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ABSTRACT. The paper deals with the following double phase problem

P q .
—-m |:/ (@ + a(x)ﬂ) dx:| div (|VulP™2Vu + a(z)|Vul|T2Vu) = M ™7 +uP 1 in Q,
Q p q
u >0 in Q,
u=0 on 012,

where Q C RY is a bounded domain with Lipschitz boundary 8Q, N > 2, m represents a Kirchhoff
coefficient, 1 < p < ¢ < p* with p* = Np/(NN — p) being the critical Sobolev exponent to p, a bounded
weight a(-) > 0, A > 0 and v € (0,1). By the Nehari manifold approach, we establish the existence of
at least one weak solution.

1. INTRODUCTION

In this paper, we combine the effects of a nonlocal Kirchhoff coefficient and a double phase operator
with a singular term and a critical Sobolev nonlinearity. Precisely, we study the problem

P a .
—m [/ (W + a(a:)|v;|> da:] Ly () = "7 +uP -1 in ,
Q

p
u>0 in €, (Px)
u=20 on 0,
where along the paper, and without further mentioning, Q C R¥ is a bounded domain with Lipschitz

boundary 952, dimension N > 2, A > 0 is a real parameter and exponent « € (0,1). The main operator
L3, is the so-called double phase operator given by

Ly ,(u) = div (IVulP2Vu + a(z)|Vu|!>Vu), ue€ Wyt ), (1.1)

with WO1 (Q) being the homogeneous Musielak-Orlicz Sobolev space where we assume that
(h1) 1<p< N,p<g<p*and 0<a() € L*(Q) with p* being the critical Sobolev exponent to p
given by
«_ Np
s .
While the nonlocal term m in (Py) denotes a Kirchhoff coefficient satisfying

P (1.2)

(hg) m: [0,00) — [0,00) is a continuous function defined by
m(t) = ag + bot’ =1 for all t >0,
where ag > 0, by > 0 with 6 € [1,p*/q).
Problem (Py) is said to be of double phase type because of the presence of two different elliptic

growths p and ¢q. The study of double phase problems and related functionals originates from the
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seminal paper by Zhikov [25], where he introduced for the first time in literature the related energy
functional to (1.1) defined by

w»—>/ﬂ(|Vw|p—|—a(a:)|Vw|q) dz. (1.3)

This kind of functional has been used to describe models for strongly anisotropic materials in the
context of homogenization and elasticity. Indeed, the modulating coefficient a(-) dictates the geometry
of composites made of two different materials with distinct power hardening exponents p and ¢. From
the mathematical point of view, the behavior of (1.3) is related to the sets on which the weight function
a(-) vanishes or not. In this direction, Zhikov found other mathematical applications for (1.3) in the
study of duality theory and of the Lavrentiev gap phenomenon, as shown in [26, 27]. Also, (1.3) belongs
to the class of the integral functionals with nonstandard growth condition, according to Marcellini’s
terminology [22, 23]. Following this line of research, Mingione et al. provide famous results in the
regularity theory of local minimizers of (1.3), see, for example, the works of Baroni-Colombo-Mingione
[4, 5] and Colombo-Mingione [9, 10].

Starting from [25], several authors studied existence and multiplicity results for nonlinear problems
driven by (1.1) with the help of different variational techniques. In particular, Fiscella-Pinamonti [18]
introduced two different double phase problems of Kirchhoff type, with the same variational structure
set in VVO1 H (©2). By the mountain pass and fountain theorems, existence and multiplicity results are
provided in [18]. Following this direction, in [17] Fiscella-Marino-Pinamonti-Verzellesi consider some
classes of Kirchhoff type problems on a double phase setting but with nonlinear boundary conditions.
Combining variational methods, truncation arguments and topological tools, different multiplicity re-
sults are established. Recently, the authors [2] were able to study a Kirchhoff problem like (P)), but
involving a subcritical term. By a suitable Nehari manifold decomposition, the existence of two different
solutions are provided in [2]. We also mention the works of Cammaroto-Vilasi [7], Isernia-Repovs [20]
and Ambrosio-Isernia [1] for Kirchhoff type problems driven by the p(-)-Laplacian or the (p, ¢)-Laplacian.

The main novelty, as well as the main difficulty, of problem (P,) is the presence of a critical Sobolev
nonlinearity. Indeed, in order to overcome the lack of compactness at critical levels arising from the
presence of the critical term in (P)), the same fibering analysis used in [2] cannot work. For this, we
exploit other variational tools inspired by more recent situations as in [14]. For this, Farkas-Fiscella-
Winkert [14] used a suitable convergence analysis of gradients in order to handle the critical Sobolev
nonlinearity of problem

—div (|VulP"Vu + a(z)|Vu|?>Vu) = Mu|"2u + lulP" 24 in Q,
u=0 on 0f).
Following this direction, we mention [15, 16] concerning existence results for critical double phase prob-

lems involving a singular term and defined on Minkowski spaces in terms of Finsler manifolds, that is
driven by the Finsler double phase operator

L () 1= div (FP~(Vu)VE(Va) + a(x) F1~ (V) VF (V)

where (RY, F) stands for a Minkowski space. While, Crespo-Blanco-Papageorgiou-Winkert [12] consider
a nonhomogeneous singular Neumann double phase problem with critical growth on the boundary, given
by
—div (|[VuP?Vu + a(2)|Vu|?T?Vu) + a(z)u? ! = ((2)u™? + ™! in Q,
(IVulP>Vu + a(z)|Vu|!*Vu) - v = —B(z)uP " on 9.

By the fibering approach introduced by Drébek-Pohozaev [13] along with a Nehari manifold decompo-
sition, the existence of at least two solutions of (1.4) is obtained in [12].

Inspired by the above papers, we solve problem (P)) by a variational approach. Indeed, a function
u € Wy (Q) is said to be a weak solution of problem (Py) if u=7¢ € L'(Q), u > 0 a.e.in  and

mon(V) (£ 0)0) =2 [ pan+ [ s

(1.4)
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is satisfied for all ¢ € W, (), where (-,-) denotes the duality pairing between Wy Q) and its dual
space VVO1 H(Q)* In particular, the weak solutions of (P,) are the critical points of the energy functional
Ja: Wy Q) — R given by

b A 1 .
) = [awtn(va) + P vu] - 2 [ L [
¢ 1—7Ja p* Ja

for any u € Wy " (Q), where
P a
O (u) :/ (|u| +a(x)|u|) dz.
Q\ P q

Hence, the main result reads as follows.

Theorem 1.1. Let hypotheses (hy)-(ha) be satisfied. Then there exists \* > 0 such that for all A €
(0, X*] problem (Py) has at least one weak solution uy such that Jy(uy) < 0.

The proof of Theorem 1.1 is based on a suitable minimization argument on the Nehari manifold. For
this, we extract a minimizing sequence whose energy values converge to a negative number. However, in
order to verify that the sequence actually converges to a solution of (P,) we need a truncation argument
combined with a delicate gradient analysis, inspired by [14].

The paper is organized as follows. In Section 2, we recall the main properties of Musielak-Orlicz
Sobolev spaces WOIH(Q) and state the main embeddings concerning these spaces. Section 3 gives a
detailed analysis of the fibering map, presents the main properties of suitable subsets of the Nehari
manifold and finally shows the existence of a weak solution of problem (P ).

2. PRELIMINARIES

In this section, we will present the main properties and embedding results for Musielak-Orlicz Sobolev
spaces. First, we denote by L"(Q) = L"(£;R) and L"(Q; RY) the usual Lebesgue spaces with the norm
| - || and the corresponding Sobolev space W, () is equipped with the norm ||V - ||,., for 1 < 7 < oo.

Suppose hypothesis (h;) and consider the nonlinear function H: Q x [0,00) — [0, 00) defined by

H(z,t) =P + a(x)t?.
The Musielak-Orlicz Lebesgue space L*(() is given by
LH(Q):{u:Q—HR

u is measurable and o3 (u) < oo}

equipped with the Luxemburg norm
[|lu|l3 = inf {T >0 ‘ oH (E) < 1} ,
T

where the modular function is given by

ox(u) := /Q’H(x,\uDdx: /Q (|u|p+a(m)|u|q) dz.

Next, we recall the relation between the norm || - || and the modular function g4, see Liu-Dai [21,
Proposition 2.1] or Crespo-Blanco-Gasiriski-Harjulehto-Winkert [11, Proposition 2.13].

Proposition 2.1. Let (hy) be satisfied, u € L™(Q) and ¢ > 0. Then the following hold:
(i) Ifu#0, then ||ully = c if and only if o3 (%) = 1;
(ii) ||ullig <1 (resp.>1, =1) if and only if oy (u) <1 (resp.> 1, =1);
(i) If llulle < 1, then [[ul?, < or(w) < [ull;
(iv) If Jlullse > 1, then Jlulll < os(w) < ully:
(v) llulle — 0 if and only if 03((u) — 0;
(vi) |lullyg = oo if and only if ox(u) — 0.



4 R.ARORA, A.FISCELLA, T. MUKHERJEE, AND P. WINKERT

Moreover, we define the weighted space
Li(Q) = {u Q= R‘ u is measurable and / a(x)|ul?dz < oo}
Q

endowed with the seminorm

ol = ( [ ato)laz ) ‘1‘

The corresponding Musielak-Orlicz Sobolev space W17 () is defined by

wiH(Q) = {ue L4Q) : [Vul € L¥()}
equipped with the norm

lulleae = IVulla + llull3,
where | Vull3 = || [Vul |l%. In addition, we denote by Wy " () the completion of C§°(Q) in W1H(1).
Thanks to hypothesis (h;), we know that
[ull = Va3,

is an equivalent norm in VVO1 H(Q), see Crespo-Blanco-Gasiriski-Harjulehto-Winkert [11, Proposition
2.16(ii)]. Furthermore, it is known that L*(Q), WH*(Q) and W, " (Q) are uniformly convex and

so reflexive Banach spaces, see Colasuonno-Squassina [3, Proposition 2.14] or Harjulehto-Héasto [19,
Theorem 6.1.4].
Finally, we recall some useful embedding results for the spaces L*(€2) and Wy 7 (), see Colasuonno-

Squassina [3, Proposition 2.15] or Crespo-Blanco-Gasinski-Harjulehto-Winkert [11, Propositions 2.17
and 2.19].

Proposition 2.2. Let (hy) be satisfied and let p* be the critical exponent to p given in (1.2). Then the
following embeddings hold:
() LH(Q) < L"(Q) and Wy (Q) < W, " (Q) are continuous for all v € [1,p);
i) Wt (Q) < L7(Q) is continuous for all r € [1,p*] and compact for all v € [1,p*);
(11) ( ) — Li(Q) is continuous;
) LY(Q) — LM(Q) is continuous.

3. PROOF THE MAIN RESULT

In order to solve problem (P,), we apply a minimization argument for J) on a suitable subset of
Wy (Q). For this, we define the fibering function 1, : [0,00) — R defined by

Py (t) = Ja(tu) for all t > 0,

which gives

t) = ) + Lt (1w M
5ult) = anom(t70) + o0 | <0y [

It is easy to see that ¢, € C°°((0,00)). In particular, we have for ¢ > 0

(1) = [ao + by (tVW)] ([ Vulll + 97| Vull? ) — At /Q Jul' 7 da — 7" /Q Juf?" dz
and
WI(t) = [ao + body (1)) [(p — P2 Vull? + (g — 1)t9%| V|2 ,]
+bo(0 — D) 2 (tVu) (71 Va2 + 71| Vulg )

+/\7t_7_1/ =7 dz — (p* — 1)tp*—2/ uf?” da.
Q Q
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Thus, we can introduce the Nehari manifold related to our problem which is defined by

N = {u e WoH @)\ {0} = (1) =0}

In particular, we have v € N} if and only if
1) = /\/ |u|' ™7 dx +/ lulP” dz.
' Q Q

Also tu € N, if and only if 4,(1) = 0. Observe that N contains all weak solutions of (P,). Moreover,
we define the following subsets of Ny

N ={ueN, :¢)(1) >0} and Ny ={ueN, : ¢)(1)=0}.

In contrast to [2] we are not going to study the set Ny = {u € Ny : 9;/(1) < 0}. The next Lemma can
be shown as in [2, Lemmas 3.1 and 3.2] replacing r by p*.

Lemma 3.1. Let hypotheses (hy)-(ha) be satisfied.
(i) The functional J>\|NA is coercive and bounded from below for any A > 0.
(i) There exists Ay > 0 such that Ny =0 for all A € (0,Aq).

Let S be the best Sobolev constant in Wy () defined as

[ao + b0¢§{_1(vu)] (IVul? + [[Vu

Vu|?
. Ivul o)
uEWP(
Note that we can write ¥/ (t) in the form
L) =t (au(t) - )\/ |t dx) , t>0, (3.2)
Q
where
7u(8) = a0+ b (V)] (7 TVl + 7 Vlg) = [ e

From this definition we see that tu € N, if and only if
ou(t) = /\/ 177 da. (3.3)
Q
The next Lemma shows that A/ ; is nonempty whenever A is sufficiently small.

Lemma 3.2. Let hypotheses (hy)-(ha) be satisfied and let u € Wol’H () \ {0}. Then there exist Ay >0
and unique t} < th,,. <ty such that

0 <oy (1) = (1) Pu(tt), 0> 0y(t5) = (t2)"4,(t5)  and o (thax) = maxou(t)
whenever A € (0,A2). In particular, tiu € Ny for X € (0, Az).
Proof. For u € Wy () \ {0} the equation
0=0,(t) = [ao +body " (tVW)] [(p = 1+ D> Vullf + (g — 1+ t7>F|[Vull] ]
+bo (0 — 1)@ 2 (tVu) (77| Vullp + 1.a) @IVl + 7Vl ,)

—(p*—1+ ’y)tp*fﬂw/ lulP” da:
Q
can be equivalently written as

[0 + bod (V)] (0 = 1+ N[Vl + (g = 1+ 7)1 [ Vullt,

+bo(0 = )52 (7w) (0777 [Tully + e Vullg, ) (TN Vul + 07Vl (3.4

=(p" -1 +’y)/ |u|p* dz.
Q
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From p* > ¢f and 6 > 1 we see that
p(0=1) +p—p" <min{p(0 —1)+q—p"q(0 —1) +p—p"}

<max{p(0 —1)+q—p*,q@—1)+p—p"} (3.5)
<qg@—-1)+qg—p"=qgf—p" <.

We denote the left-hand side of (3.4) by

Tu(t) = [ao + bod (t90)] [(p = 1+ )77 |Vulls + (g = 1+ )¢~ |Vl ]
+bo(0 = 1)O52(E7w) (777 [Fully + e Vullg, ) (7 Vull + 7 Vullg,,)
Then, from (3.5) and 0 < v < 1 < p < g < p*, we know that
(i) lim Tu(t) = oo, (i) lim T,(t) =0, (iii) 7°(t) <0 forall ¢ > 0.
t—0+ t—o00

From the intermediate value theorem along with (i) and (ii) we can find ¢% . > 0 such that (3.4) holds.
In addition, (iii) implies that ¢%,. is unique due to the injectivity of T,. Moreover, if we consider

ol (t) > 0, then in place of (3.4) we get
T, (t) > (p* =1+ 'y)/ ul?” da.
Q

Since T, is strictly decreasing, this holds for all t < t¥

max-*

The same can be said for o}, (t) < 0 and

t > t¥ . Hence, o, is injective in (0,t%..) and in (¢%,.,00). Furthermore,
Ju(t&ax) = I?fg( Ou (t)

u

o ax > 0 of 0. Moreover, we have

with the global maximum ¢

lim 0,(t) =0 and lim o0,(t) = —oc0.
t—0t+ t—o0

Applying the estimate pgy, (Vu) > ||[Vul/h we obtain

bo _ . . .
T) 2 0 =1+ DIVl — (7 =1+ ) [l (36)
which by using Holder’s inequality and (3.1) results in
P\ PO
1 bo(pd — 1 S
i > olrd —1+1) =t (3.7
IVull, \ p"~'(p* —147)
Note that o, is increasing on (0,t},,.). Hence from ppy (Vu) > [[Vu|b, p < ¢, Hélder’s inequality, (3.1)
and the representation of ¢y in (3.7) we have
b - . .
Outmax) = ou(t) = pT:(fﬁ)pe VB — (t5)” 1+7/ ul? dz
Q
u _ bo uNp* — —p* *_
> (@ vl (s - s vl )
p* — pb bo 0—1+ 0 p" —qb bo 60—1+ 0
> tu P il V P > tu P! 2l v P!
> (S8 ) Sy vy > () gyt vy

pO—1+~y

= (p*_qe) HVUHI_’Y bO (bo(p9 -1 _A'_,)/)Spp) p*—po
p

pr =147 P\ PPt -1 47)

ZAQ/ |u|' ™7 dz,
Q
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where A is given by

pO—1+~y 1—y
A, — Do ( p* —qb )(bo(p9—1+7)S>P*P" S
T\ =14 W —149) il

Q]
From the considerations above we conclude that

Ou(th o) > )\/ lu|' =7 da
Q

whenever A € (0,A3). Since o, is injective in (0,t%,.) and in (t¥,.,00), we can find unique ¥, ty > 0
such that

o () = /\/ 17 dz = oy (8) with o (£2) < 0 < o (£9).
Q

Due to (3.3) we have t{u € N\. Then, from the representation in (3.2), we observe that
o (t) = Uy (t) + ().
Finally, since ¢ (t%) = v/, (t%) = 0 and o), (ty) < 0 < o/, (t}) we derive that
0 <o, (1) = (t1)u(ty) and 0> 0, (ty) = (t2) ¥y (t2)-
This shows, in particular, that t}u € N; for A € (0, Ag). O
Next we show that the modular g4 (V-) is upper bounded with respect to the elements of N, ; . The
proof is similar to that in [2, Proposition 3.4] and so we omitted it.

Lemma 3.3. Let hypotheses (hy)-(hs) be satisfied. Then there exist A3 > 0 and constant D1 = D1(\) >
0 such that

on(Vu) = [[Vullg + [Vullg , < D
for every u € N;r and for every A € (0,As).
By Lemma 3.1(ii), we observe that N is closed in Wy (Q) for A > 0 small enough. We define

OF = inf Jy(u).
A ue]\/')\+ )\()

The next proposition shows that @j < 0. We refer to [2, Proposition 4.1] for its proof.

Proposition 3.4. Let hypotheses (hy)-(ha) be satisfied and let A € (0, min{A1, A2}), with Ay, Ao given
in Lemmas 3.1(ii) and 3.2. Then ©F < 0.

Based on the implicit function theorem in its version stated in Berger [0, p.115] we can proof the
following Lemma which proof is similar to the one in [2, Lemma 4.2].

Lemma 3.5. Let hypotheses (hy)-(h2) be satisfied and let A > 0. Let us consider u € Ny. Then there
exist € > 0 and a continuous function (: B:(0) — (0,00) such that

¢(0)=1 and ((v)(u+v) €Ny forallve B(0),
where B:(0) :={v € W&’H(Q) 2| < e}
Now, we set A* := min{Aj, Ao, Az} with A;, A and A3 > 0 given in Lemmas 3.1(ii), 3.2 and 3.3. Let
A € (0,A%). Applying Ekeland’s variational principle, we obtain a sequence {uy }nen C Ny satisfying
1
05 < Taun) < 05 + (3.8)

Tn(w) > () + 1=l (3.9

n
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for any u € N;. By Lemma 3.1(i), we know that {u,},en is bounded in Wol’H(Q). Hence, by
Proposition 2.2(ii) along with the reflexivity of WO1 ’H(Q), there exist a subsequence, still denoted by
{tn }nen, and an element uy € Wy " (Q) such that

Uy —uy  in WeH(Q), wup, = uy in L5(Q) and w, —uy a.e. inQ (3.10)

for any s € [1,p*). By the coercivity given in Lemma 3.1(i), we can assume that there exist Ey, Fs >0

such that

lim Huan E; and lim Huana = Fs. (3.11)
n—00 ’

n—roo

We get the following technical results.

Lemma 3.6. Let hypotheses (h1)-(h2) be satisfied, let X € (0,A*) and let {un tnen C Ny be a sequence
satisfying (3.8)-(3.9). Then uy # 0.

Proof. Let us assume by contradiction that uy = 0. Then ¢/;, (1) = 0 implies
a0+ 000 (V)] (il + ) = A [ ol o= [ " @z =0,

Using (3.10), (3.11) and letting n — oo, we get

E FE
ao+b0 <pl+2)

Ey+ Ey) —dP =0, 3.12
q

where we set

lim/|un|p* dz =: d?” > 0.

n—r oo
Moreover by (3.8) we have
lim Jy(u,) = OF <0,

n—00

which implies that

E E E E dr
%(]4-2) %(12 - — <. (3.13)
q q p
Recall that Fy, Ey > 0. Then, taking the value of d?” from (3.12) into (3. 13), we derive that
0 _
E, E E, E Ei+FE
a0<1+2>+b0(1+2) - ao-l—bo(-l—) 17*2<0.
p q p q p p

This implies

0 0—1
E, E, E, +F 1/E, E E, E E,+E
a41+2_1*ﬂ+%<y+ﬂ_(1+2) BrE)_,
P q P O\ p q P q P
and so
6—1
1 1 1 1 E, E 11 11
el (=)o (=)o (5 5) o) 3] <
p p q D P q pd p q0 p
which is a contradiction because of p < g < g < p*. O

Lemma 3.7. Let hypotheses (h1)-(h2) be satisfied, let X € (0,A*) and let {un}nen C Ny be a sequence
satisfying (3.8)-(3.9). Then lirr_1>inf Uy (1) >0, that is,

n—oo

lim inf{ [ao + bogl; (V)] [(p — 1+ NI Vun B+ (@ — 1+ %) V|2 ]

#0000 = DA Tu) (Tl + [Vl = 07 = 149 [ Jual” a} > .
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Proof. Since {uy }nen C Ny, we have ¢, (1) =0 and ¢ (1) > 0, that is,
[ao + bod5;  (Vun)] [(p = 1+ NI Vualt + (¢ = 1+ V) Vunlld ]
0000 = DO Tun) [V [} + [Vl = 07 =149 [ fun” do >0

and
a0 + bods;  (Vun)] [(p — p*)[Vunlh + (¢ — p*) [ Vunl|2,,]

+b0(8 — 6% 2 (Vun) (Ve + [ V|2 )2 + A" — 1+7) / | da > 0.
Q
Thus, in order to prove the lemma, it is enough to show that

lim inf{ [a0 + b0, (Vun)] [(0 = 2 ) Vunllh + (@ = p*) I Vun | ]

(3.14)

n—oo

+bo(0 — 1), % (Vun) (I Vun |2 + | Vua||24)? + AMp* — 1 +7) /2 [y | dx} > 0.
¢

By contradicting (3.14), let us assume that

nminf{ [0 + bod? (V)] [0 — 2) Vw2 + (g — p*) [ Vel ]

n—o0

(3.15)
+00(6 = D (Tun) (9 + [V [0 + A" = 142) [ Ju ' dx} ~o.
Q
By Lebesgue dominated convergence theorem, we obtain
lim / U |* 77 da = / lux|' "7 d. (3.16)
Using (3.16) in (3.15), we get
i { fao + b0 (V)] (0= 2Vl + (0= 20Vl
#0000 = DA (Tu) (Tl 4 V0l = =307 = 149) [ fusl' =
Q
which yields, by applying (3.11),
0—1
E E —p"E —p*)E.
—)\/ lux|* =7 dz = [ao + bo (1+2) ] o p()* 1,—383 )p B
Q p q . p Y (3.17)
bo(6 — 1) <E1 EQ) B 9
— | =+ — Ey + Eq)”.
P =1+7y)\p ¢ (B + )
From this, due to p < ¢ < p*, we have
0—1
E E —p*)(E1+ E bo(60 —1)g(EL + FE
—)\/|u,\|1_7dx<b0(1+2) [(q Z*’)(l-i- 2)+0( *)Q(1+ 2)]
0 P g (p* —1+7) P +v-1) (3.18)
_ bo(gf — p*)(E1 + E») <E1 E2>61
= —+=) .
(p*+v-1) P g

Considering 1, (1) =0 and (3.16), we have
0—1
. E E
lim / |un P do = |ag + by <1—|—2>

[E1 + EQ] — )\/ |u>\|1_"’ dzx.
Q
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From this and (3.17), we obtain

E
ao + bo <1+>
p

+y—1 +v—1
Pyl p q* 0 E,
pr+vy—1 pr+y—1

bo(0—1) (B,  Ep\"?
*o( ) (1 2) (B, + By)?
prolty 1 (3.19)
bo(p+7—1) (E1 E2> - bo(pf — p) (E1 E2> !
>—"_ 1 2 (=4+= B+ Ey) + XMV /(71 72 Ei+ E
pr+y—1 \p q (B + 2)+p*—1+’y q (Br + Bo)
bolph +~v—1) (Ey  Eo\"!
_ bl +7-1) )(1+2> (E\ + Ey)
pr+y—1 D q
bo(p +~v —1)

E?.

Tt =)
For any fixed w € W' (2)\ {0}, we know that there exists a unique £y > 0 such that o7, (fmax) = 0.
From this and (3.6), we conclude that

1

bo(pf —1)||Vw|[P? proee

tmax Z O(p +’y >|| w” = tOO (320)
PP (pr = 1+7) Jo lwlP” do

It is easy to verify that tmax > too >ty as defined in (3.7) and from the proof of Lemma 3.2, we know
that As > 0 is chosen in such a way that

bo(p* — ¢b)
Pt +y - 1)

()P Tl = As [ ol 7,
Q
We define
S(w) — bo(p* — qb)
(U}) T 01
Pt +y—1)
with tgo given in (3.20). Taking w = u, in (3.21) and then passing to the limit as n — co we get

nh_)n;o S(up) > 0.

(too)p””*l”VwHZe - Az/ |w|'™7dz >0 for all w € W&’H(Q), (3.21)
Q

On the other hand, by Lemma 3.6 and (3.11), we have that at least one of E; and F5 is not zero.
Let us assume, without any loss of generality, that E; > 0, E5 > 0. Then by (3.18), (3.19), (3.20) along
with ¢f < p* and A € (0, A2), we obtain

—1+v)

bo(p* —gb) bo (po+~v—1)E?\ “p*—p0 0 -
lim S(un) < P’ (p*+-1) ( *1(p*71+71)) By L Az bo(g0 — p*)(Er + E») (El N EQ>9 !
S (MW) e A (p*+v-1) P q

PP 1(p*+y—1)
bo(p* — ¢b) o, bolgd—p")E}
O—1 (1 El 0—1 (% =0.
PP+ - 1) PPl p* +y—1)
This proves the assertion of the lemma. 0

Let h € W, () be nonnegative. From Lemma 3.5 there exists a sequence of maps {Cn fnen such
that ¢, (0) = 1 and ¢, (th)(u, +th) € Ny for sufficiently small ¢ > 0 and for each n € N. From this and
u, € Ny, we have the equations

a0+ b0 (V)] (19 + [ 0al30) = A [ a7 = [ ua"dr =0 (322
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and
a0 + bod; ' (Gu(th) V)] (CH(tR) Vw15 + CL(t)||Vw,ll2.,)

— AT (th) /Q lwn 'Y dz — 2 (th) /Q wn|P” dz = 0 (3.23)

where w,, = u,, + th.

Lemma 3.8. Let hypotheses (hy)-(ha) be satisfied, let A € (0, A*) and let {u, }nen C Ny be a sequence

satisfying (3.8)-(3.9). For any nonnegative function h € Wol’H(Q), the sequence {{(C],(0),h)}nen is
uniformly bounded.

Proof. Subtracting (3.22) from (3.23), we get
(a0 +bod; ! (Vun)) [(IVwally = [VunlB) + (IVwnlld o = [Vunlld 0) + (G5 (th) = 1) Van|I?
+(Gh(th) = D)I[Vwa 1§ ]
+bo [95 1 (Ca(th)Vawn) — 65, (Vun) ] (CE(ER)IVwall} + CE(tR)IVwald )

(3.24)
- A (Ciﬁv(th) —1) / |w,|'Y da — /\/ (|u}n|k7 — |un|177) dzx
Q Q
- (gg* (th) — 1)/ w, P da 7/ (|wn\p* - |un|p*) da = 0.
Q Q
For notational convenience, we set
(Un, B)p :/ |Vu,|P~?Vu, - Vhdz and  (up, h)ga = / a(x)|Vu, |7 *Vu, - Vhdz.
Q Q
We have the following limits
0—1 0—1
n(th)Vw,) — Vu,, _
tm &tV 0n) = G () _ (01 (0), )0~ 1) (T (I + [Vl
+ (0 = 165 (Vun) ((un, h)p + (un, B)g.a),
. ||an||£ - Hvunlli
%E}% t - p<un7h'>p7
po 1Vnllda = IVenllg _ (3.25)
lim ; = ¢{tn, M) g

lim (|wn|p* - |un|p*) dz = p*/ |t |P” " 2up b da,
t—0 Q

lim ¢l =1 s{¢/(0),h) for any s > 1.
t—0 t

Taking into account

/ (ol = [un ') dz > 0
Q

since h is nonnegative, dividing both sides of (3.24) by ¢ > 0 and then passing the limit as ¢t — 0T, we
obtain

0 < (ap+ bo(bg{_l(Vun)) <p/ |V, [P~2Vu, Vhdr + q/ a(x)|Vun, |7 *Vu, Vhdr
Q Q

q
q,a

+ bo(0 = 1) > (Vun) (G (0), h) (I Vunllf + [ Vunllg )

=M= (GO0 1) [ funl a5 (G0 1) [l =5 [ fan Pl

+p (G (0), ) IVun I} + ¢{C(0), [V,
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This implies

0 < (CL(0),h) [<ao T b0gl (Vun) [P Ve 2+ al| Vern 2]
+ by (6 — 1)¢§{_2(Vun) (Hwnng + ||wn\|g7a)2 —A1—7) /Q |, |77 da — p* /Q |un|P*dx]

+ (ap + bo(bg{_l(Vun)) (p/ |V, P2V, - Vhdz + q/ a(x)|Vun |7 *Vu, - Vh dx)
Q Q

—p*/ |t | ~2uph dz.
Q

Therefore, using the fact that u,, € N, we have

0 < (¢, (0), h>{(ao + 0003 (Vun) [0+ = DIVuallh + (¢ +7 = DI VunllZ ]
+0o(0 = 1)85 (V) (| Ve 5 + Ve[ 0)* = (0* 47— 1)/9 |un”*dx}

+ [(ao + bo(bs){_l(Vun) (p/ |Vun\p_2Vun -Vhdx + q/ a(x)|Vun|q_2Vun -Vh dac)
Q Q

—p* / |t [P "2, h dm] .
Q

Now using Lemma 3.7 and taking into account the boundedness of {ty, }nen in W, (1), we infer that
{(¢.(0), h) }nen is bounded below for any nonnegative h € Wy ().
It remains to show that {(¢,(0), h)}nen is bounded above for any nonnegative h € W, (). Assume

by contradiction that limsup,, (¢}, (0),h) = oco. Thus, without loss of generality, we can consider
Cn(th) > (,(0) =1 for n € N large enough . It is easy to see that

[Gn(th) = Ullun |l + Cu(tR)[[th]] = [[(Ca(th) — )t + thCu(th)|| = [IGa (th)wn — unl-
Applying this in (3.9) with u = , (th)w,,, we get
nl [£h]l
|Gn(th) — 1] T Cn(th)T
> JA(Un) - J/\(Cn(th)wn)
b
12 [ el = Gty do = [ [l = (G )] o
Using (3.22) and (3.23) in the inequality above, we obtain

[ | lIthll
|Cn(th) — 1|T + Cn(th)T

[[u

=ag [W(Vun) — G (Ca(th) V) — —— IVunll} + [Vl o = CL(ER) [ Vewonll} — Cﬂ(th)IIanIZ,a)]

-~
0 _ 0 0—1
+ bO |:¢H(V’Un) ¢;{(Cn(th)an) _ ¢7-L1 (_V’yun) (Hvunng + ||Vuan,a)
4 (Ga(th)Vwy,)

. (I Vwallp + G R Vwnlg )

B (ﬁv - pl) /Q [1Ga(th)wn]”” ~ fun| da.
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Now dividing the above inequality by ¢ > 0, passing to the limit as ¢ — 0" and using (3.25), we have

L] >a0[<un,h>p+<un, R = (Gh(0), k) (|Vunll? 4)
1

¥ {<<;;<o>,h> (PIVunl + all Viunll9,0) + plitn, By + @ otn, h>WH

L—x
+bo[ 01 (V) (C (0), B) (Pl VumllZ + gl Vetn J9.)

* li{«;(o» R)(0 = 1), (V) (| Vb + | Vun |2 ,)?

B (V) (C(0), ) (P Vatnll?+ qll Vet ) + 6% (Tatn) (Pt B+t Bga) H

—1
(p 1_;—7)[ /|un|p dx+/ un P~ 2u hdx}

= SO (a0 4 4 00) { 0= 1 DIVl + (0 14Tl

_ « * 1— Un
# 0(0 = DA (Tu) (Tl + V0 = 07 = 149) [ o a = E=2D 00l

-1
+1(ﬁ) {(p v 4 1)(tn, h)p +(q7+1)<Umh>q7a]+W{p<umh>p+q<umh>q’a]

-1
_< +’Y)/| P 2unhda,

which gives a contradiction if we take the limits n — oo on both sides, considering lim sup,,_, (¢}, (0), h) =
00, since by Lemma 3.7 and the boundedness of {u, }nen, there exists some M; > 0 such that

[<ao T (V) {<p 1) [V B4 (g -1 +v>||wng,a}

_ . - 1-—- U,
+bo(6 — 1) (V) (| Vatn [+ [V [2,0)* — (0 —1+v>/ﬂ|un|1’ o - E=0l] S,

for n € N large enough. Thus {(¢/,(0), k) } nen must be bounded above. O

Since Jx(un) = Ja(|un|), without loss of generality, we may assume that u, > 0 a.e.in © and so,
uy > 0 a.e.in . With this assumption, we state our next result.

Lemma 3.9. Let hypotheses (h1)-(h2) be satisfied, let X € (0,A*) and let {un }nen C Ny be a sequence
satisfying (3.8)-(3.9). For any h € Wy (Q) and n € N, u;"h € L' () and as n — oo

(ao + bod, * (Vuy)) U |vun\P—2vun-Vhdm+/ a(x)|Vu,|T*Vu, - Vhdz
Q Q

- )\/ u, "hdz — / uP “Yhdz = 0,(1). (3.26)
Q Q
Proof. Let h € T/VO1 H(Q) be nonnegative and recall the following estimate from the proof of Lemma 3.8
llun ]| th

+ a0 (o) om0 " [ (Ttn) — S Galt) V)]

A - . 1/ . .
- — Un| 77 = |G (th)wy, | T doe — — un|? — |G (th)w,|? | do
o ) Q7 ] e = [l (el |

= Qo [(QSH(vun) - QSH(VU)”)) + (¢H(vwn) - ¢H(Cn(th)vwn))]
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4 20 L(0(F) = 4 (T) + (S(F01) = (1) V0, )]

a L - 1=y — L/ 1-vy _ 1—
1_7/Q[|un| lw,|'7] da /. [Jwy| (o (th)w, V7] da
1 - 1 . X

Dividing the above equation with ¢ > 0 and then passing to limit as t — 0T, we get
A
P
(G (0), Iyt 4 1

—(ao + bO‘bg-;l(vun)) [<um h>p + <um h>q,a + <C’I/’L(0) > |un||p + ”uan )]

. . Uun|1_ﬂ/ - |wn|1_’y] 1—
lim inf dz + X(C, |un\ T dz
1-— v t—=0t Jo t

+ (¢ (0 /|un|p dx—|—/up “thdx

=4g®mﬁm+%%%meWM$WMMM—AAmH”M—éwmd4
(a0 + bodl (V) [(tms WYy + {1, B}l

Uun|1_V - |wn|1_v] *_1
lim inf dz+ [ wb ~“hdx
11— v =0t Jo t Q

—(ao + b0 (Vun)) [(n, 1) + (un, h)g,a]

11—y _ 1—v .
hmlnf/ Uun' [1on] ]dx—l-/ ul” ~'hdx,
Q Q

C1— oo+ t
where we used u, € Ny that is ¢, (1) = 0. This implies
A B T
imgnt [ 10T a4 (90 1)+
1—7v t—=0+ Jo t (3.27)
) N
= [ e o el L2
0 n n

Observe that |u, + th|'™ — |u,|'™7 > 0, so we can use Fatou’s lemma in (3.27) to obtain

A [ up"hdz < (ag + bogh; (V) [(tn, B)p + (tn, B)g.a]
Q

. . h
- [t + o el L
Q n n

Recall that {u,, }nen is bounded in W, (2). Then, passing to the limit as n — oo in the above estimate,
we obtain

(ao + bod, * (Vuy)) [/ |vun\P—2vun.Vhdx+/ a(x)|Vu,|T*Vu, - Vhdz
Q Q

- A | wu,"hdx — / u? "Yhdz > 0,(1), (3.28)
Q Q

for each nonnegative h € VVO1 (1), where we used the uniform boundedness from Lemma 3.8.
We aim to establish that (3.28) holds true for any arbitrary h € WOI’H(Q). For this, we replace h in
(3.28) by (uy, +eh)™ with e > 0 and h € W, ™ (). Renaming as h. = u, + eh and using (3.28), we get

on(1) < (a0 + bl (Vun)) { / Vuun P2V, - Vi da + / o(2)| V|92V, - Vi da
Q Q
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—)\/u;”hjdxf/uﬁ**lhjdx
Q Q

= (ap + bod, 1 (Vuy,)) U |V, |P~?Vu, - Vi, dz +/ a(x)|Vu, |7 *Vu, - VhZ dx}
Q Q
+ (ao + bod; H (Vun)) [/ |V, P2V, - Vhe dm+/ a(x)|Vu, |9 2Vu, - Vh, dx}
Q Q
— )\/ u, " (he + h. ) dx — / uP " (he + hD) da
Q Q
- {(ao + boq&g{—l(Vun)) [(Huan + ||un||ga)] — )\/Q ‘un‘lfW dr — /Q |un|p* d.f}

+ 8{(&0 + boqﬁg_[_l(Vun)) [/ |Vun|P~2Vu, - Vhdz —|—/ a(x)| V|1V, - Vhdx}
Q Q

—)\/u;'yhdx—/uﬁ*_lhdx}—)\/u;'yh;dx—/uﬁ*_lh;dx
Q Q Q Q

+ (ao + bod; H (Vun)) [/ |V, |P~*Vu, - Vi dz +/ a(x)|Vu, |7 *Vu, - VA dx} :
Q Q

We define Q. = {z € Q : u, +¢ch < 0}. Using u,, € N, and fQ u, YhZ dz > 0 in the above estimate, we
get

on(1) < 5{(a0+b0¢2{1(Vun)) [/ \vun|P—2vun-Vhdx+/ a(x)|Vun|q_2Vun-Vhdx]
Q Q

)\/unvhdx/uﬁ*lhdx}Jr/ uP’ ~Yh, dz (3.29)
(9] Q Qe
— (ao + bogs; H(Vuy,)) U |V, |P~*Vu, - Vh, dx+/ a(x)|Vun |7 Vu, - Vh, dx].

QE QE

Note that
—/ |V P2V, - Vh. dz = —/ |V, P2V, - V(u, + ch) dz
Qe Qe

:_/QE

< —5/ [Vu, P>V, - Vhdz

€

|V, [P dz — e/ |V, |P~2Vu, - Vhdz
Qs

and similarly,

7/ a(x)|Vun |72 Vu, - Vh. dz < 75/ a(x)|Vu, |72 Vu, - Vhdz.
Qe Q.

Moreover, applying Holder’s inequality and u, < —eh in 2., we have

/ufjflhgdx /ufl*dx /uf’:71|h\dx
Qs Qs QE
2 =
Ssp*/ |h|p*dx+5</ uffdz) (/ |h”*dac) .
Q Q Q.

€ =

< +e€

¢
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Putting all these in (3.29), we infer that

on(1) < 6{(@0 + bo(bg_fl(Vun)) {/ |V, P2V, - Vhdz —|—/ a(x)|Vu, |9 *Vu, - Vh dz]
Q Q

—A/u;mdx—/u{—lhdx}ﬂp*/ |h|P" dz
Q Q Q

€

(3.30)

p*—1
—|—€</ uffdx) ’ (/ |hp*dx)p
Qe Qe
—e(ap + bqu?_L_l(Vun)) [/ |V, |P~*Vu, - Vhdx + / a(x)|Vu, |7 *Vu, - Vh dz] .
Q. Q.

Since || — 0 as ¢ — 01 and by the boundedness of {u, nen in Wy 7t (Q), if we divide (3.30) by € > 0
and then pass to the limit as ¢ — 07, we obtain

(ap + bod)g_[_l(Vun)) {/ |V, |P~2Vu, - Vhdaz +/ a(x)|Vu, |72 Vu, - Vhdx}
Q Q (3.31)

- )\/ u, Yhdx — / P " hidz > 0,(1),
Q Q
as n — co. By the arbitrariness of h € Wy (), (3.31) actually implies (3.26) which completes the

proof. O

Now, we prove the compactness property of the energy functional Jy in a suitable range of . For
this purpose, we set for any A > 0

o
Cy 1= Qg — QAP 17

where

11 C )] (90— 149\ T (1T
ao:=<—>, alzz(p +7)I|<q +7) ( v) (3.32)

q0 p* P* qo(1 — ) P*o

Sby \ 7 bo \P\ T otr=ry

o 0 p*¥—p « 0 p*—p0)(p*—p

Q92 1= (O (pg_l) (SP <p9_1> ) (333)
Also, for any k € N, let T}, be the truncation defined by

t if [t] < k,

t
k— if |t > k.
2]

Proposition 3.10. Let hypotheses (h1)-(ha) be satisfied, let A\ € (0,A*) and let {un}nen C Ny be a
sequence satisfying (3.8)-(3.9) and

and

Tk(t) =

In(up) = ec<cn asn— oo. (3.34)
Then {un }nen possesses a strongly convergent subsequence in Wy ().

Proof. Fixing k € N and taking h = Ty (u, — uy) € WOIH(Q) as a test function in (3.26), we get

On(l) = (ao + boﬁbg{_l(v%)) {/ |vun|p72vunVTk(un - U)x) dz
Q
+/ a(2)| V|7 2Vu, VT (u, — uy) dz (3.35)
Q

f)\/u;”’ Tk(unfuk)dxf/uﬁ**lTk(unqu)dx =1—-J—-K asn— oo
Q Q
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Using Young’s inequality, Proposition 2.1 (iii)-(iv), Proposition 2.2 (ii) and boundedness of the sequences
{un nen, {Tk(tn — ur)}nen in W&’H(Q), we obtain
[T < [+ K|+ on(1)

< (ag +b0¢§;1(vun))/ IVt [P~ [V T (1 —uA)|dx+/ ()| Vit |9~ [V T (1, — )| da
Q Q
. 3.36
+/ |tn|” " T (un — un)| dz + 0 (1) (330
Q

< (ao + bod,  (Vun)) (pr(Vun) + pr(VTk (up — uy))) + k/Quf:*1 dz+0,(1) < C(1+k)

with a constant C' independent of n and k, that is, the sequence {u, ¥ Ti(un — u))tnen is uniformly
integrable. Then, using (3.10) and Vitali’s convergence theorem, we get

/ U, " Ti(uy —uy)de — 0.
By Holder’s inequality, we observe tha‘?
(LN 39— /Q (IVuxP~? + a(z)|Vus|97?) Vuy - gdz
is a bounded linear functional. From (3.10), we see that VTj(u, —uy) — 0 in [L*(Q)]V, so we can get

lim [ (|VuaP~2 + a(z)|Vua|7?) Vu, - VT (u, — uy) dz = 0. (3.37)

n— oo Q

Let ¢y (Vu,) — B := % + % as n — oo, where E; and Es are defined in (3.11). Thus, by using
(3.36)-(3.37) in (3.35) and the fact that ag > 0, by > 0,5 > 0, we get

(ao + boﬁo_l) lim sup[/ (|Vun|p_2Vun — \VuA|p_2Vu)\) - VT (uy — uy) do
n—o00 O
+/ a(@) (|Vun| " ?Vu, — [Vua | 2Vuy) - VT (uy — uy) do
Q

= hmsup/ uﬁ*_lTk(un —uy)dx < Ck.
Q

n—oo

By Simon’s inequalities, see [24, formula (2.2)], we rewrite the above estimate as

Ck
lim sup [/ (\Vun|p72Vun — |Vu>\\p72Vu,\) VT (up —uy)da| <
Q

msu S @ty @3

Set
sn(x) = (|Vun|p_2Vun — |Vu)\|p_2VuA) -V (up — uy).
Note that s, (z) > 0 a.e.in 2. We divide the set by
EF ={z € Q:|u,(z) —ur(z)| <k} and FF ={zcQ:|u,(z) —ur(z)| >k},

where k,n € N are fixed. Let y € (0,1). Then, from the definition of T}, Holder’s inequality, (3.38) and
the fact that lim,, . |F¥| = 0, we get

n 7
lim sup/ s} da < limsup (/ Sn dm) |EF|1=7 4+ lim sup (/ Sn dac) |EFI1 de.
n—oo JQ n—00 Ek n—00 Fk

Ch U
S((Clc)eroﬂ(’_l)) s

Letting k — 0%, we obtain that s7 — 0 in L*(2). Thus, we may assume that s,, — 0 a.e.in Q (up to a
subsequence) which along with Simon’s inequalities [24, formula (2.2)] gives that

Vu, = Vuy a.e.in . (3.39)



18 R.ARORA, A.FISCELLA, T. MUKHERJEE, AND P. WINKERT
Let M be the nodal set of the weight function a(-) given by
M :={zxe€Q:alx)=0}.

Since, the sequences {|Vi, [PV, }nen and {|Viu, |7 2Vu, }nen are bounded in LP () and L7 (Q\
M, a(z) dz), respectively, then by using (3.39) and [3, Proposition A.8], we conclude that

/ IVt [P =2Vt - Vi = [[Vuy |2
Q

and

/ a(x)|Vun |72 Vu, - Vuy, = / a(@)|Vun | >V, - Vuy = [[Vun |2,
Q Q\M
Furthermore, using (3.10), (3.39) and the Brezis-Lieb Lemma, we obtain

pr(Vuy) = pr(Vun — Vuy) = pp(Vuy) + o, (1),

p* . - (3.40)
p* Hu’n - u)\”p* = ||u’)\||p* =+ On(l)

[,

as n — 0o. Let |Ju, — uy||p+ — £ for some £ > 0. Now, by taking u, — uy as a test function in (3.26),
we get

on(1)

= (ap + boqbg_fl(Vun)) {/ |V, P2V, - V(u, —uy)dz + / a(x)| V|92V, - V(u, —uy) dz
Q Q

—)\/u;'y (un—u,\)dx—/uf’:_l(un—u,\)dx
Q Q

= (a0 +08°™") [pn(Vun) = pr(Vun) + 0n(1)] = [lun
as n — oo. Hence, by (3.10) and (3.40) it follows that

g* + ||u)\ Z* +0n(1)

(a0 + boB"1) [p32(Ttn) — pru(Ver)] = £ + 0n(1) a5 = o0, (3.41)
which further gives
(a0 + boB) nhﬁngo (IVun, — Vur|[p + [Vun, — Vur |2 ,) < o (3.42)

Now, we claim that ¢ = 0. Assume by contradiction that ¢ > 0. By (3.1) and (3.42), we have
Sagl? < S(ag + boBP~1)P < (ag + boB’™1) lim ||V, — Vup[[f < Iz (3.43)
Note that (3.42) implies that
(a0 + o8~ )(Es + By — [Vus [}~ [Vu ) < (3.44)
Using (3.43) in (3.44), we get

(")

p*=p

p* P

> (ag + boB'H) T (By + By — | Va2 — [Vua]|2,) 7

p*—p
P

= (a0 + boﬁefl)% nlggo (HVun - VuAH]I; + IVu, — VUAHZﬂ)

p* p*—p

> (a0 +bo8" )7 lim ([Vun = Vual}) 7

(3.45)

> §55 (ag + boB 1) TP

> S (ag + b7 7.
From (3.45) and (3.1), we obtain

*
* —
_ p**p ¥ p

By 7 = (B = |[Vaalp) 7 = (lim [V, — Vu2)

> S5 > 8 (ag + bpB).
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This gives

p9—1

. bo \? =50
Combining (3.45) and (3.46), we obtain

X « b p  (0-Dp
E, > Sipf_p (aoerOBGfl)ipf_p > Sipf_p < 0 ) Elp —p

and so we have

*

A *
Sbo )” " El(ii;lfﬁ
PO

L

Sbo N7 [ .. [ by \” (GEDae
- (p“) [Sp <p91> } '
For any n € N, we have
1 b 1
J)\(un) - q79<‘];\(un)7un> = agpn(Vun) + §O¢g{(vun) - qiam(¢7{(vun)) <‘Cg,q(un)7un>

1 1 1 1 .

A — == /u}L“’der()/uﬁ dx
(1 - q9> Q @ p*) Ja
1 1 * 1 1
> == unp*—/\<—)/u}b"da:.
(q9 p*)' I» 1=y 40/ Jo

From this, as n — oo, by (3.47), (3.40), Holder’s and Young’s inequality, we derive
1

c= lim {Ja(un) = —{J3(un), un)
GO )

n—oo
* 1 1 p* =1ty
P) A —— - =19+ ol
) (1_7 q9)|| N

* p*
> ol —ap AT

Shy \ 7 b \P| Tt
0 p*—p « 0 p*—p0)(p*—p p*
= Qo ( 9-1) [Sp ( 9-1) ] — QAP =y,
p p

where ag, aq are defined in (3.32). The above estimates gives a contradiction to (3.34). Hence ¢ = 0
and using (3.41) and Proposition 2.1(v), we conclude the proof. O

w > S%(ao +boﬁe_1)% > (
(3.47)

> ag (ﬁp* + [Jux

p*—1+v

Remark 3.11. By taking A € (0,A.) with A, := (a2af1) " and oy, ag are defined in (3.32) and
(3.33) respectively, we have cy > 0.

Proof of Theorem 1.1. Fix A < A* := min{A*, A,}. From Lemma 3.1(ii) and Ekeland’s variational
principle there exists a minimizing sequence {u, }nen € Ny \ {0} verifying (3.8), (3.9), (3.10) and (3.34)

with ¢ = ©F. Hence, by combining Propositions 3.4 and 3.10, we obtain u, — u, strongly in Wol’H 9
(up to a subsequence). This further implies that u) € Ny and by Lemma 3.7, we get uy € N. ;r with
u) achieving @:\*' since Jy is continuous on Wol’H (Q). Since 0 ¢ ./\/'/{|r and u, > 0 we have uy #Z 0 and
uy > 0. Letting n — oo in (3.26), we obtain that u satisfies u, "¢ € L*(Q) and

m(¢n(Vua)) <£Z,q(ux), </7> = )\/Qu;np dz + /S2 u;\_l(p dx

for all p € WO1 H(Q) Finally, by using Proposition 3.4, Lemma 3.5 and by repeating the proof of [2,
Proposition 4.3 and Proposition 4.4, Step 1], we obtain uy > 0 a.e.in . O
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