can find n0 ∈ N such that∫
Ω

F (x, ṽn) dx+

∫
Γ

G(x, ṽn) dS < ε. (3.9)

for all n ≥ n0. Now we choose tn ∈ [0, 1] such that

J(tnun) = max{J(tun) : 0 ≤ t ≤ 1} for all n ∈ N. (3.10)

Recalling ∥un∥ → ∞ as n → ∞, we can find n1 ∈ N such that

0 <
(qµ)

1
q

∥un∥
≤ 1 for all n ≥ n1. (3.11)

Taking ε = 1
2 min

{
q

p
q

p , 1

}
µ

p
q in (3.9), we conclude from (3.9), (3.10) and (3.11)

that

J(tnun) ≥ J

(
(qµ)

1
q

∥un∥
un

)
= J(ṽn)

=
1

p
q

p
q µ

p
q

(
∥∇vn∥pp + ∥vn∥pp

)
+ µ

(
∥∇vn∥qa,q + ∥vn∥qa,q

)
−
∫
Ω

F (x, ṽn) dx−
∫
Γ

G(x, ṽn) dS

≥ min

{
q

p
q

p
, 1

}
µ

p
q ϱ(vn)−

∫
Ω

F (x, ṽn) dx−
∫
Γ

G(x, ṽn) dS

≥ 1

2
min

{
q

p
q

p
, 1

}
µ

p
q ,

for all n ≥ max{n1, n0}. Since µ ≥ 1 is arbitrary, we obtain

J(tnun) → +∞ as n → ∞. (3.12)

Recall that (3.1) implies J(un) ≤ M1 for all n ∈ N. Obviously J(0) = 0. Hence
there exists n2 ≥ N such that

tn ∈ (0, 1) for all n ≥ n2. (3.13)

It follows from (3.10) and (3.13) by using the chain rule that

0 = tn
d

dt
J(tun)|t=tn = ⟨J ′(tnun), tnun⟩

= ∥∇ (tnun)∥pp + ∥tnun∥pp + ∥∇ (tnun)∥qa,q + ∥tnun∥qa,q

−
∫
Ω

f(x, tnun)tnun dx−
∫
Γ

g(x, tnun)tnun dS

for all n ≥ n2, which can be equivalently written as

∥∇ (tnun)∥pp + ∥tnun∥pp + ∥∇ (tnun)∥qa,q + ∥tnun∥qa,q

=

∫
Ω

f(x, tnun)tnun dx+

∫
Γ

g(x, tnun)tnun dS
(3.14)

for all n ≥ n2. Hence, from (3.14) we have

qJ(tnun) =
q

p

(
∥∇ (tnun)∥pp + ∥tnun∥pp

)
+ ∥∇ (tnun)∥qa,q + ∥tnun∥qa,q
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−
∫
Ω

qF (x, tnun) dx−
∫
Γ

qG(x, tnun) dS

=

(
q

p
− 1

)(
∥∇ (tnun)∥pp + ∥tnun∥pp

)
+

∫
Ω

(f(x, tnun)un − qF (x, tnun)) dx

+

∫
Γ

(g(x, tnun)un − qG(x, tnun)) dS

for all n ≥ n2. It follows from (3.7) that

qφ(tnun) ≤ M2 for all n ≥ n2.

which contradicts (3.12).

Suppose now v ̸≡ 0. Let Ω̂ = Ω ∪ Γ and define

Ω̂+ =
{
x ∈ Ω̂ : v(x) > 0

}
and Ω̂− =

{
x ∈ Ω̂ : v(x) < 0

}
.

Then at least one of these measurable sets has a positive Lebesgue measure on RN .
Note that

un(x) → +∞ for a.a.x ∈ Ω̂+ and un(x) → −∞ for a.a.x ∈ Ω̂−.

Let Ω̂1 = Ω̂+ ∪ Ω̂− and let | · | be the Lebesgue measure on RN . Then, |Ω̂1| > 0.
By (H)(i) and (H)(iii), we have

f(x, y)y − qF (x, y) ≥ c1 for a.a.x ∈ Ω,

g(x, y)y − qG(x, y) ≥ c2 for a.a.x ∈ Γ,

for all y ∈ R and for some c1, c2 > 0. Using this, we obtain∫
Ω

(f(x, un)un − qF (x, un)) dx+

∫
Γ

(g(x, un)un − qG(x, un)) dS

=

∫
Ω̂1

(f(x, un)un − qF (x, un) + g(x, un)un − qG(x, un)) dx

+

∫
Ω\Ω̂1

(f(x, un)un − qF (x, un) + g(x, un)un − qG(x, un)) dx

≥
∫
Ω̂1

(f(x, un)un − qF (x, un) + g(x, un)un − qG(x, un)) dx+ c3|Ω \ Ω̂1|

for some c3 = min{c1, c2} > 0. From (H)(iii) it follows that∫
Ω

(f(x, un)un − qF (x, un)) dx+

∫
Γ

(g(x, un)un − qG(x, un)) dS → +∞,

which contradicts (3.8). Therefore, {un}n∈N ⊆ X is bounded. This proves the
claim.

From the boundedness of the sequence, we can find a subsequence, still denoted
by {un}n∈N, such that

un ⇀ u in X and un → u in Lr1(Ω) and in Lr2(∂Ω).

We choose v = un − u in (3.3) and obtain using the convergence properties above
that

lim
n→∞

⟨L(un), un − u⟩H = 0.
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Therefore, it follows that un → u in X since L is a mapping of type (S+), see
Proposition 2.3. □

Next, we prove that J : X → R is coercive.

Proposition 3.2. Let hypotheses (1.2) and (H) be satisfied, then the energy func-
tional J : X → R is coercive.

Proof. Note that

d

dt

(
F (x, t)

|t|q

)
=

f(x, t)|t|q − q|t|q−2tF (x, t)

|t|2q

=
|t|q−2t

(
f(x, t)t− qF (x, t)

)
|t|2q

.

From hypothesis (H)(iii), for any δ > 0, there exists Mδ > 0 such that

f(x, t)t− qF (x, t) ≥ δ for a.a.x ∈ Ω and for all |t| ≥ Mδ.

Hence, we obtain

d

dt

(
F (x, t)

|t|q

)
≥ δ

tq+1
, if t ≥ Mδ,

≤ − δ

|t|q+1
, if t ≤ −Mδ.

Integrating this inequality, we obtain

F (x, t)

|t|q
− F (x, u)

|u|q
≥ −δ

q

(
1

|t|q
− 1

|u|q

)
(3.15)

for a.a.x ∈ Ω and for all |t| ≥ |u| ≥ Mδ. By hypothesis (H)(ii), for any ε > 0, there
exists Mε > 0 such that

F (x, t) ≤ 1

q
(λ1(q) + ε) |t|q for a.a.x ∈ Ω and for all |t| ≥ Mε.

Using this inequality in (3.15) and letting |t| → ∞, we obtain

1

q
(λ1(q) + ε)− F (x, u)

|u|q
≥ δ

q

1

|u|q
,

that is,

(λ1(q) + ε)|u|q − qF (x, u) ≥ δ

for a.a.x ∈ Ω and for all |u| ≥ M = max{Mδ,Mε}. Letting ε → 0, we obtain

λ1(q)|u|q − qF (x, u) ≥ δ. (3.16)

Similar arguments apply to G(·, ·), that is, we can show

λ1(q)|u|q − qG(x, u) ≥ δ (3.17)

for a.a.x ∈ Γ and for all |u| ≥ M .
Now, we claim that J : X → R is coercive. Indeed, for any u ∈ X, it follows

from X ⊂ W 1,H(Ω) ↪→ W 1,K , (2.4) and (3.16) as well as (3.17) that

J(u) =
1

p

∫
Ω

(|∇u|p + |u|p) dx+
1

q

∫
Ω

a(x)(|∇u|q + |u|q) dx

−
∫
Ω

F (x, u) dx−
∫
Γ

G(x, u) dS
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≥ 1

p

∫
Ω

(|∇u|p + |u|p) dx+
1

q
λ1(q)

(∫
Ω

|u|q dx+

∫
Γ

|u|q dS

)
−
∫
Ω

F (x, u) dx−
∫
Γ

G(x, u) dS

=
1

p

∫
Ω

(|∇u|p + |u|p) dx+
1

q

∫
Ω

(λ1(q) |u|q − qF (x, u)) dx

+
1

q

∫
Γ

(λ1(q) |u|q − qG(x, u)) dS

≥ δ

q
(|Ω|+ |Γ|)

for a.a.x ∈ Ω ∪ Γ and for all |u| ≥ M , which implies that J : X → R is coercive
since δ is arbitrary and |Ω| , |Γ| > 0. □

Finally, we will prove that J : X → R has a local (1, 1)-linking at 0.

Proposition 3.3. Let hypotheses (1.2) and (H) be satisfied, then the energy func-
tional J : X → R has a local (1, 1)-linking at 0.

Proof. Let V denote the space spanned by ũ1(p) and let

W =

{
u ∈ X :

∫
Ω

|ũ1|p−1udx+

∫
Γ

|ũ1|p−1udS = 0

}
.

We claim that

X = V ⊕W. (3.18)

Indeed, for any u ∈ X, writing u = αũ1 + w where w ∈ X and

α = λ̃1(p)

∫
Ω
|ũ1|p−1udx+

∫
Γ
|ũ1|p−1udS∫

Ω
|∇ũ1|p dx

.

Recall that

λ̃1(p) =

∫
Ω
|∇ũ1|p dx∫

Ω
|ũ1|p dx+

∫
Γ
|ũ1|p dS

,

see (2.5). Thus we obtain∫
Ω

|ũ1|p−1w dx+

∫
Γ

|ũ1|p−1w dS = 0.

Hence, w ∈ W and our claim is true.
We may assume that KJ is finite, otherwise we would have found infinite number

of critical points of J which are solutions of problem (1.1). Now, let

Bρ = {u ∈ X : ∥u∥ ≤ ρ}

and choose ρ ∈ (0, 1) small enough such that KJ ∩ Bρ = {0}. Furthermore, let
ε > 0 small enough such that the hypothesis (H)(iv) holds, that is,

λ̃1(p) |t|p ≤ θ |t|p ≤ pF (x, t) ≤ λ̃ |t|p ≤ λ̃2(p) |t|p , (3.19)

λ̃1(p) |t|p ≤ θ |t|p ≤ pG(x, t) ≤ λ̃ |t|p ≤ λ̃2(p) |t|p , (3.20)
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for all |t| ≤ ε. Recall that all norms are equivalent on a finite-dimensional normed
space, see, for example, Papageorgiou-Winkert [34, Proposition 3.1.17, p.183]. Thus
making ρ ∈ (0, 1) smaller if necessary, we can obtain that ∥u∥ ≤ ρ implies

|u| ≤ ε for all u ∈ V. (3.21)

Then for tũ1 = u ∈ V ∩Bρ with t ∈ (0, 1), by (3.19), (3.20) and (3.21) we have

J(u)

≤ λ̃1(p)t
p

p

(∫
Ω

|ũ1|p dx+

∫
Γ

|ũ1|p dS
)
+

tq

q

∫
Ω

a(x)(|∇ũ1|q + |ũ1|q) dx

− θtp

p

(∫
Ω

|ũ1|p dx+

∫
Γ

|ũ1|p dS
)

=
tq

q

∫
Ω

a(x)(|∇ũ1|q + |ũ1|q) dx− tp

p

(
θ − λ̃1(p)

)(∫
Ω

|ũ1|p dx+

∫
Γ

|ũ1|p dS
)

= c1t
q − c2t

p for some c1, c2 > 0.

Taking ρ ∈ (0, 1) small enough yields

J |V ∩Bρ
< 0 (3.22)

since 1 < p < q. Recall that X = V ⊕W . It is clear that∫
Ω

|∇u|p dx ≥ λ̃2(p)

(∫
Ω

|u|p dx+

∫
Γ

|u|p dS

)
for all u ∈ W. (3.23)

Then for all u ∈ W ∩Bρ \ {0}, by hypothesis (H)(iv) and (3.23), we have

J(u)

=

∫
Ω

(
1

p
(|∇u|p + |u|p) + a(x)

q
(|∇u|q + |u|q)

)
dx−

∫
Ω∩{|u|<ε}

F (x, u) dx

−
∫
Ω∩{|u|⩾ε}

F (x, u) dx−
∫
Γ∩{|u|<ε}

G(x, u) dS −
∫
Γ∩{|u|⩾ε}

G(x, u) dS

≥ 1

p

∫
Ω

|∇u|p dx− λ̃

p

(∫
Ω

|u|p dx+

∫
Γ

|u|p dS
)
+

1

p

∫
Ω

|u|p dx

+
1

q

∫
Ω

a(x)(|∇u|q + |u|q) dx−
∫
Ω∩{|u|⩾ε}

F (x, u) dx−
∫
Γ∩{|u|⩾ε}

G(x, u) dS

≥ 1

p

(
1− λ̃

λ̃2(p)

)∫
Ω

|∇u|p dx+
1

q

∫
Ω

a(x)(|∇u|q + |u|q) dx

+
1

p

∫
Ω

|u|p dx− c1

∫
Ω

|u|r1 dx− c2

∫
Ω

|u|r2 dx

≥ 1

q

(
1− λ̃

λ̃2(p)

)
ϱ(u)− c3 ∥u∥r1 − c4 ∥u∥r2

≥ 1

q

(
1− λ̃

λ̃2(p)

)
∥u∥q − c3 ∥u∥r1 − c4 ∥u∥r2

Since r1, r2 > q and ρ ∈ (0, 1) is sufficiently small, we have

J |W∩Bρ\{0} > 0. (3.24)



14 Y.YANG, W.LIU, P.WINKERT, AND X.YAN

Now let

U = B̄ρ, E0 = V ∩ ∂Bρ and E = V ∩Bρ.

Then we have 0 ̸∈ E0 ⊆ E ⊆ U and from (3.22) as well as (3.24) we obtain
E0 ∩W = ∅ .

From (3.18), for every u ∈ X, we can write it in the form

u = v + w with v ∈ V and w ∈ W.

Let h : [0, 1]× (X \W ) → X \W defined by

h(t, u) = (1− t)u+ tρ
v

∥v∥
for all [0, 1] and for all u ∈ X \W.

This implies

h(0, u) = u and h(1, u) = ρ
v

∥v∥
∈ E0.

By Papageorgiou-Rădulescu [29, Definition 5.3.10], we know that E0 is a defor-
mation retract of X \W . So we have that

i∗ : H0(E0) → H0(X \ {0})

is an isomorphism, see Eilenberg-Steenrod [13, Theorem 11.5] and Papageorgiou-
Rădulescu-Repovš [32, Remark 6.1.6]. Moreover, E = V ∩Bρ is contractible. Hence
H0(E,E0) = 0 due to Eilenberg-Steenrod [13, Theorem 11.5]. Let j∗ : H0(E0) →
H0(E), then we have dim im j∗ = 1, see Eilenberg-Steenrod [13, Remark 6.1.26].
Therefore, we have

dim im i∗ − dim im j∗ = 2− 1 = 1.

Then we obtain that J : X → R has a local (1, 1)-linking at 0, see Definition 2.6. □

By Proposition 3.3 and Theorem 6.6.17 of Papageorgiou-Rădulescu-Repovš [32],
we know that

dimC1(J, 0) ≥ 1.

Based on the results above, we are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1. First, since W 1,H(Ω) ↪→ Lr1(Ω) and W 1,H(Ω) ↪→ Lr2(∂Ω)
are compact due to Proposition 2.1, we know that J : X → R is sequentially weakly
lower semicontinuous. From Proposition 3.2 we conclude that J : X → R is coercive
as well. Therefore, by Proposition 2.5, we deduce that there exists u1 ∈ X such
that

J(u1) = min{J(u) : u ∈ X}.

By the proof of Proposition 3.3, we see that

J(u1) < 0 = J(0),

which implies that u1 ̸= 0 and u1 ∈ KJ , that is, u1 ∈ KJ is a nontrivial solution
of problem (1.1). Moreover, it follows from Propositions 2.7, 3.1 and 3.3 that there
exists u2 ∈ KJ such that u2 ̸∈ {0, u1}, which implies that u2 is the second nontrivial
solution of problem (1.1). From Theorem 3.1 of Gasiński-Winkert [15] we conclude
that u1 and u2 are bounded. □
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