NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH MULTIVALUED BOUNDARY CONDITIONS

SHENGDA ZENG, VICENŢIU D. RĂDULESCU, AND PATRICK WINKERT

Abstract

In this paper, we introduce and investigate a new kind of nonlinear double phase implicit obstacle problems involving a nonlinear convection term (a reaction term depending on the gradient), three highly nonlinear and nonlocal functions, and multivalued boundary conditions. Under very general assumptions on the data, we develop a generalized framework to explore the existence of weak solutions as well as the compactness of the solution set to the nonlocal double phase implicit obstacle problem. The results established in this paper improve, generalize and extend some results of the existing literature. Our method is based on the theory of multivalued analysis, Tychonoff's fixed point principle and variational methods.

1. Introduction

This paper is concerned with the investigation of an elliptic inclusion problem with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a nonlinear convection term (a reaction term depending on the gradient), an implicit obstacle constraint, three multivalued terms where two of them are appearing on the boundary and the other one is formulated in the domain, and three nonlocal operators in which two of them are described in the domain and the other one is appearing on the boundary. More precisely, we consider the following nonlocal double phase implicit obstacle problem:

$$
\begin{align*}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma_{1}, \\
\frac{\partial u}{\partial \nu_{a}} & \in U_{2}(x, u) & & \text { on } \Gamma_{2}, \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) & & \text { on } \Gamma_{3}, \tag{1.1}\\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{4}, \\
L(u) & \leq J(u), & &
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with Lipschitz boundary Γ such that Γ is divided into four disjoint measurable parts $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and Γ_{4} with Γ_{1} having positive measure, $\mu: \Omega \rightarrow[0,+\infty)$ and $1<p<q$. Here the nonlinear and nonlocal partial differential operator D_{M} is given by

$$
D_{M} u:=\operatorname{div}\left(M(u)|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q-2} \nabla u\right) \text { for all } u \in W^{1, \mathcal{H}}(\Omega),
$$

and

$$
\frac{\partial u}{\partial \nu_{a}}:=\left(M(u)|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q-2} \nabla u\right) \cdot \nu
$$

with ν being the unit normal vector on $\Gamma, U_{1}: \Omega \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ and $U_{2}: \Gamma_{2} \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ are two multivalued mappings, $M: L^{p^{*}}(\Omega) \rightarrow(0,+\infty), N: L^{\zeta_{1}}(\Omega) \rightarrow L^{\zeta_{1}^{\prime}}(\Omega)$ and $G: L^{\zeta_{2}}\left(\Gamma_{4}\right) \rightarrow L^{\zeta_{2}^{\prime}}\left(\Gamma_{4}\right)$ are three continuous functions, $\partial_{c} \phi(x, u)$ is the convex subdifferential of $s \mapsto \phi(x, s)$, and

[^0]$L, J: W^{1, \mathcal{H}}(\Omega) \rightarrow \mathbb{R}$ are given functions defined on the Musielak-Orlicz Sobolev space $W^{1, \mathcal{H}}(\Omega)$, see Section 2 for its precise definition.

Such class of problems include different interesting special cases which have not been studied largely in the literature. Initially, the treatment of obstacle problems goes back to the groundbreaking work by Stefan [46] in which the temperature distribution in a homogeneous medium undergoing a phase change, typically a body of ice at zero degrees centigrade submerged in water, was studied. We also mention the pioneering work of Lions [27] who studied the equilibrium position of an elastic membrane which lies above a given obstacle and which turns out as the unique minimizer of the Dirichlet energy functional.

It should be mentioned that if $M(u)=1, N(u)=0$ for all $u \in W^{1, \mathcal{H}}(\Omega)$ and $\Gamma_{4}=\emptyset$, then problem (1.1) reduces to the following double phase implicit obstacle inclusion problem:

$$
\begin{align*}
-D_{\mu} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+f(x, u, \nabla u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial \nu_{\mu}} & \in U_{2}(x, u) & & \text { on } \Gamma_{2} \tag{1.2}\\
-\frac{\partial u}{\partial \nu_{\mu}} & \in \partial_{c} \phi(x, u) & & \text { on } \Gamma_{3} \\
L(u) & \leq J(u) & &
\end{align*}
$$

where D_{μ} is the well-known double phase differential operator

$$
\begin{equation*}
D_{\mu} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q-2} \nabla u\right) \text { for all } u \in W^{1, \mathcal{H}}(\Omega) \tag{1.3}
\end{equation*}
$$

and

$$
\frac{\partial u}{\partial \nu_{\mu}}:=\left(|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q-2} \nabla u\right) \cdot \nu
$$

In fact, this problem has been considered and studied by Zeng-Rǎdulescu-Winkert [50] and they used the Kakutani-Ky Fan fixed point theorem in a multivalued version for examining the existence of a solution to problem (1.2) under the condition

$$
\begin{equation*}
(f(x, s, \xi)-f(x, t, \xi))(s-t) \leq e_{f}|s-t|^{p} \text { for a. a. } x \in \Omega, \text { for all } s, t \in \mathbb{R} \text { and all } \xi \in \mathbb{R}^{N} . \tag{1.4}
\end{equation*}
$$

Moreover, when $p=2$, it is not hard to see that the function $f: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ defined by

$$
f(x, s, \xi)=\sum_{i=1}^{N} \zeta_{i} \xi_{i}+\kappa_{1} s^{\frac{1}{2}}+\omega(x)
$$

for all $x \in \Omega$, for all $s \in \mathbb{R}$ and for all $\xi \in \mathbb{R}^{N}$, does not satisfy inequality (1.4), where $\omega \in L^{2}(\Omega)$, $\kappa_{1}>0$ and $\zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right) \in \mathbb{R}^{N}$ is a given vector. However, in the present paper, on the one hand, we remove the assumption (1.4) in order to extend the scope of applications to the theoretical results concerning the existence of weak solutions to double phase implicit obstacle problems; on the other hand, we develop a generalized framework to explore the existence of weak solutions as well as the compactness of the solution set to the nonlocal double phase implicit obstacle problem (1.1).

Note that the double phase operator defined in (1.3) is related to the energy functional

$$
\begin{equation*}
\omega \mapsto \int_{\Omega}\left(|\nabla \omega|^{p}+\mu(x)|\nabla \omega|^{q}\right) \mathrm{d} x . \tag{1.5}
\end{equation*}
$$

Functionals of type (1.5) have first been studied by Zhikov [53] in order to provide models for strongly anisotropic materials. The main characteristic of the functional defined in (1.5) is the change of ellipticity on the set where the weight function is zero, that is, on the set $\{x \in \Omega: \mu(x)=0\}$. To be more precise, the energy density of (1.5) exhibits ellipticity in the gradient of order q on the points x where $\mu(x)$ is positive and of order p on the points x where $\mu(x)$ vanishes. Further results on regularity of minimizers of (1.5) can be found in the papers
of Baroni-Colombo-Mingione [3, 4], Colombo-Mingione [9, 10], De Filippis-Mingione [12, 13, 14, 15], Marcellini [31, 32] and Ragusa-Tachikawa [44]. We also mention the overview articles of Rădulescu [43] about isotropic and anisotropic problems and of Mingione-Rădulescu [33] about recent developments for problems with nonstandard growth and nonuniform ellipticity.

The main objective of the paper is the development of a general framework for determining the existence of a weak solution to the nonlinear nonlocal implicit obstacle problems (1.1) via Tychonoff's fixed point theorem for multivalued operators, the theory of nonsmooth analysis and variational methods for pseudomonotone operators. As far as we know this is the first work for nonlocal implicit obstacle problems in the double phase setting with mixed boundary conditions.

It should be mentioned that the combination of an implicit obstacle effect with mixed boundary conditions along with multivalued mappings occur in several engineering and economic models, such as Nash equilibrium problems with shared constraints and transport route optimization with feedback control. For more models related to nonsmooth mechanical problems we refer to books of Panagiotopoulos [41, 40] and Naniewicz-Panagiotopoulos [39].

In the content of (implicit) obstacle effects involving Clarke's generalized gradient or general multivalued mappings but without nonlocal term there are several papers using different methods. We refer to the works of Alleche-Rădulescu [1], Aussel-Sultana-Vetrivel [2], Bonanno-Motreanu-Winkert [5], Carl-Le-Winkert [8], Iannizzotto-Papageorgiou [24], Migórski-Khan-Zeng [35, 36], Zeng-Bai-Gasiński-Winkert [48, 49], Zeng-Rădulescu-Winkert [51, 52], see also the recent monograph of Carl-Le [7] about multivalued variational inequalities and inclusions. In the single-valued case with gradient dependent right-hand sides (so-called convection term) we mention the papers of Faraci-Motreanu-Puglisi [16], Faraci-Puglisi [17], Figueiredo-Madeira [18], Gasiński-Papageorgiou [19], Gasiński-Winkert [20], Liu-Motreanu-Zeng [29], Marano-Winkert [30], Papageorgiou-Rădulescu-Repovš [42], see also the references therein.

The paper is organized as follows. Section 2 presents a detailed overview about MusielakOrlicz Lebesgue and Musielak-Orlicz Sobolev spaces, the p-Laplacian eigenvalue problem with Steklov boundary condition and we state some results from nonsmooth analysis, the properties of Clarke's generalized gradient and Tychonoff's fixed point theorem for multivalued operators which will be used in next sections to establish the existence theorems to various nonlocal double phase obstacle problems. In Section 3, in order to establish the solvability of the nonlocal double phase implicit obstacle problem (1.1), we first introduce an auxiliary problem defined in (3.1), a variational mapping \mathcal{S} driven by problem (3.1), and two multivalued mappings \mathcal{U}_{1} and \mathcal{U}_{2} which are exactly the Nemitskij operators of U_{1} and U_{2}, respectively. After that, we prove the complete continuity of \mathcal{S} and upper semicontinuity of \mathcal{U}_{1} and \mathcal{U}_{2}. Finally, via employing Tychonoff's fixed point theorem for multivalued operators along with the theory of nonsmooth analysis, we establish the nonemptiness and compactness of the solution set of problem (1.1). However, in Section 4, we move our attention to study several special and interesting cases of our problem (1.1), and we deliver the corresponding existence results to these special cases. Also, we make further discussion to some particular problems of (1.1), and obtain several generalized existence theorems for various nonlocal double phase obstacle problems.

2. Mathematical background

In this section we give some necessary notations and preliminary materials which will be used in the next sections from at several places.

Throughout this paper, we suppose that $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with Lipschitz boundary $\Gamma:=\partial \Omega$ such that Γ is separated by four disjoint measurable parts $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and Γ_{4} with Γ_{1} having positive Lebesgue measure. Let $1 \leq r<+\infty$ and $D \subset \bar{\Omega}$ be a nonempty set. In what follows, we denote by $L^{r}(D):=L^{r}(D ; \mathbb{R})$ the usual Lebesgue space equipped with the norm
$\|\cdot\|_{r, D}$ defined by

$$
\|u\|_{r, D}:=\left(\int_{D}|u|^{r} \mathrm{~d} x\right)^{\frac{1}{r}} \quad \text { for all } u \in L^{r}(D)
$$

Also, we introduce the set $L^{r}(D)_{+}:=\left\{u \in L^{r}(D): u(x) \geq 0\right.$ for a. a. $\left.x \in D\right\}$. By $W^{1, r}(\Omega)$ we define the corresponding Sobolev space endowed with the norm $\|\cdot\|_{1, r, \Omega}$ defined by

$$
\|u\|_{1, r, \Omega}:=\|u\|_{r, \Omega}+\|\nabla u\|_{r, \Omega} \quad \text { for all } u \in W^{1, r}(\Omega)
$$

The conjugate of $r>1$ is denoted by $r^{\prime}>1$, i.e., $\frac{1}{r}+\frac{1}{r^{\prime}}=1$. Additionally, the critical exponents of $r>1$ in the domain and on the boundary, denoted by r^{*} and r_{*}, are defined by

$$
r^{*}=\left\{\begin{array}{ll}
\frac{N r}{N-r} & \text { if } r<N, \tag{2.1}\\
+\infty & \text { if } r \geq N,
\end{array} \quad \text { and } \quad r_{*}= \begin{cases}\frac{(N-1) r}{N-r} & \text { if } r<N \\
+\infty & \text { if } r \geq N\end{cases}\right.
$$

respectively. For the sake of convenience, in the entire paper, the symbols " \xrightarrow{w} " and " \rightarrow " stand for the weak and the strong convergences, respectively, to various function spaces. Recalling that the measure of Γ_{1} is positive, so it follows from Korn's inequality that there exists a constant $\hat{\lambda}>0$ such that

$$
\begin{equation*}
\|u\|_{p, \Omega}^{p} \leq \hat{\lambda}\|\nabla u\|_{p, \Omega}^{p} \tag{2.2}
\end{equation*}
$$

for all $u \in W$, where W is the subspace of $W^{1, p}(\Omega)$ given by

$$
W:=\left\{u \in W^{1, p}(\Omega): u=0 \text { for a. a. } x \in \Gamma_{1}\right\}
$$

For any $r \geq 2$ fixed, from Simon [45, formula (2.2)], we are able to find a constant $k(r)>0$ such that the inequality holds

$$
\begin{equation*}
\left(|x|^{r-2} x-|y|^{r-2} y\right) \cdot(x-y) \geq k(r)|x-y|^{r} \tag{2.3}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{N}$. Furthermore, we consider the eigenvalue problem of the r-Laplacian $(r>1)$ with Steklov boundary condition formulated by

$$
\begin{align*}
-\Delta_{r} u & =-|u|^{r-2} u & & \text { in } \Omega \\
|u|^{r-2} u \cdot \nu & =\lambda|u|^{r-2} u & & \text { on } \Gamma . \tag{2.4}
\end{align*}
$$

From Lê [26], we know that the eigenvalue problem (2.4) has a smallest eigenvalue $\lambda_{1, r}^{S}>0$ which is isolated and simple. Also, it is easy to prove that the following variational identity holds

$$
\begin{equation*}
\lambda_{1, r}^{S}=\inf _{u \in W^{1, r}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{r, \Omega}^{r}+\|u\|_{r, \Omega}^{r}}{\|u\|_{r, \Gamma}^{r}} \tag{2.5}
\end{equation*}
$$

In the whole paper, we suppose that the following hypothesis holds.
$\mathrm{H}(1): 1<p<N, p<q<p^{*}$ and $0 \leq \mu(\cdot) \in L^{\infty}(\Omega)$.
Under the above assumption, let us introduce the nonlinear function $\mathcal{H}: \Omega \times[0, \infty) \rightarrow[0, \infty)$ described by the exponents p, q and weight-function μ defined by

$$
\mathcal{H}(x, t)=t^{p}+\mu(x) t^{q} \quad \text { for all }(x, t) \in \Omega \times[0, \infty)
$$

We are now in a position to recall the well-known Musielak-Orlicz Lebesgue space $L^{\mathcal{H}}(\Omega)$ given by

$$
L^{\mathcal{H}}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \text { is measurable } \mid \rho_{\mathcal{H}}(u)<+\infty\right\}
$$

where the modular function $\rho_{\mathcal{H}}: L^{\mathcal{H}}(\Omega) \rightarrow[0,+\infty)$ is formulated by

$$
\rho_{\mathcal{H}}(u):=\int_{\Omega} \mathcal{H}(x,|u|) \mathrm{d} x=\int_{\Omega}\left(|u|^{p}+\mu(x)|u|^{q}\right) \mathrm{d} x \quad \text { for all } u \in L^{\mathcal{H}}(\Omega)
$$

It follows from Liu-Dai [28] that Musielak-Orlicz Lebesgue space $L^{\mathcal{H}}(\Omega)$ equipped with the Luxemburg norm

$$
\|u\|_{\mathcal{H}}=\inf \left\{\tau>0 \left\lvert\, \rho_{\mathcal{H}}\left(\frac{u}{\tau}\right) \leq 1\right.\right\} \text { for all } u \in L^{\mathcal{H}}(\Omega)
$$

becomes a reflexive Banach space, because it is uniformly convex. Moreover, we consider the seminormed space $L_{\mu}^{q}(\Omega)$

$$
L_{\mu}^{q}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable }\left.\left|\int_{\Omega} \mu(x)\right| u\right|^{q} \mathrm{~d} x<+\infty\right\}
$$

endowed with the seminorm

$$
\|u\|_{q, \mu}=\left(\int_{\Omega} \mu(x)|u|^{q} \mathrm{~d} x\right)^{\frac{1}{q}} \quad \text { for all } u \in L_{\mu}^{q}(\Omega)
$$

Because problem (1.1) has mixed boundary conditions, the basic function space in the present paper is considered by

$$
V:=\left\{u \in W^{1, \mathcal{H}}(\Omega) \mid u=0 \text { on } \Gamma_{1}\right\}
$$

where $W^{1, \mathcal{H}}(\Omega)$ is the well-known Musielak-Orlicz Sobolev space defined by

$$
W^{1, \mathcal{H}}(\Omega)=\left\{u \in L^{\mathcal{H}}(\Omega)| | \nabla u \mid \in L^{\mathcal{H}}(\Omega)\right\} .
$$

It is not difficult to prove that V endowed with the norm $\|\cdot\|_{V}$

$$
\|u\|_{V}:=\|\nabla u\|_{\mathcal{H}}+\|u\|_{\mathcal{H}} \quad \text { for all } u \in V
$$

is a reflexive Banach space, where $\|\nabla u\|_{\mathcal{H}}=\|\mid \nabla u\|_{\mathcal{H}_{\mathcal{H}}}$.
Let us recall some embedding results for the spaces $L^{\mathcal{H}}(\Omega)$ and $W^{1, \mathcal{H}}(\Omega)$, see GasińskiWinkert [21] or Liu-Dai [28].
Proposition 2.1. Let $\mathrm{H}(1)$ be satisfied and denote by p^{*}, p_{*} the critical exponents to p as given in (2.1) for $s=p$. Then, we have
(i) $L^{\mathcal{H}}(\Omega) \hookrightarrow L^{r}(\Omega)$ and $W^{1, \mathcal{H}}(\Omega) \hookrightarrow W^{1, r}(\Omega)$ are continuous for all $r \in[1, p]$;
(ii) $W^{1, \mathcal{H}}(\Omega) \hookrightarrow L^{r}(\Omega)$ is continuous for all $r \in\left[1, p^{*}\right]$ and compact for all $r \in\left[1, p^{*}\right)$;
(iii) $W^{1, \mathcal{H}}(\Omega) \hookrightarrow L^{r}(\partial \Omega)$ is continuous for all $r \in\left[1, p_{*}\right]$ and compact for all $r \in\left[1, p_{*}\right)$;
(iv) $L^{\mathcal{H}}(\Omega) \hookrightarrow L_{\mu}^{q}(\Omega)$ is continuous;
(v) $L^{q}(\Omega) \hookrightarrow L^{\mathcal{H}}(\Omega)$ is continuous.

It should be mentioned that when the space $W^{1, \mathcal{H}}(\Omega)$ is replaced by V in Proposition 2.1, then the embeddings (ii) and (iii) remain valid.

The following proposition is due to Liu-Dai [28, Proposition 2.1].
Proposition 2.2. Let $\mathrm{H}(1)$ be satisfied and let $y \in L^{\mathcal{H}}(\Omega)$. Then the following hold:
(i) if $y \neq 0$, then $\|y\|_{\mathcal{H}}=\lambda$ if and only if $\rho_{\mathcal{H}}\left(\frac{y}{\lambda}\right)=1$;
(ii) $\|y\|_{\mathcal{H}}<1$ (resp. >1 and $=1$) if and only if $\rho_{\mathcal{H}}(y)<1$ (resp. >1 and $=1$);
(iii) if $\|y\|_{\mathcal{H}}<1$, then $\|y\|_{\mathcal{H}}^{q} \leq \rho_{\mathcal{H}}(y) \leq\|y\|_{\mathcal{H}}^{p}$;
(iv) if $\|y\|_{\mathcal{H}}>1$, then $\|y\|_{\mathcal{H}}^{p} \leq \rho_{\mathcal{H}}(y) \leq\|y\|_{\mathcal{H}}^{q}$;
(v) $\|y\|_{\mathcal{H}} \rightarrow 0$ if and only if $\rho_{\mathcal{H}}(y) \rightarrow 0$;
(vi) $\|y\|_{\mathcal{H}} \rightarrow+\infty$ if and only if $\rho_{\mathcal{H}}(y) \rightarrow+\infty$.

Let $w \in V$ be fixed and $M: V \rightarrow(0,+\infty)$. Next, we introduce the nonlinear operator $\mathcal{H}_{w}: V \rightarrow V^{*}$ given by

$$
\begin{align*}
\left\langle\mathcal{H}_{w}(u), v\right\rangle:= & \int_{\Omega}\left(M(w)|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q-2} \nabla u\right) \cdot \nabla v \mathrm{~d} x \\
& +\int_{\Omega}\left(|u|^{p-2} u+\mu(x)|u|^{q-2} u\right) v \mathrm{~d} x \tag{2.6}
\end{align*}
$$

for $u, v \in V$ with $\langle\cdot, \cdot\rangle$ being the duality pairing between V and its dual space V^{*}. The following proposition states the main properties of $\mathcal{H}_{w}: V \rightarrow V^{*}$. We refer to Crespo-Blanco-Gasiński-Harjulehto-Winkert [11].
Proposition 2.3. Let the hypotheses $\mathrm{H}(1)$ be satisfied. Then, for each $w \in V$ the operator \mathcal{H}_{w} defined by (2.6) is bounded, continuous, monotone (hence maximal monotone) and of type (S_{+}), that is,

$$
u_{n} \xrightarrow{w} u \quad \text { in } V \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left\langle\mathcal{H}_{w} u_{n}, u_{n}-u\right\rangle \leq 0
$$

imply $u_{n} \rightarrow u$ in V.
In the last part of this section we are going to recall some results from nonsmooth analysis and multivalued analysis. In the following, let E be real Banach space with norm $\|\cdot\|_{E}$. A function $\varphi: E \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{+\infty\}$ is said to be proper, convex and lower semicontinuous, if the following conditions are fulfilled:

- $D(\varphi):=\{u \in E: \varphi(u)<+\infty\} \neq \emptyset ;$
- for any $u, v \in E$ and $t \in(0,1)$, it holds $\varphi(t u+(1-t) v) \leq t \varphi(u)+(1-t) \varphi(v)$;
- $\liminf _{n \rightarrow \infty} \varphi\left(u_{n}\right) \geq \varphi(u)$ where the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset E$ is such that $u_{n} \rightarrow u$ in E as $n \rightarrow \infty$ for some $u \in E$.
Let φ be a convex mapping. An element $x^{*} \in E^{*}$ is said to be a subgradient of φ at $u \in E$ if

$$
\begin{equation*}
\left\langle x^{*}, v-u\right\rangle \leq \varphi(v)-\varphi(u) \tag{2.7}
\end{equation*}
$$

holds for all $v \in E$. The set of all elements $x^{*} \in E^{*}$ which satisfies (2.7) is called the convex subdifferential of φ at u and is denoted by $\partial_{c} \varphi(u)$.

Moreover, a function $j: E \rightarrow \mathbb{R}$ is said to be locally Lipschitz at $x \in E$ if there is a neighborhood $O(x)$ of x and a constant $L_{x}>0$ such that

$$
|j(y)-j(z)| \leq L_{x}\|y-z\|_{E} \quad \text { for all } y, z \in O(x)
$$

We denote by

$$
j^{\circ}(x ; y):=\limsup _{z \rightarrow x, \lambda \downarrow 0} \frac{j(z+\lambda y)-j(z)}{\lambda},
$$

the generalized directional derivative of j at the point x in the direction y and $\partial j: E \rightarrow 2^{E^{*}}$ given by

$$
\partial j(x):=\left\{\xi \in E^{*}: j^{\circ}(x ; y) \geq\langle\xi, y\rangle_{E^{*} \times E} \quad \text { for all } y \in E\right\} \quad \text { for all } x \in E
$$

is the generalized gradient of j at x in the sense of Clarke.
The next proposition summarizes the properties of generalized gradients and generalized directional derivatives of a locally Lipschitz function. We refer to Migórski-Ochal-Sofonea [37, Proposition 3.23] for its proof.
Proposition 2.4. Let $j: E \rightarrow \mathbb{R}$ be locally Lipschitz with Lipschitz constant $L_{x}>0$ at $x \in E$. Then we have the following:
(i) The function $y \mapsto j^{\circ}(x ; y)$ is positively homogeneous, subadditive, and satisfies

$$
\left|j^{\circ}(x ; y)\right| \leq L_{x}\|y\|_{E} \quad \text { for all } y \in E
$$

(ii) The function $(x, y) \mapsto j^{\circ}(x ; y)$ is upper semicontinuous.
(iii) For each $x \in E, \partial j(x)$ is a nonempty, convex, and weak* compact subset of E^{*} with $\|\xi\|_{E^{*}} \leq L_{x}$ for all $\xi \in \partial j(x)$.
(iv) $j^{\circ}(x ; y)=\max \left\{\langle\xi, y\rangle_{E^{*} \times E} \mid \xi \in \partial j(x)\right\}$ for all $y \in E$.
(v) The multivalued function $E \ni x \mapsto \partial j(x) \subset E^{*}$ is upper semicontinuous from E into the subsets of E^{*} with weak* topology.

We end this section to recall the Tychonoff's fixed point theorem for multivalued operators, its proof can be found in Granas-Dugundji [22, Theorem 8.6].

Theorem 2.5. Let D be a bounded, closed and convex subset of a reflexive Banach space E, and $\Lambda: D \rightarrow 2^{D}$ be a multivalued map such that
(i) Λ has bounded, closed and convex values,
(ii) Λ is weakly-weakly u.s.c.

Then Λ has a fixed point in D.

3. Existence and compactness

This section is devoted to explore the nonemptiness and compactness of the solution set to problem (1.1). As mentioned before, our method is based on the theory of multivalued analysis, Tychonoff's fixed point principle and variational methods.

In order to state the existence and compactness results for problem (1.1), we first impose the following assumptions on the data of problem (1.1).

We assume that the nonlocal functions $M: L^{p^{*}}(\Omega) \rightarrow(0,+\infty), N: L^{\zeta_{1}}(\Omega) \rightarrow L^{\zeta_{1}^{\prime}}(\Omega)$ and $G: L^{\zeta_{2}}\left(\Gamma_{4}\right) \rightarrow L^{\zeta_{2}^{\prime}}\left(\Gamma_{4}\right)$ satisfy the following conditions:
$\mathrm{H}(M): M: L^{p^{*}}(\Omega) \rightarrow(0,+\infty)$ is such that M is weakly continuous in V, namely, for any sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset V \subset L^{p^{*}}(\Omega)$ and $u \in V$ such that $u_{n} \xrightarrow{w} u$ in V as $n \rightarrow \infty$, we have

$$
M(u)=\lim _{n \rightarrow \infty} M\left(u_{n}\right)
$$

and there exists a constant $c_{M}>0$ such that

$$
M(u) \geq c_{M} \quad \text { for all } u \in V
$$

where p^{*} is the critical exponent p^{*} of p in the domain Ω given in (2.1) with $r=p$.
$\mathrm{H}(N)$: The function $N: L^{\zeta_{1}}(\Omega) \rightarrow L^{\zeta_{1}^{\prime}}(\Omega)$ is continuous such that there exist constants $a_{N}, b_{N} \geq$ 0 and $0<\kappa_{1}<p-1$ satisfying

$$
\|N(w)\|_{\zeta_{1}^{\prime}, \Omega} \leq a_{N}+b_{N}\|w\|_{\zeta_{1}, \Omega}^{\kappa_{1}} \quad \text { for all } w \in L^{\zeta_{1}}(\Omega)
$$

where $1<\zeta_{1}<p^{*}$.
$\mathrm{H}(G)$: The function $G: L^{\zeta_{2}}\left(\Gamma_{4}\right) \rightarrow L^{\zeta_{2}^{\prime}}\left(\Gamma_{4}\right)$ is continuous such that there exist constants $a_{G}, b_{G} \geq 0$ and $0<\kappa_{2}<p-1$ satisfying

$$
\|G(w)\|_{\zeta_{2}^{\prime}, \Gamma_{4}} \leq a_{G}+b_{G}\|w\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}} \quad \text { for all } w \in L^{\zeta_{2}}\left(\Gamma_{4}\right)
$$

where $1<\zeta_{2}<p_{*}$ and p_{*} is the critical exponent of p on the boundary Γ given in (2.1) with $r=p$.
For the convection term f, we suppose the following conditions.
$\mathrm{H}(f): f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function such that
(i) there exist two constants $a_{f}, b_{f} \geq 0$ and a function $\alpha_{f} \in L^{p^{\prime}}(\Omega)_{+}$satisfying

$$
|f(x, s, \xi)| \leq a_{f}|\xi|^{p-1}+b_{f}|s|^{p-1}+\alpha_{f}(x)
$$

for a. a. $x \in \Omega$, for all $s \in \mathbb{R}$ and for all $\xi \in \mathbb{R}^{N}$;
(ii) there exists a constant $e_{f} \geq 0$ such that

$$
\left|f\left(x, s, \xi_{1}\right)-f\left(x, s, \xi_{2}\right)\right| \leq e_{f}\left|\xi_{1}-\xi_{2}\right|^{p-1}
$$

for a. a. $x \in \Omega$, for all $s \in \mathbb{R}$ and for all $\xi_{1}, \xi_{2} \in \mathbb{R}^{N}$.
The multivalued mappings $U_{1}: \Omega \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ and $U_{2}: \Gamma_{2} \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ are assumed to satisfy the following conditions:
$\mathrm{H}\left(U_{1}\right)$: The multivalued function $U_{1}: \Omega \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ is such that
(i) $U_{1}(x, s)$ is a nonempty, bounded, closed and convex set in \mathbb{R} for a. a. $x \in \Omega$ and all $s \in \mathbb{R}$;
(ii) $x \mapsto U_{1}(x, s)$ is measurable in Ω for all $s \in \mathbb{R}$;
(iii) $s \mapsto U_{1}(x, s)$ is u.s.c. for a. a. $x \in \Omega$;
(iv) there exist a function $\alpha_{U_{1}} \in L^{p^{\prime}}(\Omega)_{+}$and a constant $a_{U_{1}} \geq 0$ such that

$$
|\eta| \leq \alpha_{U_{1}}(x)+a_{U_{1}}|s|^{p-1}
$$

for all $\eta \in U_{1}(x, s)$, for a. a. $x \in \Omega$ and for all $s \in \mathbb{R}$.
$\mathrm{H}\left(U_{2}\right)$: The multivalued function $U_{2}: \Gamma_{2} \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ is such that
(i) $U_{2}(x, s)$ is a nonempty, bounded, closed and convex set in \mathbb{R} for a. a. $x \in \Gamma_{2}$ and all $s \in \mathbb{R}$;
(ii) $x \mapsto U_{2}(x, s)$ is measurable on Γ_{2} for all $s \in \mathbb{R}$;
(iii) $s \mapsto U_{2}(x, s)$ is u.s.c. for a. a. $x \in \Gamma_{2}$;
(iv) there exist a function $\alpha_{U_{2}} \in L^{p^{\prime}}\left(\Gamma_{2}\right)_{+}$and a constant $a_{U_{2}}>0$ such that

$$
|\xi| \leq \alpha_{U_{2}}(x)+a_{U_{2}}|s|^{p-1}
$$

for all $\xi \in U_{2}(x, s)$, for a. a. $x \in \Gamma_{2}$ and for all $s \in \mathbb{R}$.
On the boundary Γ_{3}, the function $\phi: \Gamma_{3} \times \mathbb{R} \rightarrow \mathbb{R}$ fulfills the following assumptions:
$\mathrm{H}(\phi)$: The function $\phi: \Gamma_{3} \times \mathbb{R} \rightarrow \mathbb{R}$ is such that
(i) $x \mapsto \phi(x, r)$ is measurable on Γ_{3} for all $r \in \mathbb{R}$;
(ii) $r \mapsto \phi(x, r)$ is convex and l.s.c. for a. a. $x \in \Gamma_{3}$;
(iii) for each function $u \in L^{p_{*}}\left(\Gamma_{3}\right)$ the function $x \mapsto \phi(x, u(x))$ belongs to $L^{1}\left(\Gamma_{3}\right)$.

With respect to the nonlocal functions $L: V \rightarrow \mathbb{R}$ and $J: V \rightarrow(0,+\infty)$, we suppose the following:
$\mathrm{H}(L): L: V \rightarrow \mathbb{R}$ is positively homogeneous and subadditive such that

$$
L(u) \leq \limsup _{n \rightarrow \infty} L\left(u_{n}\right)
$$

whenever $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset V$ is such that $u_{n} \xrightarrow{w} u$ in V for some $u \in V$.
$\mathrm{H}(J): J: V \rightarrow(0,+\infty)$ is weakly continuous, that is, for any sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset V$ such that $u_{n} \xrightarrow{w} u$ for some $u \in V$, we have

$$
J\left(u_{n}\right) \rightarrow J(u)
$$

Moreover, we state the following compatibility conditions.
$\mathrm{H}(2)$: The inequalities

$$
\begin{aligned}
& 0<k(p) c_{M}-e_{f} \hat{\lambda}^{\frac{1}{p}} \\
& 0<\min \left\{c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}, 1\right\}-\left(a_{U_{1}}+b_{f}\right) c_{p}(\Omega)^{p}-a_{U_{2}} c_{p}\left(\Gamma_{2}\right)^{p}
\end{aligned}
$$

hold, where $k(p)$ and $\hat{\lambda}>0$ are given in (2.3) and (2.2), and $c_{p}(\Omega)>0$ and $c_{p}\left(\Gamma_{2}\right)>0$ are the smallest constants satisfying the following inequalities (because of the continuity of the embeddings of V to $L^{p}(\Omega)$ and of V to $\left.L^{p}\left(\Gamma_{2}\right)\right)$

$$
\|u\|_{p, \Omega} \leq c_{p}(\Omega)\|u\|_{V} \quad \text { and } \quad\|u\|_{p, \Gamma_{2}} \leq c_{p}\left(\Gamma_{2}\right)\|u\|_{V} \quad \text { for all } u \in V
$$

Remark 3.1. The compatibility inequalities in $H(2)$ are usually called to be smallness conditions, which have been applied in many literatures, for example, [23, 34] (nonsmooth contact mechanics problems) and [50, 35] (nonlinear partial differential equations). Essentially speaking, the compatibility inequalities in $H(2)$ will play a critical role to guarantee that the variational selection \mathcal{S} is self-map on a bounded closed set (see (3.19), below), and to reveal that the problem (1.1) has coercive framework. The following functions fulfill assumptions $H(M)$:

- $M(u)=c_{M}+r_{1}\left(\|u\|_{\pi_{1}, \Omega}\right)$ for all $u \in V$, where $r_{1}:[0,+\infty) \rightarrow[0,+\infty)$ is a continuous function, $c_{M}>0$ and $1<\pi_{1}<p^{*}$;
- $M(u)=a_{M}+r_{2}\left(\|u\|_{\pi_{2}, \Gamma}\right)$ for all $u \in V$, where $r_{2}:[0,+\infty) \rightarrow[0,+\infty)$ is a continuous function, $c_{M}>0$ and $1<\pi_{2}<p_{*}$.

It is not difficult to see that the following functions $N: L^{\zeta_{1}}(\Omega) \rightarrow L^{\zeta_{1}^{\prime}}(\Omega)$ and $G: L^{\zeta_{2}}\left(\Gamma_{4}\right) \rightarrow$ $L^{\zeta_{2}^{\prime}}\left(\Gamma_{4}\right)$ satisfy the conditions $H(N)$ and $H(G)$, respectively:

$$
N(u)(x):=\left(\int_{\Omega} \varpi_{1}(x)|u(x)| \mathrm{d} x\right)^{\frac{p-1}{2}}+\varpi_{2}(x) \quad \text { for all } x \in \Omega \text { and all } u \in L^{\zeta_{1}}(\Omega)
$$

and

$$
G(w)(x):=\int_{\Gamma_{4}} \varpi_{3}(x)|w(x)|^{\zeta_{1}-1} \mathrm{~d} x+\varpi_{4}(x) \quad \text { for all } x \in \Gamma_{4} \text { and } w \in L^{\zeta_{2}}\left(\Gamma_{4}\right)
$$

where $\varpi_{1} \in L^{\zeta_{1}^{\prime}}(\Omega)_{+}, \varpi_{2} \in L^{p}(\Omega)$ and $\varpi_{3}, \varpi_{4} \in L^{\zeta_{2}}\left(\Gamma_{4}\right)$.
Let $p=2$ and $f: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ be defined by

$$
f(x, s, \xi)=\sum_{i=1}^{N} \zeta_{i} \xi_{i}-\kappa_{1} s+\omega(x)
$$

for all $x \in \Omega$, for all $s \in \mathbb{R}$ and for all $\xi \in \mathbb{R}^{N}$, where $\omega \in L^{2}(\Omega), \kappa_{1}>0$ and $\zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right) \in$ \mathbb{R}^{N} is a given vector. Then, f satisfies hypotheses $H(f)$.

Let $\alpha_{1} \in L^{p^{\prime}}(\Omega)$ and $\alpha_{2} \in L^{p^{\prime}}\left(\Gamma_{2}\right)$. Then, the multivalued functions defined by

$$
\begin{aligned}
& U_{1}(x, s)=[-1,1] \alpha_{1}(x)+s^{p-1} \text { for all } x \in \Omega \text { and all } s \in \mathbb{R} \\
& U_{2}(x, s)=[0,2] s^{p-1}+\alpha_{2}(x) \text { for all } x \in \Gamma_{2} \text { and all } s \in \mathbb{R}
\end{aligned}
$$

satisfy hypotheses $H\left(U_{1}\right)$ and $H\left(U_{2}\right)$, respectively.
Let $\varpi_{5} \in L^{p^{\prime}}\left(\Gamma_{3}\right)_{+}$. Then, the function defined by

$$
\varphi(x, s):=\varpi_{5}(x)|s| \text { for all } x \in \Gamma_{3} \text { and } s \in \mathbb{R}
$$

satisfies hypotheses $H(\phi)$.
It is obvious that the functions $L(u)=\|u\|_{V}$ and $J(u)=e^{1+\|u\|_{p, \Omega}}$ for all $u \in V$ fulfill hypotheses $H(L)$ and $H(J)$, respectively.

Let us consider the multivalued mapping $K: V \rightarrow 2^{V}$ defined by

$$
K(u)=\{v \in V \mid L(v) \leq J(u)\} \quad \text { for all } u \in V
$$

Under the hypotheses $\mathrm{H}(L)$ and $\mathrm{H}(J)$, we have the following important auxiliary result which delivers several significant properties for the multivalued mapping $K: V \rightarrow 2^{V}$. More precisely, this lemma reveals an essential characteristic that K is Mosco continuous (see Mosco [38], i.e., K is sequentially weakly-weakly closed and sequentially weakly-strongly l.s.c.). The detailed proof of this lemma can be found in Lemma 3.3 of Zeng-Rǎdulescu-Winkert [50].

Lemma 3.2. Let $J: V \rightarrow(0,+\infty)$ and $L: V \rightarrow \mathbb{R}$ be two functions such that $\mathrm{H}(L)$ and $\mathrm{H}(J)$ are satisfied. Then, the following statements hold:
(i) for each $u \in V, K(u)$ is closed and convex in V such that $0 \in K(u)$;
(ii) the graph $\operatorname{Gr}(K)$ of K is sequentially closed in $V_{w} \times V_{w}$, that is, K is sequentially closed from V with the weak topology into the subsets of V with the weak topology;
(iii) if $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset V$ is a sequence such that

$$
u_{n} \xrightarrow{w} u \quad \text { in } V
$$

for some $u \in V$, then for each $v \in K(u)$ there exists a sequence $\left\{v_{n}\right\}_{n \in \mathbb{N}} \subset V$ such that

$$
v_{n} \in K\left(u_{n}\right) \quad \text { and } \quad v_{n} \rightarrow v \quad \text { in } V
$$

We are now in a position to give the definition of weak solutions to problem (1.1) as follows.

Definition 3.3. We say that a function $u \in V$ is a weak solution of problem (1.1) if $u \in K(u)$ and there exist functions $\eta \in L^{p^{\prime}}(\Omega), \xi \in L^{p^{\prime}}\left(\Gamma_{2}\right)$ such that $\eta(x) \in U_{1}(x, u(x))$ for a. a. $x \in \Omega$, $\xi(x) \in U_{2}(x, u(x))$ for a. a. $x \in \Gamma_{2}$ and the inequality

$$
\begin{aligned}
& M(u) \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla(v-u) \mathrm{d} x+\int_{\Omega} \mu(x)|\nabla u|^{q-2} \nabla u \cdot \nabla(v-u) \mathrm{d} x \\
& \quad+\int_{\Omega}\left(|u|^{p-2} u+\mu(x)|u|^{q-2} u\right)(v-u) \mathrm{d} x+\int_{\Omega} N(u)(x)(v-u) \mathrm{d} x \\
& \quad+\int_{\Gamma_{3}} \phi(x, v) \mathrm{d} \Gamma-\int_{\Gamma_{3}} \phi(x, u) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G(u)(x)(v-u) \mathrm{d} \Gamma \\
& \geq \int_{\Omega} \eta(x)(v-u) \mathrm{d} x+\int_{\Gamma_{2}} \xi(x)(v-u) \mathrm{d} \Gamma+\int_{\Omega} f(x, u, \nabla u)(v-u) \mathrm{d} x
\end{aligned}
$$

holds for all $v \in K(u)$.
For the convenience of the reader, in the sequel, we use the following notion

$$
X=L^{p}(\Omega), \quad Y=L^{p}\left(\Gamma_{2}\right), \quad X^{*}=L^{p^{\prime}}(\Omega) \quad \text { and } \quad Y^{*}=L^{p^{\prime}}\left(\Gamma_{2}\right)
$$

For any $(w, \eta, \xi) \in V \times X^{*} \times Y^{*}$ fixed, let us consider the following auxiliary problem:

$$
\begin{align*}
-D_{M(w)} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & =\eta(x)+N(w)(x)+f(x, w, \nabla u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1}, \\
\frac{\partial u}{\partial \nu_{w}} & =\xi(x) & & \text { on } \Gamma_{2}, \\
-\frac{\partial u}{\partial \nu_{w}} & \in \partial_{c} \phi(x, u) & & \text { on } \Gamma_{3}, \tag{3.1}\\
-\frac{\partial u}{\partial \nu_{w}} & =G(w)(x) & & \text { on } \Gamma_{4}, \\
L(u) & \leq J(w), & &
\end{align*}
$$

where the differential operator $D_{M(w)}$ is defined by

$$
D_{M(w)} u:=\operatorname{div}\left(M(w)|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q-2} \nabla u\right) \text { for all } u \in W^{1, \mathcal{H}}(\Omega),
$$

and $\frac{\partial u(x)}{\partial \nu_{w}}$ stands for

$$
\frac{\partial u}{\partial \nu_{w}}:=\left(M(w)|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q-2} \nabla u\right) \cdot \nu .
$$

From Definition 3.3 we can see that $u \in V$ is a weak solution of problem (3.1) if $u \in K(w)$ and the following inequality is satisfied

$$
\begin{align*}
& M(w) \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla(v-u) \mathrm{d} x+\int_{\Omega} \mu(x)|\nabla u|^{q-2} \nabla u \cdot \nabla(v-u) \mathrm{d} x \\
& \quad+\int_{\Omega}\left(|u|^{p-2} u+\mu(x)|u|^{q-2} u\right)(v-u) \mathrm{d} x+\int_{\Omega} N(w)(x)(v-u) \mathrm{d} x \\
& \quad+\int_{\Gamma_{3}} \phi(x, v) \mathrm{d} \Gamma-\int_{\Gamma_{3}} \phi(x, u) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G(w)(x)(v-u) \mathrm{d} \Gamma \tag{3.2}\\
& \geq \int_{\Omega} \eta(x)(v-u) \mathrm{d} x+\int_{\Gamma_{2}} \xi(x)(v-u) \mathrm{d} \Gamma+\int_{\Omega} f(x, w, \nabla u)(v-u) \mathrm{d} x
\end{align*}
$$

for all $v \in K(w)$.
The following lemma shows that problem (3.1) is uniquely solvable.

Proposition 3.4. Let $p \geq 2$. Assume that $\mathrm{H}(1), \mathrm{H}(\phi), \mathrm{H}(f), \mathrm{H}(L)$ and $\mathrm{H}(J)$ hold. If $M(w) \geq$ c_{M} for each $w \in V, N(w) \in L^{\zeta_{1}^{\prime}}(\Omega)$ with $1<\zeta_{1}<p^{*}, G(w) \in L^{\zeta_{2}^{\prime}}\left(\Gamma_{4}\right)$ with $1<\zeta_{2}<p_{*}$, and the inequality $0<k(p) c_{M}-e_{f} \hat{\lambda}^{\frac{1}{p}}$ holds, then problem (3.1) admits a unique solution.

Proof. First we introduce the following nonlinear mappings $\mathcal{G}_{w}: V \rightarrow V^{*}, \varphi: V \rightarrow \overline{\mathbb{R}}$ and $\mathcal{F}_{w}: V \subset L^{p}(\Omega) \rightarrow L^{p^{\prime}}(\Omega) \subset V^{*}$ defined by

$$
\begin{aligned}
\left\langle\mathcal{G}_{w}(u), v\right\rangle:= & M(w) \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\Omega} \mu(x)|\nabla u|^{q-2} \nabla u \cdot \nabla v \mathrm{~d} x \\
& +\int_{\Omega}\left(|u|^{p-2} u+\mu(x)|u|^{q-2} u\right) v \mathrm{~d} x+\int_{\Omega} N(w)(x) v \mathrm{~d} x \\
& +\int_{\Gamma_{4}} G(w)(x) v \mathrm{~d} \Gamma-\int_{\Omega} \eta(x) v \mathrm{~d} x-\int_{\Gamma_{2}} \xi(x) v \mathrm{~d} \Gamma
\end{aligned}
$$

for all $u, v \in V$,

$$
\varphi(u):=\int_{\Gamma_{3}} \phi(x, u) \mathrm{d} \Gamma
$$

for all $u \in V$, and

$$
\left\langle\mathcal{F}_{w} u, v\right\rangle_{L^{p^{\prime}}(\Omega) \times L^{p}(\Omega)}:=\int_{\Omega} f(x, w, \nabla u) v \mathrm{~d} x
$$

for all $u \in V$ and $v \in L^{p}(\Omega)$. Using the notations above, it is not difficult to prove that inequality (3.2) can be equivalently rewritten by the following nonlinear variational inequality with constraint

$$
\left\langle\mathcal{G}_{w} u, v-u\right\rangle+\varphi(v)-\varphi(u) \geq\left\langle i^{*} \mathcal{F}_{w} u, v-u\right\rangle
$$

for all $v \in K(w)$, where $i: V \rightarrow L^{p}(\Omega)$ is the embedding operator of V into $L^{p}(\Omega)$ and $i^{*}: L^{p^{\prime}}(\Omega) \rightarrow V^{*}$ is the dual operator of i. Arguing as in the proof of Theorem 3.4 of Zeng-BaiGasiński [47], we can show that problem (3.1) has at least one solution.

Next, we are going to prove the uniqueness of problem (3.1). Let $u_{1}, u_{2} \in V$ be two weak solutions of problem (3.1). So, for every $i=1,2$, it holds $u_{i} \in K(w)$ and

$$
\begin{aligned}
& M(w) \int_{\Omega}\left|\nabla u_{i}\right|^{p-2} \nabla u_{i} \cdot \nabla\left(v-u_{i}\right) \mathrm{d} x+\int_{\Omega} \mu(x)\left|\nabla u_{i}\right|^{q-2} \nabla u_{i} \cdot \nabla\left(v-u_{i}\right) \mathrm{d} x \\
& \quad+\int_{\Omega}\left(\left|u_{i}\right|^{p-2} u_{i}+\mu(x)\left|u_{i}\right|^{q-2} u_{i}\right)\left(v-u_{i}\right) \mathrm{d} x+\int_{\Omega} N(w)(x)\left(v-u_{i}\right) \mathrm{d} x \\
& \quad+\int_{\Gamma_{3}} \phi(x, v) \mathrm{d} \Gamma-\int_{\Gamma_{3}} \phi\left(x, u_{i}\right) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G(w)(x)\left(v-u_{i}\right) \mathrm{d} \Gamma \\
& \geq \int_{\Omega} \eta(x)\left(v-u_{i}\right) \mathrm{d} x+\int_{\Gamma_{2}} \xi(x)\left(v-u_{i}\right) \mathrm{d} \Gamma+\int_{\Omega} f\left(x, w, \nabla u_{i}\right)\left(v-u_{i}\right) \mathrm{d} x
\end{aligned}
$$

for all $v \in K(w)$. Putting $v=u_{2}$ and $v=u_{1}$ into the above inequalities with $i=1$ and $i=2$, respectively, we use the resulting inequalities to get

$$
\begin{aligned}
& M(w) \int_{\Omega}\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right) \cdot \nabla\left(u_{1}-u_{2}\right) \mathrm{d} x \\
& \quad+\int_{\Omega} \mu(x)\left(\left|\nabla u_{1}\right|^{q-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{q-2} \nabla u_{2}\right) \cdot \nabla\left(u_{1}-u_{2}\right) \mathrm{d} x \\
& \quad+\int_{\Omega}\left(\left|u_{1}\right|^{p-2} u_{1}-\left|u_{2}\right|^{p-2} u_{2}\right)\left(u_{1}-u_{2}\right) \mathrm{d} x \\
& \quad+\int_{\Omega} \mu(x)\left(\left|u_{1}\right|^{q-2} u_{1}-\left|u_{2}\right|^{q-2} u_{2}\right)\left(u_{1}-u_{2}\right) \mathrm{d} x
\end{aligned}
$$

$$
\leq \int_{\Omega}\left(f\left(x, w, \nabla u_{1}\right)-f\left(x, w, \nabla u_{2}\right)\right)\left(u_{1}-u_{2}\right) \mathrm{d} x
$$

The latter combined with (2.3), hypothesis $\mathrm{H}(f)(\mathrm{ii})$ and Hölder's inequality implies that

$$
\begin{aligned}
& k(p)\left(c_{M}\left\|\nabla u_{1}-\nabla u_{2}\right\|_{p, \Omega}^{p}+\left\|u_{1}-u_{2}\right\|_{p, \Omega}^{p}\right) \\
& \leq \int_{\Omega} e_{f}\left|\nabla u_{1}-\nabla u_{2}\right|^{p-1}\left|u_{1}-u_{2}\right| \mathrm{d} x \\
& \leq e_{f}\left\|\nabla u_{1}-\nabla u_{2}\right\|_{p, \Omega}^{p-1}\left\|u_{1}-u_{2}\right\|_{p, \Omega} \\
& \leq e_{f} \hat{\lambda}^{\frac{1}{p}}\left\|\nabla u_{1}-\nabla u_{2}\right\|_{p, \Omega}^{p}
\end{aligned}
$$

This means that

$$
\left(k(p) c_{M}-e_{f} \hat{\lambda}^{\frac{1}{p}}\right)\left\|\nabla u_{1}-\nabla u_{2}\right\|_{p, \Omega}^{p}+k(p)\left\|u_{1}-u_{2}\right\|_{p, \Omega}^{p} \leq 0
$$

Employing the inequality $e_{f} \hat{\lambda}^{\frac{1}{p}}<c_{M} k(p)$, we infer that $u_{1}=u_{2}$.
Consequently, for every $(w, \eta, \xi) \in V \times X^{*} \times Y^{*}$ fixed, problem (3.1) is uniquely solvable.
Lemma 3.4 allows us to introduce the solution mapping $\mathcal{S}: V \times X^{*} \times Y^{*} \rightarrow V$ of problem (3.1) formulated by

$$
\mathcal{S}(w, \eta, \xi)=u_{w, \eta, \xi} \quad \text { for all }(w, \eta, \xi) \in V \times X^{*} \times Y^{*}
$$

where $u_{w, \eta, \xi}$ is the unique solution of problem (3.1) associated with $(w, \eta, \xi) \in V \times X^{*} \times Y^{*}$.
The following lemma says that $\mathcal{S}: V \times X^{*} \times Y^{*} \rightarrow V$ is a completely continuous operator.
Lemma 3.5. Let $p \geq 2$. Assume that $\mathrm{H}(1), \mathrm{H}(2), \mathrm{H}(M), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}(\phi), \mathrm{H}(f), \mathrm{H}(L)$ and $\mathrm{H}(J)$ are fulfilled. Then, the solution map $\mathcal{S}: V \times X^{*} \times Y^{*} \rightarrow V$ of problem (3.1) is completely continuous.

Proof. Assume that $\left\{\left(w_{n}, \eta_{n}, \xi_{n}\right)\right\}_{n \in \mathbb{N}} \subset V \times X^{*} \times Y^{*}$ and $(w, \eta, \xi) \in V \times X^{*} \times Y^{*}$ satisfy

$$
\left(w_{n}, \eta_{n}, \xi_{n}\right) \xrightarrow{w}(w, \eta, \xi) \quad \text { in } V \times X^{*} \times Y^{*}
$$

Let $u_{n}:=\mathcal{S}\left(w_{n}, \eta_{n}, \xi_{n}\right)$ for each $n \in \mathbb{N}$. So, for each $n \in \mathbb{N}$, we have $u_{n} \in K\left(w_{n}\right)$ and

$$
\begin{align*}
& M\left(w_{n}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla\left(v-u_{n}\right) \mathrm{d} x+\int_{\Omega} \mu(x)\left|\nabla u_{n}\right|^{q-2} \nabla u_{n} \cdot \nabla\left(v-u_{n}\right) \mathrm{d} x \\
& \quad+\int_{\Omega}\left(\left|u_{n}\right|^{p-2} u_{n}+\mu(x)\left|u_{n}\right|^{q-2} u_{n}\right)\left(v-u_{n}\right) \mathrm{d} x+\int_{\Omega} N\left(w_{n}\right)(x)\left(v-u_{n}\right) \mathrm{d} x \\
& \quad+\int_{\Gamma_{3}} \phi(x, v) \mathrm{d} \Gamma-\int_{\Gamma_{3}} \phi\left(x, u_{n}\right) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G\left(w_{n}\right)(x)\left(v-u_{n}\right) \mathrm{d} \Gamma \tag{3.3}\\
& \geq \int_{\Omega} \eta_{n}(x)\left(v-u_{n}\right) \mathrm{d} x+\int_{\Gamma_{2}} \xi_{n}(x)\left(v-u_{n}\right) \mathrm{d} \Gamma+\int_{\Omega} f\left(x, w_{n}, \nabla u_{n}\right)\left(v-u_{n}\right) \mathrm{d} x
\end{align*}
$$

for all $v \in K\left(w_{n}\right)$. Using hypothesis $\mathrm{H}(f)(\mathrm{i})$ gives

$$
\begin{align*}
& \int_{\Omega} f\left(x, w_{n}, \nabla u_{n}\right) u_{n}(x) \mathrm{d} x \\
& \leq \int_{\Omega}\left(a_{f}\left|\nabla u_{n}\right|^{p-1}+b_{f}\left|w_{n}(x)\right|^{p-1}+\alpha_{f}(x)\right)\left|u_{n}(x)\right| \mathrm{d} x \tag{3.4}\\
& \leq a_{f}\left\|\nabla u_{n}\right\|_{p, \Omega}^{p-1}\left\|u_{n}\right\|_{p, \Omega}+b_{f}\left\|w_{n}\right\|_{p, \Omega}^{p-1}\left\|u_{n}\right\|_{p, \Omega}+\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega} \\
& \leq a_{f} \hat{\lambda}^{\frac{1}{p}}\left\|\nabla u_{n}\right\|_{p, \Omega}^{p}+b_{f}\left\|w_{n}\right\|_{p, \Omega}^{p-1}\left\|u_{n}\right\|_{p, \Omega}+\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega}
\end{align*}
$$

From Brézis [6, Proposition 1.10] and Hölder's inequality, we can find two constants $\alpha_{\varphi}, \beta_{\varphi} \geq 0$ such that

$$
\begin{equation*}
\varphi(v) \geq-\alpha_{\varphi}\|v\|_{V}-\beta_{\varphi} \text { for all } v \in V \tag{3.5}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\int_{\Omega} \eta_{n}(x) u_{n} \mathrm{~d} x \leq\left\|\eta_{n}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega}, \tag{3.6}\\
\int_{\Gamma_{2}} \xi_{n}(x) u_{n} \mathrm{~d} \Gamma \leq\left\|\xi_{n}\right\|_{p^{\prime}, \Gamma_{2}}\left\|u_{n}\right\|_{p, \Gamma_{2}}, \\
\left|\int_{\Omega} N\left(w_{n}\right)(x) u_{n} \mathrm{~d} x\right| \leq\left\|N\left(w_{n}\right)\right\|_{\zeta_{1}^{\prime}, \Omega}\left\|u_{n}\right\|_{\zeta_{1}, \Omega} \leq\left(a_{N}+b_{N}\left\|w_{n}\right\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\left\|u_{n}\right\|_{\zeta_{1}, \Omega}, \\
\left|\int_{\Gamma_{4}} G\left(w_{n}\right)(x) u_{n} \mathrm{~d} x\right| \leq\left\|G\left(w_{n}\right)\right\|_{\zeta_{2}^{\prime}, \Gamma_{4}}\left\|u_{n}\right\|_{\zeta_{2}, \Gamma_{4}} \leq\left(a_{G}+b_{G}\left\|w_{n}\right\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\left\|u_{n}\right\|_{\zeta_{2}, \Gamma_{4}} .
\end{array}\right.
$$

Letting $v=0$ in (3.3) and using the estimates (3.4), (3.5) and (3.6), it yields

$$
\begin{aligned}
& a_{f} \hat{\lambda}^{\frac{1}{p}}\left\|\nabla u_{n}\right\|_{p, \Omega}^{p}+b_{f}\left\|w_{n}\right\|_{p, \Omega}^{p-1}\left\|u_{n}\right\|_{p, \Omega}+\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega}+\left\|\eta_{n}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega}+\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma \\
& \quad+\left\|\xi_{n}\right\|_{p^{\prime}, \Gamma_{2}}\left\|u_{n}\right\|_{p, \Gamma_{2}}+\left(a_{N}+b_{N}\left\|w_{n}\right\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\left\|u_{n}\right\|_{\zeta_{1}, \Omega}+\left(a_{G}+b_{G}\left\|w_{n}\right\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\left\|u_{n}\right\|_{\zeta_{2}, \Gamma_{4}} \\
& \geq \\
& \quad-\int_{\Omega} N\left(w_{n}\right)(x) u_{n} \mathrm{~d} x+\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma-\int_{\Gamma_{4}} G\left(w_{n}\right)(x) u_{n} \mathrm{~d} \Gamma+\int_{\Omega} \eta_{n}(x) u_{n} \mathrm{~d} x \\
& \quad+\int_{\Gamma_{2}} \xi_{n}(x) u_{n} \mathrm{~d} \Gamma+\int_{\Omega} f\left(x, w_{n}, \nabla u_{n}\right) u_{n} \mathrm{~d} x \\
& \geq \int_{\Omega} M\left(w_{n}\right)\left|\nabla u_{n}\right|^{p}+\mu(x)\left|\nabla u_{n}\right|^{q}+\left|u_{n}\right|^{p}+\mu(x)\left|u_{n}\right|^{q} \mathrm{~d} x+\int_{\Gamma_{3}} \phi\left(x, u_{n}\right) \mathrm{d} \Gamma \\
& \geq c_{M}\left\|\nabla u_{n}\right\|_{p, \Omega}^{p}+\left\|\nabla u_{n}\right\|_{q, \mu}^{q}+\left\|u_{n}\right\|_{p, \Omega}^{p}+\left\|u_{n}\right\|_{q, \mu}^{q}-\alpha_{\varphi}\left\|u_{n}\right\|_{V}-\beta_{\varphi}
\end{aligned}
$$

Then, from Proposition 2.2, we have

$$
\begin{aligned}
0 \geq & \left(c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}\right)\left\|\nabla u_{n}\right\|_{p, \Omega}^{p}+\left\|\nabla u_{n}\right\|_{q, \mu}^{q}+\left\|u_{n}\right\|_{p, \Omega}^{p}+\left\|u_{n}\right\|_{q, \mu}^{q}-b_{f}\left\|w_{n}\right\|_{p, \Omega}^{p-1}\left\|u_{n}\right\|_{p, \Omega} \\
& -\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega}-\left\|\eta_{n}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega}-\|\xi\|_{p^{\prime}, \Gamma_{2}}\left\|u_{n}\right\|_{p, \Gamma_{2}}-\left(a_{N}+b_{N}\left\|w_{n}\right\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\left\|u_{n}\right\|_{\zeta_{1}, \Omega} \\
& -\left(a_{G}+b_{G}\left\|w_{n}\right\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\left\|u_{n}\right\|_{\zeta_{2}, \Gamma_{4}}-\alpha_{\varphi}\left\|u_{n}\right\|_{V}-\beta_{\varphi}-\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma \\
\geq & \min \left\{c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}, 1\right\} \min \left\{\left\|u_{n}\right\|_{V}^{p},\left\|u_{n}\right\|_{V}^{q}\right\}-b_{f}\left\|w_{n}\right\|_{p, \Omega}^{p-1}\left\|u_{n}\right\|_{p, \Omega}-\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega} \\
& -\left\|\eta_{n}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega}-\left\|\xi_{n}\right\|_{p^{\prime}, \Gamma_{2}}\left\|u_{n}\right\|_{p, \Gamma_{2}}-\left(a_{N}+b_{N}\left\|w_{n}\right\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\left\|u_{n}\right\|_{\zeta_{1}, \Omega} \\
& -\left(a_{G}+b_{G}\left\|w_{n}\right\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\left\|u_{n}\right\|_{\zeta_{2}, \Gamma_{4}}-\alpha_{\varphi}\left\|u_{n}\right\|_{V}-\beta_{\varphi}-\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma
\end{aligned}
$$

The latter combined with the boundedness of $\left\{w_{n}\right\}_{n \in \mathbb{N}} \subset V,\left\{\eta_{n}\right\}_{n \in \mathbb{N}} \subset X^{*}$ and $\left\{\xi_{n}\right\}_{n \in \mathbb{N}} \subset Y^{*}$ implies that solution sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is uniformly bounded in V.

Passing to a subsequence if necessary, we may find a function $u \in V$ satisfying

$$
u_{n} \xrightarrow{w} u \quad \text { in } V \text { as } n \rightarrow \infty .
$$

We assert that $u=\mathcal{S}(w, \eta, \xi)$, i.e., u is the unique solution of problem (3.1) corresponding to $(w, \eta, \xi) \in V \times X^{*} \times Y^{*}$.

Recall that $w_{n} \xrightarrow{w} w$ in V and $u_{n} \xrightarrow{w} u$ in V, we are now in a position to invoke Lemma 3.2(ii) to get that $u \in K(w)$. However, it follows from Lemma 3.2(iii) that there exists a sequence $\left\{v_{n}\right\}_{n \in \mathbb{N}} \subset V$ satisfying

$$
v_{n} \in K\left(w_{n}\right) \quad \text { for every } n \in \mathbb{N} \quad \text { and } \quad v_{n} \rightarrow u \quad \text { in } V .
$$

Letting $v=v_{n}$ in (3.3), one has

$$
\begin{align*}
& M\left(w_{n}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla\left(v_{n}-u_{n}\right) \mathrm{d} x+\int_{\Omega} \mu(x)\left|\nabla u_{n}\right|^{q-2} \nabla u_{n} \cdot \nabla\left(v_{n}-u_{n}\right) \mathrm{d} x \\
& \quad+\int_{\Omega}\left(\left|u_{n}\right|^{p-2} u_{n}+\mu(x)\left|u_{n}\right|^{q-2} u_{n}\right)\left(v_{n}-u_{n}\right) \mathrm{d} x+\int_{\Omega} N\left(w_{n}\right)(x)\left(v_{n}-u_{n}\right) \mathrm{d} x \\
& \quad+\int_{\Gamma_{3}} \phi\left(x, v_{n}\right) \mathrm{d} \Gamma-\int_{\Gamma_{3}} \phi\left(x, u_{n}\right) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G\left(w_{n}\right)(x)\left(v_{n}-u_{n}\right) \mathrm{d} \Gamma \tag{3.7}\\
& \geq \int_{\Omega} \eta_{n}(x)\left(v_{n}-u_{n}\right) \mathrm{d} x+\int_{\Gamma_{2}} \xi_{n}(x)\left(v_{n}-u_{n}\right) \mathrm{d} \Gamma+\int_{\Omega} f\left(x, w_{n}, \nabla u_{n}\right)\left(v_{n}-u_{n}\right) \mathrm{d} x .
\end{align*}
$$

From the boundedness of $\left\{N\left(w_{n}\right)\right\}_{n \in \mathbb{N}},\left\{G\left(w_{n}\right)\right\}_{n \in \mathbb{N}},\left\{\eta_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\xi_{n}\right\}_{n \in \mathbb{N}}$, it can directly be obtained that

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} \int_{\Omega} N\left(w_{n}\right)(x)\left(v_{n}-u_{n}\right) \mathrm{d} x=0 \tag{3.8}\\
\lim _{n \rightarrow \infty} \int_{\Gamma_{4}} G\left(w_{n}\right)(x)\left(v_{n}-u_{n}\right) \mathrm{d} \Gamma=0 \\
\lim _{n \rightarrow \infty} \int_{\Omega} \eta_{n}(x)\left(v_{n}-u_{n}\right) \mathrm{d} x=0 \\
\lim _{n \rightarrow \infty} \int_{\Gamma_{2}} \xi_{n}(x)\left(v_{n}-u_{n}\right) \mathrm{d} \Gamma=0
\end{array}\right.
$$

where we have used the compactness of the embeddings of V into $L^{\zeta_{1}}(\Omega)$, of V into $L^{\zeta_{2}}\left(\Gamma_{4}\right)$, of V into $L^{p}\left(\Gamma_{2}\right)$, and of V into $L^{p}(\Omega)$. By hypothesis $\mathrm{H}(f)(\mathrm{i})$, we can see that sequence $\left\{f\left(\cdot, w_{n}, \nabla u_{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded in $L^{p^{\prime}}(\Omega)$. Hence, it holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} f\left(x, w_{n}, \nabla u_{n}\right)\left(v_{n}-u_{n}\right) \mathrm{d} x=0 \tag{3.9}
\end{equation*}
$$

From hypotheses $\mathrm{H}(\phi)$, it admits that $V \ni u \mapsto \varphi(u):=\int_{\Gamma_{3}} \phi(x, u) \mathrm{d} \Gamma$ is continuous and convex, so, it is weakly l.s.c., because of $V \subset \operatorname{int} D(\varphi)$. Therefore, we have

$$
\begin{align*}
& \limsup _{n \rightarrow \infty}\left[\int_{\Gamma_{3}} \phi\left(x, v_{n}\right) \mathrm{d} \Gamma-\int_{\Gamma_{3}} \phi\left(x, u_{n}\right) \mathrm{d} \Gamma\right] \\
& \leq \lim _{n \rightarrow \infty} \int_{\Gamma_{3}} \phi\left(x, v_{n}\right) \mathrm{d} \Gamma-\liminf _{n \rightarrow \infty} \int_{\Gamma_{3}} \phi\left(x, u_{n}\right) \mathrm{d} \Gamma=0 . \tag{3.10}
\end{align*}
$$

Recall that M is weakly continuous in V (see hypothesis $\mathrm{H}(M)$), it yields

$$
\begin{align*}
& \limsup _{n \rightarrow \infty}\left[\int_{\Omega}\left(M\left(w_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}+\mu(x)\left|\nabla u_{n}\right|^{q-2} \nabla u_{n}\right) \cdot \nabla\left(u_{n}-v_{n}\right) \mathrm{d} x\right. \\
& \left.\quad+\int_{\Omega}\left(\left|u_{n}\right|^{p-2} u_{n}+\mu(x)\left|u_{n}\right|^{q-2} u_{n}\right)\left(u_{n}-v_{n}\right) \mathrm{d} x\right] \\
& \geq \limsup _{n \rightarrow \infty}\left[\int_{\Omega}\left(M(w)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}+\mu(x)\left|\nabla u_{n}\right|^{q-2} \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x\right. \\
& \left.\quad+\int_{\Omega}\left(\left|u_{n}\right|^{p-2} u_{n}+\mu(x)\left|u_{n}\right|^{q-2} u_{n}\right)\left(u_{n}-u\right) \mathrm{d} x\right] \\
& \quad-\left.\limsup _{n \rightarrow \infty}\left|M\left(w_{n}\right)-M(w)\right|\left|\int_{\Omega}\right| \nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla\left(u_{n}-v_{n}\right) \mathrm{d} x \mid \tag{3.11}\\
& \quad-\left.\limsup _{n \rightarrow \infty}\left|\int_{\Omega} \mu(x)\right| \nabla u_{n}\right|^{q-2} \nabla u_{n} \cdot \nabla\left(u-v_{n}\right) \mathrm{d} x \mid \\
& \geq \limsup _{n \rightarrow \infty}\left\langle\mathcal{H}_{w}(u), u_{n}-u\right\rangle-\limsup _{n \rightarrow \infty}\left|M\left(w_{n}\right)-M(w)\right|\left\|u_{n}\right\|_{p, \Omega}^{p-1}\left\|u_{n}-v_{n}\right\|_{p, \Omega} \\
& \quad-\limsup _{n \rightarrow \infty}\left\|u_{n}\right\|_{q, \mu}^{q-1}\left\|u-v_{n}\right\|_{q, \mu} \\
& =\underset{n \rightarrow \infty}{\limsup }\langle\mathcal{H} \\
& \\
& \left.\quad(u), u_{n}-u\right\rangle .
\end{align*}
$$

Passing to the upper limit as $n \rightarrow \infty$ to inequality (3.7) and using (3.8), (3.9), (3.10), (3.11) and (3.15), one has

$$
\limsup _{n \rightarrow \infty}\left\langle\mathcal{H}_{w}(u), u_{n}-u\right\rangle \leq 0
$$

The latter combined with Proposition 2.3 (i.e., \mathcal{H}_{w} is of type $\left.\left(\mathrm{S}_{+}\right)\right)$implies that $u_{n} \rightarrow u$ in V.
Let $z \in K(w)$ be arbitrary. By Lemma 3.2(iii), we are able to choose a sequence $\left\{z_{n}\right\}_{n \in \mathbb{N}} \subset V$ such that $z_{n} \in K\left(w_{n}\right)$ for any $n \in \mathbb{N}$ and $z_{n} \rightarrow z$ in V. Inserting $v=z_{n}$ into (3.3) and passing to the upper limit as $n \rightarrow \infty$ for the resulting inequality, we obtain

$$
\begin{aligned}
& M(w) \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla(z-u) \mathrm{d} x+\int_{\Omega} \mu(x)|\nabla u|^{q-2} \nabla u \cdot \nabla(z-u) \mathrm{d} x \\
& \quad+\int_{\Omega}\left(|u|^{p-2} u+\mu(x)|u|^{q-2} u\right)(z-u) \mathrm{d} x+\int_{\Omega} N(w)(x)(z-u) \mathrm{d} x \\
& \quad+\int_{\Gamma_{3}} \phi(x, z) \mathrm{d} \Gamma-\int_{\Gamma_{3}} \phi(x, u) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G(w)(x)(z-u) \mathrm{d} \Gamma \\
& \geq \limsup _{n \rightarrow \infty}\left[M\left(w_{n}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla\left(z_{n}-u_{n}\right) \mathrm{d} x+\int_{\Omega} \mu(x)\left|\nabla u_{n}\right|^{q-2} \nabla u_{n} \cdot \nabla\left(z_{n}-u_{n}\right) \mathrm{d} x\right. \\
& \quad+\int_{\Omega}\left(\left|u_{n}\right|^{p-2} u_{n}+\mu(x)\left|u_{n}\right|^{q-2} u_{n}\right)\left(z_{n}-u_{n}\right) \mathrm{d} x+\int_{\Omega} N\left(w_{n}\right)(x)\left(z_{n}-u_{n}\right) \mathrm{d} x \\
& \left.\quad+\int_{\Gamma_{3}} \phi\left(x, z_{n}\right) \mathrm{d} \Gamma-\int_{\Gamma_{3}} \phi\left(x, u_{n}\right) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G\left(w_{n}\right)(x)\left(z_{n}-u_{n}\right) \mathrm{d} \Gamma\right] \\
& \geq \limsup _{n \rightarrow \infty}\left[\int_{\Omega} \eta_{n}(x)\left(z_{n}-u_{n}\right) \mathrm{d} x+\int_{\Gamma_{2}} \xi_{n}(x)\left(z_{n}-u_{n}\right) \mathrm{d} \Gamma+\int_{\Omega} f\left(x, w_{n}, \nabla u_{n}\right)\left(z_{n}-u_{n}\right) \mathrm{d} x\right] \\
& =\int_{\Omega} \eta(x)(z-u) \mathrm{d} x+\int_{\Gamma_{2}} \xi(x)(z-u) \mathrm{d} \Gamma+\int_{\Omega} f(x, w, \nabla u)(z-u) \mathrm{d} x,
\end{aligned}
$$

where we have applied the continuity of M, N and G. Because $z \in K(w)$ is arbitrary, we conclude that $u \in K(w)$ is the unique solution of problem (3.1) corresponding to $(w, \eta, \xi) \in$ $V \times X^{*} \times Y^{*}$, namely, $u=\mathcal{S}(w, \eta, \xi)$.

Since every convergent subsequence of $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ converges strongly to the same limit $u=$ $\mathcal{S}(w, \eta, \xi)$, this implies that the whole sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ converges strongly to u. Thus,

$$
\mathcal{S}\left(w_{n}, \eta_{n}, \xi_{n}\right)=u_{n} \rightarrow u=\mathcal{S}(w, \eta, \xi)
$$

Therefore, we have proved that the solution map $\mathcal{S}: V \times X^{*} \times Y^{*} \rightarrow V$ of problem (3.1) is completely continuous.

With view to hypotheses $\mathrm{H}\left(U_{1}\right)$ and $\mathrm{H}\left(U_{2}\right)$, it is now natural to introduce the following multivalued mappings $\mathcal{U}_{1}: X \rightarrow 2^{X^{*}}$ and $\mathcal{U}_{2}: Y \rightarrow 2^{Y^{*}}$ given by

$$
\begin{aligned}
& \mathcal{U}_{1}(u):=\left\{\eta \in X^{*}: \eta(x) \in U_{1}(x, u(x)) \text { a. a. in } \Omega\right\} \\
& \mathcal{U}_{2}(v):=\left\{\xi \in Y^{*}: \xi(x) \in U_{2}(x, v(x)) \text { a. a. on } \Gamma_{2}\right\}
\end{aligned}
$$

for all $(u, v) \in X \times Y$, respectively. As before, by $i: V \rightarrow X$ and $\gamma: V \rightarrow Y$, we denote the embedding operator of V to X and the trace operator from V to Y, respectively. It follows from Proposition 2.1 that the operators $i: V \rightarrow X$ and $\gamma: V \rightarrow Y$ are linear, bounded and compact. Therefore, we can see that their dual operators $i^{*}: X^{*} \rightarrow V^{*}$ and $\gamma^{*}: Y^{*} \rightarrow V^{*}$ are linear, bounded and compact as well. The following lemma is a direct consequence of Lemma 3.6 of Zeng-Rǎdulescu-Winkert [50].

Lemma 3.6. Let $\mathrm{H}\left(U_{1}\right)$ and $\mathrm{H}\left(U_{2}\right)$ be satisfied. Then, the following statements hold:
(i) \mathcal{U}_{1} and \mathcal{U}_{2} are well-defined and for each $u \in X$ and $v \in Y$, the sets $\mathcal{U}_{1}(u)$ and $\mathcal{U}_{2}(v)$ are bounded, closed and convex in X^{*} and Y^{*}, respectively;
(ii) \mathcal{U}_{1} and \mathcal{U}_{2} are strongly-weakly u.s.c., i.e., \mathcal{U}_{1} is u.s.c. from X with the strong topology to the subsets of X^{*} with the weak topology, and \mathcal{U}_{2} is u.s.c. from Y with the strong topology to the subsets of Y^{*} with the weak topology.

The following theorem states the main results of this section which indicates that the set of weak solutions to problem (1.1) is nonempty and compact in V.

Theorem 3.7. Let $2 \leq p$. Assume that $\mathrm{H}(1), \mathrm{H}(2), \mathrm{H}(M), \mathrm{H}(f), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(U_{1}\right), \mathrm{H}\left(U_{2}\right)$, $\mathrm{H}(\phi), \mathrm{H}(L)$ and $\mathrm{H}(J)$ are satisfied. Then, the solution set of problem (1.1), denoted by , is nonempty and compact in V.

Proof. First we prove the following claims.
Claim 1: The solution set \coprod of problem (1.1) is bounded, when \coprod is nonempty.
Assume that \amalg is nonempty and let $u \in \amalg$ be arbitrary. Then we can find functions $(\eta, \xi) \in X^{*} \times Y^{*}$ satisfying $\eta(x) \in U_{1}(x, u(x))$ for a. a. $x \in \Omega$ and $\xi(x) \in U_{2}(x, u(x))$ for a. a. $x \in \Gamma_{2}$ and the inequality holds

$$
\begin{aligned}
& M(u) \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla(v-u) \mathrm{d} x+\int_{\Omega} \mu(x)|\nabla u|^{q-2} \nabla u \cdot \nabla(v-u) \mathrm{d} x \\
& \quad+\int_{\Omega}\left(|u|^{p-2} u+\mu(x)|u|^{q-2} u\right)(v-u) \mathrm{d} x+\int_{\Omega} N(u)(x)(v-u) \mathrm{d} x \\
& \quad+\int_{\Gamma_{3}} \phi(x, v) \mathrm{d} \Gamma-\int_{\Gamma_{3}} \phi(x, u) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G(u)(x)(v-u) \mathrm{d} \Gamma \\
& \geq \int_{\Omega} \eta(x)(v-u) \mathrm{d} x+\int_{\Gamma_{2}} \xi(x)(v-u) \mathrm{d} \Gamma+\int_{\Omega} f(x, u, \nabla u)(v-u) \mathrm{d} x
\end{aligned}
$$

for all $v \in K(u)$. Recall that $0 \in K(u)$. So we can put $v=0$ into the above inequality in order to get that

$$
\begin{align*}
& M(u)\|\nabla u\|_{p, \Omega}^{p}+\|\nabla u\|_{q, \mu}^{q}+\|u\|_{p, \Omega}^{p}+\|u\|_{q, \mu}+\int_{\Omega} N(u) u \mathrm{~d} x+\int_{\Gamma_{4}} G(u) u \mathrm{~d} \Gamma \\
& \quad+\int_{\Gamma_{3}} \phi(x, u) \mathrm{d} \Gamma-\int_{\Omega} f(x, u, \nabla u) u \mathrm{~d} x \tag{3.12}\\
& \leq \int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma+\int_{\Omega} \eta(x) u \mathrm{~d} x+\int_{\Gamma_{2}} \xi(x) u \mathrm{~d} \Gamma
\end{align*}
$$

From hypotheses $\mathrm{H}\left(U_{1}\right)$ (iv) and $\mathrm{H}\left(U_{2}\right)$ (iv) it follows that

$$
\begin{align*}
\int_{\Omega} \eta(x) u(x) \mathrm{d} x & \leq \int_{\Omega}|\eta(x) \| u(x)| \mathrm{d} x \\
& \leq \int_{\Omega}\left(\alpha_{U_{1}}(x)+a_{U_{1}}|u(x)|^{p-1}\right)|u(x)| \mathrm{d} x \tag{3.13}\\
& \leq a_{U_{1}}\|u\|_{p, \Omega}^{p}+\left\|\alpha_{U_{1}}\right\|_{p^{\prime}, \Omega}\|u\|_{p, \Omega} \\
& \leq a_{U_{1}} c_{p}(\Omega)^{p}\|u\|_{V}^{p}+\left\|\alpha_{U_{1}}\right\|_{p^{\prime}, \Omega} c_{p}(\Omega)\|u\|_{V}
\end{align*}
$$

and

$$
\begin{align*}
\int_{\Gamma_{2}} \xi(x) u(x) \mathrm{d} \Gamma & \leq \int_{\Gamma_{2}}|\xi(x) \| u(x)| \mathrm{d} \Gamma \\
& \leq \int_{\Gamma_{2}}\left(\alpha_{U_{2}}(x)+a_{U_{2}}|u(x)|^{p-1}\right)|u(x)| \mathrm{d} \Gamma \tag{3.14}\\
& \leq a_{U_{2}}\|u\|_{p, \Gamma_{2}}^{p}+\left\|\alpha_{U_{2}}\right\|_{p^{\prime}, \Gamma_{2}}\|u\|_{p, \Gamma_{2}} \\
& \leq a_{U_{2}} c_{p}\left(\Gamma_{2}\right)^{p}\|u\|_{V}^{p}+\left\|\alpha_{U_{2}}\right\|_{p^{\prime}, \Gamma_{2}} c_{p}\left(\Gamma_{2}\right)\|u\|_{V}
\end{align*}
$$

By hypotheses $\mathrm{H}(f)(\mathrm{i}), \mathrm{H}(N)$ and $\mathrm{H}(G)$, we have

$$
\begin{align*}
\int_{\Omega} f(x, u, \nabla u) u \mathrm{~d} x & \leq \int_{\Omega}\left(a_{f}|\nabla u|^{p-1}+b_{f}|u|^{p-1}+\alpha_{f}(x)\right)|u| \mathrm{d} x \\
& \leq a_{f}\|\nabla u\|_{p, \Omega}^{p-1}\|u\|_{p, \Omega}+b_{f}\|u\|_{p, \Omega}^{p}+\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega}\|u\|_{p, \Omega} \tag{3.15}\\
& \leq a_{f} \hat{\lambda}^{\frac{1}{p}}\|\nabla u\|_{p, \Omega}^{p}+b_{f} c_{p}(\Omega)^{p}\|u\|_{V}^{p}+\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega} c_{p}(\Omega)\|u\|_{V}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\Omega} N(u)(x) u \mathrm{~d} x \geq-\|N(u)\|_{\zeta_{1}^{\prime}, \Omega}\|u\|_{\zeta_{1}, \Omega} \geq-\left(a_{N}+b_{N}\|u\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\|u\|_{\zeta_{1}, \Omega} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Gamma_{4}} G(u)(x) u \mathrm{~d} \Gamma \geq-\|G(u)\|_{\zeta_{2}^{\prime}, \Gamma_{4}}\|u\|_{\zeta_{2}, \Gamma_{4}} \geq-\left(a_{G}+b_{G}\|u\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\|u\|_{\zeta_{2}, \Gamma_{4}} \tag{3.17}
\end{equation*}
$$

Taking into account (3.12), (3.13), (3.14), (3.15), (3.16) and (3.17), we obtain

$$
\begin{aligned}
& \left(c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}\right)\|\nabla u\|_{p, \Omega}^{p}+\|\nabla u\|_{q, \mu}^{q}+\|u\|_{p, \Omega}^{p}+\|u\|_{q, \mu}-a_{U_{1}} c_{p}(\Omega)^{p}\|u\|_{V}^{p} \\
& \quad-a_{U_{2}} c_{p}\left(\Gamma_{2}\right)^{p}\|u\|_{V}^{p}-b_{f} c_{p}(\Omega)^{p}\|u\|_{V}^{p} \\
& \leq\left(a_{N}+b_{N}\|u\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\|u\|_{\zeta_{1}, \Omega}+\left(a_{G}+b_{G}\|u\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\|u\|_{\zeta_{2}, \Gamma_{4}}+\left\|\alpha_{U_{1}}\right\|_{p^{\prime}, \Omega} c_{p}(\Omega)\|u\|_{V} \\
& \quad+\left\|\alpha_{U_{2}}\right\|_{p^{\prime}, \Gamma_{2}} c_{p}\left(\Gamma_{2}\right)\|u\|_{V}+\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega} c_{p}(\Omega)\|u\|_{V}+\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma+\alpha_{\varphi}\|u\|_{V}+\beta_{\varphi} .
\end{aligned}
$$

Therefore, if $\|u\|_{V}>1$, then we have

$$
\begin{align*}
& \left(\min \left\{c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}, 1\right\}-\left(a_{U_{1}}+b_{f}\right) c_{p}(\Omega)^{p}-a_{U_{2}} c_{p}\left(\Gamma_{2}\right)^{p}\right)\|u\|_{V}^{p} \tag{3.18}\\
& \leq m_{0}\left(1+\|u\|_{V}+\|u\|_{V}^{\kappa_{1}+1}+\|u\|_{V}^{\kappa_{2}+1}\right)
\end{align*}
$$

with some $m_{0}>0$ which is independent of u, where we have used the continuity of embeddings of V to $L^{\zeta_{1}}(\Omega)$, of V to $L^{p}(\Omega)$, of V to $L^{\zeta_{2}}\left(\Gamma_{4}\right)$ and of V to $L^{p}\left(\Gamma_{2}\right)$. Using the inequalities

$$
\begin{gathered}
1<\kappa_{1}<p-1, \quad 1<\kappa_{2}<p-1 \\
\min \left\{c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}, 1\right\}-\left(a_{U_{1}}+b_{f}\right) c_{p}(\Omega)^{p}-a_{U_{2}} c_{p}\left(\Gamma_{2}\right)^{p}>0
\end{gathered}
$$

and (3.18), we conclude that the solution set \amalg of problem (1.1) is bounded, when \coprod is nonempty.

Claim 2: Let $C>0$ and $\overline{B_{V}(0, C)}:=\left\{u \in V:\|u\|_{V} \leq C\right\}$. Then we can find a positive constant $\mathcal{C}^{*}>0$ satisfying

$$
\begin{equation*}
\mathcal{S}\left(\overline{B_{V}\left(0, \mathcal{C}^{*}\right)}, \mathcal{U}_{1}\left(i \overline{B_{V}\left(0, \mathcal{C}^{*}\right)}\right), \mathcal{U}_{2}\left(\gamma \overline{B_{V}\left(0, \mathcal{C}^{*}\right)}\right)\right) \subset \overline{B_{V}\left(0, \mathcal{C}^{*}\right)} \tag{3.19}
\end{equation*}
$$

We prove it by contradiction. Suppose there is no such constant \mathcal{C}^{*} to satisfy the inclusion (3.19). Therefore, for every $n>1$, we are able to find elements $w_{n}, z_{n}, y_{n} \in \overline{B_{V}(0, n)}$ and $\left(\eta_{n}, \xi_{n}\right) \in X^{*} \times Y^{*}$ such that $\eta_{n} \in \mathcal{U}_{1}\left(i z_{n}\right), \xi_{n} \in \mathcal{U}_{2}\left(\gamma y_{n}\right)$ and

$$
u_{n}=\mathcal{S}\left(w_{n}, \eta_{n}, \xi_{n}\right) \quad \text { and } \quad\left\|u_{n}\right\|_{V}>n
$$

By the definition of u_{n}, we have

$$
\begin{aligned}
& M\left(w_{n}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla\left(v-u_{n}\right) \mathrm{d} x+\int_{\Omega} \mu(x)\left|\nabla u_{n}\right|^{q-2} \nabla u_{n} \cdot \nabla\left(v-u_{n}\right) \mathrm{d} x \\
& \quad+\int_{\Omega}\left(\left|u_{n}\right|^{p-2} u_{n}+\mu(x)\left|u_{n}\right|^{q-2} u_{n}\right)\left(v-u_{n}\right) \mathrm{d} x+\int_{\Omega} N\left(w_{n}\right)(x)\left(v-u_{n}\right) \mathrm{d} x \\
& \quad+\int_{\Gamma_{3}} \phi(x, v) \mathrm{d} \Gamma-\int_{\Gamma_{3}} \phi\left(x, u_{n}\right) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G\left(w_{n}\right)(x)\left(v-u_{n}\right) \mathrm{d} \Gamma \\
& \geq \int_{\Omega} \eta_{n}(x)\left(v-u_{n}\right) \mathrm{d} x+\int_{\Gamma_{2}} \xi_{n}(x)\left(v-u_{n}\right) \mathrm{d} \Gamma+\int_{\Omega} f\left(x, w_{n}, \nabla u_{n}\right)\left(v-u_{n}\right) \mathrm{d} x
\end{aligned}
$$

for all $v \in K\left(w_{n}\right)$. In the inequality above we take $v=0$ to obtain

$$
\begin{align*}
& M\left(w_{n}\right)\left\|\nabla u_{n}\right\|_{p, \Omega}^{p}+\left\|\nabla u_{n}\right\|_{q, \mu}^{q}+\left\|u_{n}\right\|_{p, \Omega}^{p}+\left\|u_{n}\right\|_{q, \mu}+\int_{\Omega} N\left(w_{n}\right) u_{n} \mathrm{~d} x \\
& \quad+\int_{\Gamma_{4}} G\left(u_{n}\right) u_{n} \mathrm{~d} \Gamma+\int_{\Gamma_{3}} \phi\left(x, u_{n}\right) \mathrm{d} \Gamma-\int_{\Omega} f\left(x, w_{n}, \nabla u_{n}\right) u_{n} \mathrm{~d} x \tag{3.20}\\
& \leq \int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma+\int_{\Omega} \eta_{n}(x) u_{n} \mathrm{~d} x+\int_{\Gamma_{2}} \xi_{n}(x) u_{n} \mathrm{~d} \Gamma
\end{align*}
$$

It follows from hypotheses $\mathrm{H}\left(U_{1}\right)(\mathrm{iv})$ and $\mathrm{H}\left(U_{2}\right)$ (iv) that

$$
\begin{align*}
\int_{\Omega} \eta_{n}(x) u_{n}(x) \mathrm{d} x & \leq \int_{\Omega}\left|\eta_{n}(x) \| u_{n}(x)\right| \mathrm{d} x \\
& \leq \int_{\Omega}\left(\alpha_{U_{1}}(x)+a_{U_{1}}\left|z_{n}(x)\right|^{p-1}\right)\left|u_{n}(x)\right| \mathrm{d} x \tag{3.21}\\
& \leq\left\|\alpha_{U_{1}}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega}+a_{U_{1}}\left\|z_{n}\right\|_{p, \Omega}^{p-1}\left\|u_{n}\right\|_{p, \Omega} \\
& \leq c_{p}(\Omega)\left\|\alpha_{U_{1}}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{V}+a_{U_{1}} c_{p}(\Omega)^{p}\left\|z_{n}\right\|_{V}^{p-1}\left\|u_{n}\right\|_{V}
\end{align*}
$$

and

$$
\begin{align*}
\int_{\Gamma_{2}} \xi_{n}(x) u_{n}(x) \mathrm{d} x & \leq \int_{\Gamma_{2}}\left|\xi_{n}(x) \| u_{n}(x)\right| \mathrm{d} x \\
& \leq \int_{\Gamma_{2}}\left(\alpha_{U_{2}}(x)+a_{U_{2}}\left|y_{n}(x)\right|^{p-1}\right)\left|u_{n}(x)\right| \mathrm{d} x \tag{3.22}\\
& \leq\left\|\alpha_{U_{2}}\right\|_{p^{\prime}, \Gamma_{2}}\left\|u_{n}\right\|_{p, \Gamma_{2}}+a_{U_{2}}\left\|y_{n}\right\|_{p, \Gamma_{2}}^{p-1}\left\|u_{n}\right\|_{p, \Gamma_{2}} \\
& \leq c_{p}\left(\Gamma_{2}\right)\left\|\alpha_{U_{2}}\right\|_{p^{\prime}, \Gamma_{2}}\left\|u_{n}\right\|_{V}+a_{U_{2}} c_{p}\left(\Gamma_{2}\right)^{p}\left\|y_{n}\right\|_{V}^{p-1}\left\|u_{n}\right\|_{V}
\end{align*}
$$

Moreover, hypotheses $\mathrm{H}(N)$ and $\mathrm{H}(G)$ imply that

$$
\begin{equation*}
\int_{\Omega} N\left(w_{n}\right) u_{n} \mathrm{~d} x \leq\left\|N\left(w_{n}\right)\right\|_{\zeta_{1}^{\prime}, \Omega}\left\|u_{n}\right\|_{\zeta_{1}, \Omega} \leq\left(a_{N}+b_{N}\left\|w_{n}\right\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\left\|u_{n}\right\|_{\zeta_{1}, \Omega} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Gamma_{4}} G\left(w_{n}\right) u_{n} \mathrm{~d} \Gamma \leq\left\|G\left(w_{n}\right)\right\|_{\zeta_{2}^{\prime}, \Gamma_{4}}\left\|u_{n}\right\|_{\zeta_{2}, \Gamma_{4}} \leq\left(a_{G}+b_{G}\left\|w_{n}\right\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\left\|u_{n}\right\|_{\zeta_{2}, \Gamma_{4}} \tag{3.24}
\end{equation*}
$$

Finally, by hypothesis $\mathrm{H}(f)(\mathrm{i})$, we have

$$
\begin{align*}
& \int_{\Omega} f\left(x, w_{n}, \nabla u_{n}\right) u_{n} \mathrm{~d} x \\
& \leq \int_{\Omega}\left(a_{f}\left|\nabla u_{n}\right|^{p-1}+b_{f}\left|w_{n}\right|^{p-1}+\alpha_{f}(x)\right)\left|u_{n}\right| \mathrm{d} x \tag{3.25}\\
& \leq a_{f}\left\|\nabla u_{n}\right\|_{p, \Omega}^{p-1}\left\|u_{n}\right\|_{p, \Omega}+b_{f}\left\|w_{n}\right\|_{p, \Omega}^{p-1}\left\|u_{n}\right\|_{p, \Omega}+\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega}\left\|u_{n}\right\|_{p, \Omega} \\
& \leq a_{f} \hat{\lambda}^{\frac{1}{p}}\left\|\nabla u_{n}\right\|_{p, \Omega}^{p}+b_{f} c_{p}(\Omega)^{p}\left\|w_{n}\right\|_{V}^{p-1}\left\|u_{n}\right\|_{V}+\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega} c_{p}(\Omega)\left\|u_{n}\right\|_{V}
\end{align*}
$$

Since $n>1$ and $\left\|y_{n}\right\|_{V} \leq n<\left\|u_{n}\right\|_{V}$, we insert (3.21), (3.22), (3.23), (3.24), (3.25) into (3.20) to obtain

$$
\begin{aligned}
& \left(\min \left\{c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}, 1\right\}-\left(a_{U_{1}}+b_{f}\right) c_{p}(\Omega)^{p}-a_{U_{2}} c_{p}\left(\Gamma_{2}\right)^{p}\right)\left\|u_{n}\right\|_{V}^{p} \\
& \leq\left(a_{N}+b_{N}\left\|w_{n}\right\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\left\|u_{n}\right\|_{\zeta_{1}, \Omega}+\left(a_{G}+b_{G}\left\|w_{n}\right\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\left\|u_{n}\right\|_{\zeta_{2}, \Gamma_{4}}+\left\|\alpha_{U_{1}}\right\|_{p^{\prime}, \Omega} c_{p}(\Omega)\left\|u_{n}\right\|_{V} \\
& \quad+\left\|\alpha_{U_{2}}\right\|_{p^{\prime}, \Omega} c_{p}\left(\Gamma_{2}\right)\left\|u_{n}\right\|_{V}+\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega} c_{p}(\Omega)\left\|u_{n}\right\|_{V}+\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma+\alpha_{\varphi}\left\|u_{n}\right\|_{V}+\beta_{\varphi}
\end{aligned}
$$

where we have used inequality (3.5). Passing to the limit as $n \rightarrow \infty$ to the inequality above, one has

$$
+\infty=\lim _{n \rightarrow \infty}\left(\min \left\{c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}, 1\right\}-\left(a_{U_{1}}+b_{f}\right) c_{p}(\Omega)^{p}-a_{U_{2}} c_{p}\left(\Gamma_{2}\right)^{p}\right)\left\|u_{n}\right\|_{V}^{p-\max \left\{\kappa_{1}, \kappa_{2}\right\}-1} \leq 0
$$

a contradiction. Therefore, we conclude that there exists a positive constant $\mathcal{C}^{*}>0$ such that (3.19) holds. This proves Claim 2.

As mentioned before, the main tool in the proof of the existence of a solution to problem (1.1) is Tychonoff's fixed point theorem for multivalued operators, see Theorem 2.5. For this purpose, let us consider the multivalued mapping $\Lambda: V \times X^{*} \times Y^{*} \rightarrow 2^{V \times X^{*} \times Y^{*}}$ defined by

$$
\Lambda(u, \eta, \xi):=\left(\mathcal{S}(u, \eta, \xi), \mathcal{U}_{1}(i u), \mathcal{U}_{2}(\gamma u)\right)
$$

Observe that if (u, η, ξ) is a fixed point of Λ, then we have $u=\mathcal{S}(u, \eta, \xi)$ and $(\eta, \xi) \in \mathcal{U}_{1}(i u) \times$ $\mathcal{U}_{2}(\gamma u)$. It is obvious from the definitions of $\mathcal{S}, \mathcal{U}_{1}$ and \mathcal{U}_{2} that u is also a weak solution of problem (1.1). Therefore, we are going to examine the validity of the conditions of Theorem 2.5.

Invoking Lemmas 3.4 and 3.5, we can see that for each $(w, \eta, \xi) \in V \times X^{*} \times Y^{*}$, the set $\Lambda(w, \eta, \xi)$ is a nonempty, bounded, closed and convex subset of $V \times X^{*} \times Y^{*}$.

Employing hypotheses $\mathrm{H}\left(U_{1}\right)(\mathrm{iv})$ and $\mathrm{H}\left(U_{2}\right)(\mathrm{iv})$, it is not difficult to prove that $\mathcal{U}_{1}: X \rightarrow 2^{X^{*}}$ and $\mathcal{U}_{2}: Y \rightarrow 2^{Y^{*}}$ are two bounded operators, and there exist two constants $M_{1}>0$ and $M_{2}>0$ satisfying

$$
\left\|\mathcal{U}_{1}\left(\overline{B_{V}\left(0, \mathcal{C}^{*}\right)}\right)\right\|_{X^{*}} \leq M_{1} \quad \text { and } \quad\left\|\mathcal{U}_{2}\left(\gamma \overline{B_{V}\left(0, \mathcal{C}^{*}\right)}\right)\right\|_{Y^{*}} \leq M_{2}
$$

Additionally, we introduce a bounded, closed and convex subset D of $V \times X^{*} \times Y^{*}$ defined by

$$
D=\left\{(u, \eta, \xi) \in V \times X^{*} \times Y^{*}:\|u\|_{V} \leq \mathcal{C}^{*},\|\eta\|_{X^{*}} \leq M_{1} \text { and }\|\xi\|_{Y^{*}} \leq M_{2}\right\}
$$

From this and (3.19) we know that Λ maps D into itself.
Next, we are going to prove that the multivalued mapping Λ is weakly-weakly u.s.c. For any weakly closed set E in $V \times X^{*} \times Y^{*}$ such that $\Lambda^{-}(E) \neq \emptyset$, let $\left\{\left(w_{n}, \eta_{n}, \xi_{n}\right)\right\}_{n \in \mathbb{N}} \subset \Lambda^{-}(E)$ be such that $\left(w_{n}, \eta_{n}, \xi_{n}\right) \xrightarrow{w}(w, \eta, \xi)$ in $V \times X^{*} \times Y^{*}$ for some $(w, \eta, \xi) \in V \times X^{*} \times Y^{*}$. Our goal
is to show that $(w, \eta, \xi) \in \Lambda^{-}(E)$, namely, there exists $(u, \delta, \sigma) \in \Lambda(w, \eta, \xi) \cap E$. Indeed, for each $n \in \mathbb{N}$, we are able to find $\left(u_{n}, \delta_{n}, \sigma_{n}\right) \in \Lambda\left(w_{n}, \eta_{n}, \xi_{n}\right) \cap E$, so, $u_{n}=\mathcal{S}\left(w_{n}, \eta_{n}, \xi_{n}\right), \delta_{n} \in \mathcal{U}_{1}\left(i w_{n}\right)$ and $\sigma_{n} \in \mathcal{U}_{2}\left(\gamma w_{n}\right)$. From the boundedness of \mathcal{U}_{1} and \mathcal{U}_{2}, one has that the sequences $\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\sigma_{n}\right\}_{n \in \mathbb{N}}$ are bounded in X^{*} and Y^{*}, respectively. Passing to a subsequence if necessary, we may assume that

$$
\delta_{n} \xrightarrow{w} \delta \text { in } X^{*} \quad \text { and } \quad \sigma_{n} \xrightarrow{w} \sigma \text { in } Y^{*}
$$

for some $(\delta, \sigma) \in X^{*} \times Y^{*}$. Recall that \mathcal{S} is completely continuous. So, it holds $u_{n}=\mathcal{S}\left(w_{n}, \eta_{n}, \xi_{n}\right)$ $\rightarrow \mathcal{S}(w, \eta, \xi):=u$ in V. Note that i and γ are both compact. Hence $i w_{n} \rightarrow i w$ in X and $\gamma w_{n} \rightarrow \gamma w$ in Y. Since \mathcal{U}_{1} (resp. \mathcal{U}_{2}) is strongly-weakly u.s.c. and has nonempty, bounded, closed and convex values, it follows from Theorem 1.1.4 of Kamenskii-Obukhovskii-Zecca [25] that \mathcal{U}_{1} (resp. \mathcal{U}_{2}) is strongly-weakly closed. The latter combined with the convergences above implies that $\delta \in \mathcal{U}_{1}(i w)$ and $\sigma \in \mathcal{U}_{2}(\gamma w)$, namely, $(u, \delta, \sigma) \in \Lambda(w, \eta, \xi) \cap E$, because of the weak closedness of E. Therefore, we conclude that Λ is weakly-weakly u.s.c.

Therefore, all conditions of Theorem 2.5 are satisfied. Using this theorem, we conclude that Λ has at least a fixed point, say $\left(u^{*}, \eta^{*}, \xi^{*}\right) \in V \times X^{*} \times Y^{*}$. Hence, $u^{*} \in V$ is a weak solution of problem (1.1).

Next, let us prove the compactness of the solution set \amalg. From Claim 1, we can see that the solution set \coprod of problem (1.1) is bounded in V. By the definitions of a weak solution (see Definition 3.3) and of Λ, there exist $(\eta, \xi) \in X^{*} \times Y^{*}$ such that $u=\mathcal{S}(u, \eta, \xi), \eta \in \mathcal{U}_{1}(i u)$ and $\xi \in \mathcal{U}_{2}(\gamma u)$, that is, $(u, \eta, \xi) \in \Lambda(u, \eta, \xi)$. Let $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ be any sequence of solutions to problem (1.1). Then, there are two sequences $\left\{\eta_{n}\right\}_{n \in \mathbb{N}} \subset X^{*}$ and $\left\{\xi_{n}\right\}_{n \in \mathbb{N}} \subset Y^{*}$ such that $\eta_{n} \in \mathcal{U}_{1}\left(i u_{n}\right)$, $\xi_{n} \in \mathcal{U}_{2}\left(\gamma u_{n}\right)$ such that $u_{n}=\mathcal{S}\left(u_{n}, \eta_{n}, \xi_{n}\right)$ for all $n \in \mathbb{N}$. From the boundedness of \coprod we may assume that

$$
u_{n} \xrightarrow{w} u \quad \text { in } V
$$

for some $u \in V$. This together with the boundedness of \mathcal{U}_{1} and \mathcal{U}_{2} deduces that $\left\{\eta_{n}\right\}_{n \in \mathbb{N}} \subset X^{*}$ and $\left\{\xi_{n}\right\}_{n \in \mathbb{N}} \subset Y^{*}$ are both bounded. So, passing to a subsequence if necessary, we suppose that

$$
\eta_{n} \xrightarrow{w} \eta \quad \text { in } X^{*} \quad \text { and } \quad \xi_{n} \xrightarrow{w} \xi \quad \text { in } Y^{*}
$$

for some $\eta \in \mathcal{U}_{1}(i u)$ and $\xi \in \mathcal{U}_{2}(\gamma u)$, owing to the compactness of i and γ as well as the strongly-weakly closedness of \mathcal{U}_{1} and \mathcal{U}_{2}. Using the complete continuity of \mathcal{S}, we conclude that

$$
u_{n}=\mathcal{S}\left(u_{n}, \eta_{n}, \xi_{n}\right) \rightarrow \mathcal{S}(u, \eta, \xi)=u
$$

This means that u is a solution to problem (1.1). Consequently, the solution set \amalg of problem (1.1) is compact.

4. Special cases of the original problem

In this section, we are going to study several special cases of problem (1.1) and discuss some particular situations.

First, we move our attention to consider the special case of problem (1.1) formed as follows:

$$
\begin{align*}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in r_{1}(u) \partial j_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial \nu_{a}} & \in r_{2}(u) \partial j_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) & & \text { on } \Gamma_{3} \tag{4.1}\\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{4} \\
L(u) & \leq J(u), & &
\end{align*}
$$

where the terms ∂j_{1} and ∂j_{2} stand for the Clarke's generalized gradients of locally Lipschitz functions $s \mapsto j_{1}(x, s)$ and $s \mapsto j_{2}(x, s)$, respectively. Here, the functions $j_{1}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $j_{2}: \Gamma_{2} \times \mathbb{R} \rightarrow \mathbb{R}$ are supposed to satisfy the following properties:
$\mathrm{H}\left(j_{1}\right)$: The functions $j_{1}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $r_{1}: \mathbb{R} \rightarrow \mathbb{R}$ are such that
(i) $x \mapsto j_{1}(x, s)$ is measurable in Ω for all $s \in \mathbb{R}$ with $x \mapsto j_{1}(x, 0)$ belonging to $L^{1}(\Omega)$;
(ii) $s \mapsto j_{1}(x, s)$ is locally Lipschitz continuous for a. a. $x \in \Omega$ and the function $r_{1}: \mathbb{R} \rightarrow$ \mathbb{R} is continuous;
(iii) there exist a function $\alpha_{j_{1}} \in L^{p^{\prime}}(\Omega)_{+}$and a constant $a_{j_{1}} \geq 0$ such that

$$
\left|r_{1}(s) \eta\right| \leq \alpha_{j_{1}}(x)+a_{j_{1}}|s|^{p-1}
$$

for all $\eta \in \partial j_{1}(x, s)$, for a. a. $x \in \Omega$ and for all $s \in \mathbb{R}$.
$\mathrm{H}\left(j_{2}\right):$ The functions $j_{2}: \Gamma_{2} \times \mathbb{R} \rightarrow \mathbb{R}$ and $r_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are such that
(i) $x \mapsto j_{2}(x, s)$ is measurable on Γ_{2} for all $s \in \mathbb{R}$ with $x \mapsto j_{2}(x, 0)$ belonging to $L^{1}\left(\Gamma_{2}\right)$;
(ii) $s \mapsto j_{2}(x, s)$ is locally Lipschitz continuous for a. a. $x \in \Gamma_{2}$ and the function $r_{2}: \mathbb{R} \rightarrow$ \mathbb{R} is continuous;
(iii) there exist a function $\alpha_{j_{2}} \in L^{p^{\prime}}\left(\Gamma_{2}\right)_{+}$and a constant $a_{j_{2}} \geq 0$ such that

$$
\left|r_{2}(s) \xi\right| \leq \alpha_{j_{2}}(x)+a_{j_{2}}|s|^{p-1}
$$

for all $\xi \in \partial j_{2}(x, s)$, for a. a. $x \in \Gamma_{2}$ and for all $s \in \mathbb{R}$.
Using the same arguments as in the proof of Theorem 3.11 of Zeng-Rǎdulescu-Winkert [50], we have the following lemma.
Lemma 4.1. Assume that $\mathrm{H}\left(j_{1}\right)$ and $\mathrm{H}\left(j_{2}\right)$ are fulfilled. Then, the multivalued mappings $U_{1}: \Omega \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ and $U_{2}: \Gamma_{2} \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ defined by

$$
U_{1}(x, s):=r_{1}(s) \partial j_{1}(x, s) \quad \text { and } \quad U_{2}(y, s):=r_{2}(s) \partial j_{2}(y, s)
$$

for all $s \in \mathbb{R}$, for a. a. $x \in \Omega$ and for a. a. $y \in \Gamma_{2}$, satisfy $\mathrm{H}\left(U_{1}\right)$ and $\mathrm{H}\left(U_{2}\right)$, respectively.
By Theorem 3.7 and Lemma 4.1, we have the following existence theorem to problem (4.1).
Theorem 4.2. Let $p \geq 2$. Assume that $\mathrm{H}(1), \mathrm{H}(M), \mathrm{H}(f), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(j_{1}\right), \mathrm{H}\left(j_{2}\right), \mathrm{H}(\phi)$, $\mathrm{H}(L), \mathrm{H}(J)$ and the inequalities

$$
\begin{aligned}
& 0<k(p) c_{M}-e_{f} \hat{\lambda}^{\frac{1}{p}} \\
& 0<\min \left\{c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}, 1\right\}-\left(a_{j_{1}}+b_{f}\right) c_{p}(\Omega)^{p}-a_{j_{2}} c_{p}\left(\Gamma_{2}\right)^{p}
\end{aligned}
$$

are satisfied. Then, the solution set of problem (4.1) is nonempty and compact in V.
When f is independent of the third variable (i.e., f is formulated by $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$), then problem (1.1) becomes to the following problem:

$$
\begin{array}{rlrl}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial \nu_{a}} & \in U_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) \tag{4.2}\\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{3} \\
L(u) & \leq J(u) . & & \text { on } \Gamma_{4} \\
& &
\end{array}
$$

A careful reading of the proofs in Section 3 gives the following results to problem (4.2).
Theorem 4.3. Let $p \geq 2$. Assume that $\mathrm{H}(1), \mathrm{H}(M), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(U_{1}\right), \mathrm{H}\left(U_{2}\right), \mathrm{H}(\phi), \mathrm{H}(L)$ and $\mathrm{H}(J)$ are satisfied. If, in addition, f satisfies the following conditions
$\mathrm{H}\left(f^{\prime}\right): f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that there exist a constant $b_{f} \geq 0$ and a function $\alpha_{f} \in L^{\frac{p}{p-1}}(\Omega)_{+}$satisfying

$$
|f(x, s)| \leq b_{f}|s|^{p-1}+\alpha_{f}(x)
$$

for a. a. $x \in \Omega$, for all $s \in \mathbb{R}$
and the following inequality is satisfied

$$
0<\min \left\{c_{M}, 1\right\}-\left(a_{U_{1}}+b_{f}\right) c_{p}(\Omega)^{p}-a_{U_{2}} c_{p}\left(\Gamma_{2}\right)^{p}
$$

then the solution set of problem (4.2) is nonempty and compact in V.
Therefore, from Theorems 4.2 and 4.3 , we can directly obtain the existence of a weak solution to the following implicit obstacle inclusion problem:

$$
\begin{align*}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in r_{1}(u) \partial j_{1}(x, u)+N(u)(x)+f(x, u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial \nu_{a}} & \in r_{2}(u) \partial j_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) & & \text { on } \Gamma_{3} \tag{4.3}\\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{4} \\
L(u) & \leq J(u) . & &
\end{align*}
$$

Theorem 4.4. Let $p \geq 2$. Assume that $\mathrm{H}(1), \mathrm{H}(M), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(j_{1}\right), \mathrm{H}\left(j_{2}\right), \mathrm{H}(\phi), \mathrm{H}(L)$ and $\mathrm{H}(J)$ are satisfied. If, in addition, $\mathrm{H}\left(f^{\prime}\right)$ and the following inequality are satisfied

$$
0<\min \left\{c_{M}, 1\right\}-\left(a_{j_{1}}+b_{f}\right) c_{p}(\Omega)^{p}-a_{j_{2}} c_{p}\left(\Gamma_{2}\right)^{p}
$$

then the solution set of problem (4.3) is nonempty and compact in V.
Particularly, if $\Gamma_{2}=\Gamma_{3}=\Gamma_{4}=\emptyset$ (namely, $\Gamma_{1}=\Gamma$), then problem (1.1) reduces to the following nonlocal implicit obstacle problem with Dirichlet boundary condition:

$$
\begin{align*}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma, \tag{4.4}\\
L(u) & \leq J(u) . & &
\end{align*}
$$

Obviously, the function space considered in problem (4.4) is the closed subspace

$$
W_{0}^{1, \mathcal{H}}(\Omega):=\left\{u \in W^{1, \mathcal{H}}(\Omega): u=0 \text { on } \Gamma\right\}
$$

of $W^{1, \mathcal{H}}(\Omega)$. It is well-known that $V_{0}:=W_{0}^{1, \mathcal{H}}(\Omega)$ endowed the norm $\|u\|_{V_{0}}:=\||\nabla u|\|_{\mathcal{H}}$ for all $u \in V_{0}$ becomes a reflexive Banach space. Therefore, we have the following existence theorem to problem (4.4).

Theorem 4.5. Let $p \geq 2$. Assume that $\mathrm{H}(1), \mathrm{H}(M), \mathrm{H}(f), \mathrm{H}(N), \mathrm{H}\left(U_{1}\right), \mathrm{H}(L), \mathrm{H}(J)$ and the following inequalities

$$
\begin{aligned}
& 0<k(p) c_{M}-e_{f} \hat{\lambda}^{\frac{1}{p}} \\
& 0<\min \left\{c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}, 1\right\}-\left(a_{U_{1}}+b_{f}\right) c_{p}(\Omega)^{p}
\end{aligned}
$$

are satisfied. Then, the solution set of problem (4.4), denoted by \coprod, is nonempty and compact in V_{0}.

More particularly, if f is independent of the third variable and U_{1} is specialized by the formulation $U_{1}(x, s)=r_{1}(s) \partial j_{1}(x, s)$ for all $(x, s) \in \Omega \times \mathbb{R}$, then problem (4.4) reduces to the following implicit obstacle problems, respectively:

$$
\begin{align*}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma \tag{4.5}\\
L(u) & \leq J(u) & &
\end{align*}
$$

and

$$
\begin{align*}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in r_{1}(u) \partial j_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma \tag{4.6}\\
L(u) & \leq J(u) & &
\end{align*}
$$

Therefore, we have the following existence theorems to problems (4.5) and (4.6), respectively.
Theorem 4.6. Let $p \geq 2$. Assume that $\mathrm{H}(1), \mathrm{H}(M), \mathrm{H}\left(f^{\prime}\right), \mathrm{H}(N), \mathrm{H}\left(U_{1}\right), \mathrm{H}(L), \mathrm{H}(J)$ and the following inequality

$$
0<\min \left\{c_{M}, 1\right\}-\left(a_{U_{1}}+b_{f}\right) c_{p}(\Omega)^{p}
$$

is satisfied. Then, the solution set of problem (4.5), denoted by \coprod, is nonempty and compact in V_{0}.
Theorem 4.7. Let $p \geq 2$. Assume that $\mathrm{H}(1), \mathrm{H}(M), \mathrm{H}(f), \mathrm{H}(N), \mathrm{H}\left(j_{1}\right), \mathrm{H}(L), \mathrm{H}(J)$ and the following inequalities

$$
\begin{aligned}
& 0<k(p) c_{M}-e_{f} \hat{\lambda}^{\frac{1}{p}} \\
& 0<\min \left\{c_{M}-a_{f} \hat{\lambda}^{\frac{1}{p}}, 1\right\}-\left(a_{j_{1}}+b_{f}\right) c_{p}(\Omega)^{p}
\end{aligned}
$$

are satisfied. Then, the solution set of problem (4.6), denoted by $】$, is nonempty and compact in V_{0}.

Let $c_{J} \geq 0$ be a given constant. When $J(u)=c_{J}$ for all $u \in V$, then problem (1.1) can be rewritten as the following nonlocal elliptic system:

$$
\begin{array}{rlrl}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial \nu_{a}} & \in U_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) \tag{4.7}\\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{3} \\
L(u) & \leq c_{J} & & \text { on } \Gamma_{4} \\
& &
\end{array}
$$

With respect to problem (4.7), the constraint set is denoted by the following one

$$
K:=\left\{u \in V: L(u) \leq c_{J}\right\}
$$

Observe that the following condition
$\mathrm{H}\left(L^{\prime}\right): L: V \rightarrow \mathbb{R}$ is a l.s.c. and convex function,
is weaker than hypothesis $\mathrm{H}(L)$. Without loss of generality, in the sequel, we suppose that $L(0) \leq c_{J}$. Therefore, it is not difficult to prove that if $\mathrm{H}\left(L^{\prime}\right)$ holds, then the constraint set K is a nonempty, closed and convex subset of V with $0 \in K$.

In Theorem 3.7, the inequalities given in $\mathrm{H}(2)$ play critical role to prove the existence of weak solutions to problem (1.1). But, in some sense, such inequalities restrict the scope of applications to our theoretical results. A natural question arises whether we can drop hypotheses $\mathrm{H}(2)$.

However, this is still an open problem for the equations with the implicit obstacle effect (for example, problem (1.1)). But, fortunately, if the obstacle constraint is formulated by the form $L(u) \leq c_{J}$ and M is a coercive in V, i.e., $M(u) \rightarrow+\infty$ as $\|u\|_{V} \rightarrow \infty$, then hypotheses $\mathrm{H}(2)$ can be removed. More precisely, if the obstacle constraint is formulated by $L(u) \leq c_{J}$, then hypothesis $\mathrm{H}(M)$ can be relaxed to the following condition:
$\mathrm{H}\left(M^{\prime}\right): M: L^{p^{*}}(\Omega) \rightarrow(0,+\infty)$ is bounded and continuous in V such that $\inf _{u \in V} M(u)>0$.
Theorem 4.8. Assume that $\mathrm{H}(1), \mathrm{H}(f)(\mathrm{i}), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(U_{1}\right), \mathrm{H}\left(U_{2}\right), \mathrm{H}(\phi), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}\left(L^{\prime}\right)$ are satisfied. If, moreover, $M: L^{p^{*}}(\Omega) \rightarrow(0,+\infty)$ is coercive in V, then the solution set of problem (4.7), denoted by \coprod, is nonempty and compact in V.
Proof. Let $\mathcal{A}: V \times V \rightarrow V^{*}, \mathcal{F}: V \rightarrow L^{p^{\prime}}(\Omega) \subset V^{*}$ and $\mathcal{G}: V \rightarrow V^{*}$ be the functions defined by

$$
\begin{aligned}
\langle\mathcal{A}(u, u), v\rangle:= & M(u) \int_{\Omega}\left(|\nabla u|^{p-2} \nabla u+\mu(x)|\nabla u|^{q-2} \nabla u\right) \cdot \nabla v \mathrm{~d} x \\
& +\int_{\Omega}\left(|u|^{p-2} u+\mu(x)|u|^{q-2} u\right) v \mathrm{~d} x \\
\langle\mathcal{F} u, v\rangle:= & \int_{\Omega} f(x, u, \nabla u) v \mathrm{~d} x \\
\langle\mathcal{G}(u), v\rangle:= & \int_{\Omega} N(u)(x)(v-u) \mathrm{d} x+\int_{\Gamma_{4}} G(u)(x) v \mathrm{~d} \Gamma
\end{aligned}
$$

for all $u, v \in V$. Applying a standard procedure, it is easily to show that $u \in V$ is a weak solution to problem (4.7) if and only if it solves the following inclusion problem:

$$
\mathcal{A}(u, u)+\mathcal{G}(u)+\mathcal{F}(u)+i^{*} \mathcal{U}_{1}(i u)+\gamma^{*} \mathcal{U}_{2}(\gamma u)+\partial_{c} \varphi_{K}(u) \ni 0 \quad \text { in } V^{*}
$$

where $\partial_{c} \varphi_{K}$ is the convex differential operator of $\varphi_{K}:=\varphi+I_{K}$ and I_{K} is the indicator function of K.

We assert that the multivalued mapping $V \ni u \mapsto \mathcal{A}(u, u)+\mathcal{G}(u)+\mathcal{F}(u)+i^{*} \mathcal{U}_{1}(u)+\gamma^{*} \mathcal{U}_{2}(u)+$ $\partial_{c} \varphi_{K}(u) \subset V^{*}$ is coercive. Let $u \in K, \eta \in \mathcal{U}_{1}(i u)$ and $\xi \in \mathcal{U}_{2}(\gamma u)$ be arbitrary. A simple calculating gives

$$
\begin{aligned}
& \int_{\Omega} M(u)|\nabla u|^{p}+\mu(x)|\nabla u|^{q}+|u|^{p}+\mu(x)|u|^{q} \mathrm{~d} x+\int_{\Omega} N(u)(x) u \mathrm{~d} x+\int_{\Gamma_{3}} \phi(x, u) \mathrm{d} \Gamma \\
& \quad-\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G(u)(x) u \mathrm{~d} \Gamma+\int_{\Omega} \eta(x) u \mathrm{~d} x+\int_{\Gamma_{2}} \xi(x) u \mathrm{~d} \Gamma+\int_{\Omega} f(x, u, \nabla u) u \mathrm{~d} x \\
& \geq M(u)\|\nabla u\|_{p, \Omega}^{p}+\|\nabla u\|_{q, \mu}^{q}+\|u\|_{p, \Omega}^{p}+\|u\|_{q, \mu}^{q}-a_{f} \hat{\lambda}^{\frac{1}{p}}\|\nabla u\|_{p, \Omega}^{p}-b_{f}\|u\|_{p, \Omega}^{p} \\
& \quad-\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega}\|u\|_{p, \Omega}-\left(a_{N}+b_{N}\|u\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\|u\|_{\zeta_{1}, \Omega}-\left(a_{G}+b_{G}\|u\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\|u\|_{\zeta_{2}, \Gamma_{4}}-\alpha_{\varphi}\|v\|_{V} \\
& \quad-\beta_{\varphi}-\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma-\left\|\alpha_{U_{1}}\right\|_{p^{\prime}, \Omega}\|u\|_{p, \Omega}-a_{U_{1}}\|u\|_{p, \Omega}^{p}-\left\|\alpha_{U_{2}}\right\|_{p^{\prime}, \Gamma_{2}}\|u\|_{p, \Omega}-a_{U_{2}}\|u\|_{p, \Gamma_{2}}^{p} \\
& \geq\left(M(u)-a_{f} \hat{\lambda}^{\frac{1}{p}}-b_{f} \hat{\lambda}-a_{U_{1}} \hat{\lambda}-a_{U_{2}} \lambda_{1, p}^{S}(1+\hat{\lambda})\right)\|\nabla u\|_{p, \Omega}^{p}+\|\nabla u\|_{q, \mu}^{q}+\|u\|_{p, \Omega}^{p}+\|u\|_{q, \mu}^{q} \\
& \quad-\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega}\|u\|_{p, \Omega}-\left(a_{N}+b_{N}\|u\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\|u\|_{\zeta_{1}, \Omega}-\left(a_{G}+b_{G}\|u\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\|u\|_{\zeta_{2}, \Gamma_{4}}-\alpha_{\varphi}\|v\|_{V} \\
& \quad-\beta_{\varphi}-\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma
\end{aligned}
$$

where we have used the variational identity (2.5). Hence, if $\|u\|_{V}>1$ is such that

$$
M(u)-a_{f} \hat{\lambda}^{\frac{1}{p}}-b_{f} \hat{\lambda}-a_{U_{1}} \hat{\lambda}-a_{U_{2}} \lambda_{1, p}^{S}(1+\hat{\lambda})>1
$$

then we have

$$
\int_{\Omega} M(u)|\nabla u|^{p}+\mu(x)|\nabla u|^{q}+|u|^{p}+\mu(x)|u|^{q} \mathrm{~d} x+\int_{\Omega} N(u)(x) u \mathrm{~d} x+\int_{\Gamma_{3}} \phi(x, u) \mathrm{d} \Gamma
$$

$$
\begin{aligned}
& -\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma+\int_{\Gamma_{4}} G(u)(x) u \mathrm{~d} \Gamma+\int_{\Omega} \eta(x) u \mathrm{~d} x+\int_{\Gamma_{2}} \xi(x) u \mathrm{~d} \Gamma+\int_{\Omega} f(x, u, \nabla u) u \mathrm{~d} x \\
\geq & \|u\|_{V}^{p}-\left\|\alpha_{f}\right\|_{p^{\prime}, \Omega}\|u\|_{p_{, \Omega}}-\left(a_{N}+b_{N}\|u\|_{\zeta_{1}, \Omega}^{\kappa_{1}}\right)\|u\|_{\zeta_{1}, \Omega} \\
& -\left(a_{G}+b_{G}\|u\|_{\zeta_{2}, \Gamma_{4}}^{\kappa_{2}}\right)\|u\|_{\zeta_{2}, \Gamma_{4}}-\alpha_{\varphi}\|v\|_{V}-\beta_{\varphi}-\int_{\Gamma_{3}} \phi(x, 0) \mathrm{d} \Gamma .
\end{aligned}
$$

Recall that $\kappa_{1}+1<p$ and $\kappa_{2}+1<p$. Therefore, we have

$$
\frac{\left\langle\mathcal{A}(u, u)+\mathcal{G}(u)+\mathcal{F}(u)+i^{*} \mathcal{U}_{1}(u)+\gamma^{*} \mathcal{U}_{2}(u)+\partial_{c} \varphi_{K}(u), u\right\rangle}{\|u\|_{V}} \rightarrow \infty \quad \text { as }\|u\|_{V} \rightarrow \infty
$$

This means that the multivalued mapping $V \ni u \mapsto \mathcal{A}(u, u)+\mathcal{G}(u)+\mathcal{F}(u)+i^{*} \mathcal{U}_{1}(u)+\gamma^{*} \mathcal{U}_{2}(u)+$ $\partial_{c} \varphi_{K}(u) \subset V^{*}$ is coercive.

From the proof of Theorem 3.4 of Zeng-Bai-Gasiński [47] and Theorem 3.7, we can see that the weak continuity of M plays an important role to prove the pseudomonotonicity of $V \ni u \mapsto$ $\mathcal{A}(u, u)+\mathcal{G}(u)+\mathcal{F}(u)+i^{*} \mathcal{U}_{1}(i u)+\gamma^{*} \mathcal{U}_{2}(\gamma u) \subset V^{*}$. More exactly, it directly effects the validity of the condition that

- if $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset V$ with $u_{n} \xrightarrow{w} u$ in V and $u_{n}^{*} \in \mathcal{A}\left(u_{n}, u_{n}\right)+\mathcal{G}\left(u_{n}\right)+\mathcal{F}\left(u_{n}\right)+i^{*} \mathcal{U}_{1}\left(i u_{n}\right)+$ $\gamma^{*} \mathcal{U}_{2}\left(\gamma u_{n}\right)$ are such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u_{n}^{*}, u_{n}-u\right\rangle \leq 0 \tag{4.8}
\end{equation*}
$$

then to each element $v \in V$, there exists $u^{*}(v) \in \mathcal{A}(u, u)+\mathcal{G}(u)+\mathcal{F}(u)+i^{*} \mathcal{U}_{1}(i u)+$ $\gamma^{*} \mathcal{U}_{2}(\gamma u)$ with

$$
\begin{equation*}
\left\langle u^{*}(v), u-v\right\rangle \leq \liminf _{n \rightarrow \infty}\left\langle u_{n}^{*}, u_{n}-v\right\rangle \tag{4.9}
\end{equation*}
$$

Let $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset V$ and $\left\{u_{n}^{*}\right\}_{n \in \mathbb{N}} \subset V^{*}$ be sequences such that $u_{n}^{*} \in \mathcal{A}\left(u_{n}, u_{n}\right)+\mathcal{G}\left(u_{n}\right)+$ $\mathcal{F}\left(u_{n}\right)+i^{*} \mathcal{U}_{1}\left(i u_{n}\right)+\gamma^{*} \mathcal{U}_{2}\left(\gamma u_{n}\right)$ and suppose inequality (4.8) holds. Then, there exist sequences $\left\{\eta_{n}\right\}_{n \in \mathbb{N}} \subset X^{*}$ and $\left\{\xi_{n}\right\}_{n \in \mathbb{N}} \subset Y^{*}$ satisfying $\eta_{n} \in \mathcal{U}_{1}\left(i u_{n}\right), \xi_{n} \in \mathcal{U}_{2}\left(\gamma u_{n}\right)$ and

$$
u_{n}^{*}=\mathcal{A}\left(u_{n}, u_{n}\right)+\mathcal{G}\left(u_{n}\right)+\mathcal{F}\left(u_{n}\right)+i^{*} \eta_{n}+\gamma^{*} \xi_{n} \quad \text { for all } n \in \mathbb{N} .
$$

Using hypotheses $\mathrm{H}\left(U_{1}\right)$ and $\mathrm{H}\left(U_{2}\right)$, we can observe that the sequences $\left\{\eta_{n}\right\}_{n \in \mathbb{N}} \subset X^{*}$ and $\left\{\xi_{n}\right\}_{n \in \mathbb{N}} \subset Y^{*}$ are both bounded. Passing to a subsequence if necessary, we may assume that

$$
\begin{equation*}
\eta_{n} \xrightarrow{w} \eta \quad \text { in } X^{*} \quad \text { and } \quad \xi_{n} \xrightarrow{w} \xi \quad \text { in } Y^{*} \tag{4.10}
\end{equation*}
$$

for some $(\eta, \xi) \in X^{*} \times Y^{*}$. Besides, hypothesis $\mathrm{H}(f)(\mathrm{i})$ reveals that the sequence $\left\{\mathcal{F}\left(u_{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded in $L^{p^{\prime}}(\Omega)$. Then, we use the compactness of i and γ as well as of the embedding from V into $L^{p}(\Omega)$ to obtain

$$
\begin{aligned}
0 \geq & \limsup _{n \rightarrow \infty}\left\langle u_{n}^{*}, u_{n}-u\right\rangle \\
\geq \geq & \limsup _{n \rightarrow \infty}\left\langle\mathcal{A}\left(u_{n}, u_{n}\right), u_{n}-u\right\rangle+\liminf _{n \rightarrow \infty}\left\langle\mathcal{G}\left(u_{n}\right), u_{n}-u\right\rangle+\liminf _{n \rightarrow \infty}\left\langle\mathcal{F}\left(u_{n}\right), u_{n}-u\right\rangle \\
& -\limsup _{n \rightarrow \infty}\left\langle\eta_{n}, u_{n}-u\right\rangle_{L^{p^{\prime}}(\Omega) \times L^{p}(\Omega)}-\limsup _{n \rightarrow \infty}\left\langle\xi_{n}, u_{n}-u\right\rangle_{L^{p^{\prime}}\left(\Gamma_{2}\right) \times L^{p}\left(\Gamma_{2}\right)} \\
\geq & \geq \limsup _{n \rightarrow \infty}\left\langle\mathcal{A}\left(u_{n}, u_{n}\right), u_{n}-u\right\rangle .
\end{aligned}
$$

Let $c_{M}:=\inf _{u \in V} M(u)>0$, and $0<\varepsilon<c_{M}$ arbitrary. Recall that $u_{n} \xrightarrow{w} u$ in V and M is bounded in V, we have

$$
\begin{aligned}
0 \geq & \limsup _{n \rightarrow \infty}\left\langle\mathcal{A}\left(u_{n}, u_{n}\right), u_{n}-u\right\rangle \\
= & \limsup _{n \rightarrow \infty} \int_{\Omega}\left(M\left(u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}+\mu(x)\left|\nabla u_{n}\right|^{q-2} \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) \\
& +\left(\left|u_{n}\right|^{p-2} u_{n}+\mu(x)\left|u_{n}\right|^{q-2} u_{n}\right)\left(u_{n}-u\right) \mathrm{d} x
\end{aligned}
$$

$$
\begin{aligned}
& \geq \liminf _{n \rightarrow \infty}\left(M\left(u_{n}\right)-\varepsilon\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& \quad+\limsup _{n \rightarrow \infty} \int_{\Omega}\left(\varepsilon\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}+\mu(x)\left|\nabla u_{n}\right|^{q-2} \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) \\
& \quad+\left(\left|u_{n}\right|^{p-2} u_{n}+\mu(x)\left|u_{n}\right|^{q-2} u_{n}\right)\left(u_{n}-u\right) \mathrm{d} x \\
& \geq \liminf _{n \rightarrow \infty}\left(M\left(u_{n}\right)-\varepsilon\right) \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& \quad+\limsup _{n \rightarrow \infty} \int_{\Omega}\left(\varepsilon\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}+\mu(x)\left|\nabla u_{n}\right|^{q-2} \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) \\
& \quad+\left(\left|u_{n}\right|^{p-2} u_{n}+\mu(x)\left|u_{n}\right|^{q-2} u_{n}\right)\left(u_{n}-u\right) \mathrm{d} x \\
& \geq \limsup _{n \rightarrow \infty} \int_{\Omega}\left(\varepsilon\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}+\mu(x)\left|\nabla u_{n}\right|^{q-2} \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) \\
& \quad+\left(\left|u_{n}\right|^{p-2} u_{n}+\mu(x)\left|u_{n}\right|^{q-2} u_{n}\right)\left(u_{n}-u\right) \mathrm{d} x .
\end{aligned}
$$

Let us define the function $\mathscr{A}: V \rightarrow V^{*}$

$$
\begin{aligned}
\langle\mathscr{A} w, v\rangle:= & \int_{\Omega}\left(\varepsilon|\nabla w|^{p-2} \nabla w+\mu(x)|\nabla w|^{q-2} \nabla w\right) \cdot \nabla v \\
& +\left(|w|^{p-2} w+\mu(x)|w|^{q-2} w\right) v \mathrm{~d} x
\end{aligned}
$$

it is of type $\left(\mathrm{S}_{+}\right)$(see Proposition 2.3). This implies that $u_{n} \rightarrow u$ in V.
Recall that \mathcal{U}_{1} and \mathcal{U}_{2} are strongly-weakly closed. Therefore, from (4.10) it follows that $\eta \in \mathcal{U}_{1}(i u)$ and $\xi \in \mathcal{U}_{2}(\gamma u)$. For any $v \in V$, we have

$$
\lim _{n \rightarrow \infty}\left\langle u_{n}^{*}, u_{n}-v\right\rangle=\left\langle\mathcal{A}(u, u)+\mathcal{G}(u)+\mathcal{F}(u)-i^{*} \eta-\gamma^{*} \xi, u-v\right\rangle
$$

The latter combined with the fact that $\eta \in \mathcal{U}_{1}(i u)$ and $\xi \in \mathcal{U}_{2}(\gamma u)$ implies that $u^{*} \in \mathcal{A}(u, u)+$ $\mathcal{G}(u)+\mathcal{F}(u)+i^{*} \mathcal{U}_{1}(i u)+\gamma^{*} \mathcal{U}_{2}(\gamma u)$. Therefore, we conclude that (4.9) holds.

Using the same arguments as in the proof of Theorem 3.7 and Theorem 3.4 of Zeng-BaiGasiński [47], it is not difficult to prove that the solution set of problem (4.7) is nonempty and compact in V.

Remark 4.9. In fact, there are a several of functions which satisfy the hypotheses $H\left(M^{\prime}\right)$ such that M is coercive in V. For example, the following functions are coercive in V and fulfill hypothesis $H\left(M^{\prime}\right)$
$M(u)=c_{a}+\|u\|_{V}, \quad M(u)=c_{a}+\ln \left(1+\|u\|_{V}\right), \quad M(u)=c_{a}+\|u\|_{V}^{\|u\|_{V}}, \quad$ and $\quad M(u)=e^{\|u\|_{V}}$
for all $u \in V$ with $c_{a}>0$.
Let $\mathcal{D} \subset \bar{\Omega}$ be a nonempty set with positive measure and $\Psi: \mathcal{D} \rightarrow \mathbb{R}$ be a given obstacle function. Furthermore, when $J(u) \equiv 0$ (i.e., $c_{J}=0$) and L is formulated by

$$
L(u)=\int_{\mathcal{D}}(u(x)-\Psi(x))^{+} \mathrm{d} x \quad \text { for all } u \in V
$$

then problem (4.7) can be written by the following obstacle problem:

$$
\begin{array}{rlrl}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial \nu_{a}} & \in U_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) \tag{4.11}\\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{3} \\
u(x) & \leq \Psi(x) & & \text { on } \Gamma_{4} \\
& & \text { in } \mathcal{D} .
\end{array}
$$

Therefore, we have the following corollary.
Corollary 4.10. Assume that $\mathrm{H}(1), \mathrm{H}(f)(\mathrm{i}), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(U_{1}\right), \mathrm{H}\left(U_{2}\right), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}(\phi)$ are satisfied. If, moreover, M is coercive in V, and $\Phi: \Omega \rightarrow \mathbb{R}$ is a measurable function, then the solution set of problem (4.11), denoted by \coprod, is nonempty and compact in V.

Under the analysis above, we have the following theorems and corollaries.
Theorem 4.11. Assume that $\mathrm{H}(1), \mathrm{H}(f)(\mathrm{i}), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(j_{1}\right), \mathrm{H}\left(j_{2}\right), \mathrm{H}(\phi), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}\left(L^{\prime}\right)$ are satisfied. If, moreover, M is coercive in V, then the solution set of the following nonlocal obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in r_{1}(u) \partial j_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial \nu_{a}} & \in r_{2}(u) \partial j_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) & & \text { on } \Gamma_{3} \\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{4} \\
L(u) & \leq c_{J} & &
\end{aligned}
$$

is nonempty and compact in V.
Corollary 4.12. Assume that $\mathrm{H}(1), \mathrm{H}(f)(\mathrm{i}), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(j_{1}\right), \mathrm{H}\left(j_{2}\right), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}(\phi)$ are satisfied. If, moreover, M is coercive in V, and $\Phi: \Omega \rightarrow \mathbb{R}$ is a measurable function, then the solution set of the following obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in r_{1}(u) \partial j_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial \nu_{a}} & \in r_{2}(u) \partial j_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) & & \text { on } \Gamma_{3} \\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{4} \\
u(x) & \leq \Psi(x) & & \text { in } \mathcal{D}
\end{aligned}
$$

is nonempty and compact in V.
Theorem 4.13. Assume that $\mathrm{H}(1), \mathrm{H}\left(f^{\prime}\right), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(U_{1}\right), \mathrm{H}\left(U_{2}\right), \mathrm{H}(\phi), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}\left(L^{\prime}\right)$ are satisfied. If, moreover, M is coercive in V, then the solution set of the following
obstacle problem

$$
\begin{array}{rlrl}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1}, \\
\frac{\partial u}{\partial \nu_{a}} & \in U_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) \\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{3} \\
L(u) & \leq c_{J}, & & \text { on } \Gamma_{4}
\end{array}
$$

is nonempty and compact in V.
Corollary 4.14. Assume that $\mathrm{H}(1), \mathrm{H}\left(f^{\prime}\right), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(U_{1}\right), \mathrm{H}\left(U_{2}\right), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}(\phi)$ are satisfied. If, moreover, M is coercive in V, and $\Phi: \Omega \rightarrow \mathbb{R}$ is a measurable function, then the solution set of the following obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1}, \\
\frac{\partial u}{\partial \nu_{a}} & \in U_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) & & \text { on } \Gamma_{3} \\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{4} \\
u(x) & \leq \Psi(x) & & \text { in } \mathcal{D}
\end{aligned}
$$

is nonempty and compact in V.
Theorem 4.15. Assume that $\mathrm{H}(1), \mathrm{H}\left(f^{\prime}\right), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(j_{1}\right), \mathrm{H}\left(j_{2}\right), \mathrm{H}(\phi), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}\left(L^{\prime}\right)$ are satisfied. If, moreover, M is coercive in V, then the solution set of the following obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in r_{1}(u) \partial j_{1}(x, u)+N(u)(x)+f(x, u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial \nu_{a}} & \in r_{2}(u) \partial j_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) & & \text { on } \Gamma_{3} \\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{4} \\
L(u) & \leq c_{J} & &
\end{aligned}
$$

is nonempty and compact in V.

Corollary 4.16. Assume that $\mathrm{H}(1), \mathrm{H}\left(f^{\prime}\right), \mathrm{H}(N), \mathrm{H}(G), \mathrm{H}\left(j_{1}\right), \mathrm{H}\left(j_{2}\right), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}(\phi)$ are satisfied. If, moreover, M is coercive in V, and $\Phi: \Omega \rightarrow \mathbb{R}$ is a measurable function, then the
solution set of the following obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in r_{1}(u) \partial j_{1}(x, u)+N(u)(x)+f(x, u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{1}, \\
\frac{\partial u}{\partial \nu_{a}} & \in r_{2}(u) \partial j_{2}(x, u) & & \text { on } \Gamma_{2} \\
-\frac{\partial u}{\partial \nu_{a}} & \in \partial_{c} \phi(x, u) & & \text { on } \Gamma_{3} \\
-\frac{\partial u}{\partial \nu_{a}} & =G(u)(x) & & \text { on } \Gamma_{4} \\
u(x) & \leq \Psi(x) & & \text { in } \mathcal{D}
\end{aligned}
$$

is nonempty and compact in V.
Theorem 4.17. Assume that $\mathrm{H}(1), \mathrm{H}(f)(\mathrm{i}), \mathrm{H}(N), \mathrm{H}\left(U_{1}\right), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}\left(L^{\prime}\right)$ are satisfied. If, moreover, M is coercive in V_{0}, then the solution set of the following obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma, \\
L(u) & \leq c_{J}, & &
\end{aligned}
$$

is nonempty and compact in V_{0}.
Corollary 4.18. Let \mathcal{D} be a nonempty and measurable subset of Ω. Assume that $\mathrm{H}(1), \mathrm{H}(f)(\mathrm{i})$, $\mathrm{H}(N), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}\left(U_{1}\right)$ are satisfied. If, moreover, M is coercive in V_{0}, and $\Phi: \Omega \rightarrow \mathbb{R}$ is a measurable function, then the solution set of the following obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma \\
u(x) & \leq \Psi(x) & & \text { in } \mathcal{D}
\end{aligned}
$$

is nonempty and compact in V_{0}.
Theorem 4.19. Assume that $\mathrm{H}(1), \mathrm{H}\left(f^{\prime}\right), \mathrm{H}(N), \mathrm{H}\left(U_{1}\right), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}\left(L^{\prime}\right)$ are satisfied. If, moreover, M is coercive in V_{0}, then the solution set of the following obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma \\
L(u) & \leq c_{J} & &
\end{aligned}
$$

is nonempty and compact in V_{0}.
Corollary 4.20. Assume that $\mathrm{H}(1), \mathrm{H}\left(f^{\prime}\right), \mathrm{H}(N), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}\left(U_{1}\right)$ are satisfied. If, moreover, M is coercive in V_{0}, and $\Phi: \Omega \rightarrow \mathbb{R}$ is a measurable function, then the solution set of the following obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in U_{1}(x, u)+N(u)(x)+f(x, u) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma \\
u(x) & \leq \Psi(x) & & \text { in } \mathcal{D}
\end{aligned}
$$

is nonempty and compact in V_{0}.
Theorem 4.21. Assume that $\mathrm{H}(1), \mathrm{H}(f)(\mathrm{i}), \mathrm{H}(N), \mathrm{H}\left(j_{1}\right), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}\left(L^{\prime}\right)$ are satisfied. If, moreover, M is coercive in V_{0}, then the solution set of the following obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in r_{1}(u) \partial j_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma, \\
L(u) & \leq c_{J} . & &
\end{aligned}
$$

is nonempty and compact in V_{0}.
Corollary 4.22. Assume that $\mathrm{H}(1), \mathrm{H}(f), \mathrm{H}(N), \mathrm{H}\left(M^{\prime}\right)$ and $\mathrm{H}\left(j_{1}\right)$ are satisfied. If, moreover, M is coercive in V_{0} and $\Phi: \Omega \rightarrow \mathbb{R}$ is a measurable function, then the solution set of the following obstacle problem

$$
\begin{aligned}
-D_{M} u+|u|^{p-2} u+\mu(x)|u|^{q-2} u & \in r_{1}(u) \partial j_{1}(x, u)+N(u)(x)+f(x, u, \nabla u) & & \text { in } \Omega, \\
u & =0 & & \text { on } \Gamma, \\
u(x) & \leq \Psi(x) & & \text { in } \mathcal{D} .
\end{aligned}
$$

is nonempty and compact in V_{0}.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Conflict of interests

There is no conflict of interests.

Acknowledgments

This project has received funding from the NNSF of China Grant Nos. 12001478, 12026255 and 12026256, and the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH, National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611, the Startup Project of Doctor Scientific Research of Yulin Normal University No. G2020ZK07, and the Natural Science Foundation of Guangxi Grant Nos. 2021GXNSFFA196004 and 2020GXNSFBA297137. The research of Vicenţiu D. Rădulescu was supported by a grant of the Romanian Ministry of Research, Innovation and Digitization, CNCS/CCCDI-UEFISCDI, project number PCE 137/2021, within PNCDI III.

References

[1] B. Alleche, V.D. Rădulescu, Set-valued equilibrium problems with applications to Browder variational inclusions and to fixed point theory, Nonlinear Anal. Real World Appl. 28 (2016), 251-268.
[2] D. Aussel, A. Sultana, V. Vetrivel, On the existence of projected solutions of quasi-variational inequalities and generalized Nash equilibrium problems, J. Optim. Theory Appl. 170 (2016), no. 3, 818-837.
[3] P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015), 206-222.
[4] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Art. 62, 48 pp.
[5] G. Bonanno, D. Motreanu, P. Winkert, Variational-hemivariational inequalities with small perturbations of nonhomogeneous Neumann boundary conditions, J. Math. Anal. Appl. 381 (2011), no. 2, 627-637.
[6] H. Brézis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations", Springer, New York, 2011.
[7] S. Carl, V.K. Le, "Multi-valued Variational Inequalities and Inclusions", Springer, Cham, 2021.
[8] S. Carl, V.K. Le, P. Winkert, Multi-valued variational inequalities for variable exponent double phase problems: comparison and extremality results, Adv. Differential Equations, accepted 2023.
[9] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 219-273.
[10] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 443-496.
[11] Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differential Equations 323 (2022), 182-228.
[12] C. De Filippis, G. Mingione, Interpolative gap bounds for nonautonomous integrals, Anal. Math. Phys. 11 (2021), no. 3, Paper No. 117, 39 pp.
[13] C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Ration. Mech. Anal. 242 (2021), 973-1057.
[14] C. De Filippis, G. Mingione, Manifold constrained non-uniformly elliptic problems, J. Geom. Anal. 30 (2020), no. 2, 1661-1723.
[15] C. De Filippis, G. Mingione, On the regularity of minima of non-autonomous functionals 30 (2020), no. 2, 1584-1626.
[16] F. Faraci, D. Motreanu, D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 525-538.
[17] F. Faraci, D. Puglisi, A singular semilinear problem with dependence on the gradient, J. Differential Equations 260 (2016), no. 4, 3327-3349.
[18] G.M. Figueiredo, G.F. Madeira, Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient, J. Differential Equations 274 (2021), 857-875.
[19] L. Gasiński, N.S. Papageorgiou, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differential Equations, 263 (2017), 1451-1476.
[20] L. Gasiński, P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differential Equations 268 (2020), no. 8, 4183-4193.
[21] L. Gasiński, P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differential Equations 274 (2021), 1037-1066.
[22] A. Granas, J. Dugundji, "Fixed Point Theory", Springer-Verlag, New York, 2003.
[23] W. Han, S. Migórski, M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM J. Math. Anal. 46 (2019), no. 6, 3891-3912.
[24] A. Iannizzotto, N.S. Papageorgiou, Existence of three nontrivial solutions for nonlinear Neumann hemivariational inequalities, Nonlinear Anal. 70 (2009), no. 9, 3285-3297.
[25] M. Kamenskii, V. Obukhovskii, P. Zecca, "Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces", Walter de Gruyter \& Co., Berlin, 2001.
[26] A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057-1099.
[27] J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires", Dunod; GauthierVillars, Paris, 1969.
[28] W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations 265 (2018), 4311-4334.
[29] Z. Liu, D. Motreanu, S. Zeng, Positive solutions for nonlinear singular elliptic equations of p-Laplacian type with dependence on the gradient, Calc. Var. Partial Differential Equations 58 (2019), no. 1, Paper No. 28, 22 pp .
[30] S.A. Marano, P. Winkert, On a quasilinear elliptic problem with convection term and nonlinear boundary condition, Nonlinear Anal. 187 (2019), 159-169.
[31] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991), no. 1, 1-30.
[32] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal. 105 (1989), no. 3, 267-284.
[33] G. Mingione, V.D. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl. 501 (2021), no. 1, 125197, 41 pp.
[34] S. Migórski, A. Ochal, Quasi-static hemivariational inequality via vanishing acceleration approach, SIAM J. Math. Anal. 41 (2009), no. 4, 1415-1435.
[35] S. Migórski, A. A. Khan, S. Zeng, Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems, Inverse Problems 36 (2020), no. 2, 024006, 20 pp.
[36] S. Migórski, A. A. Khan, S. Zeng, Inverse problems for nonlinear quasi-variational inequalities with an application to implicit obstacle problems of p-Laplacian type, Inverse Problems 35 (2019), no. 3, 035004, 14 pp.
[37] S. Migórski, A. Ochal, M. Sofonea, "Nonlinear Inclusions and Hemivariational Inequalities", Springer, New York, 2013.
[38] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. $\mathbf{3}$ (1969), 510-585.
[39] Z. Naniewicz, P.D. Panagiotopoulos, "Mathematical Theory of Hemivariational Inequalities and Applications", Marcel Dekker, Inc., New York, 1995.
[40] P.D. Panagiotopoulos, "Hemivariational Inequalities", Springer-Verlag, Berlin, 1993.
[41] P.D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics, Z. Angew. Math. Mech. 65 (1985), no. 1, 29-36.
[42] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl. (9) 136 (2020), 1-21.
[43] V.D. Rădulescu, Isotropic and anisotropic double-phase problems: old and new, Opuscula Math. 39 (2019), no. 2, 259-279.
[44] M.A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), no. 1, 710-728.
[45] J. Simon, Régularité de la solution d'une équation non linéaire dans \mathbb{R}^{N}, Journées d'Analyse Non Linéaire (Proc. Conf. Besançon, 1977), Springer, Berlin 665 (1978), 205-227.
[46] J. Stefan, Über einige Probleme der Theorie der Wärmeleitung, Wien. Ber. 98 (1889), 473-484.
[47] S. Zeng, Y. Bai, L. Gasiński, Nonlinear nonhomogeneous obstacle problems with multivalued convection term, J. Geom. Anal. 32 (2022), no. 3, 75.
[48] S. Zeng, Y. Bai, L. Gasiński, P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 176, 18 pp.
[49] S. Zeng, L. Gasiński, P. Winkert, Y. Bai, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl. 501 (2021), no. 1, 123997.
[50] S. Zeng, V.D. Rădulescu, P. Winkert, Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions, SIAM J. Math. Anal. 54 (2022), 1898-1926.
[51] S. Zeng, V.D. Rădulescu, P. Winkert, Double phase obstacle problems with multivalued convection and mixed boundary value conditions, Discrete Contin. Dyn. Syst. Ser. B 28 (2023), no. 2, 999-1023.
[52] S. Zeng, V.D. Rădulescu, P. Winkert, Double phase obstacle problems with variable exponent, Adv. Differential Equations 27 (2022), no. 9-10, 611-645.
[53] V.V.Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710.
(S. Zeng) Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, Guangxi, P.R. China \& Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, ul. Lojasiewicza 6, 30-348 Krakow, Poland

Email address: zengshengda@163.com
(V.D. Rădulescu) Faculty of Applied Mathematics, AGH University of Science and Technology, 30059 Kraków, Poland \& Department of Mathematics, University of Craiova, 200585 Craiova, Romania \& China-Romania Research Center in Applied Mathematics

Email address, Corresponding author: radulescu@inf.ucv.ro
(P. Winkert) Technische Universität Berlin, Institut für Mathematik, Strasse des 17. Juni 136, 10623 Berlin, Germany

Email address: winkert@math.tu-berlin.de

[^0]: 2020 Mathematics Subject Classification. 35J20, 35J25, 35J60, 35R70, 49J52.
 Key words and phrases. Clarke's generalized gradient, convection term, Double phase operator, implicit obstacle, mixed boundary conditions, nonlocal operator, Tychonoff's fixed point theorem.

