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Abstract. In this paper, we introduce and investigate a new kind of nonlinear double phase
implicit obstacle problems involving a nonlinear convection term (a reaction term depending

on the gradient), three highly nonlinear and nonlocal functions, and multivalued boundary

conditions. Under very general assumptions on the data, we develop a generalized framework
to explore the existence of weak solutions as well as the compactness of the solution set to

the nonlocal double phase implicit obstacle problem. The results established in this paper
improve, generalize and extend some results of the existing literature. Our method is based on

the theory of multivalued analysis, Tychonoff’s fixed point principle and variational methods.

1. Introduction

This paper is concerned with the investigation of an elliptic inclusion problem with a nonlinear
and nonhomogeneous partial differential operator (called double phase differential operator), a
nonlinear convection term (a reaction term depending on the gradient), an implicit obstacle
constraint, three multivalued terms where two of them are appearing on the boundary and the
other one is formulated in the domain, and three nonlocal operators in which two of them are
described in the domain and the other one is appearing on the boundary. More precisely, we
consider the following nonlocal double phase implicit obstacle problem:

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ U2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

L(u) ≤ J(u),

(1.1)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary Γ such that Γ is divided into four
disjoint measurable parts Γ1, Γ2, Γ3 and Γ4 with Γ1 having positive measure, µ : Ω → [0,+∞)
and 1 < p < q. Here the nonlinear and nonlocal partial differential operator DM is given by

DMu := div
(
M(u)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
for all u ∈ W 1,H(Ω),

and
∂u

∂νa
:=

(
M(u)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ν,

with ν being the unit normal vector on Γ, U1 : Ω×R → 2R and U2 : Γ2 ×R → 2R are two multi-
valued mappings, M : Lp∗

(Ω) → (0,+∞), N : Lζ1(Ω) → Lζ′
1(Ω) and G : Lζ2(Γ4) → Lζ′

2(Γ4)
are three continuous functions, ∂cϕ(x, u) is the convex subdifferential of s 7→ ϕ(x, s), and
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L, J : W 1,H(Ω) → R are given functions defined on the Musielak-Orlicz Sobolev space W 1,H(Ω),
see Section 2 for its precise definition.

Such class of problems include different interesting special cases which have not been studied
largely in the literature. Initially, the treatment of obstacle problems goes back to the ground-
breaking work by Stefan [46] in which the temperature distribution in a homogeneous medium
undergoing a phase change, typically a body of ice at zero degrees centigrade submerged in wa-
ter, was studied. We also mention the pioneering work of Lions [27] who studied the equilibrium
position of an elastic membrane which lies above a given obstacle and which turns out as the
unique minimizer of the Dirichlet energy functional.

It should be mentioned that if M(u) = 1, N(u) = 0 for all u ∈ W 1,H(Ω) and Γ4 = ∅, then
problem (1.1) reduces to the following double phase implicit obstacle inclusion problem:

−Dµu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νµ
∈ U2(x, u) on Γ2,

− ∂u

∂νµ
∈ ∂cϕ(x, u) on Γ3,

L(u) ≤ J(u),

(1.2)

where Dµ is the well-known double phase differential operator

Dµu := div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
for all u ∈ W 1,H(Ω), (1.3)

and

∂u

∂νµ
:=

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ν,

In fact, this problem has been considered and studied by Zeng-Rǎdulescu-Winkert [50] and
they used the Kakutani-Ky Fan fixed point theorem in a multivalued version for examining the
existence of a solution to problem (1.2) under the condition

(f(x, s, ξ)− f(x, t, ξ))(s− t) ≤ ef |s− t|p for a. a. x ∈ Ω, for all s, t ∈ R and all ξ ∈ RN . (1.4)

Moreover, when p = 2, it is not hard to see that the function f : Ω× RN → R defined by

f(x, s, ξ) =

N∑
i=1

ζiξi + κ1s
1
2 + ω(x)

for all x ∈ Ω, for all s ∈ R and for all ξ ∈ RN , does not satisfy inequality (1.4), where ω ∈ L2(Ω),
κ1 > 0 and ζ = (ζ1, . . . , ζN ) ∈ RN is a given vector. However, in the present paper, on the
one hand, we remove the assumption (1.4) in order to extend the scope of applications to the
theoretical results concerning the existence of weak solutions to double phase implicit obstacle
problems; on the other hand, we develop a generalized framework to explore the existence of
weak solutions as well as the compactness of the solution set to the nonlocal double phase
implicit obstacle problem (1.1).

Note that the double phase operator defined in (1.3) is related to the energy functional

ω 7→
∫
Ω

(
|∇ω|p + µ(x)|∇ω|q

)
dx. (1.5)

Functionals of type (1.5) have first been studied by Zhikov [53] in order to provide models
for strongly anisotropic materials. The main characteristic of the functional defined in (1.5)
is the change of ellipticity on the set where the weight function is zero, that is, on the set
{x ∈ Ω : µ(x) = 0}. To be more precise, the energy density of (1.5) exhibits ellipticity in the
gradient of order q on the points x where µ(x) is positive and of order p on the points x where
µ(x) vanishes. Further results on regularity of minimizers of (1.5) can be found in the papers
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of Baroni-Colombo-Mingione [3, 4], Colombo-Mingione [9, 10], De Filippis-Mingione [12, 13, 14,
15], Marcellini [31, 32] and Ragusa-Tachikawa [44]. We also mention the overview articles of
Rădulescu [43] about isotropic and anisotropic problems and of Mingione-Rădulescu [33] about
recent developments for problems with nonstandard growth and nonuniform ellipticity.

The main objective of the paper is the development of a general framework for determining
the existence of a weak solution to the nonlinear nonlocal implicit obstacle problems (1.1) via
Tychonoff’s fixed point theorem for multivalued operators, the theory of nonsmooth analysis
and variational methods for pseudomonotone operators. As far as we know this is the first
work for nonlocal implicit obstacle problems in the double phase setting with mixed boundary
conditions.

It should be mentioned that the combination of an implicit obstacle effect with mixed bound-
ary conditions along with multivalued mappings occur in several engineering and economic
models, such as Nash equilibrium problems with shared constraints and transport route opti-
mization with feedback control. For more models related to nonsmooth mechanical problems
we refer to books of Panagiotopoulos [41, 40] and Naniewicz-Panagiotopoulos [39].

In the content of (implicit) obstacle effects involving Clarke’s generalized gradient or gen-
eral multivalued mappings but without nonlocal term there are several papers using different
methods. We refer to the works of Alleche-Rădulescu [1], Aussel-Sultana-Vetrivel [2], Bonanno-
Motreanu-Winkert [5], Carl-Le-Winkert [8], Iannizzotto-Papageorgiou [24], Migórski-Khan-Zeng
[35, 36], Zeng-Bai-Gasiński-Winkert [48, 49], Zeng-Rădulescu-Winkert [51, 52], see also the re-
cent monograph of Carl-Le [7] about multivalued variational inequalities and inclusions. In
the single-valued case with gradient dependent right-hand sides (so-called convection term) we
mention the papers of Faraci-Motreanu-Puglisi [16], Faraci-Puglisi [17], Figueiredo-Madeira [18],
Gasiński-Papageorgiou [19], Gasiński-Winkert [20], Liu-Motreanu-Zeng [29], Marano-Winkert
[30], Papageorgiou-Rădulescu-Repovš [42], see also the references therein.

The paper is organized as follows. Section 2 presents a detailed overview about Musielak-
Orlicz Lebesgue and Musielak-Orlicz Sobolev spaces, the p-Laplacian eigenvalue problem with
Steklov boundary condition and we state some results from nonsmooth analysis, the properties
of Clarke’s generalized gradient and Tychonoff’s fixed point theorem for multivalued operators
which will be used in next sections to establish the existence theorems to various nonlocal double
phase obstacle problems. In Section 3, in order to establish the solvability of the nonlocal double
phase implicit obstacle problem (1.1), we first introduce an auxiliary problem defined in (3.1),
a variational mapping S driven by problem (3.1), and two multivalued mappings U1 and U2

which are exactly the Nemitskij operators of U1 and U2, respectively. After that, we prove
the complete continuity of S and upper semicontinuity of U1 and U2. Finally, via employing
Tychonoff’s fixed point theorem for multivalued operators along with the theory of nonsmooth
analysis, we establish the nonemptiness and compactness of the solution set of problem (1.1).
However, in Section 4, we move our attention to study several special and interesting cases of our
problem (1.1), and we deliver the corresponding existence results to these special cases. Also,
we make further discussion to some particular problems of (1.1), and obtain several generalized
existence theorems for various nonlocal double phase obstacle problems.

2. Mathematical background

In this section we give some necessary notations and preliminary materials which will be used
in the next sections from at several places.

Throughout this paper, we suppose that Ω ⊂ RN is a bounded domain with Lipschitz bound-
ary Γ := ∂Ω such that Γ is separated by four disjoint measurable parts Γ1, Γ2, Γ3 and Γ4 with
Γ1 having positive Lebesgue measure. Let 1 ≤ r < +∞ and D ⊂ Ω be a nonempty set. In what
follows, we denote by Lr(D) := Lr(D;R) the usual Lebesgue space equipped with the norm
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∥ · ∥r,D defined by

∥u∥r,D :=

(∫
D

|u|r dx
) 1

r

for all u ∈ Lr(D).

Also, we introduce the set Lr(D)+ := {u ∈ Lr(D) : u(x) ≥ 0 for a. a.x ∈ D}. By W 1,r(Ω) we
define the corresponding Sobolev space endowed with the norm ∥ · ∥1,r,Ω defined by

∥u∥1,r,Ω := ∥u∥r,Ω + ∥∇u∥r,Ω for all u ∈ W 1,r(Ω).

The conjugate of r > 1 is denoted by r′ > 1, i.e., 1
r +

1
r′ = 1. Additionally, the critical exponents

of r > 1 in the domain and on the boundary, denoted by r∗ and r∗, are defined by

r∗ =

{
Nr
N−r if r < N,

+∞ if r ≥ N,
and r∗ =

{
(N−1)r
N−r if r < N,

+∞ if r ≥ N,
(2.1)

respectively. For the sake of convenience, in the entire paper, the symbols “
w−→ ” and “→” stand

for the weak and the strong convergences, respectively, to various function spaces. Recalling that
the measure of Γ1 is positive, so it follows from Korn’s inequality that there exists a constant

λ̂ > 0 such that

∥u∥pp,Ω ≤ λ̂∥∇u∥pp,Ω (2.2)

for all u ∈ W , where W is the subspace of W 1,p(Ω) given by

W :=
{
u ∈ W 1,p(Ω) : u = 0 for a. a.x ∈ Γ1

}
.

For any r ≥ 2 fixed, from Simon [45, formula (2.2)], we are able to find a constant k(r) > 0
such that the inequality holds(

|x|r−2x− |y|r−2y
)
· (x− y) ≥ k(r)|x− y|r (2.3)

for all x, y ∈ RN . Furthermore, we consider the eigenvalue problem of the r-Laplacian (r > 1)
with Steklov boundary condition formulated by

−∆ru = −|u|r−2u in Ω,

|u|r−2u · ν = λ|u|r−2u on Γ.
(2.4)

From Lê [26], we know that the eigenvalue problem (2.4) has a smallest eigenvalue λS
1,r > 0

which is isolated and simple. Also, it is easy to prove that the following variational identity
holds

λS
1,r = inf

u∈W 1,r(Ω)\{0}

∥∇u∥rr,Ω + ∥u∥rr,Ω
∥u∥rr,Γ

. (2.5)

In the whole paper, we suppose that the following hypothesis holds.

H(1): 1 < p < N , p < q < p∗ and 0 ≤ µ(·) ∈ L∞(Ω).

Under the above assumption, let us introduce the nonlinear function H : Ω × [0,∞) → [0,∞)
described by the exponents p, q and weight-function µ defined by

H(x, t) = tp + µ(x)tq for all (x, t) ∈ Ω× [0,∞).

We are now in a position to recall the well-known Musielak-Orlicz Lebesgue space LH(Ω) given
by

LH(Ω) = {u : Ω → R is measurable | ρH(u) < +∞} ,

where the modular function ρH : LH(Ω) → [0,+∞) is formulated by

ρH(u) :=

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p + µ(x)|u|q

)
dx for all u ∈ LH(Ω).
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It follows from Liu-Dai [28] that Musielak-Orlicz Lebesgue space LH(Ω) equipped with the
Luxemburg norm

∥u∥H = inf
{
τ > 0 | ρH

(u
τ

)
≤ 1

}
for all u ∈ LH(Ω)

becomes a reflexive Banach space, because it is uniformly convex. Moreover, we consider the
seminormed space Lq

µ(Ω)

Lq
µ(Ω) =

{
u : Ω → R measurable |

∫
Ω

µ(x)|u|q dx < +∞
}

endowed with the seminorm

∥u∥q,µ =

(∫
Ω

µ(x)|u|q dx
) 1

q

for all u ∈ Lq
µ(Ω).

Because problem (1.1) has mixed boundary conditions, the basic function space in the present
paper is considered by

V :=
{
u ∈ W 1,H(Ω) | u = 0 on Γ1

}
,

where W 1,H(Ω) is the well-known Musielak-Orlicz Sobolev space defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) | |∇u| ∈ LH(Ω)

}
.

It is not difficult to prove that V endowed with the norm ∥ · ∥V
∥u∥V := ∥∇u∥H + ∥u∥H for all u ∈ V

is a reflexive Banach space, where ∥∇u∥H = ∥ |∇u| ∥H.
Let us recall some embedding results for the spaces LH(Ω) and W 1,H(Ω), see Gasiński-

Winkert [21] or Liu-Dai [28].

Proposition 2.1. Let H(1) be satisfied and denote by p∗, p∗ the critical exponents to p as given
in (2.1) for s = p. Then, we have

(i) LH(Ω) ↪→ Lr(Ω) and W 1,H(Ω) ↪→ W 1,r(Ω) are continuous for all r ∈ [1, p];
(ii) W 1,H(Ω) ↪→ Lr(Ω) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);
(iii) W 1,H(Ω) ↪→ Lr(∂Ω) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);
(iv) LH(Ω) ↪→ Lq

µ(Ω) is continuous;

(v) Lq(Ω) ↪→ LH(Ω) is continuous.

It should be mentioned that when the space W 1,H(Ω) is replaced by V in Proposition 2.1,
then the embeddings (ii) and (iii) remain valid.

The following proposition is due to Liu-Dai [28, Proposition 2.1].

Proposition 2.2. Let H(1) be satisfied and let y ∈ LH(Ω). Then the following hold:

(i) if y ̸= 0, then ∥y∥H = λ if and only if ρH
(
y
λ

)
= 1;

(ii) ∥y∥H < 1 (resp. > 1 and = 1) if and only if ρH(y) < 1 (resp. > 1 and = 1);
(iii) if ∥y∥H < 1, then ∥y∥qH ≤ ρH(y) ≤ ∥y∥pH;
(iv) if ∥y∥H > 1, then ∥y∥pH ≤ ρH(y) ≤ ∥y∥qH;
(v) ∥y∥H → 0 if and only if ρH(y) → 0;
(vi) ∥y∥H → +∞ if and only if ρH(y) → +∞.

Let w ∈ V be fixed and M : V → (0,+∞). Next, we introduce the nonlinear operator
Hw : V → V ∗ given by

⟨Hw(u), v⟩ :=
∫
Ω

(
M(w)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx

+

∫
Ω

(
|u|p−2u+ µ(x)|u|q−2u

)
v dx,

(2.6)
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for u, v ∈ V with ⟨·, ·⟩ being the duality pairing between V and its dual space V ∗. The following
proposition states the main properties of Hw : V → V ∗. We refer to Crespo-Blanco-Gasiński-
Harjulehto-Winkert [11].

Proposition 2.3. Let the hypotheses H(1) be satisfied. Then, for each w ∈ V the operator Hw

defined by (2.6) is bounded, continuous, monotone (hence maximal monotone) and of type (S+),
that is,

un
w−→ u in V and lim sup

n→∞
⟨Hwun, un − u⟩ ≤ 0,

imply un → u in V .

In the last part of this section we are going to recall some results from nonsmooth analysis
and multivalued analysis. In the following, let E be real Banach space with norm ∥ · ∥E . A
function φ : E → R := R ∪ {+∞} is said to be proper, convex and lower semicontinuous, if the
following conditions are fulfilled:

• D(φ) := {u ∈ E : φ(u) < +∞} ≠ ∅;
• for any u, v ∈ E and t ∈ (0, 1), it holds φ(tu+ (1− t)v) ≤ tφ(u) + (1− t)φ(v);
• lim infn→∞ φ(un) ≥ φ(u) where the sequence {un}n∈N ⊂ E is such that un → u in E

as n → ∞ for some u ∈ E.

Let φ be a convex mapping. An element x∗ ∈ E∗ is said to be a subgradient of φ at u ∈ E if

⟨x∗, v − u⟩ ≤ φ(v)− φ(u) (2.7)

holds for all v ∈ E. The set of all elements x∗ ∈ E∗ which satisfies (2.7) is called the convex
subdifferential of φ at u and is denoted by ∂cφ(u).

Moreover, a function j : E → R is said to be locally Lipschitz at x ∈ E if there is a neighbor-
hood O(x) of x and a constant Lx > 0 such that

|j(y)− j(z)| ≤ Lx∥y − z∥E for all y, z ∈ O(x).

We denote by

j◦(x; y) := lim sup
z→x, λ↓0

j(z + λy)− j(z)

λ
,

the generalized directional derivative of j at the point x in the direction y and ∂j : E → 2E
∗

given by

∂j(x) := { ξ ∈ E∗ : j◦(x; y) ≥ ⟨ξ, y⟩E∗×E for all y ∈ E} for all x ∈ E

is the generalized gradient of j at x in the sense of Clarke.
The next proposition summarizes the properties of generalized gradients and generalized

directional derivatives of a locally Lipschitz function. We refer to Migórski-Ochal-Sofonea [37,
Proposition 3.23] for its proof.

Proposition 2.4. Let j : E → R be locally Lipschitz with Lipschitz constant Lx > 0 at x ∈ E.
Then we have the following:

(i) The function y 7→ j◦(x; y) is positively homogeneous, subadditive, and satisfies

|j◦(x; y)| ≤ Lx∥y∥E for all y ∈ E.

(ii) The function (x, y) 7→ j◦(x; y) is upper semicontinuous.
(iii) For each x ∈ E, ∂j(x) is a nonempty, convex, and weak∗ compact subset of E∗ with

∥ξ∥E∗ ≤ Lx for all ξ ∈ ∂j(x).
(iv) j◦(x; y) = max {⟨ξ, y⟩E∗×E | ξ ∈ ∂j(x)} for all y ∈ E.
(v) The multivalued function E ∋ x 7→ ∂j(x) ⊂ E∗ is upper semicontinuous from E into

the subsets of E∗ with weak∗ topology.

We end this section to recall the Tychonoff’s fixed point theorem for multivalued operators,
its proof can be found in Granas-Dugundji [22, Theorem 8.6].
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Theorem 2.5. Let D be a bounded, closed and convex subset of a reflexive Banach space E,
and Λ: D → 2D be a multivalued map such that

(i) Λ has bounded, closed and convex values,
(ii) Λ is weakly-weakly u.s.c.

Then Λ has a fixed point in D.

3. Existence and compactness

This section is devoted to explore the nonemptiness and compactness of the solution set to
problem (1.1). As mentioned before, our method is based on the theory of multivalued analysis,
Tychonoff’s fixed point principle and variational methods.

In order to state the existence and compactness results for problem (1.1), we first impose the
following assumptions on the data of problem (1.1).

We assume that the nonlocal functions M : Lp∗
(Ω) → (0,+∞), N : Lζ1(Ω) → Lζ′

1(Ω) and

G : Lζ2(Γ4) → Lζ′
2(Γ4) satisfy the following conditions:

H(M): M : Lp∗
(Ω) → (0,+∞) is such that M is weakly continuous in V , namely, for any

sequence {un}n∈N ⊂ V ⊂ Lp∗
(Ω) and u ∈ V such that un

w−→ u in V as n → ∞, we
have

M(u) = lim
n→∞

M(un),

and there exists a constant cM > 0 such that

M(u) ≥ cM for all u ∈ V ,

where p∗ is the critical exponent p∗ of p in the domain Ω given in (2.1) with r = p.

H(N): The functionN : Lζ1(Ω) → Lζ′
1(Ω) is continuous such that there exist constants aN , bN ≥

0 and 0 < κ1 < p− 1 satisfying

∥N(w)∥ζ′
1,Ω

≤ aN + bN∥w∥κ1

ζ1,Ω
for all w ∈ Lζ1(Ω),

where 1 < ζ1 < p∗.

H(G): The function G : Lζ2(Γ4) → Lζ′
2(Γ4) is continuous such that there exist constants

aG, bG ≥ 0 and 0 < κ2 < p− 1 satisfying

∥G(w)∥ζ′
2,Γ4

≤ aG + bG∥w∥κ2

ζ2,Γ4
for all w ∈ Lζ2(Γ4),

where 1 < ζ2 < p∗ and p∗ is the critical exponent of p on the boundary Γ given in (2.1)
with r = p.

For the convection term f , we suppose the following conditions.

H(f): f : Ω× R× RN → R is a Carathéodory function such that

(i) there exist two constants af , bf ≥ 0 and a function αf ∈ Lp′
(Ω)+ satisfying

|f(x, s, ξ)| ≤ af |ξ|p−1 + bf |s|p−1 + αf (x)

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ RN ;
(ii) there exists a constant ef ≥ 0 such that

|f(x, s, ξ1)− f(x, s, ξ2)| ≤ ef |ξ1 − ξ2|p−1

for a. a.x ∈ Ω, for all s ∈ R and for all ξ1, ξ2 ∈ RN .

The multivalued mappings U1 : Ω×R → 2R and U2 : Γ2 ×R → 2R are assumed to satisfy the
following conditions:

H(U1): The multivalued function U1 : Ω× R → 2R is such that
(i) U1(x, s) is a nonempty, bounded, closed and convex set in R for a. a.x ∈ Ω and all

s ∈ R;
(ii) x 7→ U1(x, s) is measurable in Ω for all s ∈ R;
(iii) s 7→ U1(x, s) is u.s.c. for a. a.x ∈ Ω;
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(iv) there exist a function αU1
∈ Lp′

(Ω)+ and a constant aU1
≥ 0 such that

|η| ≤ αU1
(x) + aU1

|s|p−1

for all η ∈ U1(x, s), for a. a.x ∈ Ω and for all s ∈ R.
H(U2): The multivalued function U2 : Γ2 × R → 2R is such that

(i) U2(x, s) is a nonempty, bounded, closed and convex set in R for a. a.x ∈ Γ2 and all
s ∈ R;

(ii) x 7→ U2(x, s) is measurable on Γ2 for all s ∈ R;
(iii) s 7→ U2(x, s) is u.s.c. for a. a.x ∈ Γ2;

(iv) there exist a function αU2
∈ Lp′

(Γ2)+ and a constant aU2
> 0 such that

|ξ| ≤ αU2(x) + aU2 |s|p−1

for all ξ ∈ U2(x, s), for a. a.x ∈ Γ2 and for all s ∈ R.
On the boundary Γ3, the function ϕ : Γ3 × R → R fulfills the following assumptions:

H(ϕ): The function ϕ : Γ3 × R → R is such that
(i) x 7→ ϕ(x, r) is measurable on Γ3 for all r ∈ R;
(ii) r 7→ ϕ(x, r) is convex and l.s.c. for a. a.x ∈ Γ3;
(iii) for each function u ∈ Lp∗(Γ3) the function x 7→ ϕ(x, u(x)) belongs to L1(Γ3).

With respect to the nonlocal functions L : V → R and J : V → (0,+∞), we suppose the
following:

H(L): L : V → R is positively homogeneous and subadditive such that

L(u) ≤ lim sup
n→∞

L(un),

whenever {un}n∈N ⊂ V is such that un
w−→ u in V for some u ∈ V .

H(J): J : V → (0,+∞) is weakly continuous, that is, for any sequence {un}n∈N ⊂ V such that

un
w−→ u for some u ∈ V , we have

J(un) → J(u).

Moreover, we state the following compatibility conditions.

H(2): The inequalities

0 < k(p)cM − ef λ̂
1
p ,

0 < min{cM − af λ̂
1
p , 1} − (aU1 + bf ) cp(Ω)

p − aU2cp(Γ2)
p

hold, where k(p) and λ̂ > 0 are given in (2.3) and (2.2), and cp(Ω) > 0 and cp(Γ2) > 0
are the smallest constants satisfying the following inequalities (because of the continuity
of the embeddings of V to Lp(Ω) and of V to Lp(Γ2))

∥u∥p,Ω ≤ cp(Ω)∥u∥V and ∥u∥p,Γ2
≤ cp(Γ2)∥u∥V for all u ∈ V.

Remark 3.1. The compatibility inequalities in H(2) are usually called to be smallness con-
ditions, which have been applied in many literatures, for example, [23, 34] (nonsmooth contact
mechanics problems) and [50, 35] (nonlinear partial differential equations). Essentially speaking,
the compatibility inequalities in H(2) will play a critical role to guarantee that the variational
selection S is self-map on a bounded closed set (see (3.19), below), and to reveal that the problem
(1.1) has coercive framework. The following functions fulfill assumptions H(M):

• M(u) = cM + r1(∥u∥π1,Ω) for all u ∈ V , where r1 : [0,+∞) → [0,+∞) is a continuous
function, cM > 0 and 1 < π1 < p∗;

• M(u) = aM + r2(∥u∥π2,Γ) for all u ∈ V , where r2 : [0,+∞) → [0,+∞) is a continuous
function, cM > 0 and 1 < π2 < p∗.
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It is not difficult to see that the following functions N : Lζ1(Ω) → Lζ′
1(Ω) and G : Lζ2(Γ4) →

Lζ′
2(Γ4) satisfy the conditions H(N) and H(G), respectively:

N(u)(x) :=

(∫
Ω

ϖ1(x)|u(x)|dx
) p−1

2

+ϖ2(x) for all x ∈ Ω and all u ∈ Lζ1(Ω),

and

G(w)(x) :=

∫
Γ4

ϖ3(x)|w(x)|ζ1−1 dx+ϖ4(x) for all x ∈ Γ4 and w ∈ Lζ2(Γ4),

where ϖ1 ∈ Lζ′
1(Ω)+, ϖ2 ∈ Lp(Ω) and ϖ3, ϖ4 ∈ Lζ2(Γ4).

Let p = 2 and f : Ω× RN → R be defined by

f(x, s, ξ) =

N∑
i=1

ζiξi − κ1s+ ω(x)

for all x ∈ Ω, for all s ∈ R and for all ξ ∈ RN , where ω ∈ L2(Ω), κ1 > 0 and ζ = (ζ1, . . . , ζN ) ∈
RN is a given vector. Then, f satisfies hypotheses H(f).

Let α1 ∈ Lp′
(Ω) and α2 ∈ Lp′

(Γ2). Then, the multivalued functions defined by

U1(x, s) = [−1, 1]α1(x) + sp−1 for all x ∈ Ω and all s ∈ R,
U2(x, s) = [0, 2]sp−1 + α2(x) for all x ∈ Γ2 and all s ∈ R,

satisfy hypotheses H(U1) and H(U2), respectively.

Let ϖ5 ∈ Lp′
(Γ3)+. Then, the function defined by

φ(x, s) := ϖ5(x)|s| for all x ∈ Γ3 and s ∈ R,

satisfies hypotheses H(ϕ).
It is obvious that the functions L(u) = ∥u∥V and J(u) = e1+∥u∥p,Ω for all u ∈ V fulfill

hypotheses H(L) and H(J), respectively.

Let us consider the multivalued mapping K : V → 2V defined by

K(u) = {v ∈ V | L(v) ≤ J(u)} for all u ∈ V .

Under the hypotheses H(L) and H(J), we have the following important auxiliary result which
delivers several significant properties for the multivalued mapping K : V → 2V . More precisely,
this lemma reveals an essential characteristic that K is Mosco continuous (see Mosco [38], i.e.,
K is sequentially weakly-weakly closed and sequentially weakly-strongly l.s.c.). The detailed
proof of this lemma can be found in Lemma 3.3 of Zeng-Rǎdulescu-Winkert [50].

Lemma 3.2. Let J : V → (0,+∞) and L : V → R be two functions such that H(L) and H(J)
are satisfied. Then, the following statements hold:

(i) for each u ∈ V , K(u) is closed and convex in V such that 0 ∈ K(u);
(ii) the graph Gr(K) of K is sequentially closed in Vw×Vw, that is, K is sequentially closed

from V with the weak topology into the subsets of V with the weak topology;
(iii) if {un}n∈N ⊂ V is a sequence such that

un
w−→ u in V

for some u ∈ V , then for each v ∈ K(u) there exists a sequence {vn}n∈N ⊂ V such that

vn ∈ K(un) and vn → v in V.

We are now in a position to give the definition of weak solutions to problem (1.1) as follows.
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Definition 3.3. We say that a function u ∈ V is a weak solution of problem (1.1) if u ∈ K(u)

and there exist functions η ∈ Lp′
(Ω), ξ ∈ Lp′

(Γ2) such that η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω,
ξ(x) ∈ U2(x, u(x)) for a. a.x ∈ Γ2 and the inequality

M(u)

∫
Ω

|∇u|p−2∇u · ∇(v − u) dx+

∫
Ω

µ(x)|∇u|q−2∇u · ∇(v − u) dx

+

∫
Ω

(|u|p−2u+ µ(x)|u|q−2u)(v − u) dx+

∫
Ω

N(u)(x)(v − u) dx

+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, u) dΓ +

∫
Γ4

G(u)(x)(v − u) dΓ

≥
∫
Ω

η(x)(v − u) dx+

∫
Γ2

ξ(x)(v − u) dΓ +

∫
Ω

f(x, u,∇u)(v − u) dx

holds for all v ∈ K(u).

For the convenience of the reader, in the sequel, we use the following notion

X = Lp(Ω), Y = Lp(Γ2), X∗ = Lp′
(Ω) and Y ∗ = Lp′

(Γ2).

For any (w, η, ξ) ∈ V ×X∗ × Y ∗ fixed, let us consider the following auxiliary problem:

−DM(w)u+ |u|p−2u+ µ(x)|u|q−2u = η(x) +N(w)(x) + f(x,w,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νw
= ξ(x) on Γ2,

− ∂u

∂νw
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νw
= G(w)(x) on Γ4,

L(u) ≤ J(w),

(3.1)

where the differential operator DM(w) is defined by

DM(w)u := div
(
M(w)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
for all u ∈ W 1,H(Ω),

and ∂u(x)
∂νw

stands for

∂u

∂νw
:=

(
M(w)|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ν.

From Definition 3.3 we can see that u ∈ V is a weak solution of problem (3.1) if u ∈ K(w)
and the following inequality is satisfied

M(w)

∫
Ω

|∇u|p−2∇u · ∇(v − u) dx+

∫
Ω

µ(x)|∇u|q−2∇u · ∇(v − u) dx

+

∫
Ω

(|u|p−2u+ µ(x)|u|q−2u)(v − u) dx+

∫
Ω

N(w)(x)(v − u) dx

+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, u) dΓ +

∫
Γ4

G(w)(x)(v − u) dΓ

≥
∫
Ω

η(x)(v − u) dx+

∫
Γ2

ξ(x)(v − u) dΓ +

∫
Ω

f(x,w,∇u)(v − u) dx

(3.2)

for all v ∈ K(w).
The following lemma shows that problem (3.1) is uniquely solvable.
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Proposition 3.4. Let p ≥ 2. Assume that H(1), H(ϕ), H(f), H(L) and H(J) hold. If M(w) ≥
cM for each w ∈ V , N(w) ∈ Lζ′

1(Ω) with 1 < ζ1 < p∗, G(w) ∈ Lζ′
2(Γ4) with 1 < ζ2 < p∗, and

the inequality 0 < k(p)cM − ef λ̂
1
p holds, then problem (3.1) admits a unique solution.

Proof. First we introduce the following nonlinear mappings Gw : V → V ∗, φ : V → R and
Fw : V ⊂ Lp(Ω) → Lp′

(Ω) ⊂ V ∗ defined by

⟨Gw(u), v⟩ := M(w)

∫
Ω

|∇u|p−2∇u · ∇v dx+

∫
Ω

µ(x)|∇u|q−2∇u · ∇v dx

+

∫
Ω

(|u|p−2u+ µ(x)|u|q−2u)v dx+

∫
Ω

N(w)(x)v dx

+

∫
Γ4

G(w)(x)v dΓ−
∫
Ω

η(x)v dx−
∫
Γ2

ξ(x)v dΓ

for all u, v ∈ V ,

φ(u) :=

∫
Γ3

ϕ(x, u) dΓ

for all u ∈ V , and

⟨Fwu, v⟩Lp′ (Ω)×Lp(Ω) :=

∫
Ω

f(x,w,∇u)v dx

for all u ∈ V and v ∈ Lp(Ω). Using the notations above, it is not difficult to prove that
inequality (3.2) can be equivalently rewritten by the following nonlinear variational inequality
with constraint

⟨Gwu, v − u⟩+ φ(v)− φ(u) ≥ ⟨i∗Fwu, v − u⟩

for all v ∈ K(w), where i : V → Lp(Ω) is the embedding operator of V into Lp(Ω) and

i∗ : Lp′
(Ω) → V ∗ is the dual operator of i. Arguing as in the proof of Theorem 3.4 of Zeng-Bai-

Gasiński [47], we can show that problem (3.1) has at least one solution.
Next, we are going to prove the uniqueness of problem (3.1). Let u1, u2 ∈ V be two weak

solutions of problem (3.1). So, for every i = 1, 2, it holds ui ∈ K(w) and

M(w)

∫
Ω

|∇ui|p−2∇ui · ∇(v − ui) dx+

∫
Ω

µ(x)|∇ui|q−2∇ui · ∇(v − ui) dx

+

∫
Ω

(|ui|p−2ui + µ(x)|ui|q−2ui)(v − ui) dx+

∫
Ω

N(w)(x)(v − ui) dx

+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, ui) dΓ +

∫
Γ4

G(w)(x)(v − ui) dΓ

≥
∫
Ω

η(x)(v − ui) dx+

∫
Γ2

ξ(x)(v − ui) dΓ +

∫
Ω

f(x,w,∇ui)(v − ui) dx

for all v ∈ K(w). Putting v = u2 and v = u1 into the above inequalities with i = 1 and i = 2,
respectively, we use the resulting inequalities to get

M(w)

∫
Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
· ∇(u1 − u2) dx

+

∫
Ω

µ(x)
(
|∇u1|q−2∇u1 − |∇u2|q−2∇u2

)
· ∇(u1 − u2) dx

+

∫
Ω

(
|u1|p−2u1 − |u2|p−2u2

)
(u1 − u2) dx

+

∫
Ω

µ(x)
(
|u1|q−2u1 − |u2|q−2u2

)
(u1 − u2) dx
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≤
∫
Ω

(f(x,w,∇u1)− f(x,w,∇u2))(u1 − u2) dx.

The latter combined with (2.3), hypothesis H(f)(ii) and Hölder’s inequality implies that

k(p)
(
cM∥∇u1 −∇u2∥pp,Ω + ∥u1 − u2∥pp,Ω

)
≤

∫
Ω

ef |∇u1 −∇u2|p−1|u1 − u2|dx

≤ ef∥∇u1 −∇u2∥p−1
p,Ω ∥u1 − u2∥p,Ω

≤ ef λ̂
1
p ∥∇u1 −∇u2∥pp,Ω.

This means that (
k(p)cM − ef λ̂

1
p

)
∥∇u1 −∇u2∥pp,Ω + k(p)∥u1 − u2∥pp,Ω ≤ 0.

Employing the inequality ef λ̂
1
p < cMk(p), we infer that u1 = u2.

Consequently, for every (w, η, ξ) ∈ V ×X∗×Y ∗ fixed, problem (3.1) is uniquely solvable. □

Lemma 3.4 allows us to introduce the solution mapping S : V × X∗ × Y ∗ → V of problem
(3.1) formulated by

S(w, η, ξ) = uw,η,ξ for all (w, η, ξ) ∈ V ×X∗ × Y ∗,

where uw,η,ξ is the unique solution of problem (3.1) associated with (w, η, ξ) ∈ V ×X∗ × Y ∗.
The following lemma says that S : V ×X∗ × Y ∗ → V is a completely continuous operator.

Lemma 3.5. Let p ≥ 2. Assume that H(1), H(2), H(M), H(N), H(G), H(ϕ), H(f), H(L) and
H(J) are fulfilled. Then, the solution map S : V ×X∗ × Y ∗ → V of problem (3.1) is completely
continuous.

Proof. Assume that {(wn, ηn, ξn)}n∈N ⊂ V ×X∗ × Y ∗ and (w, η, ξ) ∈ V ×X∗ × Y ∗ satisfy

(wn, ηn, ξn)
w−→ (w, η, ξ) in V ×X∗ × Y ∗.

Let un := S(wn, ηn, ξn) for each n ∈ N. So, for each n ∈ N, we have un ∈ K(wn) and

M(wn)

∫
Ω

|∇un|p−2∇un · ∇(v − un) dx+

∫
Ω

µ(x)|∇un|q−2∇un · ∇(v − un) dx

+

∫
Ω

(|un|p−2un + µ(x)|un|q−2un)(v − un) dx+

∫
Ω

N(wn)(x)(v − un) dx

+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, un) dΓ +

∫
Γ4

G(wn)(x)(v − un) dΓ

≥
∫
Ω

ηn(x)(v − un) dx+

∫
Γ2

ξn(x)(v − un) dΓ +

∫
Ω

f(x,wn,∇un)(v − un) dx

(3.3)

for all v ∈ K(wn). Using hypothesis H(f)(i) gives∫
Ω

f(x,wn,∇un)un(x) dx

≤
∫
Ω

(
af |∇un|p−1 + bf |wn(x)|p−1 + αf (x)

)
|un(x)|dx

≤ af∥∇un∥p−1
p,Ω ∥un∥p,Ω + bf∥wn∥p−1

p,Ω ∥un∥p,Ω + ∥αf∥p′,Ω∥un∥p,Ω

≤ af λ̂
1
p ∥∇un∥pp,Ω + bf∥wn∥p−1

p,Ω ∥un∥p,Ω + ∥αf∥p′,Ω∥un∥p,Ω.

(3.4)

From Brézis [6, Proposition 1.10] and Hölder’s inequality, we can find two constants αφ, βφ ≥ 0
such that

φ(v) ≥ −αφ∥v∥V − βφ for all v ∈ V , (3.5)
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and

∫
Ω

ηn(x)un dx ≤ ∥ηn∥p′,Ω∥un∥p,Ω,∫
Γ2

ξn(x)un dΓ ≤ ∥ξn∥p′,Γ2
∥un∥p,Γ2

,∣∣∣∣∫
Ω

N(wn)(x)un dx

∣∣∣∣ ≤ ∥N(wn)∥ζ′
1,Ω

∥un∥ζ1,Ω ≤
(
aN + bN∥wn∥κ1

ζ1,Ω

)
∥un∥ζ1,Ω,∣∣∣∣∫

Γ4

G(wn)(x)un dx

∣∣∣∣ ≤ ∥G(wn)∥ζ′
2,Γ4

∥un∥ζ2,Γ4
≤

(
aG + bG∥wn∥κ2

ζ2,Γ4

)
∥un∥ζ2,Γ4

.

(3.6)

Letting v = 0 in (3.3) and using the estimates (3.4), (3.5) and (3.6), it yields

af λ̂
1
p ∥∇un∥pp,Ω + bf∥wn∥p−1

p,Ω ∥un∥p,Ω + ∥αf∥p′,Ω∥un∥p,Ω + ∥ηn∥p′,Ω∥un∥p,Ω +

∫
Γ3

ϕ(x, 0) dΓ

+ ∥ξn∥p′,Γ2
∥un∥p,Γ2

+
(
aN + bN∥wn∥κ1

ζ1,Ω

)
∥un∥ζ1,Ω +

(
aG + bG∥wn∥κ2

ζ2,Γ4

)
∥un∥ζ2,Γ4

≥ −
∫
Ω

N(wn)(x)un dx+

∫
Γ3

ϕ(x, 0) dΓ−
∫
Γ4

G(wn)(x)un dΓ +

∫
Ω

ηn(x)un dx

+

∫
Γ2

ξn(x)un dΓ +

∫
Ω

f(x,wn,∇un)un dx

≥
∫
Ω

M(wn)|∇un|p + µ(x)|∇un|q + |un|p + µ(x)|un|q dx+

∫
Γ3

ϕ(x, un) dΓ

≥ cM∥∇un∥pp,Ω + ∥∇un∥qq,µ + ∥un∥pp,Ω + ∥un∥qq,µ − αφ∥un∥V − βφ.

Then, from Proposition 2.2, we have

0 ≥ (cM − af λ̂
1
p )∥∇un∥pp,Ω + ∥∇un∥qq,µ + ∥un∥pp,Ω + ∥un∥qq,µ − bf∥wn∥p−1

p,Ω ∥un∥p,Ω

− ∥αf∥p′,Ω∥un∥p,Ω − ∥ηn∥p′,Ω∥un∥p,Ω − ∥ξ∥p′,Γ2
∥un∥p,Γ2

−
(
aN + bN∥wn∥κ1

ζ1,Ω

)
∥un∥ζ1,Ω

−
(
aG + bG∥wn∥κ2

ζ2,Γ4

)
∥un∥ζ2,Γ4

− αφ∥un∥V − βφ −
∫
Γ3

ϕ(x, 0) dΓ

≥ min{cM − af λ̂
1
p , 1}min{∥un∥pV , ∥un∥qV } − bf∥wn∥p−1

p,Ω ∥un∥p,Ω − ∥αf∥p′,Ω∥un∥p,Ω

− ∥ηn∥p′,Ω∥un∥p,Ω − ∥ξn∥p′,Γ2
∥un∥p,Γ2

−
(
aN + bN∥wn∥κ1

ζ1,Ω

)
∥un∥ζ1,Ω

−
(
aG + bG∥wn∥κ2

ζ2,Γ4

)
∥un∥ζ2,Γ4

− αφ∥un∥V − βφ −
∫
Γ3

ϕ(x, 0) dΓ.

The latter combined with the boundedness of {wn}n∈N ⊂ V , {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗

implies that solution sequence {un}n∈N is uniformly bounded in V .
Passing to a subsequence if necessary, we may find a function u ∈ V satisfying

un
w−→ u in V as n → ∞.

We assert that u = S(w, η, ξ), i.e., u is the unique solution of problem (3.1) corresponding to
(w, η, ξ) ∈ V ×X∗ × Y ∗.

Recall that wn
w−→ w in V and un

w−→ u in V , we are now in a position to invoke
Lemma 3.2(ii) to get that u ∈ K(w). However, it follows from Lemma 3.2(iii) that there exists
a sequence {vn}n∈N ⊂ V satisfying

vn ∈ K(wn) for every n ∈ N and vn → u in V.
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Letting v = vn in (3.3), one has

M(wn)

∫
Ω

|∇un|p−2∇un · ∇(vn − un) dx+

∫
Ω

µ(x)|∇un|q−2∇un · ∇(vn − un) dx

+

∫
Ω

(|un|p−2un + µ(x)|un|q−2un)(vn − un) dx+

∫
Ω

N(wn)(x)(vn − un) dx

+

∫
Γ3

ϕ(x, vn) dΓ−
∫
Γ3

ϕ(x, un) dΓ +

∫
Γ4

G(wn)(x)(vn − un) dΓ

≥
∫
Ω

ηn(x)(vn − un) dx+

∫
Γ2

ξn(x)(vn − un) dΓ +

∫
Ω

f(x,wn,∇un)(vn − un) dx.

(3.7)

From the boundedness of {N(wn)}n∈N, {G(wn)}n∈N, {ηn}n∈N and {ξn}n∈N, it can directly be
obtained that



lim
n→∞

∫
Ω

N(wn)(x)(vn − un) dx = 0,

lim
n→∞

∫
Γ4

G(wn)(x)(vn − un) dΓ = 0,

lim
n→∞

∫
Ω

ηn(x)(vn − un) dx = 0,

lim
n→∞

∫
Γ2

ξn(x)(vn − un) dΓ = 0,

(3.8)

where we have used the compactness of the embeddings of V into Lζ1(Ω), of V into Lζ2(Γ4),
of V into Lp(Γ2), and of V into Lp(Ω). By hypothesis H(f)(i), we can see that sequence

{f(·, wn,∇un)}n∈N is bounded in Lp′
(Ω). Hence, it holds

lim
n→∞

∫
Ω

f(x,wn,∇un)(vn − un) dx = 0. (3.9)

From hypotheses H(ϕ), it admits that V ∋ u 7→ φ(u) :=

∫
Γ3

ϕ(x, u) dΓ is continuous and convex,

so, it is weakly l.s.c., because of V ⊂ intD(φ). Therefore, we have

lim sup
n→∞

[∫
Γ3

ϕ(x, vn) dΓ−
∫
Γ3

ϕ(x, un) dΓ

]
≤ lim

n→∞

∫
Γ3

ϕ(x, vn) dΓ− lim inf
n→∞

∫
Γ3

ϕ(x, un) dΓ = 0.

(3.10)



NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS 15

Recall that M is weakly continuous in V (see hypothesis H(M)), it yields

lim sup
n→∞

[∫
Ω

(
M(wn)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − vn) dx

+

∫
Ω

(|un|p−2un + µ(x)|un|q−2un)(un − vn) dx

]
≥ lim sup

n→∞

[∫
Ω

(
M(w)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − u) dx

+

∫
Ω

(|un|p−2un + µ(x)|un|q−2un)(un − u) dx

]
− lim sup

n→∞
|M(wn)−M(w)|

∣∣∣∣∫
Ω

|∇un|p−2∇un · ∇(un − vn) dx

∣∣∣∣
− lim sup

n→∞

∣∣∣∣∫
Ω

µ(x)|∇un|q−2∇un · ∇(u− vn) dx

∣∣∣∣
≥ lim sup

n→∞
⟨Hw(u), un − u⟩ − lim sup

n→∞
|M(wn)−M(w)| ∥un∥p−1

p,Ω ∥un − vn∥p,Ω

− lim sup
n→∞

∥un∥q−1
q,µ ∥u− vn∥q,µ

= lim sup
n→∞

⟨Hw(u), un − u⟩.

(3.11)

Passing to the upper limit as n → ∞ to inequality (3.7) and using (3.8), (3.9), (3.10), (3.11)
and (3.15), one has

lim sup
n→∞

⟨Hw(u), un − u⟩ ≤ 0.

The latter combined with Proposition 2.3 (i.e., Hw is of type (S+)) implies that un → u in V .
Let z ∈ K(w) be arbitrary. By Lemma 3.2(iii), we are able to choose a sequence {zn}n∈N ⊂ V

such that zn ∈ K(wn) for any n ∈ N and zn → z in V . Inserting v = zn into (3.3) and passing
to the upper limit as n → ∞ for the resulting inequality, we obtain

M(w)

∫
Ω

|∇u|p−2∇u · ∇(z − u) dx+

∫
Ω

µ(x)|∇u|q−2∇u · ∇(z − u) dx

+

∫
Ω

(|u|p−2u+ µ(x)|u|q−2u)(z − u) dx+

∫
Ω

N(w)(x)(z − u) dx

+

∫
Γ3

ϕ(x, z) dΓ−
∫
Γ3

ϕ(x, u) dΓ +

∫
Γ4

G(w)(x)(z − u) dΓ

≥ lim sup
n→∞

[
M(wn)

∫
Ω

|∇un|p−2∇un · ∇(zn − un) dx+

∫
Ω

µ(x)|∇un|q−2∇un · ∇(zn − un) dx

+

∫
Ω

(|un|p−2un + µ(x)|un|q−2un)(zn − un) dx+

∫
Ω

N(wn)(x)(zn − un) dx

+

∫
Γ3

ϕ(x, zn) dΓ−
∫
Γ3

ϕ(x, un) dΓ +

∫
Γ4

G(wn)(x)(zn − un) dΓ

]
≥ lim sup

n→∞

[∫
Ω

ηn(x)(zn − un) dx+

∫
Γ2

ξn(x)(zn − un) dΓ +

∫
Ω

f(x,wn,∇un)(zn − un) dx

]
=

∫
Ω

η(x)(z − u) dx+

∫
Γ2

ξ(x)(z − u) dΓ +

∫
Ω

f(x,w,∇u)(z − u) dx,

where we have applied the continuity of M , N and G. Because z ∈ K(w) is arbitrary, we
conclude that u ∈ K(w) is the unique solution of problem (3.1) corresponding to (w, η, ξ) ∈
V ×X∗ × Y ∗, namely, u = S(w, η, ξ).
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Since every convergent subsequence of {un}n∈N converges strongly to the same limit u =
S(w, η, ξ), this implies that the whole sequence {un}n∈N converges strongly to u. Thus,

S(wn, ηn, ξn) = un → u = S(w, η, ξ).

Therefore, we have proved that the solution map S : V × X∗ × Y ∗ → V of problem (3.1) is
completely continuous. □

With view to hypotheses H(U1) and H(U2), it is now natural to introduce the following
multivalued mappings U1 : X → 2X

∗
and U2 : Y → 2Y

∗
given by

U1(u) :=
{
η ∈ X∗ : η(x) ∈ U1(x, u(x)) a. a. in Ω

}
,

U2(v) :=
{
ξ ∈ Y ∗ : ξ(x) ∈ U2(x, v(x)) a. a. on Γ2

}
,

for all (u, v) ∈ X × Y , respectively. As before, by i : V → X and γ : V → Y , we denote the
embedding operator of V to X and the trace operator from V to Y , respectively. It follows from
Proposition 2.1 that the operators i : V → X and γ : V → Y are linear, bounded and compact.
Therefore, we can see that their dual operators i∗ : X∗ → V ∗ and γ∗ : Y ∗ → V ∗ are linear,
bounded and compact as well. The following lemma is a direct consequence of Lemma 3.6 of
Zeng-Rǎdulescu-Winkert [50].

Lemma 3.6. Let H(U1) and H(U2) be satisfied. Then, the following statements hold:

(i) U1 and U2 are well-defined and for each u ∈ X and v ∈ Y , the sets U1(u) and U2(v) are
bounded, closed and convex in X∗ and Y ∗, respectively;

(ii) U1 and U2 are strongly-weakly u.s.c., i.e., U1 is u.s.c. from X with the strong topology
to the subsets of X∗ with the weak topology, and U2 is u.s.c. from Y with the strong
topology to the subsets of Y ∗ with the weak topology.

The following theorem states the main results of this section which indicates that the set of
weak solutions to problem (1.1) is nonempty and compact in V .

Theorem 3.7. Let 2 ≤ p. Assume that H(1), H(2), H(M), H(f), H(N), H(G), H(U1), H(U2),
H(ϕ), H(L) and H(J) are satisfied. Then, the solution set of problem (1.1), denoted by

∐
, is

nonempty and compact in V .

Proof. First we prove the following claims.
Claim 1: The solution set

∐
of problem (1.1) is bounded, when

∐
is nonempty.

Assume that
∐

is nonempty and let u ∈
∐

be arbitrary. Then we can find functions
(η, ξ) ∈ X∗ × Y ∗ satisfying η(x) ∈ U1(x, u(x)) for a. a.x ∈ Ω and ξ(x) ∈ U2(x, u(x)) for
a. a.x ∈ Γ2 and the inequality holds

M(u)

∫
Ω

|∇u|p−2∇u · ∇(v − u) dx+

∫
Ω

µ(x)|∇u|q−2∇u · ∇(v − u) dx

+

∫
Ω

(|u|p−2u+ µ(x)|u|q−2u)(v − u) dx+

∫
Ω

N(u)(x)(v − u) dx

+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, u) dΓ +

∫
Γ4

G(u)(x)(v − u) dΓ

≥
∫
Ω

η(x)(v − u) dx+

∫
Γ2

ξ(x)(v − u) dΓ +

∫
Ω

f(x, u,∇u)(v − u) dx
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for all v ∈ K(u). Recall that 0 ∈ K(u). So we can put v = 0 into the above inequality in order
to get that

M(u)∥∇u∥pp,Ω + ∥∇u∥qq,µ + ∥u∥pp,Ω + ∥u∥q,µ +

∫
Ω

N(u)udx+

∫
Γ4

G(u)udΓ

+

∫
Γ3

ϕ(x, u) dΓ−
∫
Ω

f(x, u,∇u)udx

≤
∫
Γ3

ϕ(x, 0) dΓ +

∫
Ω

η(x)udx+

∫
Γ2

ξ(x)udΓ.

(3.12)

From hypotheses H(U1)(iv) and H(U2)(iv) it follows that∫
Ω

η(x)u(x) dx ≤
∫
Ω

|η(x)||u(x)|dx

≤
∫
Ω

(
αU1(x) + aU1 |u(x)|p−1

)
|u(x)|dx

≤ aU1
∥u∥pp,Ω + ∥αU1

∥p′,Ω∥u∥p,Ω
≤ aU1

cp(Ω)
p∥u∥pV + ∥αU1

∥p′,Ωcp(Ω)∥u∥V ,

(3.13)

and ∫
Γ2

ξ(x)u(x) dΓ ≤
∫
Γ2

|ξ(x)||u(x)|dΓ

≤
∫
Γ2

(
αU2

(x) + aU2
|u(x)|p−1

)
|u(x)|dΓ

≤ aU2∥u∥
p
p,Γ2

+ ∥αU2∥p′,Γ2∥u∥p,Γ2

≤ aU2cp(Γ2)
p∥u∥pV + ∥αU2∥p′,Γ2cp(Γ2)∥u∥V .

(3.14)

By hypotheses H(f)(i), H(N) and H(G), we have∫
Ω

f(x, u,∇u)udx ≤
∫
Ω

(
af |∇u|p−1 + bf |u|p−1 + αf (x)

)
|u|dx

≤ af∥∇u∥p−1
p,Ω ∥u∥p,Ω + bf∥u∥pp,Ω + ∥αf∥p′,Ω∥u∥p,Ω,

≤ af λ̂
1
p ∥∇u∥pp,Ω + bfcp(Ω)

p∥u∥pV + ∥αf∥p′,Ωcp(Ω)∥u∥V ,

(3.15)

and ∫
Ω

N(u)(x)udx ≥ −∥N(u)∥ζ′
1,Ω

∥u∥ζ1,Ω ≥ −(aN + bN∥u∥κ1

ζ1,Ω
)∥u∥ζ1,Ω, (3.16)

and ∫
Γ4

G(u)(x)udΓ ≥ −∥G(u)∥ζ′
2,Γ4

∥u∥ζ2,Γ4
≥ −(aG + bG∥u∥κ2

ζ2,Γ4
)∥u∥ζ2,Γ4

. (3.17)

Taking into account (3.12), (3.13), (3.14), (3.15), (3.16) and (3.17), we obtain(
cM − af λ̂

1
p

)
∥∇u∥pp,Ω + ∥∇u∥qq,µ + ∥u∥pp,Ω + ∥u∥q,µ − aU1

cp(Ω)
p∥u∥pV

− aU2
cp(Γ2)

p∥u∥pV − bfcp(Ω)
p∥u∥pV

≤ (aN + bN∥u∥κ1

ζ1,Ω
)∥u∥ζ1,Ω + (aG + bG∥u∥κ2

ζ2,Γ4
)∥u∥ζ2,Γ4 + ∥αU1∥p′,Ωcp(Ω)∥u∥V

+ ∥αU2
∥p′,Γ2

cp(Γ2)∥u∥V + ∥αf∥p′,Ωcp(Ω)∥u∥V +

∫
Γ3

ϕ(x, 0) dΓ + αφ∥u∥V + βφ.

Therefore, if ∥u∥V > 1, then we have(
min{cM − af λ̂

1
p , 1} − (aU1

+ bf )cp(Ω)
p − aU2

cp(Γ2)
p
)
∥u∥pV

≤ m0

(
1 + ∥u∥V + ∥u∥κ1+1

V + ∥u∥κ2+1
V

)
,

(3.18)
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with some m0 > 0 which is independent of u, where we have used the continuity of embeddings
of V to Lζ1(Ω), of V to Lp(Ω), of V to Lζ2(Γ4) and of V to Lp(Γ2). Using the inequalities

1 < κ1 < p− 1, 1 < κ2 < p− 1,

min{cM − af λ̂
1
p , 1} − (aU1 + bf )cp(Ω)

p − aU2cp(Γ2)
p > 0,

and (3.18), we conclude that the solution set
∐

of problem (1.1) is bounded, when
∐

is
nonempty.

Claim 2: Let C > 0 and BV (0, C) := {u ∈ V : ∥u∥V ≤ C}. Then we can find a positive
constant C∗ > 0 satisfying

S(BV (0, C∗), U1(iBV (0, C∗)), U2(γBV (0, C∗))) ⊂ BV (0, C∗). (3.19)

We prove it by contradiction. Suppose there is no such constant C∗ to satisfy the inclusion
(3.19). Therefore, for every n > 1, we are able to find elements wn, zn, yn ∈ BV (0, n) and
(ηn, ξn) ∈ X∗ × Y ∗ such that ηn ∈ U1(izn), ξn ∈ U2(γyn) and

un = S(wn, ηn, ξn) and ∥un∥V > n.

By the definition of un, we have

M(wn)

∫
Ω

|∇un|p−2∇un · ∇(v − un) dx+

∫
Ω

µ(x)|∇un|q−2∇un · ∇(v − un) dx

+

∫
Ω

(|un|p−2un + µ(x)|un|q−2un)(v − un) dx+

∫
Ω

N(wn)(x)(v − un) dx

+

∫
Γ3

ϕ(x, v) dΓ−
∫
Γ3

ϕ(x, un) dΓ +

∫
Γ4

G(wn)(x)(v − un) dΓ

≥
∫
Ω

ηn(x)(v − un) dx+

∫
Γ2

ξn(x)(v − un) dΓ +

∫
Ω

f(x,wn,∇un)(v − un) dx

for all v ∈ K(wn). In the inequality above we take v = 0 to obtain

M(wn)∥∇un∥pp,Ω + ∥∇un∥qq,µ + ∥un∥pp,Ω + ∥un∥q,µ +

∫
Ω

N(wn)un dx

+

∫
Γ4

G(un)un dΓ +

∫
Γ3

ϕ(x, un) dΓ−
∫
Ω

f(x,wn,∇un)un dx

≤
∫
Γ3

ϕ(x, 0) dΓ +

∫
Ω

ηn(x)un dx+

∫
Γ2

ξn(x)un dΓ.

(3.20)

It follows from hypotheses H(U1)(iv) and H(U2)(iv) that∫
Ω

ηn(x)un(x) dx ≤
∫
Ω

|ηn(x)||un(x)|dx

≤
∫
Ω

(
αU1

(x) + aU1
|zn(x)|p−1

)
|un(x)|dx

≤ ∥αU1
∥p′,Ω∥un∥p,Ω + aU1

∥zn∥p−1
p,Ω ∥un∥p,Ω

≤ cp(Ω)∥αU1
∥p′,Ω∥un∥V + aU1

cp(Ω)
p∥zn∥p−1

V ∥un∥V ,

(3.21)

and ∫
Γ2

ξn(x)un(x) dx ≤
∫
Γ2

|ξn(x)||un(x)|dx

≤
∫
Γ2

(
αU2

(x) + aU2
|yn(x)|p−1

)
|un(x)|dx

≤ ∥αU2
∥p′,Γ2

∥un∥p,Γ2
+ aU2

∥yn∥p−1
p,Γ2

∥un∥p,Γ2

≤ cp(Γ2)∥αU2
∥p′,Γ2

∥un∥V + aU2
cp(Γ2)

p∥yn∥p−1
V ∥un∥V .

(3.22)
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Moreover, hypotheses H(N) and H(G) imply that∫
Ω

N(wn)un dx ≤ ∥N(wn)∥ζ′
1,Ω

∥un∥ζ1,Ω ≤ (aN + bN∥wn∥κ1

ζ1,Ω
)∥un∥ζ1,Ω, (3.23)

and ∫
Γ4

G(wn)un dΓ ≤ ∥G(wn)∥ζ′
2,Γ4

∥un∥ζ2,Γ4
≤ (aG + bG∥wn∥κ2

ζ2,Γ4
)∥un∥ζ2,Γ4

. (3.24)

Finally, by hypothesis H(f)(i), we have∫
Ω

f(x,wn,∇un)un dx

≤
∫
Ω

(
af |∇un|p−1 + bf |wn|p−1 + αf (x)

)
|un|dx

≤ af∥∇un∥p−1
p,Ω ∥un∥p,Ω + bf∥wn∥p−1

p,Ω ∥un∥p,Ω + ∥αf∥p′,Ω∥un∥p,Ω

≤ af λ̂
1
p ∥∇un∥pp,Ω + bfcp(Ω)

p∥wn∥p−1
V ∥un∥V + ∥αf∥p′,Ωcp(Ω)∥un∥V .

(3.25)

Since n > 1 and ∥yn∥V ≤ n < ∥un∥V , we insert (3.21), (3.22), (3.23), (3.24), (3.25) into (3.20)
to obtain(

min{cM − af λ̂
1
p , 1} − (aU1

+ bf )cp(Ω)
p − aU2

cp(Γ2)
p
)
∥un∥pV

≤ (aN + bN∥wn∥κ1

ζ1,Ω
)∥un∥ζ1,Ω + (aG + bG∥wn∥κ2

ζ2,Γ4
)∥un∥ζ2,Γ4

+ ∥αU1
∥p′,Ωcp(Ω)∥un∥V

+ ∥αU2∥p′,Ωcp(Γ2)∥un∥V + ∥αf∥p′,Ωcp(Ω)∥un∥V +

∫
Γ3

ϕ(x, 0) dΓ + αφ∥un∥V + βφ,

where we have used inequality (3.5). Passing to the limit as n → ∞ to the inequality above,
one has

+∞ = lim
n→∞

(
min{cM − af λ̂

1
p , 1} − (aU1 + bf )cp(Ω)

p − aU2cp(Γ2)
p
)
∥un∥p−max{κ1,κ2}−1

V ≤ 0,

a contradiction. Therefore, we conclude that there exists a positive constant C∗ > 0 such that
(3.19) holds. This proves Claim 2.

As mentioned before, the main tool in the proof of the existence of a solution to problem
(1.1) is Tychonoff’s fixed point theorem for multivalued operators, see Theorem 2.5. For this
purpose, let us consider the multivalued mapping Λ: V ×X∗ × Y ∗ → 2V×X∗×Y ∗

defined by

Λ(u, η, ξ) := (S(u, η, ξ),U1(iu),U2(γu)).

Observe that if (u, η, ξ) is a fixed point of Λ, then we have u = S(u, η, ξ) and (η, ξ) ∈ U1(iu)×
U2(γu). It is obvious from the definitions of S, U1 and U2 that u is also a weak solution of
problem (1.1). Therefore, we are going to examine the validity of the conditions of Theorem
2.5.

Invoking Lemmas 3.4 and 3.5, we can see that for each (w, η, ξ) ∈ V × X∗ × Y ∗, the set
Λ(w, η, ξ) is a nonempty, bounded, closed and convex subset of V ×X∗ × Y ∗.

Employing hypotheses H(U1)(iv) and H(U2)(iv), it is not difficult to prove that U1 : X → 2X
∗

and U2 : Y → 2Y
∗
are two bounded operators, and there exist two constants M1 > 0 and M2 > 0

satisfying

∥U1(iBV (0, C∗))∥X∗ ≤ M1 and ∥U2(γBV (0, C∗))∥Y ∗ ≤ M2.

Additionally, we introduce a bounded, closed and convex subset D of V ×X∗ × Y ∗ defined by

D = {(u, η, ξ) ∈ V ×X∗ × Y ∗ : ∥u∥V ≤ C∗, ∥η∥X∗ ≤ M1 and ∥ξ∥Y ∗ ≤ M2} .
From this and (3.19) we know that Λ maps D into itself.

Next, we are going to prove that the multivalued mapping Λ is weakly-weakly u.s.c. For any
weakly closed set E in V ×X∗ × Y ∗ such that Λ−(E) ̸= ∅, let {(wn, ηn, ξn)}n∈N ⊂ Λ−(E) be

such that (wn, ηn, ξn)
w−→ (w, η, ξ) in V ×X∗×Y ∗ for some (w, η, ξ) ∈ V ×X∗×Y ∗. Our goal



20 S. ZENG, V.D. RĂDULESCU, AND P. WINKERT

is to show that (w, η, ξ) ∈ Λ−(E), namely, there exists (u, δ, σ) ∈ Λ(w, η, ξ)∩E. Indeed, for each
n ∈ N, we are able to find (un, δn, σn) ∈ Λ(wn, ηn, ξn)∩E, so, un = S(wn, ηn, ξn), δn ∈ U1(iwn)
and σn ∈ U2(γwn). From the boundedness of U1 and U2, one has that the sequences {δn}n∈N
and {σn}n∈N are bounded in X∗ and Y ∗, respectively. Passing to a subsequence if necessary,
we may assume that

δn
w−→ δ in X∗ and σn

w−→ σ in Y ∗

for some (δ, σ) ∈ X∗×Y ∗. Recall that S is completely continuous. So, it holds un = S(wn, ηn, ξn)
→ S(w, η, ξ) := u in V . Note that i and γ are both compact. Hence iwn → iw in X and
γwn → γw in Y . Since U1 (resp. U2) is strongly-weakly u.s.c. and has nonempty, bounded,
closed and convex values, it follows from Theorem 1.1.4 of Kamenskii-Obukhovskii-Zecca [25]
that U1 (resp. U2) is strongly-weakly closed. The latter combined with the convergences above
implies that δ ∈ U1(iw) and σ ∈ U2(γw), namely, (u, δ, σ) ∈ Λ(w, η, ξ) ∩E, because of the weak
closedness of E. Therefore, we conclude that Λ is weakly-weakly u.s.c.

Therefore, all conditions of Theorem 2.5 are satisfied. Using this theorem, we conclude that
Λ has at least a fixed point, say (u∗, η∗, ξ∗) ∈ V ×X∗ × Y ∗. Hence, u∗ ∈ V is a weak solution
of problem (1.1).

Next, let us prove the compactness of the solution set
∐
. From Claim 1, we can see that

the solution set
∐

of problem (1.1) is bounded in V . By the definitions of a weak solution (see
Definition 3.3) and of Λ, there exist (η, ξ) ∈ X∗ × Y ∗ such that u = S(u, η, ξ), η ∈ U1(iu) and
ξ ∈ U2(γu), that is, (u, η, ξ) ∈ Λ(u, η, ξ). Let {un}n∈N be any sequence of solutions to problem
(1.1). Then, there are two sequences {ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗ such that ηn ∈ U1(iun),
ξn ∈ U2(γun) such that un = S(un, ηn, ξn) for all n ∈ N. From the boundedness of

∐
we may

assume that

un
w−→ u in V

for some u ∈ V . This together with the boundedness of U1 and U2 deduces that {ηn}n∈N ⊂ X∗

and {ξn}n∈N ⊂ Y ∗ are both bounded. So, passing to a subsequence if necessary, we suppose
that

ηn
w−→ η in X∗ and ξn

w−→ ξ in Y ∗

for some η ∈ U1(iu) and ξ ∈ U2(γu), owing to the compactness of i and γ as well as the
strongly-weakly closedness of U1 and U2. Using the complete continuity of S, we conclude that

un = S(un, ηn, ξn) → S(u, η, ξ) = u.

This means that u is a solution to problem (1.1). Consequently, the solution set
∐

of problem
(1.1) is compact. □

4. Special cases of the original problem

In this section, we are going to study several special cases of problem (1.1) and discuss some
particular situations.

First, we move our attention to consider the special case of problem (1.1) formed as follows:

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ r1(u)∂j1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ r2(u)∂j2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

L(u) ≤ J(u),

(4.1)
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where the terms ∂j1 and ∂j2 stand for the Clarke’s generalized gradients of locally Lipschitz
functions s 7→ j1(x, s) and s 7→ j2(x, s), respectively. Here, the functions j1 : Ω × R → R and
j2 : Γ2 × R → R are supposed to satisfy the following properties:

H(j1): The functions j1 : Ω× R → R and r1 : R → R are such that
(i) x 7→ j1(x, s) is measurable in Ω for all s ∈ R with x 7→ j1(x, 0) belonging to L1(Ω);
(ii) s 7→ j1(x, s) is locally Lipschitz continuous for a. a.x ∈ Ω and the function r1 : R →

R is continuous;
(iii) there exist a function αj1 ∈ Lp′

(Ω)+ and a constant aj1 ≥ 0 such that

|r1(s)η| ≤ αj1(x) + aj1 |s|p−1

for all η ∈ ∂j1(x, s), for a. a.x ∈ Ω and for all s ∈ R.
H(j2): The functions j2 : Γ2 × R → R and r2 : R → R are such that

(i) x 7→ j2(x, s) is measurable on Γ2 for all s ∈ R with x 7→ j2(x, 0) belonging to
L1(Γ2);

(ii) s 7→ j2(x, s) is locally Lipschitz continuous for a. a.x ∈ Γ2 and the function r2 : R →
R is continuous;

(iii) there exist a function αj2 ∈ Lp′
(Γ2)+ and a constant aj2 ≥ 0 such that

|r2(s)ξ| ≤ αj2(x) + aj2 |s|p−1

for all ξ ∈ ∂j2(x, s), for a. a.x ∈ Γ2 and for all s ∈ R.
Using the same arguments as in the proof of Theorem 3.11 of Zeng-Rǎdulescu-Winkert [50],

we have the following lemma.

Lemma 4.1. Assume that H(j1) and H(j2) are fulfilled. Then, the multivalued mappings
U1 : Ω× R → 2R and U2 : Γ2 × R → 2R defined by

U1(x, s) := r1(s)∂j1(x, s) and U2(y, s) := r2(s)∂j2(y, s)

for all s ∈ R, for a. a.x ∈ Ω and for a. a. y ∈ Γ2, satisfy H(U1) and H(U2), respectively.

By Theorem 3.7 and Lemma 4.1, we have the following existence theorem to problem (4.1).

Theorem 4.2. Let p ≥ 2. Assume that H(1), H(M), H(f), H(N), H(G), H(j1), H(j2), H(ϕ),
H(L), H(J) and the inequalities

0 < k(p)cM − ef λ̂
1
p ,

0 < min{cM − af λ̂
1
p , 1} − (aj1 + bf ) cp(Ω)

p − aj2cp(Γ2)
p

are satisfied. Then, the solution set of problem (4.1) is nonempty and compact in V .

When f is independent of the third variable (i.e., f is formulated by f : Ω × R → R), then
problem (1.1) becomes to the following problem:

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ U2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

L(u) ≤ J(u).

(4.2)

A careful reading of the proofs in Section 3 gives the following results to problem (4.2).

Theorem 4.3. Let p ≥ 2. Assume that H(1), H(M), H(N), H(G), H(U1), H(U2), H(ϕ), H(L)
and H(J) are satisfied. If, in addition, f satisfies the following conditions
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H(f ′): f : Ω×R → R is a Carathéodory function such that there exist a constant bf ≥ 0 and a

function αf ∈ L
p

p−1 (Ω)+ satisfying

|f(x, s)| ≤ bf |s|p−1 + αf (x)

for a. a.x ∈ Ω, for all s ∈ R
and the following inequality is satisfied

0 < min{cM , 1} − (aU1
+ bf ) cp(Ω)

p − aU2
cp(Γ2)

p,

then the solution set of problem (4.2) is nonempty and compact in V .

Therefore, from Theorems 4.2 and 4.3, we can directly obtain the existence of a weak solution
to the following implicit obstacle inclusion problem:

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ r1(u)∂j1(x, u) +N(u)(x) + f(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ r2(u)∂j2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

L(u) ≤ J(u).

(4.3)

Theorem 4.4. Let p ≥ 2. Assume that H(1), H(M), H(N), H(G), H(j1), H(j2), H(ϕ), H(L)
and H(J) are satisfied. If, in addition, H(f ′) and the following inequality are satisfied

0 < min{cM , 1} − (aj1 + bf ) cp(Ω)
p − aj2cp(Γ2)

p,

then the solution set of problem (4.3) is nonempty and compact in V .

Particularly, if Γ2 = Γ3 = Γ4 = ∅ (namely, Γ1 = Γ), then problem (1.1) reduces to the
following nonlocal implicit obstacle problem with Dirichlet boundary condition:

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ,

L(u) ≤ J(u).

(4.4)

Obviously, the function space considered in problem (4.4) is the closed subspace

W 1,H
0 (Ω) := {u ∈ W 1,H(Ω) : u = 0 on Γ}

of W 1,H(Ω). It is well-known that V0 := W 1,H
0 (Ω) endowed the norm ∥u∥V0

:= ∥|∇u|∥H for all
u ∈ V0 becomes a reflexive Banach space. Therefore, we have the following existence theorem
to problem (4.4).

Theorem 4.5. Let p ≥ 2. Assume that H(1), H(M), H(f), H(N), H(U1), H(L), H(J) and the
following inequalities

0 < k(p)cM − ef λ̂
1
p ,

0 < min{cM − af λ̂
1
p , 1} − (aU1

+ bf ) cp(Ω)
p

are satisfied. Then, the solution set of problem (4.4), denoted by
∐
, is nonempty and compact

in V0.
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More particularly, if f is independent of the third variable and U1 is specialized by the
formulation U1(x, s) = r1(s)∂j1(x, s) for all (x, s) ∈ Ω × R, then problem (4.4) reduces to the
following implicit obstacle problems, respectively:

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u) in Ω,

u = 0 on Γ,

L(u) ≤ J(u),

(4.5)

and

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ r1(u)∂j1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ,

L(u) ≤ J(u).

(4.6)

Therefore, we have the following existence theorems to problems (4.5) and (4.6), respectively.

Theorem 4.6. Let p ≥ 2. Assume that H(1), H(M), H(f ′), H(N), H(U1), H(L), H(J) and the
following inequality

0 < min{cM , 1} − (aU1
+ bf ) cp(Ω)

p

is satisfied. Then, the solution set of problem (4.5), denoted by
∐
, is nonempty and compact in

V0.

Theorem 4.7. Let p ≥ 2. Assume that H(1), H(M), H(f), H(N), H(j1), H(L), H(J) and the
following inequalities

0 < k(p)cM − ef λ̂
1
p ,

0 < min{cM − af λ̂
1
p , 1} − (aj1 + bf ) cp(Ω)

p

are satisfied. Then, the solution set of problem (4.6), denoted by
∐
, is nonempty and compact

in V0.

Let cJ ≥ 0 be a given constant. When J(u) = cJ for all u ∈ V , then problem (1.1) can be
rewritten as the following nonlocal elliptic system:

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ U2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

L(u) ≤ cJ ,

(4.7)

With respect to problem (4.7), the constraint set is denoted by the following one

K := {u ∈ V : L(u) ≤ cJ}.
Observe that the following condition

H(L′): L : V → R is a l.s.c. and convex function,

is weaker than hypothesis H(L). Without loss of generality, in the sequel, we suppose that
L(0) ≤ cJ . Therefore, it is not difficult to prove that if H(L′) holds, then the constraint set K
is a nonempty, closed and convex subset of V with 0 ∈ K.

In Theorem 3.7, the inequalities given in H(2) play critical role to prove the existence of weak
solutions to problem (1.1). But, in some sense, such inequalities restrict the scope of applications
to our theoretical results. A natural question arises whether we can drop hypotheses H(2).
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However, this is still an open problem for the equations with the implicit obstacle effect (for
example, problem (1.1)). But, fortunately, if the obstacle constraint is formulated by the form
L(u) ≤ cJ and M is a coercive in V , i.e., M(u) → +∞ as ∥u∥V → ∞, then hypotheses H(2)
can be removed. More precisely, if the obstacle constraint is formulated by L(u) ≤ cJ , then
hypothesis H(M) can be relaxed to the following condition:

H(M ′): M : Lp∗
(Ω) → (0,+∞) is bounded and continuous in V such that infu∈V M(u) > 0.

Theorem 4.8. Assume that H(1), H(f)(i), H(N), H(G), H(U1), H(U2), H(ϕ), H(M ′) and
H(L′) are satisfied. If, moreover, M : Lp∗

(Ω) → (0,+∞) is coercive in V , then the solution set
of problem (4.7), denoted by

∐
, is nonempty and compact in V .

Proof. Let A : V × V → V ∗, F : V → Lp′
(Ω) ⊂ V ∗ and G : V → V ∗ be the functions defined by

⟨A(u, u), v⟩ := M(u)

∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx

+

∫
Ω

(|u|p−2u+ µ(x)|u|q−2u)v dx

⟨Fu, v⟩ :=
∫
Ω

f(x, u,∇u)v dx,

⟨G(u), v⟩ :=
∫
Ω

N(u)(x)(v − u) dx+

∫
Γ4

G(u)(x)v dΓ,

for all u, v ∈ V . Applying a standard procedure, it is easily to show that u ∈ V is a weak
solution to problem (4.7) if and only if it solves the following inclusion problem:

A(u, u) + G(u) + F(u) + i∗U1(iu) + γ∗U2(γu) + ∂cφK(u) ∋ 0 in V ∗,

where ∂cφK is the convex differential operator of φK := φ+ IK and IK is the indicator function
of K.

We assert that the multivalued mapping V ∋ u 7→ A(u, u)+G(u)+F(u)+i∗U1(u)+γ∗U2(u)+
∂cφK(u) ⊂ V ∗ is coercive. Let u ∈ K, η ∈ U1(iu) and ξ ∈ U2(γu) be arbitrary. A simple
calculating gives∫

Ω

M(u)|∇u|p + µ(x)|∇u|q + |u|p + µ(x)|u|q dx+

∫
Ω

N(u)(x)udx+

∫
Γ3

ϕ(x, u) dΓ

−
∫
Γ3

ϕ(x, 0) dΓ +

∫
Γ4

G(u)(x)udΓ +

∫
Ω

η(x)udx+

∫
Γ2

ξ(x)udΓ +

∫
Ω

f(x, u,∇u)udx

≥ M(u)∥∇u∥pp,Ω + ∥∇u∥qq,µ + ∥u∥pp,Ω + ∥u∥qq,µ − af λ̂
1
p ∥∇u∥pp,Ω − bf∥u∥pp,Ω

− ∥αf∥p′,Ω∥u∥p,Ω −
(
aN + bN∥u∥κ1

ζ1,Ω

)
∥u∥ζ1,Ω −

(
aG + bG∥u∥κ2

ζ2,Γ4

)
∥u∥ζ2,Γ4

− αφ∥v∥V

− βφ −
∫
Γ3

ϕ(x, 0) dΓ− ∥αU1
∥p′,Ω∥u∥p,Ω − aU1

∥u∥pp,Ω − ∥αU2
∥p′,Γ2

∥u∥p,Ω − aU2
∥u∥pp,Γ2

≥
(
M(u)− af λ̂

1
p − bf λ̂− aU1

λ̂− aU2
λS
1,p(1 + λ̂)

)
∥∇u∥pp,Ω + ∥∇u∥qq,µ + ∥u∥pp,Ω + ∥u∥qq,µ

− ∥αf∥p′,Ω∥u∥p,Ω −
(
aN + bN∥u∥κ1

ζ1,Ω

)
∥u∥ζ1,Ω −

(
aG + bG∥u∥κ2

ζ2,Γ4

)
∥u∥ζ2,Γ4

− αφ∥v∥V

− βφ −
∫
Γ3

ϕ(x, 0) dΓ,

where we have used the variational identity (2.5). Hence, if ∥u∥V > 1 is such that

M(u)− af λ̂
1
p − bf λ̂− aU1

λ̂− aU2
λS
1,p(1 + λ̂) > 1,

then we have∫
Ω

M(u)|∇u|p + µ(x)|∇u|q + |u|p + µ(x)|u|q dx+

∫
Ω

N(u)(x)udx+

∫
Γ3

ϕ(x, u) dΓ
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−
∫
Γ3

ϕ(x, 0) dΓ +

∫
Γ4

G(u)(x)udΓ +

∫
Ω

η(x)udx+

∫
Γ2

ξ(x)udΓ +

∫
Ω

f(x, u,∇u)udx

≥ ∥u∥pV − ∥αf∥p′,Ω∥u∥p,Ω −
(
aN + bN∥u∥κ1

ζ1,Ω

)
∥u∥ζ1,Ω

−
(
aG + bG∥u∥κ2

ζ2,Γ4

)
∥u∥ζ2,Γ4 − αφ∥v∥V − βφ −

∫
Γ3

ϕ(x, 0) dΓ.

Recall that κ1 + 1 < p and κ2 + 1 < p. Therefore, we have

⟨A(u, u) + G(u) + F(u) + i∗U1(u) + γ∗U2(u) + ∂cφK(u), u⟩
∥u∥V

→ ∞ as ∥u∥V → ∞.

This means that the multivalued mapping V ∋ u 7→ A(u, u)+G(u)+F(u)+ i∗U1(u)+γ∗U2(u)+
∂cφK(u) ⊂ V ∗ is coercive.

From the proof of Theorem 3.4 of Zeng-Bai-Gasiński [47] and Theorem 3.7, we can see that
the weak continuity of M plays an important role to prove the pseudomonotonicity of V ∋ u 7→
A(u, u) +G(u) +F(u) + i∗U1(iu) + γ∗U2(γu) ⊂ V ∗. More exactly, it directly effects the validity
of the condition that

• if {un}n∈N ⊂ V with un
w−→ u in V and u∗

n ∈ A(un, un)+G(un)+F(un)+ i∗U1(iun)+
γ∗U2(γun) are such that

lim sup
n→∞

⟨u∗
n, un − u⟩ ≤ 0, (4.8)

then to each element v ∈ V , there exists u∗(v) ∈ A(u, u) + G(u) + F(u) + i∗U1(iu) +
γ∗U2(γu) with

⟨u∗(v), u− v⟩ ≤ lim inf
n→∞

⟨u∗
n, un − v⟩. (4.9)

Let {un}n∈N ⊂ V and {u∗
n}n∈N ⊂ V ∗ be sequences such that u∗

n ∈ A(un, un) + G(un) +
F(un)+ i∗U1(iun)+ γ∗U2(γun) and suppose inequality (4.8) holds. Then, there exist sequences
{ηn}n∈N ⊂ X∗ and {ξn}n∈N ⊂ Y ∗ satisfying ηn ∈ U1(iun), ξn ∈ U2(γun) and

u∗
n = A(un, un) + G(un) + F(un) + i∗ηn + γ∗ξn for all n ∈ N.

Using hypotheses H(U1) and H(U2), we can observe that the sequences {ηn}n∈N ⊂ X∗ and
{ξn}n∈N ⊂ Y ∗ are both bounded. Passing to a subsequence if necessary, we may assume that

ηn
w−→ η in X∗ and ξn

w−→ ξ in Y ∗ (4.10)

for some (η, ξ) ∈ X∗×Y ∗. Besides, hypothesis H(f)(i) reveals that the sequence {F(un)}n∈N is

bounded in Lp′
(Ω). Then, we use the compactness of i and γ as well as of the embedding from

V into Lp(Ω) to obtain

0 ≥ lim sup
n→∞

⟨u∗
n, un − u⟩

≥ lim sup
n→∞

⟨A(un, un), un − u⟩+ lim inf
n→∞

⟨G(un), un − u⟩+ lim inf
n→∞

⟨F(un), un − u⟩

− lim sup
n→∞

⟨ηn, un − u⟩Lp′ (Ω)×Lp(Ω) − lim sup
n→∞

⟨ξn, un − u⟩Lp′ (Γ2)×Lp(Γ2)

≥ lim sup
n→∞

⟨A(un, un), un − u⟩.

Let cM := infu∈V M(u) > 0, and 0 < ε < cM arbitrary. Recall that un
w−→ u in V and M is

bounded in V , we have

0 ≥ lim sup
n→∞

⟨A(un, un), un − u⟩

= lim sup
n→∞

∫
Ω

(
M(un)|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − u)

+
(
|un|p−2un + µ(x)|un|q−2un

)
(un − u) dx
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≥ lim inf
n→∞

(M(un)− ε)

∫
Ω

|∇un|p−2∇un · ∇ (un − u) dx

+ lim sup
n→∞

∫
Ω

(
ε|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − u)

+
(
|un|p−2un + µ(x)|un|q−2un

)
(un − u) dx

≥ lim inf
n→∞

(M(un)− ε)

∫
Ω

|∇u|p−2∇u · ∇ (un − u) dx

+ lim sup
n→∞

∫
Ω

(
ε|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − u)

+
(
|un|p−2un + µ(x)|un|q−2un

)
(un − u) dx

≥ lim sup
n→∞

∫
Ω

(
ε|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇(un − u)

+
(
|un|p−2un + µ(x)|un|q−2un

)
(un − u) dx.

Let us define the function A : V → V ∗

⟨A w, v⟩ :=
∫
Ω

(
ε|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇v

+
(
|w|p−2w + µ(x)|w|q−2w

)
v dx,

it is of type (S+) (see Proposition 2.3). This implies that un → u in V .
Recall that U1 and U2 are strongly-weakly closed. Therefore, from (4.10) it follows that

η ∈ U1(iu) and ξ ∈ U2(γu). For any v ∈ V , we have

lim
n→∞

⟨u∗
n, un − v⟩ = ⟨A(u, u) + G(u) + F(u)− i∗η − γ∗ξ, u− v⟩.

The latter combined with the fact that η ∈ U1(iu) and ξ ∈ U2(γu) implies that u∗ ∈ A(u, u) +
G(u) + F(u) + i∗U1(iu) + γ∗U2(γu). Therefore, we conclude that (4.9) holds.

Using the same arguments as in the proof of Theorem 3.7 and Theorem 3.4 of Zeng-Bai-
Gasiński [47], it is not difficult to prove that the solution set of problem (4.7) is nonempty and
compact in V . □

Remark 4.9. In fact, there are a several of functions which satisfy the hypotheses H(M ′) such
that M is coercive in V . For example, the following functions are coercive in V and fulfill
hypothesis H(M ′)

M(u) = ca + ∥u∥V , M(u) = ca + ln(1 + ∥u∥V ), M(u) = ca + ∥u∥∥u∥V

V , and M(u) = e∥u∥V

for all u ∈ V with ca > 0.

Let D ⊂ Ω be a nonempty set with positive measure and Ψ: D → R be a given obstacle
function. Furthermore, when J(u) ≡ 0 (i.e., cJ = 0) and L is formulated by

L(u) =

∫
D
(u(x)−Ψ(x))+ dx for all u ∈ V,
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then problem (4.7) can be written by the following obstacle problem:

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ U2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

u(x) ≤ Ψ(x) in D.

(4.11)

Therefore, we have the following corollary.

Corollary 4.10. Assume that H(1), H(f)(i), H(N), H(G), H(U1), H(U2), H(M ′) and H(ϕ)
are satisfied. If, moreover, M is coercive in V , and Φ: Ω → R is a measurable function, then
the solution set of problem (4.11), denoted by

∐
, is nonempty and compact in V .

Under the analysis above, we have the following theorems and corollaries.

Theorem 4.11. Assume that H(1), H(f)(i), H(N), H(G), H(j1), H(j2), H(ϕ), H(M ′) and
H(L′) are satisfied. If, moreover, M is coercive in V , then the solution set of the following
nonlocal obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ r1(u)∂j1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ r2(u)∂j2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

L(u) ≤ cJ ,

is nonempty and compact in V .

Corollary 4.12. Assume that H(1), H(f)(i), H(N), H(G), H(j1), H(j2), H(M ′) and H(ϕ) are
satisfied. If, moreover, M is coercive in V , and Φ: Ω → R is a measurable function, then the
solution set of the following obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ r1(u)∂j1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ r2(u)∂j2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

u(x) ≤ Ψ(x) in D,

is nonempty and compact in V .

Theorem 4.13. Assume that H(1), H(f ′), H(N), H(G), H(U1), H(U2), H(ϕ), H(M ′) and
H(L′) are satisfied. If, moreover, M is coercive in V , then the solution set of the following
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obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ U2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

L(u) ≤ cJ ,

is nonempty and compact in V .

Corollary 4.14. Assume that H(1), H(f ′), H(N), H(G), H(U1), H(U2), H(M ′) and H(ϕ) are
satisfied. If, moreover, M is coercive in V , and Φ: Ω → R is a measurable function, then the
solution set of the following obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ U2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

u(x) ≤ Ψ(x) in D,

is nonempty and compact in V .

Theorem 4.15. Assume that H(1), H(f ′), H(N), H(G), H(j1), H(j2), H(ϕ), H(M ′) and H(L′)
are satisfied. If, moreover, M is coercive in V , then the solution set of the following obstacle
problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ r1(u)∂j1(x, u) +N(u)(x) + f(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ r2(u)∂j2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

L(u) ≤ cJ ,

is nonempty and compact in V .

Corollary 4.16. Assume that H(1), H(f ′), H(N), H(G), H(j1), H(j2), H(M ′) and H(ϕ) are
satisfied. If, moreover, M is coercive in V , and Φ: Ω → R is a measurable function, then the
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solution set of the following obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ r1(u)∂j1(x, u) +N(u)(x) + f(x, u) in Ω,

u = 0 on Γ1,

∂u

∂νa
∈ r2(u)∂j2(x, u) on Γ2,

− ∂u

∂νa
∈ ∂cϕ(x, u) on Γ3,

− ∂u

∂νa
= G(u)(x) on Γ4,

u(x) ≤ Ψ(x) in D,

is nonempty and compact in V .

Theorem 4.17. Assume that H(1), H(f)(i), H(N), H(U1), H(M ′) and H(L′) are satisfied. If,
moreover, M is coercive in V0, then the solution set of the following obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ,

L(u) ≤ cJ ,

is nonempty and compact in V0.

Corollary 4.18. Let D be a nonempty and measurable subset of Ω. Assume that H(1), H(f)(i),
H(N), H(M ′) and H(U1) are satisfied. If, moreover, M is coercive in V0, and Φ: Ω → R is a
measurable function, then the solution set of the following obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ,

u(x) ≤ Ψ(x) in D,

is nonempty and compact in V0.

Theorem 4.19. Assume that H(1), H(f ′), H(N), H(U1), H(M ′) and H(L′) are satisfied. If,
moreover, M is coercive in V0, then the solution set of the following obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u) in Ω,

u = 0 on Γ,

L(u) ≤ cJ ,

is nonempty and compact in V0.

Corollary 4.20. Assume that H(1), H(f ′), H(N), H(M ′) and H(U1) are satisfied. If, moreover,
M is coercive in V0, and Φ: Ω → R is a measurable function, then the solution set of the following
obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ U1(x, u) +N(u)(x) + f(x, u) in Ω,

u = 0 on Γ,

u(x) ≤ Ψ(x) in D,

is nonempty and compact in V0.

Theorem 4.21. Assume that H(1), H(f)(i), H(N), H(j1), H(M ′) and H(L′) are satisfied. If,
moreover, M is coercive in V0, then the solution set of the following obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ r1(u)∂j1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ,

L(u) ≤ cJ .
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is nonempty and compact in V0.

Corollary 4.22. Assume that H(1), H(f), H(N), H(M ′) and H(j1) are satisfied. If, moreover,
M is coercive in V0 and Φ: Ω → R is a measurable function, then the solution set of the following
obstacle problem

−DMu+ |u|p−2u+ µ(x)|u|q−2u ∈ r1(u)∂j1(x, u) +N(u)(x) + f(x, u,∇u) in Ω,

u = 0 on Γ,

u(x) ≤ Ψ(x) in D.

is nonempty and compact in V0.
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[37] S. Migórski, A. Ochal, M. Sofonea, “Nonlinear Inclusions and Hemivariational Inequalities”, Springer, New

York, 2013.

[38] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3

(1969), 510–585.
[39] Z. Naniewicz, P.D. Panagiotopoulos, “Mathematical Theory of Hemivariational Inequalities and Applica-

tions”, Marcel Dekker, Inc., New York, 1995.
[40] P.D. Panagiotopoulos, “Hemivariational Inequalities”, Springer-Verlag, Berlin, 1993.
[41] P.D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics, Z. Angew. Math.

Mech. 65 (1985), no. 1, 29–36.
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