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two constant sign solutions and another third nontrivial
solution. This third solution is obtained by using the
theory of critical groups. As a result of independent
interest, we show that every weak solution of the
problem above is essentially bounded.

MSC 2020
35A01, 35J20 (primary), 35J25, 35J62, 35Q74 (secondary)

1 | INTRODUCTION AND NOTATION

In recent years, double phase problems have been intensely studied. These problems usually
involve an operator of the form

—div (|VulP~>Vu + p(x)| Vul972Vu),

which is associated with the functional given by

u—>/ <'V“'p +u(x)|vu|q>dx. (11)
Q p q

Such type of functionals appeared for the first time in the work of Zhikov [43] and are use-
ful in the context of homogenization and elasticity theory. In this setting, the coefficient u is
associated with the geometry of composites made of two materials of hardness p and q. Func-
tionals of the form (1.1) can be seen as special cases of the pioneering works by Marcellini [30,
31] which deal with problems with nonstandard growth and p, g-growth conditions. Indeed,
the regularity theory in [30] applies to double phase integrals of the form (1.1) as well, see also
the more recent papers by Cupini-Marcellini-Mascolo [16] and Marcellini [28, 29]. Later, the
results of Marcellini in the setting of double phase integrals have been improved by the ground-
breaking papers by Baroni-Colombo-Mingione [7-9] and Colombo-Mingione [13, 14]. We also
point out that double phase problems describe several interesting applications, see the works
by Bahrouni-Radulescu-Repovs [6] on transonic flows, Benci-D’Avenia-Fortunato-Pisani [10]
on quantum physics, Cherfils-II'yasov [11] for reaction diffusion systems and Zhikov [44, 45] on
the Lavrentiev gap phenomenon, the thermistor problem, and the duality theory. For the main
properties of the related function space and the double phase operator, we refer to the papers
by Colasuonno-Squassina [12], Crespo-Blanco-Gasinski-Harjulehto-Winkert [15], Ho-Winkert
[25], Liu-Dai [26], and Perera-Squassina [36].
Recently, Arora-Crespo-Blanco-Winkert [5] studied the properties of the functional

u— / (IVul? + u(x)|Vul?log(e + |Vul))dx, 1.2)
Q

and the related so-called logarithmic double phase operator
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div £(u) = div(|Vul|P~*Vu

+ (x)<10 (e + |Vul) + ﬂ)WI‘HW) (1.3)
g ° qle + |Vul) ;

where u € W;’HlOg(Q) and
Hyog(x, 1) = t? + u(x)t?log(e +t) forall (x,t) € Q% [0, ),

forl1 < p <N, p<gqandO0< u(-) € L*(Q). Functionals of the form (1.2) have been studied for
special cases in several works. Baroni-Colombo-Mingione [8] studied (1.2) in case p = g, that is,

U / [IVulP + w(x)|Vul? log(e + |Vu|)] dx, 1.4)
Q

and proved local Holder continuity of the gradient of local minimizers of (1.4) whenever 1 <
p < oo and 0 < u(-) € C**(Q). In a recent work by De Filippis-Mingione [17], the local Holder
continuity of the gradients of local minimizers of the functional

ue / [IVu|log(1 + |Vul) + u(x)|Vul|?] dx, (1.5)
Q

has been shown provided 0 < u(-) € C%*(Q)and 1 < g < 1 + % Functionals of the shape (1.5)
have their origin in functionals with nearly linear growth of the form

um- / [Vu|log(1 + |Vul) dx, (1.6)
Q

see the works by Fuchs-Mingione [20] and Marcellini-Papi [32]. Note that (1.6) appears in the
theory of plasticity with logarithmic hardening, see, for example, Seregin-Frehse [37] and the
monograph by Fuchs-Seregin [21]. In this direction, we also mention the functional

P
U / A+ [Vul?)? log(1 + |Vul) dx,
Q

which has been studied by Marcellini [30].
In this paper, we are interested in the weak solvability of Dirichlet problems of the form

—divL(u) = f(x,u) inQ, u=0 ondQ, (W)

where div £ is the logarithmic double phase operator given in (1.3) while Q C RY, N > 2, is a
bounded domain with Lipschitz boundary Q. Throughout this paper, we denote by x the constant
given by

e
e+t

1.8)

where e is Euler’s number and t,, is the positive number that satisfies ¢, = e log(e + ;). We suppose
the following hypotheses on the data:
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(H)) 1<p<N,p<g<qg+x<p and0<u(-) € L*(Q)
(H,) f: OQXR — R is a Carathéodory function with f(x,0) =0 for a.a. x € Q and F(x,s) =
Jy f(x,t)dt such that the following holds:
(i) there existn € (q + x, p*) and C > 0 such that

If(x, ) < CA+s|"™h) (1.9)

fora.a. x € Qand forall s € R;
(ii) there exist T > x and ¢ > 0 such that

(@ +1)F(x,s) - f(x,s)s <c, (1.10)
(@ +x)F(x,s)— f(x,s)s<c (1.11)
fora.a. x € Qandforall s € R;

(iii)

lim sup ACT) =0 uniformly fora.a.x € Q; 1.12)
s—0 |S|P—23

(iv)

F(x,s) = oo uniformly fora.a.x € Q; (1.13)

s—>xoo0 |5]2log(e + [s]) -

(v) for all intervals I C R there exists C; > 0 such that
|F(x,s) — F(x,t)| < Cyls —t] (1.14)
fora.a. x € Q and for all 5,¢t € I and that there exists 0 < 8 < min{1, p* — 1} such that
|fCx.8) = f(x, 0] < Cyls — £ (1.15)

fora.a. x € Qand foralls,t € I.

Remark1.1. There are examples of f satisfying (1.9) and (1.10). Let us test the polynomial functions
of the form

£s) = {|s|"‘ fors >0

—|s|* fors<O

with certain exponent a < p* — 1. Observe that

q+T 1+a 1+a <q+r ) 1+a
+ F ’ - ’ = - = __1 ’
(q+DF(x,5) = flx,s)s = S— sl = Is| o L)

for all s € R. Therefore, condition (1.10) holds provided

q+T
1+«

—1<0 ifandonlyif 1+a>q+r7.
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Thus, if we take ¥ < 7 < 1+ a — g, then condition (1.10) is fulfilled. In order words, &« must be
strictly greater than g — 1 + x. Since a < p* — 1, this yields the admissibility conditions q + x <
p*and g+ x —1 < a < p* — 1. This corresponds more or less to the polynomial functions sat-
isfying (fs) and (f,) in the work by Arora-Crespo-Blanco-Winkert [5], since there it is supposed
that

(g + DF(x,5) — f(x,5)Is]

<0.
|s| =00 |S|1+oc
Example 1.2. Let f : R — R be defined by
£8) (x + a)s***Llogs + s*+¢~1 fors >0
S) =
—(x + a)|s|** Llog|s| — |s|***~! fors <O,

with ¢ < a and x + a < p*. This function satisfies the assumptions in (H,). Let us check (1.10).
Here, we have

F(s) = |s|""*log|s| foralls € R
and so
(g +T)F(s) = f(s)s = |s|*"* log|s|(q + T — (x + @) — [s|***.

Consequently, condition (1.10) holds for f if and only if g + 7 < ¥ + a. Thus, we need ¥ < 7 <
x + a — g which gives g < a as above.

Our main result is the following one.

Theorem 1.3. Let hypotheses (H,) and (H,) be satisfied. Then, problem (1.7) admits three nontrivial
distinct solutions u,, vy, Y, € W;’Hbg () N L*®(Q) such that

whereby u, and v, have positive energy.

The proof of Theorem 1.3 is based on truncation and comparison techniques along with the
mountain-pass geometry of problem (1.7). The third solution y, is obtained by using the Morse
theory in terms of critical groups. Our result should be compared with the one in Arora-Crespo-
Blanco-Winkert [5], where the authors obtain similar results with different conditions on f. In
contrast to [5] we do not make any assumptions on the sign of f. Also, there is no assumption on
the behavior of f at infinity apart from the one in (1.13). Moreover, when comparing our results
with the work by Papageorgiou-Qin [34], we point out that we do not require u to be Lipschitz
continuous, Holder continuity suffices. Another feature of this work is the fact that we do not
require f to satisfy the Ambrosetti-Rabinowitz condition.

Since the operator (1.3) has been introduced very recently, only few works concerning existence
results involving such logarithmic operator exist. The first work has been done by Arora—-Crespo-
Blanco-Winkert [5] who studied the problem

—divL(u) = f(x,u) inQ, u=0 ondQ, (1.16)
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where L is as in (1.3) but with variable exponents and f : Q X R — R is a Carathéodory function
with subcritical growth which satisfies appropriate conditions. Based on the Nehari manifold, the
existence of a sign-changing solution of (1.16) has been shown under the more strict assumption
that g + 1 < p*, see also the recent work by the same authors [4] related to more general embed-
dings and existence results based on the concentration compactness principle. Furthermore,
Lu-Vetro-Zeng [27] studied existence and uniqueness of equations involving the operator

H!(x, | Vul)

vul, uewli(Q), 1.17)
[Vul

u - Ay u=div <

where H; : Q% X[0, c0) — [0, ) is given by
My (x, 1) = [1P9) + u(x)r7™] log(e + at),

with a > 0, see also Vetro—-Zeng [42]. We point out that the operator (1.17) is different from the one
in (1.3). Another work dealing with the logarithmic double phase operator has been published
by Vetro-Winkert [41] who obtained the existence of a solution to the logarithmic problem with
convection term of the form

—divL(u) = f(x,u,Vu) inQ, u=0 ondQ, (1.18)

where L is as in (1.3) but with variable exponents and f: QX R x RY — R is a Carathéodory
function satisfying certain growth and coercivitiy conditions. The authors prove the boundedness,
closedness, and compactness of the corresponding solution set to (1.18). We stress that the operator
in Vetro-Winkert [41] is also involved in a nonlocal context by Vetro [40] who considered related
Kirchhoff-type equations involving the logarithmic double phase operator as in (1.3) with variable
exponents. We also mention some papers who study logarithmic terms on the right-hand side for
Schrédinger equations or p-Laplace problems. Montenegro-de Queiroz [33] considered nonlinear
elliptic problems

—Au =y, o(logw) + 1f(x,u)) inQ, u=0 ondQ, (1.19)

where f: QX [0,00) — [0, ) is nondecreasing, sublinear and f, is continuous and proved
that (1.19) has a maximal solution u; > 0 of type Cl7(Q), see also Figueiredo-Montenegro-
Stapenhorst [18, 19] where a similar problem was studied in planar domains with f being of
exponential growth. Squassina-Szulkin [39] studied logarithmic Schrodinger equations given by

—Au+ V(x)u = Q(x)u log(uz) in RN (1.20)

and proved that (1.20) has infinitely many solutions, whereby V' and Q are 1-periodic functions
of the variables x, ..., xy and Q € C}(RYN). Further results for logarithmic Schrédinger equa-
tions can be found in the works of Alves-de Morais Filho [2], Alves-Ji [3], and Shuai [38], see
also Alves-da Silva [1] about logarithmic Schrodinger equations on exterior domains.

Asaresult ofindependent interest, we prove the boundedness of weak solutions to more general
equations than (1.7) of the form

—div £(u) = R(x,u,Vu) inQ, u=0 onodQ, (1.21)
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where R : QX R X RY — R is a Carathéodory function depending on the gradient of the solu-
tions which may have critical growth with respect to the second argument. Finally, we also give
some comments on parametric problems given by

—divL(u) =Af(x,u) inQ, u=0 onadQ, (1.22)

where div £ is as in (1.3) and 1 > 0. For 4 > 0 large enough, (1.22) has at least two constant-sign
solutions, whereby one is positive and the other one negative.

This work is structured as follows. In Section 2, we present some properties of the logarithmic
Musielak-Orlicz Sobolev spaces and the related logarithmic double phase operator, while Sec-
tion 3 is devoted to a priori bounds of equations of the form (1.21). In Section 4, we prove the
existence of constant-sign solutions by showing the mountain-pass geometry of problem (1.7) and
in Section 5 we use critical groups to show an additional nontrivial solution of (1.7).

2 | PRELIMINARIES

In this section, we recall some basic facts about logarithmic Musielak-Orlicz Sobolev spaces and
the related logarithmic double phase operator given in (1.3). Most of the results are taken from the
paper by Arora-Crespo-Blanco-Winkert [5]. To this end, we denote by L"(Q) the usual Lebesgue
space with norm || - ||, for 1 < r < oo while W(l)’r(Q) is the related Sobolev space with zero trace
equipped with the equivalent norm ||V - ||, for 1 < r < co0. Suppose now hypothesis (H;) and
consider the map Hyog : Qx [0, 00) — [0, c0) defined by

Hiog(x, 1) = tP + u(o)t?log(e + t).

Let L°(Q) be the space of all measurable functions on Q. We define
LMee(Q) = {u eL’%(Q): Png(“) 1= /QHlog(x, [u])dx < oo},

where Py, is the modular function corresponding to H,,,. We equip LMoe(Q) with the
Luxemburg norm || - [l defined by

lully,, = inf {/1 >0: pH]Og<%) < 1} for u & Lox(Q),

With this norm, L"e¢(Q) becomes a Banach space which is separable and reflexive. Next, we
introduce the related Musielak-Orlicz Sobolev space given by

whThee(Q) = {u e LMoe(Q) 1 |Vul € LHlog(Q)},
and endow it with the norm

lelly g, 2= Mtllyg,, + IVl

Also, we set

1,H, ———— g,
W, E(Q) = CR(Q) .
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1,H, . 1,H,
Both W eg(Q) and W, “8(Q) are separable, reflexive Banach spaces. Moreover, on W, “e(Q),
the Poincaré inequality holds, that is, we can find ¢ > 0 such that

1’Hlo
”””ng < c||Vu||HlOg foruew, 5(Q).
. LH, . .
Therefore, we can consider on W, “8(Q) the equivalent norm || - || defined by

1,H,,
llull = 1Vully,, forallu € W, *(Q).

We have the following embedding results, see Arora-Crespo-Blanco-Winkert [5, Proposition
3.7].

Proposition 2.1. Let hypotheses (H,) be satisfied. Then, the following holds:

LH,, . .

i w, 5(Q) & Wé’p(Q) is continuous;
I,HO * . .

(i) W, “8(Q) & LP"(Q) is continuous;

1M, . .
(i) W, 8(Q) & L'(Q) is continuous and compact forall1 <r < p*.

. . . LH,, .
Also, there is a close relation between the norm || - || in W () and the modular function
Pyqq» S€€ Arora—-Crespo-Blanco-Winkert [5, Proposition 3.6].

Proposition 2.2. Let hypotheses (H,) be satisfied, 1 > 0, u € W;’H“’g(ﬂ), and x as in (1.8). Then,
the following holds:

() llull = 2 if and only if oy, (%) = 1;
(i) |lull < 1(resp. = 1,> 1) if and only if,oHlog(Vu) <1(resp.=1,>1);
(iii) if llull <1 then [[ul|"™ < pgy (Vi) < JJull?;
(V) if lull > 1 then |[ull? < pyy,,, (Vi) < [lufl™;
) llu,ll = 0ifand only iprlog(Vun) - 0asn — oo.

Next, consider the nonlinear map A : W;’Hl"g(Q) - (W;’Hl"g(ﬂ))  defined by

(A(u),v) = / |[VulP—2Vu - Vodx
Q

(2.1)
[Vul

+/Qlu(x)<log(e+ |Vul) + qCe + [Vu)

)qulq_ZVu - Voudx.

This operator has the following properties, see Arora—Crespo-Blanco-Winkert [5, Theorem 4.4].

Theorem 2.3. Let hypotheses (H,) be satisfied and A be given as in (2.1). Then, A is
bounded, continuous, strictly monotone, coercive, a homeomorphism and satisfies the (S.)-

1,Hy, . 1,H,
property, that is, any sequence {u, },cy in W, 8(Q) such that u, — u weakly in W “8(Q) and

Hig,
lim sup,,_, . (A(u, ), u, — u) < 0 converges strongly to u in W; “E(Q).
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Also from Arora-Crespo-Blanco-Winkert [5, Lemma 5.1], we know thatif f: QX R - Risa
Carathéodory function with f(x,0) = 0 for a.a. x € Q satisfying (H,)(i) then the functional

If(u) = / F(x,u)dx
Q
and its derivative

.0 = [ fwvds,

JH, .
are strongly continuous in the sense that if u,, — u weakly in W; ¢(Q) then I r(u,) = Ip(u) in
. LH, *
R and I}(un) - I}(u) in <W0 : g(Q)) .

Moreover, for u € L9(Q), we define u* = max{u, 0} and u~ = max{—u, 0}. Then, we have
- - : LHog + LH0g
u=u"—u,|jul=u" +u andlquWO (Q)thenu—eW0 Q).

Next, consider the functionals

I(u):l||Vu||§+l/y(x)IVu|qlog(e+IVul)dx—/F(x,u)dx,
p q/a Q
I+(u):llqu||§+l/u(x)qu|qlog(e+|Vu|)dx—/F(x,u+)dx, (2.2)
p q/a Q
I_(u)= l%lqu||§+3/,u(x)qulqlog(e+|Vu|)dx—/F(x,—u_)dx. (2.3)
Q Q

Then, we know that I, I, and I_ are of class C! with derivatives
) = 4a.o) - [ fexwods,
Q
L0 = (A, = [ e

I (u)(v) = (AQu), v) /Q f—udx,

where A is given in (2.1), see Arora-Crespo-Blanco-Winkert [5, Theorem 4.1].

‘We recall some results from calculus of variations. Let X be a Banach space. We say that a func-
tional ¢ : X — R satisfies the Cerami condition or C-condition if for every sequence {u,},cn € X
such that {¢(u,,)},,cn € R is bounded and it also satisfies

(1 + llu, D' (u,) >0 asn - oo,

then it contains a strongly convergent subsequence. Furthermore, we say that it satisfies the
Cerami condition at the level ¢ € R or the C,-condition if it holds for all the sequences such that
o(u,) — casn — oo instead of for all the bounded sequences.

The proof of the following mountain-pass theorem can be found in the book by Papageorgiou-
Réadulescu-Repovs [35, Theorem 5.4.6].
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Theorem 2.4 (Mountain-pass theorem). Let X be a Banach space and suppose ¢ € C1(X), uy,u; €
X with ||u; — ug|| > 8 >0,

max{gp(uy), (uy)} < infipu) : |u —ull = 8} = ms,
c=ggggwaDMMF=W€CmULm:ﬂ®=umﬂD=uﬁ
and g satisfies the C,-condition. Then, ¢ > mg and c is a critical value of ¢.
Next, we recall some results from the theory of critical groups. For this purpose,ifY, CY; Cc X

then by H, (Y;,Y,) we denote the kth singular homology group with integer coefficients for the
pair (Y,,Y,) with k € N,,. Let ¢ € C}(X). Then, K, is the critical set of ¢, that is,

K,={ueX: ¢'(u) =0}
For ¢ € R, we define
pr=fueX: pu)<ch

Letu € K, be an isolated critical point with ¢(u) = c. Then, the critical groups of ¢ at u are given
by

Cilp,u) =Hi (¢ NU,p° NnU \{u}) forallk € N,
where U is a neighborhood of u such that ¢ N K, N U = {u}. The excision property of singular
homology implies that this definition is independent of the choice of the isolating neighborhood

U. If p fulfills the C-condition and if —co < inf p(K,,) we define the critical groups of ¢ at infinity
by

Cr(@,0) = Hi(X, %) forallk € Ny,

where ¢ € Ris such that ¢ < inf ¢(K,). This definition is independent of the choice of c. Suppose
that K, is finite. Then, we define

M(t,u) = Z rank C; (¢, Witk forallt e Randforallu K,,
keN,

P(t,0) = Z rank C; (¢, o)tk forallt € R.
keN,

The Morse relation says that

M(t,u) = P(t,00) + (1 +1)Q(t) forallt e R, (2.4)
2

ueK¢

where Q(t) = EkeNO B, t¥ is a formal series in t € R with nonnegative integer coefficients.
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3 | A PRIORI BOUNDS

In this section, we are going to prove that every weak solution of problems of type (1.7) is essentially
bounded. We present the result for more general problems and study the equation

—div L(u) = R(x,u,Vu) inQ, u=0 ondQ, (3.1

where div L is the logarithmic double phase operator given in (1.3). A weak solution of Equation
Hig,
(3.1)is a function u € W(l) “2(Q2) such that

|Vul

2 -
/Q<IVMIP Vu + u(x) loz‘3(6+|V“D+q(e+|Vu|)

] |Vu|q_2Vu> -Voudx

= / R(x,u, Vu)vdx
Q

is fulfilled for all v € W;’Hl"g(Q). We also include the critical case for problem (3.1) and suppose
the following assumptions.

(H;) R: QxR xRN — Ris a Carathéodory function and there exists # € (1, p*] such that
5 £—1
IR, £ O] <117 + 101 + 1],
fora.a. x € Q, forall t € R and for all ¢ € RN with a positive constant b.
We have the following result.

Theorem 3.1. Let hypotheses (H,) and (H,) be satisfied and let u € W;’Hk’g(Q) be a weak solution
of problem (3.1). Then, u € L*(Q).

1M . .
Proof. From Proposition 2.1 (i) we know that W () o W(l)’p (Q) continuously. Since

LE)-E=181°

for all £ € RV, the result follows from Ho-Kim-Winkert-Zhang [24, Theorem 3.1]. O

4 | EXISTENCE OF TWO SOLUTIONS

In this section, we are going to prove that problem (1.7) admits two nontrivial bounded weak
solutions with constant sign. To this end, we first show that the truncated functionals I, and I_
given by (2.2) and (2.3) satisfy the Cerami condition. Before, we recall the following lemma, see
Arora-Crespo-Blanco-Winkert [5, Lemma 5.4]

Lemma4.1. Letq > 1and

t

= , t>0
g(e +t)log(e +t)

h(t)

Then, h attains its maximum value at t, and its value is g, where t, and x are given by (1.8).
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Proposition 4.2. Let hypotheses (H,) and (H,)(D)-(iv) be satisfied. Then, the functionals I, and I_
satisfy the Cerami condition.

Proof. We only show the assertion of the proposition for I, , the proof for I _ is very similar. To this

LH,,
end, let {u, },\ be a sequence in W, ¢(Q) such that

|I+(un)| < C1» (41)
/ . 1’Hlog *
(1 + DI () > 0 in <W0 (Q)) : (4.2)
Relation (4.2) implies the existence of a sequence ¢, — 0 such that
V |Vu,|P~2Vu, - Vodx
Q
+ / u(x)(log(e + |Vu,|) + M) [Vu,|972Vu, - Vodx (4.3)
Q " qle+ [Vuy,)) " " '
gqllvll
— [ fxupvdx|< ———,
/Q " 1+ [Ju,ll

foralln € Nand forallv € W;’Hl"g(ﬂ). Taking v = —u;, € W;’HlOg(Q) in (4.3) and using the fact
that f(x, ujl')u; = 0 fora.a. x € Q (since f(x,0) = 0 for a.a. x € Q), we obtain

leog(Vu;)
</ [Vu [P + u(x)|lo (e+|Vu_|)+M [Vu:|? | dx
S o\ TSI g v

<g, forallneN,

Vu, ers . 1,H,

because % > 0. From Proposition 2.2 (v), we then conclude thatu,, - 0in W “2(Q). We
L 1M, . 1H, o

now prove that u} is bounded in W, Q). Choosingv = ut € W, £(Q) as a test function in

(4.3) gives

/Q FOoubutdx— [Vu |

+
IV, |

— " ale + |Vut))
/Qﬂ(x) <10g(e IV, D+ qle + | Vu; )

) [Vul|9dx < g,.
Applying Lemma 4.1 leads to

p
/Qf(x, uuy dx — [[Vur |,
(4.4)
- <1 " g) [ oy togte + 1Vug DIV d <,
Q

859017 SUOWIWOD A eI a|qedl|dde aup Aq peusenob afe sopie VO ‘9sn Jo S8|n Joj Afeiqi 8UlUO AB]1/M UO (SUONIPUOD-PUR-SWLBIALIOY A8 1M Ae.q 1 pul|uo//Sdy) suonIpuoD pue swie ] 3y 88S *[SZ0zZ/2T/GZ] o ARlqi auljuo 4|1 ‘06TOL SWG/ZTTT OT/I0p/W0D A8 IM ARIq Ul UO D0SYFRWPUO|//Sdny Wwouy papeojumoq ‘2T ‘G20z ‘02TZ69YT



4190 | RADULESCU ET AL.

On the other hand, (4.1) and the fact that u;, — 0in W;’Hh’g (Q) imply that

%lqu;’llg + %/,u(x)qu;lq log(e + |Vu|) dx — / F(x,ut)dx < c,, (4.5)
Q Q

for some ¢, > 0, which implies

q+x K
Tuw;ug + <1 + 5) /Qﬂ(x)wu;mog(e + | Vut ) dx

- /(q +%)F(x,u)dx < (q + x©)c,.
Q

Summing with (4.4), we get

<q ; K _ 1) IV, +/ (fGeubut — (g +10F(x,ut)) dx < (g +1)c, + &,
Q

Using (1.11), we obtain

q+x
< . —1>||Vu2'||5<(q+x)c2+£n+c.

We conclude that {u;}},y is bounded in Wé’p (). Going back to (4.5), we get

1
a/ﬂy(x)qu;:lqlog(e+|Vu;|)dx<c3+/QF(x,ur+l)dx

for some c; > 0. Using (1.10), one can estimate the right-hand side of this inequality, thus
obtaining

%/Q,u(x)qumqlog(e+|Vu:;|)dx<c4+#/gf(x,u:[)u:dx

for ¢, > 0. But from (4.4) and the fact that {u;}}, .\ is uniformly bounded in W(l)’p (Q), we get, for
¢s > 0, that

1
L[ o191 logte + 19141

g+x\1 + +
< = 1 \% Vu' |9 dx.
cs+<q+7>q/ﬂu(x) og(e + [Vu I Vury|

Consequently,

/Q,u(x)quljlq log(e + |Vu|)dx < cs foralln eN.

. . . 1H ,
since 7 > x. We conclude that {u;}, <y is bounded in W | ¢(Q), and hence one can find a subse-

LK, .
quence {u, };ey and an elementu € W, ¢(Q) such that up,, — uweakly. Choosing u,, —u as
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a test function in (4.3) and letting k — oo, we arrive at
kli_)n;,(I_,'_(unk)’ unk - u> =0.

On the other hand, the strong continuity of I (see Section 2) implies that

lim / fGe,ut Yu, —u)dx=0.
k—oo Jo k k
Taking these two limits together yields (see again Section 2)
kli_)ngo(A(unk), Uy, —u) =0,

whereby the operator A given by (2.1) satisfies the (S, )-property, see Theorem 2.3. Thus, u,, = u

LH, . - . -
strongly in W “¢(Q2). This proves that I 4 satisfies the Cerami condition. O
Next, we show that zero is a local minimizer for the functionals I and I, .

Proposition 4.3. Let hypotheses (H,) and (H,)(i)-(iv) be satisfied. Then, zero is a local minimizer
ofland1,.

Proof. We only prove it for I, the proofs are similar for I, and I_. From (1.9) and (1.12), we know
that for each € > 0 there exists ¢, > 0 such that

3
|F(x,s)| < E|S|p +c.|s|? fora.a.x € Qandforalls € R. (4.6)

In (4.6), we choose € = % with ¢; > 0 being an embedding constant of Wé’p (Q) & LP(Q). Then,
1

from this and foru € W;’Hlog(Q) with ||u|| < 1 by using the embeddings W(l)’p (Q) & LP(Q) aswell

LH .. ‘e
asW, “2(Q)) & L7(Q) (see Proposition 2.1(iii)) and Proposition 2.2 (iii), we have

1 1 €
1w > ~|Vull? + = / 400 Vul9 log(e + |Vul) dx — < [jull? — c,Ilull]
P qJa P
1 1
> 1—9(1 —c9)|IVull, + q / p(x)|Vul?logle + | Vul) dx — ¢, lull”
Q
4.7
L [(1-ce 1
> min { PR E}P;{log(IVuI) = Cylull”
> o [ull T~ cyull”,
2q
for some ¢, > 0. Since q + x < n by (H,) (i) the result of the proposition follows. O

Now, we study the energy level of the functionals I, and I_.

Proposition 4.4. Let hypotheses (H,) and (H,)(i)—(iv) be satisfied. Then, it holds I (tu) — —oo as
t — oo forallu e W;’Hl"g(ﬂ) \ {0} such that u > 0 a.e. in Q. Similarly, I_(tu) - —oco ast — oo for
allu e W(l)’Hk’g(Q) \ {0} such thatu < O a.e.in Q, u Z 0.
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Proof. We show the result only for I, it can be shown in a similar way for I_. Let M > 0 be a
positive number. From (H,) (iv) (see (1.13)), we know that there exists a number s;, > 0 such that

F(x,s) > Ms?log(e +s) fora.a.x € Qand foralls > s,,.
On the other hand, from the continuity there exists c¢;; > 0 such that
|F(x,s)| <cp fora.a.x € Qandforalls < sy.
Thus, we have
F(x,s) > —c); + Ms?log(e + s) — Ms?log(e + s)
> Ms?log(e + 5) — (cp + Msgl log(e + sp7))

= Ms%log(e +s) —¢), fora.a.x € Qandforall0<s<sy.
Taking everything together, we conclude that

F(x,s) > Ms%log(e +s) —¢,; foraa.x € Qandforalls > 0.

Consequently, for t > 0, it follows that, for all u € W;’Hlog(ﬂ) \ {0} such thatu > 0 a.e. in Q,
tP p td q
I (tu) = —lIVull, + = u(x)|Vul9log(e + t|Vu])dx
p q Jao
— Mt / u?log(e + tu) dx — ¢3;1Q.
Q
Since log(e + xy) < log(e + x) + log(e + y) for all x,y > 0, we have
p t71 +t
I () < Lyvagp + 8D / u(x)| Vuld dx
p q Q
q
+ % / w(x)|Vu|?log(e + |Vul) dx (4.8)
Q
— M1l / u?log(e + tu) dx — ¢),| Q.
Q

From the inequality e + tu > e + ¢ for t > 0 and u > 1 along with the monotonicity of log, we
derive that

/ ullog(e + tu) dx > log(e + t) uddx
{xeQ: ux>1} {xeQ: ux>1}
and
/ u9log(e + tu)dx = / uitt L log(e + tu) dx
{xeQ: o0<u<1} {xeQ: o0<u<1} u

> log(e + 1) udtt dx,
{xeQ: o<u<1}
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where in the last inequality we used that C log(e + s) > log(e + Cs) for all C > 1 and s > 0. Using
this in (4.8) gives

I, (tu)
tP » 1
< —|IVull, + t?logle + 1) = [ u(x)|Vul?dx —M ud dx
p qJo {xeQ: u>1}
(4.9)
-M udtl dx)
{xeQ: O<u<1}
q
+ %/,u(x)Wulqlog(e + [Vul) dx — G, lQl.
Q
Choosing M > 0 such that
l/,u(x)|Vu|qu<M</ ud dx+/ ud*! dx)
qJa xeQ: uz=1} {xeQ: o<u<1}
yields that lim,_, I (fu) = —oo. This proves the result. O

Now, we can prove the existence of two constant sign solutions to problem (1.7).

Proposition 4.5. Let hypotheses (H,) and (H,)(i)-(iv) be satisfied. Then, problem (1.7) admits two

1M, .
nontrivial weak solutions uy, vy € W “8(Q) N L®(Q) such that vy € 0 < uyinQaswell asI(ug) >
0and I(vy) > 0.

Proof. From Proposition 4.3, we know that zero is a local minimum of I and that there exist
p,m > 0 such that

I,w)y>m forallue W;’Hl"g(ﬂ) with [Ju|| = p.

. .. . . 1’Hlog
Taking Proposition 4.4 and Theorem 2.4 into account, we can find an element w € W~ ™(Q)
such that ||w]| > p and I(w) < 0 = I(0). Thus,

:=inf I 1)),
¢ }l,felrgg% +@®)

with
r={rec(low,"*@): yo=0ym=w},

is a critical point for I,. Since ¢ > m and because critical points of I, are all nonnegative, we

. . . 1,M,
conclude that there exists a nonnegative weak solution u, € W, “8(Q) of problem (1.7) such
that I(u,) > m. Similarly, we can show the assertion for I_ getting a nonnegative weak solution

1LH . . .
vy EW, “¢(Q). Using Theorem 3.1 gives the desired results. O

Remark 4.6. Note that condition (H,)(V) was not needed in the proof of Proposition 4.5.
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5 | THIRD SOLUTION VIA CRITICAL GROUPS

In this section, we are going to prove the existence of a third nontrivial solutions by using tools
from critical groups.

Proposition 5.1. Let hypotheses (H,) and (H,) be satisfied. Then, Cy (I, 00) = C(I, ) = 0 for all
k e N,.

Proof. We show the proof only for I, , it works in a similar way for I_and I. Letu € aB;r ={ue
LH .
w, “¢(Q) : |lull = 1 and u't # 0}. First, observe that, due to (4.9), we get

I,.(t
lim +(tu)

t—>oo t4

= —o forallu e W, () \ {0}. 5D

Furthermore, due to Lemma 4.1, we have

L1, ew) = I () = 1, (u)(ew)

:%(tp||Vu||§+tq/pt(x)(log(e+t|Vu|)+
Q

—/ flx, tut)tu dx>
Q

(tP||Vu||§+tq<1+g)/Q,u(x)log(e+t|Vu|)|Vu|qu—/()f(x,tu“L)tudx)

t|Vu|

———— ||Vu|?dx
q(6'+l‘IVuI)>| |

<

~ | =

<

~ | =

<<1+g)(tpllvu“Z+tq/Q,u(x)lOg(e"'t|Vu|)|VU|qu>

—/f(x,tu+)tudx>
Q
x +ydx ) - +
<<1+ q><q1+(tu)+/QqF(x,tu )dx> /Qf(X,tu )de>
x x +y _ +
<<1+a>q1+(tu)+/0<q<1+a>F(x,tu )— f(x,tu )tu> dx)

=1 <(q + 0L, (tu) + / ((q + ©F(x, tu*) — f(x, tut)tu™) dx>,
t Q

<

~ | =

~ | =

where in the last line we used the fact that f(x,0) = 0 for a.a x € Q. Consequently, using (1.11) in
(H,)(ii), we get

%1+(tu) < %((q + 0L, (tu) + c|).
We conclude that

Q
it 1, () < =<1
q+x

1= —v,, then %I+(tu) <0. (5.2)
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Now, let v be a positive number such that —v < min{—v,, inf o5+ I.}. From (5.1) we know that

for all u € 6B1+ , there exists a number ¢, > 1 such that I (t,u) = —v. Property (5.2) implies
that ¢, is unique. Thus, the function 7 : c?B;r — R given by n(u) =t, is well defined and sat-
isfies I, (p(w)u) = —v for all u € c?B;r . Moreover, the implicit function theorem implies that 7
is continuous.

Let E¥ = {tu: t > 1,u € 6B]}. We may extend 7 to E* by setting

u
=i 7 )
0 = i
Clearly, n, € C(E™). Furthermore,

_ u \ u \_ N
I+(no(u)u)—1+< <”u”>”u”) — v forallueE*

Moreover, if I, (u) = —v, then 77(” ||) = ||u]| and thus 7y(u) = 1 by using (5.2). Consequently, if
we define h: [0,1] X Et — E* by h(t,u) = (1 — Hu + tny(u)u, we get

h(0,u) =u, h(1,u)=n,wu el forallueE*
and

h(t, )|, =id
@Oy, =1id],,
Thus, I” is a strong deformation retract of E*. Using the radial retraction, we obtain that 6BIr is
a deformation retract of E*, and thus I’ and dB;" are homotopically equivalent. Due to Corollary

6.1.24 by Papageorgiou-Raddulescu—-Repovs [35, p 468], we conclude that

Hk< Thos (), 1 ) Hk< Thos ), aB+) for all k € N,.

LH,, e e e . . . . ..
Since W, “¢(Q) is infinite dimensional, we know that 6BIr is contractible in itself. Thus, by
Granas-Dugundji [23, p. 389], we know that

Hk< Thes ), aB+) =0 forallk €N,
Hence, if |v| is large enough, we get
1 Hlog
Co(l,, 00) = Hk< Q),1 ) =0 forallk €N,. O
Proposition 5.2. Let hypotheses (H,) and (H,) be satisfied. Then, we have
Ci,uy) = Cr U, uy) forallk €N
Proof. Let M > ||ug || o(q), see Theorem 3.1 and consider the following truncation of f(x, -):

fx,—M) ifs < —-M,
M) =4 f(x,s)  if —M<s<M
f(x,M) ifs> M.
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Let the positive truncation of fM(x-) be the function
M(x,8) 1= fM(x, 7).

We set FM(x,s) = /i fM(x,t)dt and F¥(x,s) = /; fM(x,t)dt and consider the C!-functionals
I™v and I ™ defined by

I™(y) = %“Vullg + % / w(x)|Vul?loge + |Vul|)dx — / FM(x,u)dx,
Q Q

1

~ 1 M
I = EIIVuIIII; + 2 /Q,u(x)IVu|q10g(e + |Vu|)dx — /QF+ (x,u)dx.

Since F satisfies (1.14) in hypothesis (H,) (v), we know that there exists a global constant C > 0
such that

|[FM(x,s) — FM(x,t)| < C|s —t| and |Ff(x, s) —Ff(x,t)l < Cls—t| (5.3)
for all s,t € R. Using (5.3) and the embedding W;’HIOg(Q) < L1(Q), we have
1™ (u) = 1M ()]
S/QIFM(x,u)—Ff(x,u)ldx
< /Q |FM(x,u) - FM(x, uy)| dx + /Q |FM(x, Uy) — Ff(x,u)l dx

=/|FM(x,u)—FM(x,u0)|dx+/|F+M(x,u0)—Ff[(x,u)|dx
Q Q

sZC/ lu —uy| dx
Q
< Cllu—ull,

with C > 0.
On the other hand, since f satisfies (1.15), we know that fM and fi"[ also satisfy (1.15) with a

global constant C. Thus, using Holder’s inequality and the embeddings W(l)’Hl"g(Q) o LP(Q) as

.
well as W;'Hl"g(Q) < Lr*-8(Q) (see Proposition 2.1 (ii), (iii)), we get for h € W;’Hbg(ﬂ) that
KA™™) (w) — AM) (), h|
< [ 1M - P wiin dx

</IfM(x,u)—fM(x,uo)Ilhldx+/|f¥(x,uo)—fM(x,u)IIhIdx
Q Q

< 2c/ lu —uy|P|h| dx
Q
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<2C |lu—upll®, Inll
p p*—B

< Cllu —ugll® |1l

because —
p*—B

that

< p*,since 8 < p* — 1. Consequently, given ¢ > 0, it is possible to find § > 0 such

™ = L e gy gy < &

Using the C!-continuity property of critical groups, see Gasinski-Papageorgiou [22, Theorem
5.126], we have

CrI™,uy) = C M, uy) forallk € N,
Thus, we may let M — oo and use Granas-Dugundji [23, Theorem D.6, p. 615] to conclude that
C(I,uy) = Cr I, uy)  forallk €N, ]
Proposition 5.3. Let hypotheses (H,) and (H,) be satisfied. Then, we have

Cr(Iy,up) =61 Z  forallk € N,

Proof. Assume that K; = {0,u,}. Otherwise we would have already had a third solution. From
Proposition 4.3 and (4.7), we can find p, > 0 such that

m, 1=inf {I,(w): |lull = p,} > 0.
Letv_ and v, be constants such that
v_ <0<y, <m, <I (up).
We have
r-crt cw, " 0) = X.

Let i be the embedding of the map 1:’ into Ii*, and consider the corresponding long exact
sequence of singular homology groups, see, for example, Papageorgiou-Radulescu-Repovs [35,
Proposition 6.1.23 p. 466],

s H (X, T) =5 H(X, 1) = Hi_ (4, 17) — -, (5.4)

where i* is the group homomorphism related to the embedding i and d,, is the boundary homomor-
phism, see Papageorgiou-Rddulescu-Repovs [35] for more details. Since K;, = {0,1,} and using
Proposition 5.1, we get

H (X,I7) =C I, 00) =0 forallk € N,.
On the other hand, since

v_<0=1I,0)<v, <m,<I,(up),
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it follows that
H (X, I") = C,,u,) forallk €Ny, (5.5)
and (see Papageorgiou-Radulescu-Repovs [35, Proposition 6.2.16, p. 486]).
Hy (I, I7) = Cq(I,0) =81 0Z = 6,2 forallk € N, (5.6)

In the last sequence of equalities, we used the fact that 6, _; (Z is the k — 1th critical group of I,
at zero whenever zero is a local minimum, see Papageorgiou-Radulescu-Repovs [35, Proposition
6.2.3, p. 477]. Furthermore, we know that u, is a critical point of mountain-pass type, and thus
(see Papageorgiou-Radulescu-Repovs [35, Theorem 6.5.8, p. 527])

C, (I, ug) # 0.
From this and (5.5), we conclude that
Hy(X, ;) #0.
However, using the exactness of the sequence (5.4), leads to
rank H, (X,I_V:) =rank kerd, + rankimd,
=rankimi, + rankimd, <1,
because H, (X,Ii’) = 0. Thus im i, = {0} and because HO(IZ*,ILIL’) = Z, see (5.6). We thus obtain
1, u) = H(X, 1)) = Z
On the other hand, for k > 1, we know that
H (I I7)=0 and H(X,I,)=0.
Consequently, the exactness of the sequence yields
H (X, I}*) = 0.
We have thus shown that C; (X ,I_V:) = Oj1Z. This proves the result. O

We have analogously results for the functional I_ and vj,.

Proposition 5.4. Let hypotheses (H,) and (H,) be satisfied. Then, we have
Ci,vy) =C(I_,vy) forallk €Ny,
and

Cy(I_,vy) = 6,17 forallk € N,,.

Proof. The proof is similar to the proofs of Propositions 5.2 and 5.3. O
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Proposition 5.5. Let hypotheses (H;) and (H,) be satisfied. Then, problem (1.7) has three nontrivial
bounded weak solutions vy, y, and u, such that vy < 0 < u,.

Proof. From Proposition 4.5, we know that v, and u, are bounded nontrivial weak solutions of
(1.7) such that v, < 0 < u,. Suppose that K; = {0, vy, u,}. Since zero is a local minimum, we know
that

Cr(1,0) = &) oZ.
From Proposition 5.1, we also know that
CI,0)=0.
Moreover, Propositions 5.2, 5.3, and 5.4 yield that
Crll,ug) = 8y, Z = Cr (1, vy).
Then, from the Morse relation stated in (2.4), we conclude that
(-1)° +2(-1)° =0,

which is a contradiction. Hence, there exists y, € K; such that y, & {0, 1, v,}. This proves the
result. O

Theorem 1.3 follows now from Propositions 4.5 and 5.5.
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