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Abstract
In this paper, we study multivalued nonlocal elliptic problems driven by the fractional double
phase operator with variable exponents and ω-logarithmic perturbation formulated by{

(−�)sH u ∈ F(x, u) in �,

u = 0 on R
N \�.

We are going to establish maximum principles for the fractional perturbed double phase
operator and show the boundedness of weak solutions to the above problem. Finally, under
appropriate assumptions we discuss the existence of infinitely many small (non-negative)
weak solutions to a single-valued nonlocal double phase problem.

Keywords A priori bounds · De Giorgi’s iteration · Fractional logarithmic double phase
operator · Localization method · Maximum principle · Multivalued problem · Variational
methods
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1 Introduction

In the last years, problems involving fractional-order operators have been studied inten-
sively due to their mathematical challenges and various real applications in fluid mechanics,
relativistic quantum mechanics, conformal geometry, probability and molecular dynamics,
see Bertoin [11], Cabré–Tan [14], Caffarelli–Vasseur [15] and Chen–Li–Ma [18] for more
details. Particularly, the studies for problems involving fractional double phase operators
have attracted much attention for their compelling theoretical framework and diverse practi-
cal applications. Recently, de Albuquerque–de Assis–Carvalho–Salort [23] established some
abstract results on a new class of fractional Musielak–Sobolev spaces including uniformly
convexity, Brézis–Lieb typeLemma andRadon-Riesz property to themodular function, (S+)-
property andmonotonicity. In this paper, based on the results obtained by de Albuquerque–de
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Assis–Carvalho–Salort [23] for the solution space and the operator we deal with multivalued
nonlinear problems with Dirichlet boundary condition of the form{

(−�)sH u ∈ F(x, u) in �,

u = 0 on R
N \�, (1.1)

for u ∈ Ws,H
0 (�) (see Sect. 2), where� is a bounded domain of R

N (N ≥ 2) with Lipschitz
boundary ∂�,F : �×R → 2R\{∅} ismultivalued function, the associated variable exponent
fractional double phase operator with logarithmic perturbation is given as

(−�)sH u(x) := CN ,s,p,q lim
ε→0

∫
RN \Bε(x)

H′
(
x, y,

|u(x)− u(y)|
|x − y|s

)
dy

|x − y|N+s

= CN ,s,p,q PV
∫
RN

H′
(
x, y,

|u(x)− u(y)|
|x − y|s

)
dy

|x − y|N+s

(1.2)

with Bε(x) := {z ∈ R
N : |z − x | < ε}, s ∈ (0, 1), CN ,s,p,q is some constant depending on

N , s, p, q while PVdenotes theCauchy principle value andH : R
N×R

N×[0,∞) → [0,∞)

is defined as

H(x, y, t) =
[
t p(x,y) + μ(x, y)tq(x,y)

]
log(e + ωt), (1.3)

for all (x, y) ∈ R
N × R

N and for all t ≥ 0, where ω ≥ 0, p, q ∈ C(RN × R
N ) such that

p(x, y) = p(y, x), q(x, y) = q(y, x) as well as 1 < p(x, y) < N
s , p(x, y) ≤ q(x, y)

for all (x, y) ∈ R
N × R

N , and 0 ≤ μ(·, ·) ∈ L1(RN × R
N ) satisfies U1 := {(x, y) ∈

R
N × R

N : p(x, y) < q(x, y)} � U0 := {(x, y) ∈ R
N × R

N : μ(x, y) = 0} and μ(x, y) =
μ(y, x).

As we can see, problem (1.1) is driven by a type of fractional double phase operator, which
is developed from the classical double phase operator given by

div
(
|∇v|p−2∇v + μ(x)|∇v|q−2∇v

)
,

associated with the following energy functional

v 
→
∫
�

(
|∇v|p + μ(x)|∇v|q

)
dx . (1.4)

This type of energy functional was introduced first by Zhikov in 1986 to describe the nature
of certain phenomena occurring in the theory of elasticity, for example, it can describe the
mathematicalmodels of strongly anisotropicmaterials aswell as the Lavrentiev phenomenon,
see Zhikov [71, 72]. In fact, energy functionals with of the form (1.4) characterizes the phe-
nomenonwhere the energy density varies its ellipticity and growth characteristics, contingent
upon the specific location within the domain. It can also describe the geometric properties
of a composite formed from distinct two materials characterized by the power hardening
exponents p and q . Since the energy functional (1.4) exhibits ellipticity in the gradient of
order q when the modulating coefficient μ(·) �= 0 and exhibits ellipticity in the gradient of
order p when the modulating coefficient μ(·) = 0, we call it double phase.

In recent years, the classical double phase operator has been extended to various new class
of operators.Crespo-Blanco–Gasiński–Harjulehto–Winkert [20] considered the double phase
operator with variable exponents defined by

div
(
|∇v|p(x)−2∇v + μ(x)|∇v|q(x)−2∇v

)
,
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and established some basic properties of this type of operator and the associated Musielak–
Orlicz Sobolev spaces. Furthermore, Vetro–Zeng [60] studied a type of double phase energy
functional with log L-perturbed p, q-growth defined by

div

(H′
L(x, |∇v|)

|∇v| ∇v
)

with HL = [
t p + μ(x)tq

]
log(e + t).

Theyobtained the properties of the associatedMusielakOrlicz-Sobolev space and thenproved
the existence and uniqueness results ofweak solution forDirichlet double phase problems, see
also Lu–Vetro–Zeng [47] for detailed results concerning double phase energy operator with
log L-perturbed p(·), q(·)-growth. For more results involving the double phase type operator
with logarithmic perturbation we refer to the recent work by Arora–Crespo-Blanco–Winkert
[4] who focused on the operator

div

(
|∇v|p(x)−2∇v + μ(x)

[
log(e + |∇v|)+ |∇v|

q(x)(e + |∇v|)
]

|∇v|q(x)−2∇v
)
,

and established the existence and multiplicity results to the related double phase problems.
We also mention some recent existence results for double phase problems, see the works by
Guarnotta–Livrea–Winkert [31] (variable exponent double phase systems), Liu–Dai [46]
(existence and multiplicity results of double phase problems), Vetro–Zeng [60] (double
phase Dirichlet problems), Zeng–Bai–Gasiński–Winkert [66] (multivalued double phase
implicit obstacle problems), Zeng–Rădulescu–Winkert [67] (double phase implicit obsta-
cle problems), and Zeng–Rădulescu–Winkert [68] (nonlocal double phase implicit obstacle
problems). Finally, we refer to important works concerning the regularity of local minimiz-
ers of related double phase functionals, see Baroni–Colombo–Mingione [8], Beck–Mingione
[9], Colombo–Mingione [19], Fuchs–Mingione [28] andMarcellini [48, 49], see also the ref-
erences therein.

It is worth mentioning that more and more impressive studies on fractional double-phase
problemshavebeen carriedout recently.Tobemoreprecise, byusingvariational and topologi-
cal arguments, the existence ofweak solutions to various fractional elliptic or parabolic double
phase problems have been established byAmbrosio [2] (existence of a nontrivial non-negative
solution), Ambrosio–Isernia [3] (existence of infinitely many solutions), Bhakta–Mukherjee
[12] (existence of infinitely many nontrivial solutions), Xiang–Ma [65] (existence of normal-
ized ground state solutions), Zhang–Zhang [69] (existence and concentration phenomena of
positive solutions) and Zhang–Zhang–Rădulescu [70] (existence of positive ground state
solutions). In the direction of Hölder continuity and boundedness of weak solutions for non-
local double phase problems we refer to the papers by Byun–Ok–Song [13], Fang–Zhang
[27] and Prasad–Tewary [54]. In terms of practical application, both integer and fractional
double phase problems can be used in a variety of real-world problems, such as, obsta-
cle problems, nonlinear Derrick’s problem, transonic flow problems, optimization, finance
and image processing. More details can be found in the works by Bahrouni–Rădulescu–
Repovš [6] Benci–D’Avenia–Fortunato–Pisani [10] and Charkaoui–Ben-loghfyry [16]. For
very recent advances regarding local and nonlocal double phase problems, we refer to Guo–
Liang–Lin–Pucci [32], who established global bifurcation results for double phase problems;
Liang–Pucci–Van-Nguyen [44], who obtained multiplicity and concentration results for cer-
tain fractional variable-exponent double phase Choquard equations; Pucci–Wang–Zhang
[56], who demonstrated the multiplicity and stability of normalized solutions in nonlocal
double phase problems; and Pucci–Xiang [57], who found multi-bump solutions for loga-
rithmic double phase critical Schrödinger equations.
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On the one hand, we are going to show the maximum principle for the perturbed fractional
double phase operator. It is well known that the maximum principle is useful for investigating
the uniqueness and continuous dependence of classical solutions for elliptic and parabolic
boundary value problems, see Pucci–Serrin [55], Ladyzhenskaya–Solonnikov–Uralt́seva [42]
andVladimirov [64]. The general form of themaximumprinciple implies that the appropriate
solution of the homogeneous equation attains its extreme values on the boundary of the
domain and allows to derive an approximation for the maximum magnitude of the solution.
Particularly, maximum principles can be applied to investigate the stability and convergence
of the difference solution in a uniform norm, see for example Crouzeix–Thomée [22] and
Thomée [58, 59]. Moreover, in Chen–Li [17] and Hu–Peng [40], the authors combined
the maximum principle for anti-symmetric functions and the method of moving planes to
establish the symmetry and monotonicity of positive solutions to nonlocal double phase
problems. Motivated by these results, we will show the maximum principle for the nonlocal
double phase operator with logarithmic perturbation in Sect. 3.

On the other hand, we are interested to get a priori bounds for weak solutions of problem
(1.1) with subcritical and critical growth by utilizing De Giorgi’s iteration (or De Giorgi–
Nash–Moser theory) and a localization method. The beginning of research into the De
Giorgi–Nash–Moser theory goes back to the works by De Giorgi [24], Nash [53] as well
as Moser [51]. This theory is a powerful tool for proving local and global L∞-bounds
of weak solutions and establishing the Harnack inequality and the Hölder continuity for
weak solutions. For more details we refer to the monographs of Gilbarg–Trudinger [30],
Ladyženskaja–Solonnikov–Ural’ceva [42], Ladyženskaja–Ural’ceva [43] and Lieberman
[45]. Our proofs for the boundedness of weak solutions of problem (1.1) are mainly inspired
by the papers of Ho–Kim [35] (nonlinear elliptic problems involving the fractional p(·)-
Laplacian), Ho–Kim–Winkert–Zhang [38] (quasilinear elliptic equations involving variable
exponents critical growth), Ho–Winkert [39] (generalized double phase problems with crit-
ical and subcritical growth) and Winkert–Zacher [62, 63] (nonlinear elliptic equations with
nonstandard growth). In addition, motivated by the works of Ho–Kim [35] andWang [61], we
will show the existence of infinitely many small solutions to the nonlinear problems driven
by the operator given in (1.2) (see Sect. 5) by employing the boundedness of weak solutions
obtained in Sect. 4. More works related to L∞-bounds can be found in Barletta–Cianchi–
Marino [7], Crespo-Blanco–Winkert [21], Frisch–Winkert [29], and Marino–Winkert [50].

To the best of our knowledge, the maximum principle for the perturbed nonlocal double
phase operator (1.2) and the boundedness of weak solutions to problems driven by the frac-
tional double phase operator with variable exponents and logarithmic perturbation have not
been studied yet. Moreover, problem (1.1) contains many interesting special cases as follows:

(P1) Let ω = 0, μ = 0 in H (i.e.H(x, y, t) = t p(x,y) =: H1(x, y, t)). Moreover let F be
a single-valued Carathéodory function f , then problem (1.1) becomes the nonlinear
elliptic problem involving the fractional p(·)-Laplacian{

(−�)sp(x) u = f (x, u) in �,

u = 0 on R
N \�;

(P2) Let ω = 0 (i.e. H(x, y, t) = t p(x,y) + μ(x, y)tq(x,y) =: H2(x, y, t)), then problem
(1.1) becomes the nonlocal elliptic variable exponents double phase problem;

(P3) Let 1 < p(·) ≡ p and 1 < q(·) ≡ q (i.e.H(x, y, t) = [
t p + μ(x, y)tq

]
log(e+ωt) =:

H3(x, y, t)), then problem (1.1) becomes the perturbed nonlocal double phase problem
with constant exponents.
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(P4) Let ω = 0 and 1 < p(·) ≡ p, 1 < q(·) ≡ q (i.e. H(x, y, t) = t p + μ(x, y)tq =:
H4(x, y, t)), then problem (1.1) becomes nonlocal double phase problem.

This paper is organized as follows. In Sect. 2, we recall several basic definitions and
notations of variable exponent Lebesgue spaces and Musielak–Orlicz spaces concerning
the perturbed double phase function H. Furthermore, we will give the definition and basic
properties of the fractional Musielak–Sobolev space Ws,H(�), which is the solution space
of the considered problem. In Sect. 3, we establish the maximum principle for the fractional
perturbed double phase operator (1.2) while in Sect. 4 we show the main results of this
paper, that is, proving the boundedness of weak solutions to problem (1.1) by applying an
appropriate version of De Giorgi’s iteration along with the localization method. Finally, in
Sect. 5, based on the L∞-bounds of the solutions and the maximum principle we prove the
existence of infinitely many small non-negative weak solutions to the single-valued nonlocal
double phase problem (5.1).

2 Preliminaries

In this section, we recall some basic results concerning variable exponent Lebesgue
spaces, the Musielak–Orlicz spaces and fractional Musielak–Sobolev spaces, see Diening–
Harjulehto–Hästö–Růžička [25], Fan–Zhao [26], Harjulehto–Hästö [33], Kováčik–Rákosník
[41], Lu–Vetro–Zeng [47] and de Albuquerque–de Assis–Carvalho–Salort [23] for more
details. In the sequel let C be a constant that will change from line to line, and Cr means a
constant depending on the parameter r .

First, we introduce the subset C+(�) of C(�) given by

C+(�) :=
{
g ∈ C(�) : 1 < inf

x∈�
g(x) for all x ∈ �

}
.

For every r ∈ C+(�) we define r− and r+ as

r− := inf
x∈�

r(x) and r+ := sup
x∈�

r(x),

and denote by r ′ ∈ C+(�) the conjugate variable exponent of r , that is
1

r(x)
+ 1

r ′(x)
= 1 for all x ∈ �.

Let M(�) be the set of all measurable functions u : � → R, where two functions are
considered identical if they differ only on a Lebesgue-null set. Given a fixed r ∈ C+(�), the
variable exponent Lebesgue space is given by

Lr(·)(�) = {
u ∈ M(�) : �r(·)(u) < ∞}

,

where the corresponding modular function �r(·) is defined as

�r(·)(u) =
∫
�

|u|r(x) dx .

It is well known that Lr(·)(�) equipped with the Luxemburg norm

‖u‖r(·) = inf

{
λ > 0 :

∫
�

( |u|
λ

)r(x)

dx ≤ 1

}
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forms a separable and reflexive Banach space. Moreover, Lr ′(·)(�) is the dual space of
Lr(·)(�) and the following Hölder type inequality holds:∫

�

|uv| dx ≤
[
1

r−
+ 1

r ′−

]
‖u‖r(·)‖v‖r ′(·) ≤ 2‖u‖r(·)‖v‖r ′(·)

for all u ∈ Lr(·)(�) and all v ∈ Lr ′(·)(�). Additionally, if r1, r2 ∈ C+(�) satisfying
r1(x) ≤ r2(x) for all x ∈ �, then the following embedding is valid

Lr2(·)(�) ↪→ Lr1(·)(�).

Next, in order to introduce Musielak–Orlicz spaces, we give the definition of N -functions
and generalized N -functions.

Definition 2.1 (i) A function ϕ : [0,∞) → [0,∞) is called a N -function if it possesses
the following properties: it is continuous, convex with ϕ(t) = 0 if and only if t = 0,
Additionally, it fulfills

lim
t→0+

ϕ(t)

t
= 0 and lim

t→+∞
ϕ(t)

t
= +∞.

(ii) A function ϕ : �×�× [0,∞) → [0,∞) is called a generalized N -function, denoted
by ϕ ∈ N (� × �), if for all t ≥ 0 ϕ(·, ·, t) is measurable. Additionally, ϕ(x, x, ·) is a
N-function for a.a. (x, x) ∈ � × �. Similarly, we can give the definition of functions
ϕ ∈ N (�).

Next, we recall some definitions related to N -functions and generalized N -functions.

Definition 2.2 (i) A function ϕ : � × [0,∞) → [0,∞) is locally integrable if for all
t > 0, ϕ(·, t) belongs to L1(�).

(ii) Let ϕ,ψ ∈ N(�), we say that ϕ is weaker than ψ , denoted by ϕ ≺ ψ , if there exist
constants c1, c2 > 0 such that

ϕ(x, t) ≤ c1ψ(x, c2t)+ g(x) for a.a. x ∈ � and for all t ≥ 0,

where 0 ≤ g(·) ∈ L1(�). Furthermore, ϕ,ψ are equivalent, denoted by ϕ ∼ ψ , if
ϕ ≺ ψ and in the same time ψ ≺ ϕ.

(iii) Let ϕ,ψ ∈ N (�), we say that ϕ increases essentially slower than ψ near infinity,
denoted by ϕ � ψ , if for every k > 0 the limit

lim
t→∞

ϕ(x, kt)

ψ(x, t)
= 0

holds uniformly for a.a. x ∈ �.

Given ϕ ∈ N (�), we can define the associated modular function as

ρϕ(u) =
∫
�

ϕ(x, |u|) dx,

and the corresponding Musielak–Orlicz space, denoted by Lϕ(�), is given as

Lϕ(�) := {u ∈ M(�) : there exists λ > 0 such that ρϕ(λu) < +∞}.
This space is equipped with the Luxemburg norm given by

‖u‖ϕ,� := inf
{
λ > 0 : ρϕ

(u
λ

)
≤ 1

}
.
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To simplify the notation, we may write the norm for the domain� as ‖u‖ϕ instead of ‖u‖ϕ,�.
The following useful embedding result can be found in Musielak [52, Theorem 8.5].

Proposition 2.3 If ϕ ∈ N (�) and ψ ∈ N (�) satisfying ϕ ≺ ψ , then Lψ(�) ↪→ Lϕ(�).

Next, we introduce some basic definitions and notations for fractional Musielak–Sobolev
spaces which are mainly taken from the work by de Albuquerque–de Assis–Carvalho–Salort
[23].

In the remaining parts of this paper, we define

H(x, y, t) =
∫ t

0
h(x, y, τ ) dτ,

where h : �×�× [0,∞) → [0,∞). Moreover, we introduce the following assumptions:

(ϕ1) limt→0 ϕ(x, y, t) = 0 and limt→∞ ϕ(x, y, t) = +∞ with t 
→ ϕ(x, y, t) being con-
tinuous on the interval (0,∞) for all (x, y) ∈ �×�;

(ϕ2) t 
→ ϕ(·, ·, t) is increasing on (0,∞);
(ϕ3) there exist constants 1 < � ≤ m < +∞ satisfying

� ≤ h(x, y, t)

H(x, y, t) ≤ m,

for all (x, y) ∈ �×� and for all t ∈ (0,∞).

From de Albuquerque–de Assis–Carvalho–Salort [23], we know that if the function h
satisfies conditions (ϕ1)–(ϕ3) and h(·, ·, t) is measurable for all t ≥ 0, thenH is a generalized
N -function. Moreover, we consider the function Ĥ : �× [0,∞) → [0,∞) given by

Ĥ(x, t) :=
∫ t

0
ĥ(x, τ ) dτ,

where ĥ(x, t) := h(x, x, t) for all (x, t) ∈ �× [0,∞).
Recall that

H(x, y, t) = [t p(x,y) + μ(x, y)tq(x,y)] log(e + ωt) for all (x, y, t) ∈ �×�× [0,∞).

Throughout this paper we will assume the following hypotheses:

(H1) p, q ∈ C(RN × R
N ) such that 1 < inf(x,y)∈RN×RN p(x, y) ≤ sup(x,y)∈RN×RN < N

s
and p(x, y) ≤ q(x, y) for all (x, y) ∈ R

N × R
N with U1 := {(x, y) ∈ R

N ×
R

N : p(x, y) < q(x, y)} � U0 := {(x, y) ∈ R
N × R

N : μ(x, y) = 0} and p(x, y) =
p(y, x), q(x, y) = q(y, x) for all (x, y) ∈ R

N × R
N . 0 ≤ μ(·, ·) ∈ L∞(RN × R

N )

such that μ(x, y) = μ(y, x) and μ(x) = 0 �⇒ μ(x, y) = 0 for all (x, y) ∈
R

N × R
N .

Note that

p∗
s (x, y) = Np(x, y)

N − sp(x, y)
.

In the sequel, we use the notations

p− := inf
(x,y)∈�×�

p(x, y) and q− := sup
(x,y)∈�×�

p(x, y).

Moreover, q−, q+ can be defined in the same way.

123
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Under the hypotheses of (H1), we deduce from the argument in Section 5 of [23] that h
satisfies assumptions (ϕ1)–(ϕ3) with � = p− and m = q+ + 1.

Let (H1) hold true, it is easy to check that H given in (1.3) is a locally integrable N -
function. Then the modular function related to Ĥ is given as

ρĤ(u) =
∫
�

Ĥ(x, |u|) dx

while the corresponding Musielak–Orlicz space is

LĤ(�) = {u ∈ M(�) : ρĤ(λu) < +∞, for some λ > 0},
endowed with the Luxemburg norm

‖u‖Ĥ = inf
{
λ > 0 : ρĤ

(u
λ

)
≤ 1

}
.

Furthermore, the fractional Musielak–Orlicz space Ws,H(�) is defined as

Ws,H(�) :=
{
u ∈ LĤ(�) : ρs,H(λu) < ∞ for some λ > 0

}
,

where

ρs,H(u) :=
∫
�

∫
�

H(x, y, |Dsu(x, y)|) dν for s ∈ (0, 1),

with

dν : dx dy

|x − y|N and Dsu(x, y) := u(x)− u(y)

|x − y|s ,

where dν is a regular Borel measure on � × �. The Musielak–Sobolev space Ws,H(�) is
equipped with the norm

‖u‖s,H := ‖u‖Ĥ + [u]s,H,
where [ · ]s,H is called (s,H)-Gagliardo seminorm defined by

[u]s,H := inf
{
λ > 0 : ρs,H

(u
λ

)
≤ 1

}
.

Furthermore, we introduce the following closed subspace of Ws,H(�) defined by

Ws,H
0 (�) =

{
u ∈ Ws,H(RN ) : u = 0 a.e. in R

N \�
}
.

It is worth to note that since the function H fulfills assumptions (ϕ1)–(ϕ3), we infer
from [23] that the correspondingMusielak–Orlicz Lebesgue space LĤ(�) and the fractional
Musielak–Sobolev space Ws,H

0 (�) are separable and reflexive Banach spaces.
The following boundedness condition is used to established a generalized Poincaré type

inequality.

Definition 2.4 Let H ∈ N (� × �), then H is said to satisfy the fractional boundedness
condition if there exist some constants C1,C2 > 0 such that

0 < C1 ≤ H(x, y, 1) ≤ C2 for all (x, y) ∈ �×�. (B f )

123
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It is easy to check that, if hypotheses (H1) hold, then hypotheses (B f ) is satisfied withC1 = 1
and C2 = (1 + ‖μ‖∞) log(e + ω).

The next proposition can be found in the work by Azroul–Benkirane–Shimi–Srati [5,
Theorem 2.3].

Proposition 2.5 Let s ∈ (0, 1), and let� be a bounded domain in R
N with Lipschitz bound-

ary. If (H1) hold, then one can find a positive constant C satisfying

‖u‖Ĥ ≤ C[u]s,H,
for all u ∈ Ws,H

0 (�).

By Proposition 2.5, for all u ∈ Ws,H
0 (�), we can find λ1 > 0 such that∫

�

Ĥ(x, |u(x)|) dx ≤ λ1

∫
�

∫
�

H(x, y, |Dsu(x, y)|) dν.

Moreover, [ · ]s,H is an equivalent norm of ‖ · ‖s,H on Ws,H
0 (�), that is

[u]s,H ≤ ‖u‖s,H ≤ C ′[u]s,H for all u ∈ Ws,H
0 (�), (2.1)

with C ′ being a positive constant.
The following proposition gives the relation between the norm of the space LĤ(�) and

its modular, the proof can be found in Theorem 2.21 of Lu–Vetro–Zeng [47].

Proposition 2.6 Let hypotheses (H1) be satisfied, u ∈ LĤ(�) and the modular is defined by

ρĤ(u) =
∫
�

[
|u|p(x) + μ(x)|u|q(x)

]
log(e + ω|u|) dx for all u ∈ LĤ(�).

Then for σ > 0, the following hold:

(i) ‖u‖Ĥ = λ ⇔ ρĤ(
u
λ
) = 1 with u �= 0;

(ii) ‖u‖Ĥ < 1 (resp.= 1,> 1) ⇔ ρĤ(u) < 1 (resp.= 1,> 1);

(iii) if ‖u‖Ĥ < 1, then C−1
σ ‖u‖q++σ

Ĥ ≤ ρĤ(u) ≤ ‖u‖p−
Ĥ ;

(iv) if ‖u‖Ĥ > 1, then ‖u‖p−
Ĥ ≤ ρĤ(u) ≤ Cσ ‖u‖q++σ

Ĥ ;
(v) ‖u‖Ĥ → 0 ⇔ ρĤ(u) → 0;
(vi) ‖u‖Ĥ → ∞ ⇔ ρĤ(u) → ∞;
(vii) ‖u‖Ĥ → 1 ⇔ ρĤ(u) → 1;

(viii) if un → u in LĤ(�) then ρĤ(un) → ρĤ(u).

Remark 2.7 For γ > 0, we consider the function fσ ′ : [0,∞) → [0,∞) defined as

fσ ′ = tσ
′

logγ (e + ωt)
with σ ′, γ > 0 and ω ≥ 0.

Obviously, one can find σ ∗ > 0 such that fσ ′ > 0 is increasing for all σ ′ ≥ σ ∗. Also,
for 0 < σ ′ < σ ∗, there exist points t1, t2 such that the following hold: if 0 < t < t1 and
t > t2, then fσ ′ is increasing, conversely, fσ ′ is decreasing for t1 ≤ t ≤ t2. So that for any
0 < a ≤ b, we have fσ ′(a) ≤ Cσ ′ · fσ ′(b) with Cσ ′ = fσ ′ (t1)

fσ ′ (t2) > 1. Hence, as done in the
proof of Proposition 2.21 of [47], we can get the same conclusions given in Proposition 2.6
with

ρĤ(u) :=
∫
�

[
|u|p(x) + μ(x)|u|q(x)

]
logγ (e + ω|u|) dx,

where γ > 0.
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Similar to Proposition 2.6, we deduce the following relations between the semi-modular
ρs,H(·) and the (s,H)-Gagliardo seminorm [·]s,H.

Proposition 2.8 Let (H1) be satisfied and u ∈ Ws,H(�).Then, for σ > 0, the following hold:

(i) if [u]s,H < 1, then C−1
σ [u]q++σ

s,H ≤ ρs,H(u) ≤ [u]p−
s,H;

(ii) if [u]s,H > 1, then [u]p−
s,H ≤ ρs,H(u) ≤ Cσ [u]q++σ

s,H .

Under conditions (ϕ1)–(ϕ3) we see that Ĥ : [0,+∞) → [0,+∞) is an increasing home-
omorphism. Next, we introduce the inverse function of Ĥ denoted by Ĥ−1 satisfying the
following conditions:∫ 1

0

Ĥ−1(x, τ )

τ
N+s
N

dτ < ∞ and
∫ ∞

1

Ĥ−1(x, τ )

τ
N+s
N

dτ = ∞ for all x ∈ �.

We denote by Ĥ∗
s the Musielak–Sobolev conjugate function of Ĥ and the inverse function of

Ĥ∗
s is defined by

(Ĥ∗
s )

−1(x, t) =
∫ t

0

Ĥ−1(x, τ )

τ
N+s
N

dτ for all x ∈ � and for all t ≥ 0.

In the sequel, we denote by X ↪→ Y the continuous embedding from the space X into the
space Y . Also, denote by X ↪→↪→ Y the compact embedding from X into Y . The next result
is due to Azroul–Benkirane–Shimi–Srati [5, Lemma 2.3].

Lemma 2.9 Let 0 < s′ < s < 1, � be a bounded domain in R
N and suppose (H1). Then

there exists holds the continuous embedding Ws,H(�) ↪→ Ws′,r (�) with r ∈ [1, p−).

Next, we give the definition of a Young function.

Definition 2.10 A function ϕ : [0,∞) → [0,∞] is called a Young function if it is convex,
continuous, non-constant, ϕ(0) = 0 and ϕ(t) = ∫ t

0 a(τ ) dτ , where a : [0,∞) → [0,∞]
is a non-decreasing function. Moreover, we denote the left-continuous inverse of ϕ by
ϕ−1 : [0,∞) → [0,∞) given by

ϕ−1(t) = inf{τ ≥ 0 : ϕ(τ) ≥ t}
for t ≥ 0.

Let H be a Young function such that∫ ∞ (
t

H(t)

) s
N−s

dt = ∞ and
∫
0

(
t

H(t)

) s
N−s

dt < ∞. (2.2)

Then the corresponding Orlicz target is defined as

HN
s
(t) = H(T−1(t)) (2.3)

for all t ≥ 0, where

T (t) =
(∫ t

0

(
τ

H(τ )

) s
N−s

dτ

) N−s
N

for all t ≥ 0.
The following continuous embedding with respect to the fractional Orlicz-Sobolev space

Ws,H (�) is taken from Alberico–Cianchi–Pick–Slavíková [1, Theorem 8.1].
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Theorem 2.11 Let� ⊂ R
N be a bounded domain with Lipschitz boundary and let s ∈ (0, 1).

If H is a Young function satisfying conditions (2.2) and HN
s
is given by (2.3), then there holds

Ws,H (�) ↪→ L
H N

s (�),

and the embedding is optimal.

By the definition of Ws,H
0 (�), under the hypotheses of Theorem2.11, we deduce that

Ws,H
0 (�) ↪→ Ws,H (�) ↪→ L

H N
s (�). Referring to Example 8.3 by Alberico–Cianchi–

Pick–Slavíková [1], we see that if we set

H := t p
−
log(e + ωt)+ μ(x)tq

−
log(e + ωt),

then

HN
s

∼ H∗ := t (p
−)∗s log

(p−)∗s
N (e + ωt)+ μ(x)γ t (q

−)∗s log
(q−)∗s

N (e + ωt),

for 1 ≤ p−, q− < N
s , for all t ≥ 0 and γ > 0. Furthermore, we introduce that following

function:

B(x, t) = tς(x) log
ς(x)
N (e + ωt)+ μ(x)γ tτ(x) log

τ(x)
N (e + ωt)

for all γ > 0, for all x ∈ �, and for all t ∈ [0,∞) with ς, τ ∈ C(�) such that 1 < ς(x) ≤
(p−)∗s and 1 < τ(x) ≤ (q−)∗s for all x ∈ �. It is not hard to see that H ≺ H as well as
B ≺ HN

s
, so we conclude that

Ws,H
0 (�) ↪→ Ws,H

0 ↪→ L
H N

s (�) ↪→ LB(�). (2.4)

According toTheorem9.1 byAlberico–Cianchi–Pick–Slavíková [1],we get that following
compact embedding theorem.

Proposition 2.12 Let � ⊂ R
N be a bounded domain with Lipschitz boundary, and let s ∈

(0, 1). Assume that H is a Young function satisfying conditions (2.2) and HN
s
is given by

(2.3). If G is a Young function such that G � HN
s
, then there holds

Ws,H (�) ↪→↪→ LG(�).

Hence, it follows that Ws,H
0 (�) ↪→ Ws,H (�) ↪→↪→ LG(�).

Finally, we recall some background from the theory of operators of monotone type.

Definition 2.13 Let X be a reflexive Banach space with X∗ being the corresponding dual
space, the duality pairing is denoted by 〈·, ·〉 and A : X → X∗.

(i) A satisfies the (S+)-property if un⇀u in X and lim supn→∞〈Aun, un − u〉 ≤ 0 imply
un → u in X ;

(ii) A is monotone (strictly monotone) if 〈Au − Av, u − v〉 ≥ 0 (> 0) for all u, v ∈ X
such that u �= v;

(iii) A is coercive if there exists a function g : [0,∞) → R with lim
t→∞ g(t) = ∞ such that

〈Au, u〉
‖u‖X ≥ g(‖u‖X ) for all u ∈ X .
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According to Lemma 3.10 of [23], we have the following properties of the functional

Is,H = ρs,H(u) :=
∫
�

∫
�

H(x, y, |Dsu(x, y)|) dν

and its Gâteaux derivative.

Proposition 2.14 Let (H1) be satisfied. Then Is,H ∈ C1(Ws,H
0 (�),R) and the Gâteaux

derivative of Is,H is given by

〈A(u), v〉 =
∫
�

∫
�

H′(x, y, |Dsu(x, y)|)Dsv(x, y) dν,

for all u, v ∈ Ws,H
0 (�). Moreover, A satisfies the (S+)-property.

We end this section with the following iteration lemma, which is the important tool for
the proof of the boundedness results of solutions, see Ho–Kim [36, 37, Lemma 4.3].

Lemma 2.15 Let {Zn}, n = 0, 1, 2, . . . , be a sequence of positive numbers satisfying the
recursive inequality

Zn+1 ≤ Mkn
(
Z1+γ1
n + Z1+γ2

n

)
, n = 0, 1, 2, . . . ,

for some k > 1, M > 0 and γ2 ≥ γ1 > 0. If

Z0 ≤ min

(
1, (2M)

− 1
γ1 k

− 1
γ 21

)

or

Z0 ≤ min

(
(2M)

− 1
γ1 k

− 1
γ 21 , (2M)

− 1
γ2 k

− 1
γ1γ2

− γ2−γ1
γ 22

)
,

then Zn ≤ 1 for some n ∈ N ∪ {0}. Furthermore,

Zn ≤ min

(
1, (2M)

− 1
γ1 k

− 1
γ 21 k

− n
γ1

)
, for all n ≥ n0,

with n0 being the smallest n ∈ N ∪ {0} fulfilling Zn ≤ 1. In particular, Zn → 0 as n → ∞.

3 Maximum principle

In this section, we establish the maximum principle for functions u ∈ Ws,H(�). The proof
is inspired by Chen–Li [17].

Theorem 3.1 Let (H1) be satisfied and� be a bounded domain in R
N . Let u ∈ Ws,H(�) be

lower semi-continuous on � such that{
(−�)sH u(x) ≥ 0, x ∈ �,

u(x) ≥ 0, x ∈ R
N \�, (3.1)

then
u(x) ≥ 0 in �. (3.2)
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Moreover, if there exists some point x0 ∈ � such that u(x0) = 0, then u(x) = 0 for
a.a. x ∈ R

N . In addition, if we assume that

lim|x |→∞u(x) ≥ 0,

then we have the same conclusions for � being unbounded.

Proof Suppose that (3.2) fails, then the lower semi-continuity of u on � implies that there
exists x∗ ∈ � such that

u(x∗) = min
�

u < 0.

Taking u(x) ≥ 0 for x ∈ R
N \� into account, we calculate that

(−�)sH u(x∗) = CN ,s,p,q PV
∫
RN( |u(x∗)− u(y)|p(x∗,y)−2(u(x∗)− u(y))

|x∗ − y|N+sp(x∗,y) log

(
e + ω

|u(x∗)− u(y)|
|x∗ − y|s

)

+ ω|u(x∗)− u(y)|p(x∗,y)−1(u(x∗)− u(y))

|x∗ − y|N+s(p(x∗,y)+1)
(
e + ω

|u(x∗)−u(y)|
|x∗−y|s

)

+ μ(x∗, y) |u(x
∗)− u(y)|q(x∗,y)−2(u(x∗)− u(y))

|x∗ − y|N+sq(x∗,y) log

(
e + ω

|u(x∗)− u(y)|
|x∗ − y|s

)

+ μ(x∗, y) ω|u(x∗)− u(y)|q(x∗,y)−1(u(x∗)− u(y))

|x∗ − y|N+s(q(x∗,y)+1)
(
e + ω

|u(x∗)−u(y)|
|x∗−y|s

)) dy

≤ CN ,s,p,q

∫
RN \�

( |u(x∗)− u(y)|p(x∗,y)−2(u(x∗)− u(y))

|x∗ − y|sp(x∗,y) log

(
e + ω

|u(x∗)−u(y)|
|x∗ − y|s

)

+ ω|u(x∗)− u(y)|p(x∗,y)−1(u(x∗)− u(y))

|x∗ − y|N+s(p(x∗,y)+1)
(
e + ω

|u(x∗)−u(y)|
|x∗−y|s

)

+ μ(x∗, y) |u(x
∗)− u(y)|q(x∗,y)−2(u(x∗)− u(y))

|x∗ − y|sq(x∗,y) log

(
e + ω

|u(x∗)− u(y)|
|x∗ − y|s

)

+ μ(x∗, y) ω|u(x∗)− u(y)|q(x∗,y)−1(u(x∗)− u(y))

|x∗ − y|N+s(q(x∗,y)+1)
(
e + ω

|u(x∗)−u(y)|
|x∗−y|s

)) dy

< 0.

The above inequality contradicts to the first inequality in (3.1), thus, (3.2) holds true.
On the other hand, if there exists some point x0 ∈ � such that u(x0) = 0, then we have

(−�)sH u(x0) = CN ,s,p,q PV
∫
R

( |u(y)|p(x0,y)−2(−u(y))

|x0 − y|N+sp(x0,y)
log

(
e + ω

|u(y)|
|x0 − y|s

)

+ ω|u(y)|p(x0,y)−1(−u(y))

|x0 − y|N+s(p(x0,y)+1)
(
e + ω

|u(y)|
|x0−y|s

)

+ μ(x0, y)
|u(y)|q(x0,y)−2(−u(y))

|x0 − y|sq(x0,y) log

(
e + ω

|u(y)|
|x0 − y|s

)
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+ μ(x0, y)
ω|u(y)|q(x0,y)−1(−u(y))

|x0 − y|N+s(q(x0,y)+1)
(
e + ω

|u(y)|
|x0−y|s

)) dy

≤ 0,

Combining this with the first inequality in (3.1) implies that the above integral must be zero.
Note that we have proved that u ≥ 0 in R

N , thus u(x) = 0 for a.a. x ∈ R
N .

Suppose now � is unbounded. Then, since lim|x |→∞u(x) ≥ 0 and u is lower semi-
continuous, if u(x) ≥ 0 in �, we can find x∗ ∈ � such that u(x∗) = min� u < 0. As done
in the above proof we can show the remaining conclusions. ��

The following corollary can be directly derived sinceH3 given in (P3) is a special case of
H.

Corollary 3.2 Let (H1) be satisfied with 1 < p(·, ·) ≡ p, 1 < q(·, ·) ≡ q and let � be a
bounded domain in R

N . Let u ∈ Ws,H3(�) be lower semi-continuous on � such that{
(−�)sH3

u(x) ≥ 0, x ∈ �,

u(x) ≥ 0, x ∈ R
N \�,

then
u(x) ≥ 0 in �.

Moreover, if there exists some point x0 ∈ � such that u(x0) = 0, then u(x) = 0 for
a.a. x ∈ R

N . In addition, if we assume that

lim|x |→∞u(x) ≥ 0,

then we have the same conclusions for � being unbounded.

In particular, ifω = 0, i.e.H(x, y, t) = t p(x,y)+μ(x, y)tq(x,y) = H2(x, y, t) for (x, y) ∈
R

N ×R
N and for t ∈ [0,∞). Due to the homogeneity of t p(·,·) and tq(·,·), we can establish the

maximum principle for anti-symmetric functions, which is essential for applying the method
of moving planes to investigating symmetry and monotonicity of solutions, see for example
Chen–Li [17] and Hu–Peng [40]. To this end, we introduce the following notations. First, we
define the moving planes as

Tλ =
{
x ∈ R

N : x1 = λ for some λ ∈ R
N
}
,

and define the left region of the plane Tλ as

� =
{
x ∈ R

N : x1 < λ
}
.

Moreover, we denote the reflection of x of the plane Tλ by xλ, that is

xλ = (2λ− x1, x2, . . . , xN ),

and let

w = uλ(x)− u(x) = u(xλ)− u(x).

Theorem 3.3 Let (H1) be satisfied and suppose that ω = 0. Let � be a bounded domain in
� and u ∈ Ws,H2(�) be lower semi-continuous on � such that{

(−�)sH2
uλ(x)− (−�)sH2

u(x) ≥ 0, x ∈ �,

w(x) ≥ 0, x ∈ � \�, (3.3)
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then
w(x) ≥ 0 in �. (3.4)

Moreover, if there exists some point x0 ∈ � such that w(x0) = 0, then w(x) = 0 for
a.a. x ∈ R

N . In addition, if we assume that

lim|x |→∞w(x) ≥ 0,

then we have the same conclusions for � being unbounded.

Proof Suppose that (3.4) is not true, then we can find a point x∗ ∈ � such that

w(x∗) = min
�

w < 0.

We set G1(x, y, t) := |t |p(x,y)−2t and G2(x, y, t) := |t |q(x,y)−2t . It is not hard to see that
t 
→ G1(x, y, t) and t 
→ G2(x, y, t) are strictly increasing functions with

(G1)′(x, y, t) = (p(x, y)− 1)|t |p(x,y)−2 ≥ 0,

(G2)′(x, y, t) = (q(x, y)− 1)|t |q(x,y)−2 ≥ 0.

The following inequalities hold

(−�)sH2
uλ(x

∗)− (−�)sH2
u(x∗)

= CN ,s,p,q PV
∫
RN

G1 [x∗, y, uλ(x∗)− uλ(y)
]− G1 [x∗, y, u(x∗)− u(y)

]
|x∗ − y|N+sp(x∗,y) dy

+CN ,s,p,q PV
∫
RN

G2 [x∗, y, uλ(x∗)− uλ(y)
]− G2 [x∗, y, u(x∗)− u(y)

]
|x∗ − y|N+sq(x∗,y) μ(x∗, y) dy

≤ CN ,s,p,q PV
∫
�

G1 [x∗, y, uλ(x∗)− uλ(y)
]− G1 [x∗, y, u(x∗)− u(y)

]
|x∗ − y|N+sp(x∗,y) dy

+CN ,s,p,q PV
∫
�

G1 [x∗, y, uλ(x∗)− u(y)
]− G1 [x∗, y, u(x∗)− uλ(y)

]
|x∗ − yλ|N+sp(x∗,y) dy

+CN ,s,p,q PV
∫
�

G2 [x∗, y, uλ(x∗)− uλ(y)
]− G2 [x∗, y, u(x∗)− u(y)

]
|x∗ − y|N+sq(x∗,y) μ(x∗, y) dy

+CN ,s,p,q PV
∫
�

G2 [x∗, y, uλ(x∗)− u(y)
]− G2 [x∗, y, u(x∗)− uλ(y)

]
|x∗ − yλ|N+sq(x∗,y) μ(x∗, y) dy

≤ CN ,s,p,q PV
∫
�

[
1

|x∗ − y|N+sp(x∗,y) − 1

|x∗ − yλ|N+sp(x∗,y)

]

×
[
G1 [x∗, y, uλ(x∗)− uλ(y)

]− G1 [x∗, y, u(x∗)− u(y)
]]

dy

+CN ,s,p,q PV
∫
�

[
G1 [x∗, y, uλ(x∗)− uλ(y)

]− G1 [x∗, y, u(x∗)− u(y)
]

+G1 [x∗, y, uλ(x∗)− u(y)
]− G1 [x∗, y, u(x∗)− uλ(y)

]] dy

|x∗ − yλ|N+sp(x∗,y)

+CN ,s,p,q PV
∫
�

[
1

|x∗ − y|N+sq(x∗,y) − 1

|x∗ − yλ|N+sq(x∗,y)

]

×
[
G2 [x∗, y, uλ(x∗)− uλ(y)

]− G2 [x∗, y, u(x∗)− u(y)
]]
μ(x∗, y) dy
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+CN ,s,p,q PV
∫
�

[
G2 [x∗, y, uλ(x∗)− uλ(y)

]− G2 [x∗, y, u(x∗)− u(y)
]

+G2 [x∗, y, uλ(x∗)− u(y)
]− G2 [x∗, y, u(x∗)− uλ(y)

]]
μ(x∗, y)

dy

|x∗ − yλ|N+sq(x∗,y)

= CN ,s,p,q PV(I1 + I2 + I3 + I4). (3.5)

Moreover, since

1

|x∗ − y| >
1

|x∗ − yλ| > 0

for any x∗, y ∈ �, and by themonotonicity ofG1,G2 alongwith [uλ(x∗)−uλ(y)]−[u(x∗)−
u(y)] = w(x∗) − w(y) ≤ 0 but not equal to zero, we have I1 < 0, and similarly, taking
μ ≥ 0 into account, we deduce that I3 ≤ 0.

On the other hand, by applying the mean value theorem we get

I2 =
∫
�

[
G1 [x∗, y, uλ(x∗)− uλ(y)

]− G1 [x∗, y, u(x∗)− uλ(y)
]

+G1 [x∗, y, uλ(x∗)− u(y)
]− G1 [x∗, y, u(x∗)− u(y)

]] dy

|x∗ − yλ|N+sp(x∗,y)

= w(x∗)
∫
�

[(
G1)′ (ξ(y))+ (

G1)′ (ζ(y))] dy

|x∗ − yλ|N+sp(x∗,y) ≤ 0,

where ξ(y) ∈ (uλ(x∗)− uλ(y), u(x∗)− uλ(y)) and ζ(y) ∈ (uλ(x∗)− u(y), u(x∗)− u(y)).
Thus I2 ≤ 0, and analogously we get I4 ≤ 0 (note thatμ ≥ 0). Recall that I1 < 0 and I3 ≤ 0,
applying (3.5) we conclude that

(−�)sH2
uλ(x

∗)− (−�)sH2
u(x∗) < 0,

which contradicts (3.3). Hence, it must hold w(x∗) ≥ 0.
Moreover, if we assume that w(x0) = 0 at some point x0 ∈ �, then x0 is a minimum

of w in �, which indicates I2 = I4 = 0. So, (3.3) implies I1, I3 ≥ 0. However, since
[uλ(x0) − uλ(y)] − [u(x0) − u(y)] = w(x0) − w(y) = −w(y) ≤ 0, it holds I1, I3 ≤ 0.
Hence, we conclude that I1 = I3 = 0, thus

w(y) = 0 for a.a. y ∈ �,

and by the antisymmetry of w we get

w(y) = 0 for a.a. y ∈ R.

Similarly, we get the conclusion for the case that � is unbounded. ��
Moreover, since H4 given in (P4) is a special case of H2 given in (P2), we have the

following corollary.

Corollary 3.4 Let (H1) be satisfied with ω = 0 and 1 < p(·, ·) ≡ p, 1 < q(·, ·) ≡ q. Let �
be a bounded domain in � and u ∈ Ws,H4(�) be lower semi-continuous on � such that{

(−�)sH4
uλ(x)− (−�)sH4

u(x) ≥ 0, x ∈ �,

w(x) ≥ 0, x ∈ � \�,
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then
w(x) ≥ 0 in �.

Moreover, if there exists some point x0 ∈ � such that w(x0) = 0, then w(x) = 0 for
a.a. x ∈ R

N . In addition, if we assume that

lim|x |→∞w(x) ≥ 0,

then we have the same conclusions for � being unbounded.

4 Boundedness of weak solutions

The aim of this section is to obtain a priori bounds for solutions to problem (1.1) with
subcritical and critical growth. The proofs are mainly inspired by Ho–Kim [35], Ho–Kim–
Winkert–Zhang [38], Ho–Winkert [39], and Winkert–Zacher [62, 63] using De Giorgi’s
iteration along with the localization method. In this section, we denote by Ci (i ∈ N) positive
constants.

Given a fixed u ∈ M(�) we define

F(u) = {
ξ ∈ M(�) : ξ(x) ∈ f (x, u(x)) for a.a. x in �

}
,

which is the measurable selection of f (·, u).
First, we introduce the following definition of weak solutions to problem (1.1), which are

well defined under the hypotheses given in this section.

Definition 4.1 A function u ∈ Ws,H
0 (�) is said to be a weak solution of problem (1.1), if

there exist ξ(x) ∈ f (x, u(x)) for a.a. x ∈ � satisfying∫
�

∫
�

H′(x, y, |Dsu(x, y)|)Dsv(x, y) · dν =
∫
�

ξv dx (4.1)

for all v ∈ Ws,H
0 (�).

4.1 Subcritical growth

First, we consider the subcritical case and suppose appropriate growth conditions on f that
guarantee that the set F(u) given above is not empty.

(H2) (i) Assume f : � × R → 2R \ {∅} is graph measurable and f (x, ·) : R × R
N →

2R \ {∅} is upper semicontinuous for a.a. x ∈ �.
(ii) Let γ > 0, ς, τ ∈ C(�) such that p+ < ς(x) < p∗

s (x) and q
+ < τ(x) < q∗

s (x)
for all x ∈ �. Suppose that there exists a constant β > 0 satisfying

sup{|ξ | : ξ ∈ f (x, t)}
≤ β

[
|t |ς(x)−1 log

ς(x)
N (e + ω|t |)+ μ(x)γ |t |τ(x)−1 log

τ(x)
N (e + ω|t |)+ 1

]

for a.a. x ∈ � and for all t ∈ R.

The next theorem is one of our main results in this section.
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Theorem 4.2 Let hypotheses (H1) and (H2) be satisfied. Then, for any weak solution u ∈
Ws,H

0 (�) of problem (1.1), it holds that u ∈ L∞(�) and

‖u‖∞,� ≤ C max
{
‖u‖�1B,�, ‖u‖�2B,�

}
, (4.2)

where the positive constants C, �1, �2 are independent of u.

Proof Assume that u ∈ Ws,H
0 (�) is a weak solution of problem (1.1). Our proof is divided

into several steps.
Step 1. Constructing the iteration sequence and developing basic estimates.
For any n ∈ N0 we define

Zn :=
∫
Aψn

[
(u − ψn)

ς(x) log
ς(x)
N (e + ω(u − ψn))

+ μ(x)γ (u − ψn)
τ(x) log

τ(x)
N (e + ω(u − ψn))

]
dx,

(4.3)

with

Aψ := {x ∈ � : u(x) > ψ}, ψ ∈ R. (4.4)

Moreover, for n ∈ N0, ψn is defined by

ψn := ψ∗
(
2 − 1

2n

)
, (4.5)

where ψ∗ > 0 will be specified later. Obviously, for all n ∈ N0, we have

ψn ↗ 2ψ∗ and ψ∗ ≤ ψn < 2ψ∗,
Aψn+1 ⊂ Aψn and Zn+1 ≤ Zn .

By the definition of ψn , we obtain

u(x)− ψn ≥ u(x)

(
1 − ψn

ψn+1

)
= u(x)

2n+2 − 1
for a.a. x ∈ Aψn+1

and

∣∣Aψn+1

∣∣ ≤
∫
Aψn+1

(
u − ψn

ψn+1 − ψn

)ς(x)
log

ς(x)
N (e + ω(u − ψn)) dx

≤
∫
Aψn

2ς(x)(n+1)

ψ
ς(x)∗

(u − ψn)
ς(x) log

ς(x)
N (e + ω(u − ψn)) dx .

This implies

u(x) ≤ (
2n+2 − 1

)
(u(x)− ψn) for a.a. x ∈ Aψn+1 and for all n ∈ N0, (4.6)∣∣Aψn+1

∣∣ ≤
(
ψ

−ς−
∗ + ψ

−ς+
∗

)
2(n+1)ς+

Zn ≤ 2
(
1 + ψ

−ς+
∗

)
2(n+1)ς+

Zn for all n ∈ N0.

(4.7)
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Let un := (u − ψn+1)+ for n ∈ N0. We claim that∫
�

∫
�

( |un(x)− un(y)|p(x,y)
|x − y|sp(x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)
|un(x)− un(y)|q(x,y)

|x − y|sq(x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dν

≤ C1

(
1 + ψ

−ς+
∗

)
2n(α0+

α0
N )Zn,

(4.8)

where α0 := max{ς+, τ+}. Now, we are going to verify (4.8). To this end, we take un =
(u − ψn+1)+ ∈ Ws,H

0 (�) as test function in (4.1) and obtain

∫
�

∫
�

( |u(x)− u(y)|p(x,y)−2(u(x)− u(y))(un(x)− un(y))

|x − y|sp(x,y) log

(
e + ω

|u(x)− u(y)|
|x − y|s

)

+ ω|u(x)− u(y)|p(x,y)−1(u(x)− u(y))(un(x)− un(y))

|x − y|s(p(x,y)+1)
(
e + ω

|u(x)−u(y)|
|x−y|s

)

+ μ(x, y)
|u(x)− u(y)|q(x,y)−2(u(x)− u(y))(un(x)− un(y))

|x − y|sq(x,y) log

(
e + ω

|u(x)− u(y)|
|x − y|s

)

+ μ(x, y)
ω|u(x)− u(y)|q(x,y)−1(u(x)− u(y))(un(x)− un(y))

|x − y|s(q(x,y)+1)
(
e + ω

|u(x)−u(y)|
|x−y|s

) )
dν

=
∫
�
ξun(x) dx .

Since (u(x)−u(y))(un(x)−un(y)) ≥ (un(x)−un(y))2 and |u(x)−u(y)| ≥ |un(x)−un(y)|,
also, u ≥ u − ψn+1 ≥ 0 on Aψn+1 , by the above equality, we calculate that

∫
�

∫
�

( |un(x)− un(y)|p(x,y)
|x − y|sp(x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)
|un(x)− un(y)|q(x,y)

|x − y|sq(x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dν

≤
∫
�
β

[
|u|ς(x)−1 log

ς(x)
N (e + ω|u|)+ μ(x)γ |u|τ(x)−1 log

τ (x)
N (e + ω|u|)+ 1

]
un(x) dx

≤ 2β
∫
Aψn+1

[
uς(x) log

ς(x)
N (e + ωu)+ μ(x)γ uτ(x) log

τ (x)
N (e + ωu)+ 1

]
dx

≤ C2

∫
Aψn+1

([(
2n+2 − 1

)
(u − ψn)

]ς(x)
log

ς(x)
N

[
e + ω

(
2n+2 − 1

)
(u − ψn)

]

+μ(x)γ
[(

2n+2 − 1
)
(u − ψn)

]τ(x)
log

τ (x)
N

[
e + ω

(
2n+2 − 1

)
(u − ψn)

])
dx + C2

∣∣Aψn+1

∣∣
≤ C1

(
1 + ψ

−ς+
∗

)
2n(α0+

α0
N )Zn, (4.9)

which associated (4.7) indicates (4.8).
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Step 2. Localization and estimating Zn+1 by Zn .
Let Bi ⊂ R

N be open balls of radius R with i ∈ I := {1, · · · ,m} and let {Bi }i∈I be a
finite open covering of � such that �i := Bi ∩ � for i ∈ I are Lipschitz domains. For any
i ∈ I, we choose R small enough such that

|�i | < 1, p+
i := sup

(x,y)∈Bi×Bi
p(x, y) < ς−

i := inf
x∈Bi∩�

ς(x) ≤ ς+
i := sup

x∈Bi∩�
ς(x) <

(
p−
i

)∗
s
(4.10)

and q+
i := sup

(x,y)∈Bi×Bi

q(x, y) < τ−
i := inf

x∈Bi∩�
τ(x) ≤ τ+

i := sup
x∈Bi∩�

τ(x) <
(
q−
i

)∗
s
. (4.11)

Let {ηi }mi=1 be a partition of unity of � with respect to {Bi }mi=1, namely, for each i ∈ I, we
have

ηi ∈ C∞
c (RN ), supp(ηi ) ⊂ Bi , 0 ≤ ηi ≤ 1 and

m∑
i=1

ηi = 1 on �. (4.12)

By applying Jensen’s inequality and the following interpolation inequality

tα2 ≤ tα1 + tα3 for all t ≥ 0 and for all α1, α2, α3 with 0 < α1 ≤ α2 ≤ α3, (4.13)

we get

Zn+1 =
∫
Aψn+1

(
uς(x)n log

ς(x)
N (e + ωun)+ μ(x)γ uτ(x)n log

τ(x)
N (e + ωun)

)
dx

≤ mmax{ς+,τ+}
m∑
i=1

∫
Aψn+1∩�i

(
|unηi |ςi (x) log

ςi (x)
N (e + ω|unηi |)

+ μ(x)γ |unηi |τi (x) log
τi (x)
N (e + ω|unηi |)

)
dx

≤ mmax{ς+,τ+}
m∑
i=1

∫
Aψn+1∩�i

(
|unηi |ς+

i log
ςi+
N (e + ω|unηi |)

+ μ(x)γ |unηi |τ+
i log

τ
+
i
N (e + ω|unηi |)+ |unηi |ς−

i log
ς
−
i
N (e + ω|unηi |)

+ μ(x)γ |unηi |τ−
i log

τ
−
i
N (e + ω|unηi |)

)
dx .

(4.14)

For any i ∈ I, r1 > 0, and r2 > 0, we define

Ln,i (r1, r2) :=
∫
Aψn+1∩�i

[
|unηi |r1 log

r1
N (e + ω|unηi |)+ μ(x)γ |unηi |r2 log

r2
N (e + ω|unηi |)

]
dx .

(4.15)

Then, from (4.14) and (4.15) it follows that

Zn+1 ≤ mmax{ς+,τ+}
m∑
i=1

[
Ln,i (ς

−
i , τ

−
i ), Ln,i (ς

+
i , τ

+
i )
]
. (4.16)

Let � ∈ {+,−} for i ∈ I. Using (4.10) and Hölder’s inequality for ε > 0 satisfying
ς� + ε < (p−

i )
∗
s and τ

� + ε < (q−
i )

∗
s we arrive at
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Ln,i (ς
�
i , τ

�
i ) =

∫
Aψn+1∩�i

[
|unηi |ς

�
i log

ς�i
N (e + ω|unηi |)+ μ(x)γ |unηi |τ

�
i log

τ�i
N (e + ω|unηi |)

]
dx

≤
(∫

�
|unηi |ς

�
i +ε log

ς�i +ε
N (e + ω|unηi |) dx

) ς�i
ς�i +ε

|Aψn+1 ∩�i |
ε

ς�i +ε

+
(∫

�
μ(x)γ |unηi |τ

�
i +ε log

τ�i +ε
N (e + ω|unηi |) dx

) τ�i
τ�i +ε

|Aψn+1 ∩�i |
ε

τ�i +ε

≤ |Aψn+1 ∩�i |
ε

ς++τ++ε

⎡
⎢⎢⎣
(∫

�
|unηi |ς

�
i +ε log

ς�i +ε
N (e + ω|unηi |) dx

) ς�i
ς�i +ε

+
(∫

�
μ(x)γ |unηi |τ

�
i +ε log

τ�i +ε
N (e + ω|unηi |) dx

) τ�i
τ�i +ε

⎤
⎥⎥⎦ .

(4.17)
Next, we denote

B̃(x, t) := tς
�
i +ε log

ς�i +ε
N (e + ωt)+ μ(x)γ tτ

�
i +ε log

τ�i +ε
N (e + ωt). (4.18)

By Proposition 2.12, we see that

Ws,H
0 (�) ↪→ LB̃ (�) . (4.19)

Note that for s, t ≥ 0 and r ≥ 1,

(s + t)r log(e + s + t) ≤ (2s)r log(e + 2s)+ (2t)r log(e + 2t)

≤ 2r+1sr log(e + s)+ 2r+1tr log(e + t),
(4.20)

and for all t ≥ 0, C ≥ 1

log(e + Ct) ≤ C log(e + t). (4.21)

Invoking the above inequalities, Remark 2.7, (4.10) and the continuous embedding (4.19)
we see that there exist σ > 0 such that

σ < min{ς−
i − p+

i , τ
−
i − q+

i } for i ∈ I
satisfying

(∫
�

|unηi |ς�i +ε log
ς�i +ε
N (e + ω|unηi |) dx

) ς�i
ς�i +ε

≤ ‖unηi‖ς̃
�
i

B̃|μ≡0,�
≤ C3 [unηi ]

ς̃ �i
s,H|μ≡0,�

≤ C4

⎛
⎝S

ς̃�i
p−i
n,i + S

ς̃�i
p+i +σ
n,i

⎞
⎠ ,

(4.22)

where

ς̃ �i =
{
ς�i if ‖unηi‖B̃,� ≤ 1,

ς�i + ς�i
N if ‖unηi‖B̃,� > 1,

(4.23)
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and

Sn,i =
∫
�

∫
�

( |un(x)ηi (x)− un(y)ηi (y)|pi (x,y)
|x − y|spi (x,y) log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

)

+ μ(x, y)
|un(x)ηi (x)− un(y)ηi (y)|qi (x,y)

|x − y|sqi (x,y) log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

))
dν.

(4.24)
Analogously, by Remark 2.7, (4.11) and the continuous embedding (4.19) we obtain

(∫
�

μ(x)γ |unηi |τ�i +ε log
τ�i +ε
N (e + ω|unηi |) dx

) τ�i
τ�i +ε

≤ ‖unηi‖τ̃
�
i

B̃,� ≤ C5 [unηi ]
τ̃ �i
s,H,� ≤ C6

⎛
⎝S

τ̃ �i
p−i
n,i + S

τ̃ �i
q+
i +σ

n,i

⎞
⎠ ,

(4.25)

with

τ̃ �i =
{
τ �i if ‖unηi‖B̃,� ≤ 1,

τ �i + τ�i
N if ‖unηi‖B̃,� > 1.

(4.26)

From the inequalities (4.16), (4.17), (4.22) and (4.25), we get

Zn+1 ≤ C7
∣∣Aψn+1 ∩�i

∣∣ ε

ς++τ++ε

⎛
⎝S

ς̃�i
p−i
n,i + S

ς̃�i
p+i +σ
n,i + S

τ̃ �i
p−i
n,i + S

τ̃ �i
q+
i +σ

n,i

⎞
⎠ .

Combining this and (4.13) we infer

Zn+1 ≤ C8
∣∣Aψn+1

∣∣ ε

ς++τ++ε
(
S1+θ1n,i + S1+θ2n,i

)
, (4.27)

with

0 < θ1 := min
1≤i≤m

min

{
ς−
i

p+
i + σ

,
τ−
i

q+
i + σ

}
− 1 ≤ θ2 := max

1≤i≤m
max

⎧⎪⎨
⎪⎩
ς+
i + ς+

i
N

p−
i

,
τ+
i + τ+

i
N

p−
i

⎫⎪⎬
⎪⎭− 1.

Next, let
Sn,i = J1 + 2J2, (4.28)

where

J1 =
∫
Bi

∫
Bi

( |un(x)ηi (x)− un(y)ηi (y)|pi (x,y)
|x − y|spi (x,y) log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

)

+ μ(x, y)
|un(x)ηi (x)− un(y)ηi (y)|qi (x,y)

|x − y|sqi (x,y)

× log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

))
dν,

and

J2 =
∫
�\Bi

∫
Bi

( |un(x)ηi (x)− un(y)ηi (y)|pi (x,y)
|x − y|spi (x,y) log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

)
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+ μ(x, y)
|un(x)ηi (x)− un(y)ηi (y)|qi (x,y)

|x − y|sqi (x,y)

× log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

))
dν.

Next,we introduce the indicator functionχμ satisfyingχμ(x) = 1 ifμ(x) > 0 andχμ(x) = 0
if μ(x) = 0. Applying inequalities (4.20), (4.21) and the interpolation inequality (4.13) we
see that

J1 =
∫
Bi

∫
Bi

|un(x)ηi (x)− un(y)ηi (y)|pi (x,y)
|x − y|N+spi (x,y)

log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

)

+ μ(x, y)
|un(x)ηi (x)− un(y)ηi (y)|qi (x,y)

|x − y|N+sqi (x,y)
log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

)
dx dy

≤ 2p
+
i +1

∫
Bi

∫
Bi

|un(x)− un(y)|pi (x,y)
|x − y|N+spi (x,y)

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
dx dy

+ 2p
+
i +1 max

{
‖∇ηi‖p

−
i∞ , ‖∇ηi‖p

+
i +1

∞
}

×
∫
Bi

(∫
Bi

dx

|x − y|N+(s−1)p−
i

+
∫
Bi

dx

|x − y|N+(s−1)(p+
i +1)

)

×
(

|un(y)|p
−
i + |un(y)|p

+
i

)
log(e + ω|un(y)|) dy

+ 2q
+
i +1

∫
Bi

∫
Bi
μ(x, y)

|un(x)− un(y)|qi (x,y)
|x − y|N+sqi (x,y)

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
dx dy

+ 2q
+
i +1‖μ‖∞ max

{
‖∇ηi‖q

−
i∞ , ‖∇ηi‖q

+
i +1

∞
}

×
∫
Bi

(∫
Bi

dx

|x − y|N+(s−1)q−
i

+
∫
Bi

dx

|x − y|N+(s−1)(q+
i +1)

)

× χμ(y)

(
|un(y)|q

−
i + |un(y)|q

+
i

)
log(e + ω|un(y)|) dy

≤ C9

∫
Bi

∫
Bi

|un(x)− un(y)|pi (x,y)
|x − y|spi (x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)
|un(x)− un(y)|qi (x,y)

|x − y|sqi (x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
dν

+ C10

∫
Bi

|un(y)|p
+
i log(e + ω|un(y)|)+ μ(y)|un(y)|q

+
i log(e + ω|un(y)|) dy

+ C10

∫
Bi

|un(y)|p
−
i log(e + ω|un(y)|)+ μ(y)|un(y)|q

−
i log(e + ω|un(y)|) dy,

(4.29)

where we have used

∫
Bi

dx

|x − y|N+(s−1)r
≤
∫
BR′ (0)

dz

|z|N+(s−1)r
= ωN (R′)(1−s)r

(1 − s)r
(4.30)

for r > 0 and R′ > 1 satisfying Bi ⊂ BR′(0) for all i ∈ I. Since u ≥ u − ψn+1 ≥ 0
on Aψn+1 , associating (4.9) and (4.13) we calculate that for p̂i ∈ {p−

i , p
+
i , p

−, p+} and
q̂i ∈ {q−

i , q
+
i , q

−, q+}, there hold
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∫
Bi

|un(y)| p̂i log(e + ω|un(y)|)+ μ(y)|un(y)|q̂i log(e + ω|un(y)|) dy

≤
∫
Aψn+1∩Bi

|u(y)| p̂i log(e + ω|u(y)|)+ μ(y)|u(y)|q̂i log(e + ω|u(y)|) dy

≤ C11

∫
Aψn+1∩Bi

[
u(x)ς(x) log

ς(x)
N (e + ωu(x))+ μ(x)γ u(x)τ(x) log

τ(x)
N (e + ωu(x))

]
dx

+ C
∣∣Aψn+1

∣∣
≤ C12

(
1 + ψ

−ς+
∗

)
2n(α0+

α0
N )Zn .

(4.31)
Combining (4.29)–(4.31) we get

J1 ≤ C13

(
1 + ψ

−ς+
∗

)
2n(α0+

α0
N )Zn .

Similarly, by inequalities (4.13), (4.20), (4.21) and (4.31) we have

J2 =
∫
�\Bi

[∫
Bi

|un(x)ηi (x)|pi (x,y)
|x − y|N+spi (x,y)

log

(
e + ω

|un(x)ηi (x)|
|x − y|s

)

+μ(x, y) |un(x)ηi (x)|
qi (x,y)

|x − y|N+sqi (x,y)
log

(
e + ω

|un(x)ηi (x)|
|x − y|s

)
dx

]
dy

≤
∫
supp(ηi )∩Aψn+1

(∫
�\Bi

dy

|x − y|N+sp− +
∫
�\Bi

dy

|x − y|N+s(p++1)

)

×
(
|un(y)|p− + |un(y)|p+)

log(e + ω|un(y)|) dx

+ ‖μ‖∞
∫
supp(ηi )∩Aψn+1

(∫
�\Bi

dy

|x − y|N+sq− +
∫
�\Bi

dy

|x − y|N+s(q++1)

)

× χμ(x)
(
|un(y)|q− + |un(y)|q+)

log(e + ω|un(y)|) dx

≤ C14

∫
Aψn+1∩Bi

|u(x)|p−
log(e + ω|u(x)|)+ μ(x)|u(x)|q−

log(e + ω|u(x)|) dx

+ C14

∫
Aψn+1∩Bi

|u(x)|p+
log(e + ω|u(x)|)+ μ(x)|u(x)|q+

log(e + ω|u(x)|) dx

≤ C15

(
1 + ψ

−ς+
∗

)
2n(α0+

α0
N )Zn,

(4.32)
where we have used that

sup
x∈supp(ηi )

∫
�\Bi

dy

|x − y|N+sr
≤
∫

|z|≥di

dy

|z|N+sr
= ωN

srdsri
,

with di := dist(� \ Bi , supp(ηi )) > 0 and r > 0.
Inequality (4.8) and (4.28)-(4.32) lead to

Sn ≤ C16

(
1 + ψ

−ς+
∗

)
2n(α0+

α0
N )Zn for all n ∈ N0.

Therefore, we get

S1+θ1n + S1+θ2n ≤ C17

(
1 + ψ

−ς+(1+θ2)∗
)
2n(α0+

α0
N )(1+θ2) (Z1+θ1

n + Z1+θ2
n

)
. (4.33)
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Moreover, (4.7) yields

∣∣Aψn+1

∣∣ ε

ς++τ++ε ≤ C18

(
ψ

− ες−
ς++τ++ε∗ + ψ

− ες+
ς++τ++ε∗

)
2

ες+
ς++τ++ε Z

ε

ς++τ++ε
n .

Taking this and (4.27) as well as (4.33) into account, we get

Zn+1 ≤ C19

(
ψ

−ρ1∗ + ψ
−ρ2∗
)
kn
(
Z1+γ1
n + Z1+γ2

n

)
for all n ∈ N0, (4.34)

where

0 < ρ1 := ες−

ς+ + τ+ + ε
< ρ2 := ς+ (1 + θ2)+ ες+

ς+ + τ+ + ε

1 < k := 2
(α0+ α0

N )(1+θ2) ες+
ς++τ++ε ,

0 < γ1 := θ1 + ε

ς+ + τ+ + ε
≤ γ2 := θ2 + ε

ς+ + τ+ + ε
.

Recall that α0 = max{ς+, τ+}.
Step 3. A priori bounds
Referring to Lemma 2.15, we see that (4.34) yield

Zn → 0 as n → ∞, (4.35)

provided that

Z0 ≤ min

⎧⎨
⎩
(
2C19

(
ψ

−ρ1∗ + ψ
−ρ2∗

))− 1
γ1 k

− 1
γ 21 ,

(
2C19

(
ψ

−ρ1∗ + ψ
−ρ2∗

))− 1
γ2 k

− 1
γ1γ2

− γ2−γ1
γ 22

⎫⎬
⎭ .

Note that

Z0 =
∫
�

[
(u − ψ∗)ς(x)+ log

ς(x)
N (e + ω(u − ψ∗)+)

+μ(x)γ (u − ψ∗)τ(x)+ log
τ(x)
N (e + ω(u − ψ∗)+)

]
dx

≤
∫
�

B(x, |u|) dx .

We also see that∫
�

B(x, |u|) dx ≤
(
2C19

(
ψ

−ρ1∗ + ψ
−ρ2∗
))− 1

γ1 k
− 1

γ 21 ,

∫
�

B(x, |u|) dx ≤
(
2C19

(
ψ

−ρ1∗ + ψ
−ρ2∗
))− 1

γ2 k
− 1

γ1γ2
− γ2−γ1

γ 22

is equivalent to

ψ
−ρ1∗ + ψ

−ρ2∗ ≤ (2C19)
−1 k

− 1
γ1

(∫
�

B(x, |u|) dx
)−γ1

,

ψ
−ρ1∗ + ψ

−ρ2∗ ≤ (2C19)
−1 k

− 1
γ1

− γ2−γ1
γ2

(∫
�

B(x, |u|) dx
)−γ2

.
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Moreover,

2ψ−ρ1∗ ≤ (2C19)
−1 k

− 1
γ1

− γ2−γ1
γ2 min

{(∫
�

B(x, |u|) dx
)−γ1

,

(∫
�

B(x, |u|) dx
)−γ2}

,

2ψ−ρ2∗ ≤ (2C19)
−1 k

− 1
γ1

− γ2−γ1
γ2 min

{(∫
�

B(x, |u|) dx
)−γ1

,

(∫
�

B(x, |u|) dx
)−γ2}

,

is equivalent to

ψ∗ ≥ (4C19)
1
ρ1 k

1
ρ1
( 1
γ1

+ γ2−γ1
γ2

)
max

{(∫
�

B(x, |u|) dx
) γ1

ρ1
,

(∫
�

B(x, |u|) dx
) γ2

ρ1

}
,

ψ∗ ≥ (4C19)
1
ρ2 k

1
ρ2
( 1
γ1

+ γ2−γ1
γ2

)
max

{(∫
�

B(x, |u|) dx
) γ1

ρ2
,

(∫
�

B(x, |u|) dx
) γ2

ρ2

}
.

Hence, if we take

ψ∗ = max

{
(4C19)

1
ρ1 , (4C19)

1
ρ2

}
k

1
ρ1

(
1
γ1

+ γ2−γ1
γ2

)

· max

{(∫
�

B(x, |u|) dx
) γ1

ρ2
,

(∫
�

B(x, |u|) dx
) γ2

ρ1

}
,

(4.35) holds true, by applying Lebesgue’s dominated convergence theorem we have

Zn =
∫
�

[
(u − ψn)

ς(x)
+ log

ς(x)
N (e + ω(u − ψn)+)

+μ(x)γ (u − ψn)
τ(x)
+ log

τ(x)
N (e + ω(u − ψn)+)

]
dx

→
∫
�

[
(u − 2ψ∗)ς(x)+ log

ς(x)
N (e + ω(u − 2ψ∗)+)

+μ(x)γ (u − 2ψ∗)τ(x)+ log
τ(x)
N (e + ω(u − 2ψ∗)+)

]
dx → 0,

as n → ∞. This implies that

ess sup
x∈�

u(x) ≤ 2ψ∗.

Analogously, by replacing u with −u, we get

ess sup
x∈�

(−u)(x) ≤ 2ψ∗.

Therefore,

‖u‖∞,� ≤ C max

{∫
�

B(x, |u|) dx�1 ,
∫
�

B(x, |u|) dx�2
}
, (4.36)

with C, �1, �2 being positive constants independent of u. Finally, from (4.36) and Remark
2.7, we obtain (4.2). ��

In addition,motivated byHo–Kim [35]we can expend the range ofς and τ given in (H2)(ii)
by strengthening the restrictive conditions on p and q (see (H2’)(iii)). For this purpose, we
consider the following assumptions:
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(H2’) (i) Assume f : � × R → 2R \ {∅} is graph measurable and f (x, ·) : R × R
N →

2R \ {∅} is upper semicontinuous for a.a. x ∈ �.
(ii) Let ς, τ ∈ C(�) such that p(x) < ς(x) < p∗

s (x) and q(x) < τ(x) < q∗
s (x) for

all x ∈ �. Suppose that there exists a constant β > 0 satisfying

sup{|ξ | : ξ ∈ f (x, t)}
≤ β

[
|t |ς(x)−1 log

ς(x)
N (e + ω|t |)+ μ(x)γ |t |τ(x)−1 log

τ(x)
N (e + ω|t |)+ 1

]

for a.a. x ∈ � and for all t ∈ R.
(iii) For r ∈ {p, q}, the following hypotheses hold

inf
R>0

sup
(x,y)∈RN×R

N

0<|x−y|<1/2

∣∣∣r(x, y)− r−
BR(x,y)

∣∣∣ log 1

|x − y| < ∞, (4.37)

with r−
BR(x,y)

:= inf(x̄,ȳ)∈BR(x,y) r(x̄, ȳ).

Remark 4.3 A example for r ∈ C(RN × R
N ) satisfying the hypotheses (H2’)(iii) was given

by Ho–Kim [35, Example 4.3].

Theorem 4.4 Let hypotheses (H1) and (H2’) be satisfied. Then, for any weak solution u ∈
Ws,H

0 (�) of problem (1.1), it holds that u ∈ L∞(�) and

‖u‖∞,� ≤ C max
{
‖u‖�̃1B,�, ‖u‖�̃2B,�

}
,

where the positive constants C, �̃1, �̃2 are independent of u.

Proof First, we repeat Step 1 of the proof for Theorem 4.2, namely, assume that (4.3)-(4.8)
hold.

(a): Localization
Let Bi ⊂ R

N be open balls of radius R with i ∈ I := {1, · · · ,m} and let {Bi }i∈I be a
finite open covering of � such that �i := Bi ∩ � for i ∈ I are Lipschitz domains. For any
i ∈ I, we choose R small enough such that (4.10) and (4.11) are fulfilled. According to the
continuity of p, q given by (4.37), there exists R ∈ (0, 1/4) small enough such that there
exist C20,C21 > 0 satisfying

−
∣∣∣p(x, y)− p−

B4R(x,y)

∣∣∣ log |x − y| ≤ C20, (4.38)

−
∣∣∣q(x, y)− q−

B4R(x,y)

∣∣∣ log |x − y| ≤ C21 (4.39)

for all (x, y) ∈ R
N × R

N satisfying |x − y| < 1
2 . As done before, let {ηi }mi=1 be a partition

of unity of � satisfying (4.12). Let p−
i = p(x ′, y′) for some (x ′, y′) ∈ Bi × Bi . Thus

|(x ′, y′)− (x, y)| = |x ′ − x | + |y′ − y| < 4R for all (x, y) ∈ Bi × Bi ,

so (x ′, y′) ∈ B4R(x, y) for all (x, y) ∈ Bi × Bi . Also, we see that |x − y| < 2R < 1/2 for
all (x, y) ∈ Bi × Bi . Combining these conclusions and (4.38) we get

− (p(x, y)− p−
i ) log |x − y| ≤ −

(
p(x, y)− p−

B4R(x,y)

)
log |x − y|

≤ C19 for all (x, y) ∈ Bi × Bi ,
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which implies

|x − y|s(p(x,y)−p−
i ) = es(p(x,y)−p−

i ) log |x−y| ≥ C22 for all (x, y) ∈ Bi × Bi . (4.40)

Similarly, (4.39) implies

|x − y|s(q(x,y)−q−
i ) = es(q(x,y)−q−

i ) log |x−y| ≥ C23 for all (x, y) ∈ Bi × Bi . (4.41)

We claim that∫
Bi

∫
Bi

( |un(x)− un(y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)
|un(x)− un(y)|q−

i

|x − y|N+sq−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy

≤ C24

[∫
Bi

∫
Bi

( |un(x)− un(y)|p(x,y)
|x − y|N+sp(x,y)

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+μ(x, y) |un(x)− un(y)|q(x,y)
|x − y|N+sq(x,y)

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy + ∣∣Aψn+1

∣∣] ,
(4.42)

which associates (4.7) and (4.8) implies

∫
Bi

∫
Bi

( |un(x)− un(y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)
|un(x)− un(y)|q−

i

|x − y|N+sq−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy

≤ C25

(
1 + ψ

−ς+
∗

)
2α0+

α0
N Zn,

for all i ∈ I and all n ∈ N, where we recall that α0 ∈ max{ς+, τ+}. Now, we are going to
prove the claim. We have

∫
Bi

∫
Bi

( |un(x)− un(y)|p(x,y)
|x − y|N+sp(x,y)

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+μ(x, y) |un(x)− un(y)|q(x,y)
|x − y|N+sq(x,y)

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy

=
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

( |un(x)− un(y)|p(x,y)
|x − y|N+sp(x,y)

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+μ(x, y) |un(x)− un(y)|q(x,y)
|x − y|N+sq(x,y)

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy

+2
∫
Bi∩Aψn+1

∫
Bi\Aψn+1

( |un(x)− un(y)|p(x,y)
|x − y|N+sp(x,y)

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+μ(x, y) |un(x)− un(y)|q(x,y)
|x − y|N+sq(x,y)

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy

=: T1 + 2T2. (4.43)
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Invoking (4.40) and (4.41) we get

T1 =
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

( ∣∣∣∣ |un(x)− un(y)|
|x − y|2s

∣∣∣∣
p(x,y)

· 1

|x − y|N−sp−
i

× 1

|x − y|−s(p(x,y)−p−
i )

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)

∣∣∣∣ |un(x)− un(y)|
|x − y|2s

∣∣∣∣
q(x,y)

· 1

|x − y|N−sq−
i

× 1

|x − y|−s(q(x,y)−q−
i )

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy

≥
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
C22

∣∣∣∣ |un(x)− un(y)|
|x − y|2s

∣∣∣∣
p(x,y)

× log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
1

|x − y|N−sp−
i

+ C23μ(x, y)

∣∣∣∣ |un(x)− un(y)|
|x − y|2s

∣∣∣∣
q(x,y)

× log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
1

|x − y|N−sq−
i

)
dx dy.

Furthermore, if
∣∣∣ |un(x)−un(y)|q(x,y)

|x−y|2s
∣∣∣ < 1, it follows that

T1 ≥
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
C22

(∣∣∣∣ |un(x)− un(y)|
|x − y|2s

∣∣∣∣
p−
i − 1

)

× log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
1

|x − y|N−sp−
i

+C23μ(x, y)

(∣∣∣∣ |un(x)− un(y)|
|x − y|2s

∣∣∣∣
q−
i − 1

)

× log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
1

|x − y|N−sq−
i

)
dx dy

≥
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
C22

|un(x)− un(y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

−C22 log

(
e + ω

|un(x)− un(y)|
|x − y|2s |x − y|s

)
1

|x − y|N−sp−
i

+C23μ(x, y)
|un(x)− un(y)|q−

i

|x − y|N+sq−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

−C23‖μ‖∞ log

(
e + ω

|un(x)− un(y)|
|x − y|2s |x − y|s

)
1

|x − y|N−sq−
i

)
dx dy
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≥
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
C22

|un(x)− un(y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+C23μ(x, y)
|un(x)− un(y)|q−

i

|x − y|N+sq−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
dx dy

−C26 log
(
e + ω(2R)s

) ∫
Aψn+1

(∫
Bi

1

|x − y|N−sp−
i

+ 1

|x − y|N−sq−
i

)
dx

)
dy,

(4.44)

and if
∣∣∣ |un(x)−un(y)|q(x,y)

|x−y|2s
∣∣∣ ≥ 1, it follows that

T1 ≥
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
C22

|un(x)− un(y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ C23μ(x, y)
|un(x)− un(y)|q−

i

|x − y|N+sq−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy,

(4.45)

Furthermore, we choose R̃ > 1 such that � × � ⊂ BR̃−1(0). Hence, for any i ∈ I and
r > 0, it holds that∫

Bi

1

|x − y|N−sr
dx ≤

∫
BR̃(0)

1

|z|N−sr
dz = ωN R̃sr

sr
for all y ∈ �. (4.46)

From the above inequality we get∫
Bi

1

|x − y|N−sp−
i

≤ ωN R̃sp−
i

sp−
i

≤ ωN R̃sp+

sp− and
∫
Bi

1

|x − y|N−sq−
i

≤ ωN R̃sq+

sq− .

Utilizing the last two inequalities along with (4.44) and (4.45) we arrive at

T1 ≥ C27

∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

( |un(x)− un(y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)
|un(x)− un(y)|q−

i

|x − y|N+sq−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy − C28

∣∣Aψn+1

∣∣ .
(4.47)

Similarly, applying (4.40), (4.41) and (4.46) again, we have

T2 =
∫
Bi∩Aψn+1

∫
Bi \Aψn+1

( ∣∣∣∣ |un(x)− un(y)|
|x − y|2s

∣∣∣∣
p(x,y)

· 1

|x − y|N−sp−
i

× 1

|x − y|−s(p(x,y)−p−
i )

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)

∣∣∣∣ |un(x)− un(y)|
|x − y|2s

∣∣∣∣
q(x,y)

· 1

|x − y|N−sq−
i

× 1

|x − y|−s(q(x,y)−q−
i )

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy

≥
∫
Bi∩Aψn+1

∫
Bi \Aψn+1

(
C22

|un(x)− un(y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
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+ C23μ(x, y)
|un(x)− un(y)|q−

i

|x − y|N+sq−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy

− C26 log
(
e + ω(2R)s

) ∫
Aψn+1

(∫
Bi

1

|x − y|N−sp−
i

+ 1

|x − y|N−sq−
i

dx

)
dy

≥ C27

∫
Bi∩Aψn+1

∫
Bi \Aψn+1

( |un(x)− un(y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)
|un(x)− un(y)|q−

i

|x − y|N+sq−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dx dy − C28

∣∣Aψn+1

∣∣ .
(4.48)

This along with (4.43), (4.47) and (4.48) yield (4.42), and the claim is proved.
(b): Estimating Zn+1 by Zn .
Recall that Ln,i and B̃ are defined by (4.17) and (4.18), respectively, for � ∈ {+,−}

and i ∈ I. According to inequalities (4.20), (4.21), Remark 2.7, (4.10) and the continuous
embedding (2.4) we see that there exist σ̃ > 0 such that

σ̃ < min{ς−
i − p−

i , τ
−
i − q−

i } for i ∈ I
satisfying

(∫
�

|unηi |ς�i +ε log
ς�i +ε
N (e + ω|unηi |) dx

) ς�i
ς�i +ε

≤ ‖unηi‖ς̃
�
i

B̃|μ≡0,�
≤ C29 [unηi ]

ς̃ �i
s,H|μ≡0,�

≤ C30

⎛
⎝S̃

ς̃�i
p−i
n,i + S̃

ς̃�i
p−i +σ̃
n,i

⎞
⎠ ,

with ς̃ �i given by (4.23) and

S̃n,i =
∫
�

∫
�

( |un(x)ηi (x)− un(y)ηi (y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

)

+ μ(x, y)
|un(x)ηi (x)− un(y)ηi (y)|q−

i

|x − y|sq−
i

× log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

))
dx dy.

Analogously, inequalities (4.20), (4.21), Remark 2.7, (4.11) and the continuous embedding
(2.4) yield

(∫
�

μ(x)γ |unηi |τ�i +ε log
τ�i +ε
N (e + ω|unηi |) dx

) τ�i
τ�i +ε

≤ ‖unηi‖τ̃
�
i

B̃,� ≤ C31 [unηi ]
τ̃ �i
s,H,� ≤ C32

⎛
⎝S̃

τ̃ �i
p−i
n,i + S̃

τ̃ �i
q−
i +σ̃

n,i

⎞
⎠ ,

with τ̃ �i given by (4.26). Similar to (4.27) one has

Zn+1 ≤ C33
∣∣Aψn+1

∣∣ ε

ς++τ++ε
(
S̃1+θ̃1n,i + S̃1+θ̃2n,i

)
, (4.49)
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with

0 < θ̃1 := min
1≤i≤m

min

{
ς−
i

p−
i + σ̃

,
τ−
i

q−
i + σ̃

}
− 1 ≤ θ̃2 := max

1≤i≤m
max

⎧⎪⎨
⎪⎩
ς+
i + ς+

i
N

p−
i

,
τ+
i + τ+

i
N

p−
i

⎫⎪⎬
⎪⎭− 1.

Let
S̃n,i = J̃1 + 2 J̃2, (4.50)

where

J̃1 =
∫
Bi

∫
Bi

( |un(x)ηi (x)− un(y)ηi (y)|p−
i

|x − y|sp−
i

log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

)

+ μ(x, y)
|un(x)ηi (x)− un(y)ηi (y)|q−

i

|x − y|sq−
i

× log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

))
dν,

and

J̃2 =
∫
�\Bi

∫
Bi

( |un(x)ηi (x)− un(y)ηi (y)|p−
i

|x − y|sp−
i

log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

)

+ μ(x, y)
|un(x)ηi (x)− un(y)ηi (y)|q−

i

|x − y|sq−
i

× log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

))
dν.

By (4.9), (4.13) and (4.30) we get

J̃1 =
∫
Bi

∫
Bi

( |un(x)ηi (x)− un(y)ηi (y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

)

+μ(x, y) |un(x)ηi (x)− un(y)ηi (y)|q−
i

|x − y|N+sq−
i

log

(
e + ω

|un(x)ηi (x)− un(y)ηi (y)|
|x − y|s

))
dx dy

≤ 2p
+
i +1

∫
Bi

∫
Bi

|un(x)− un(y)|p−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
dx dy

+2p
+
i +1 max{‖∇ηi‖p−

i∞ , ‖∇ηi‖p−
i +1

∞ }

×
∫
Bi

(∫
Bi

dx

|x − y|N+(s−1)(p−
i +1)

)
|un(y)|p−

i log(e + ω|un(y)|) dy

+2q
+
i +1

∫
Bi

∫
Bi
μ(x, y)

|un(x)− un(y)|q−
i

|x − y|N+sq−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)
dx dy

+2q
+
i +1‖μ‖∞ max{‖∇ηi‖q

−
i∞ , ‖∇ηi‖q

−
i +1

∞ }

×
∫
Bi

(∫
Bi

dx

|x − y|N+(s−1)(q−
i +1)

)
χμ(y)|un(y)|q−

i log(e + ω|un(y)|) dy
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≤ C34

∫
Bi

∫
Bi

( |un(x)− un(y)|p−
i

|x − y|sp−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+μ(x, y) |un(x)− un(y)|q−
i

|x − y|sq−
i

log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dν

+C35

∫
Bi

|un(y)|p−
i log(e + ω|un(y)|)+ μ(y)|un(y)|q−

i log(e + ω|un(y)|) dy

≤ C36

∫
Aψn+1∩Bi

[
u(x)ς(x) log

ς(x)
N (e + ωu(x))+ μ(x)γ u(x)τ(x) log

τ(x)
N (e + ωu(x))

]
dx

+C
∣∣Aψn+1

∣∣
≤ C37

(
1 + ψ

−ς+
∗

)
2n(α0+

α0
N )Zn,

(4.51)

and

J̃2 =
∫
�\Bi

(∫
Bi

|un(x)ηi (x)|p
−
i

|x − y|N+sp−
i

log

(
e + ω

|un(x)ηi (x)|
|x − y|s

)

+μ(x, y) |un(x)ηi (x)|
q−
i

|x − y|N+sq−
i

log

(
e + ω

|un(x)ηi (x)|
|x − y|s

)
dx

)
dy

≤
∫
supp(ηi )∩Aψn+1

(∫
�\Bi

dy

|x − y|N+sp−
i

+
∫
�\Bi

dy

|x − y|N+s(p−
i +1)

)

×|un(y)|p
−
i log(e + ω|un(y)|) dx

+‖μ‖∞
∫
supp(ηi )∩Aψn+1

(∫
�\Bi

dy

|x − y|N+sq−
i

+
∫
�\Bi

dy

|x − y|N+s(q−
i +1)

)

×χμ(x)|un(y)|q
−
i log(e + ω|un(y)|) dx

≤ C38

∫
Aψn+1∩Bi

|u(x)|p−
i log(e + ω|u(x)|)+ μ(x)|u(x)|q−

i log(e + ω|u(x)|) dx

≤ C39

(
1 + ψ

−ς+
∗

)
2n(α0+

α0
N )Zn, (4.52)

Inequality (4.8) and (4.50), (4.51), as well as (4.52) imply

S̃1+θ̃1n + S̃1+θ̃2n ≤ C40

(
1 + ψ

−ς+(1+θ̃2)∗
)
2
n(α0+ α0

N )
(
1+θ̃2

) (
Z1+θ̃1
n + Z1+θ̃2

n

)
, (4.53)

which along with (4.7), (4.49), (4.53) gives

Zn+1 ≤ C41

(
ψ

−ρ̃1∗ + ψ
−ρ̃2∗
)
k̃n
(
Z1+θ̃1
n + Z1+θ̃2

n

)
for all n ∈ N0,

where

0 < ρ̃1 := ες−

ς+ + τ+ + ε
< ρ̃2 := ς+ (1 + θ̃2

)
+ ες+

ς+ + τ+ + ε

1 < k̃ := 2
(α0+ α0

N )
(
1+θ̃2

)
ες+

ς++τ++ε ,

0 < γ̃1 := θ̃1 + ε

ς+ + τ+ + ε
≤ γ̃2 := θ̃2 + ε

ς+ + τ+ + ε
.
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Finally, repeating the arguments of Step 3 in the proof of Theorem 4.2, gives the assertion.
��

4.2 Critical growth

In this subsection we discuss the critical case. Recall that in Sect. 4.1, to apply the Hölder
inequality in (4.17) we require that there exists ε > 0 such that ς� + ε < (p−

i )
∗
s and

τ �+ε < (q−
i )

∗
s with � ∈ {−,+}. However, in this subsection, we assume that ς(x) = (p−)∗s

and τ(x) = (q−)∗s for all x ∈ �, so we cannot find ε > 0 satisfying the above conditions
anymore.Hence,we consider a different argument to show the boundedness ofweak solutions
to problem (1.1), and under this argument, the inequality (4.2) is invalid. Now, we state our
hypotheses on the data.

(H3) (i) Assume f : � × R → 2R \ {∅} is graph measurable and f (x, ·) : R × R
N →

2R \ {∅} is upper semicontinuous for a.a. x ∈ �.
(ii) Let ς, τ ∈ C(�) such that p+ < ς(x) = (p−)∗s and q+ < τ(x) = (q−)∗s for all

x ∈ �. Suppose that there exists a constant β > 0 satisfying

sup{|ξ | : ξ ∈ f (x, t)}
≤ β

[
|t |(p−)∗s−1 log

ς(x)
N (e + ω|t |)+ μ(x)γ |t |τ(x)−1 log

(q−)∗s
N (e + ω|t |)+ 1

]

for a.a. x ∈ � and for all t ∈ R.

Theorem 4.5 Let hypotheses (H1) and (H3) be satisfied. Then, for any weak solution u ∈
Ws,H

0 (�) of problem (1.1) is bounded, that is u ∈ L∞(�).

Proof As done in Sect. 4.1, let Bi ⊂ R
N be open balls of radius R with i ∈ I := {1, · · · ,m}

and let {Bi }mi=1 be a finite open covering of� such that�i := Bi ∩� for i ∈ I are Lipschitz
domains. For any i ∈ I, we choose R small enough such that

q+
i <

(
p−)∗

s for all i ∈ I.

Let Aψ still be defined by (4.4), suppose u ∈ Ws,H
0 (�) is a weak solution of problem (1.1)

in the sense of definition 4.1, and choose ψ∗ ≥ 1 large enough such that∫
�

∫
�

( |u(x)− u(y)|p(x,y)
|x − y|sp(x,y) log

(
e + ω

|u(x)− u(y)|
|x − y|s

)

+ μ(x, y)
|u(x)− u(y)|q(x,y)

|x − y|sq(x,y) log

(
e + ω

|u(x)− u(y)|
|x − y|s

))
dν +

∫
Aψ∗

B∗(x, |u|) dx < 1,

(4.54)
with

B∗(x, t) := t (p
−)∗s log

(p−)∗s
N (e + ωt)+ μ(x)γ t (q

−)∗s log
(q−)∗s

N (e + ωt),

for all x ∈ � and for all t ≥ 0. Note that for any n ∈ N0, ψn is still given by (4.5).
In the sequel, for any n ∈ N0 we define Zn by

Zn :=
∫
Aψn[

(u − ψn)
(p−)∗s log

(p−)∗s
N (e + ω(u − ψn))+ μ(x)γ (u − ψn)

(q−)∗s log
(q−)∗s

N (e + ω(u − ψn))

]
dx .
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Note that u ≥ u − ψn+1 ≥ 0 and u > ψn+1 ≥ 1 on Aψn+1 , similar to the proof of Theorem
4.2, we have

∫
�

∫
�

( |un(x)− un(y)|p(x,y)
|x − y|sp(x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)
|un(x)− un(y)|q(x,y)

|x − y|sq(x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dν

≤
∫
�
β

[
|u|(p−)∗s−1 log

(p−)∗s
N (e + ω|u|)+ μ(x)γ |u|(q−)∗s−1 log

(q−)∗s
N (e + ω|u|)+ 1

]
un(x) dx

≤ 2β
∫
Aψn+1

[
u(p

−)∗s log
(p−)∗s

N (e + ωu)+ μ(x)γ u(q
−)∗s log

(q−)∗s
N (e + ωu)

]
dx

≤ C42

∫
Aψn+1

([(
2n+2 − 1

)
(u − ψn)

](p−)∗s
log

(p−)∗s
N

[
e + ω

(
2n+2 − 1

)
(u − ψn)

]

+μ(x)γ
[(

2n+2 − 1
)
(u − ψn)

](q−)∗s
log

(q−)∗s
N

[
e + ω

(
2n+2 − 1

)
(u − ψn)

])
dx

≤ C432
n

(
(q−)∗s+ (q−)∗s

N

)
Zn .

Let {ηi }mi=1 be a partition of unity of � with respect to {Bi }mi=1, namely, for each i ∈ I,
ηi ∈ C∞

c (RN ), supp(ηi ) ⊂ Bi , 0 ≤ ηi ≤ 1, and

m∑
i=1

ηi = 1 on �.

By applying Jensen’s inequality we get

Zn+1 =
∫
Aψn+1

[
u
(p−)∗s
n log

(p−)∗s
N (e + ωun)+ μ(x)γ u

(q−)∗s
n log

(q−)∗s
N (e + ωun)

]
dx

≤ mmax{(p−)∗s ,(q−)∗s }
m∑
i=1

[∫
Aψn+1

|unηi |(p−)∗s log
(p−)∗s

N (e + ω|unηi |)

+μ(x)γ |unηi |(q−)∗s log
(q−)∗s

N (e + ω|unηi |) dx
]
.

By Proposition 2.12, we see that

Ws,H
0 (�) ↪→ LB∗

(�) ,

then

Zn+1 ≤ mmax{ι+,π+}
m∑
i=1

∫
�

B∗ (x, |unηi |) dx .

From assumption (4.54) we have

∫
�

B∗ (x, |unηi |) dx ≤ ‖unηi‖(p
−)∗s

B∗,� ≤ C44[unηi ](p
−)∗s

s,H,� ≤ C45(Sn,i )
(p−)∗s
q+
i +σ ,

123



   11 Page 36 of 46 Partial Differential Equations and Applications             (2026) 7:11 

where Sn,i is given by (4.24). So, we get

Zn+1 ≤ C46

(
S1+ϑ1n,i + S1+ϑ2n,i

)
for all n ∈ N0 (4.55)

with

0 < ϑ1 := min
1≤i≤m

(p−)∗s
q+
i + σ

− 1 ≤ ϑ2 := max
1≤i≤m

(p−)∗s
q+
i + σ

− 1,

where σ > 0 satisfies

σ < (p−)∗s − q+
i for i ∈ I.

Recalling (4.28) we make the similar estimation of J1 and J2, that is

J1 ≤ C47

∫
Bi

∫
Bi

( |un(x)− un(y)|pi (x,y)
|x − y|spi (x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)
|un(x)− un(y)|qi (x,y)

|x − y|sqi (x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dν

+ C48

∫
Bi

|un(y)|p
+
i log(e + ω|un(y)|)+ μ(y)|un(y)|q

+
i log(e + ω|un(y)|) dy

+ C48

∫
Bi

|un(y)|p
−
i log(e + ω|un(y)|)+ μ(y)|un(y)|q

−
i log(e + ω|un(y)|) dy

≤
∫
�

∫
�

( |un(x)− un(y)|p(x,y)
|x − y|sp(x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

)

+ μ(x, y)
|un(x)− un(y)|q(x,y)

|x − y|sq(x,y) log

(
e + ω

|un(x)− un(y)|
|x − y|s

))
dν

+ C49

∫
Aψn+1∩Bi

[
u(x)(p

−)∗s log
(p−)∗s

N (e + ωu(x))+ μ(x)γ u(x)(q
−)∗s log

(q−)∗s
N (e + ωu(x))

]
dx,

≤ C502
n

(
(q−)∗s+ (q−)∗s

N

)
Zn ,

and J2 ≤ C512
n

(
(q−)∗s+ (q−)∗s

N

)
Zn . Hence

Sn,i ≤ C522
n

(
(q−)∗s+ (q−)∗s

N

)
Zn for all n ∈ N0.

Therefore, we get

S1+ϑ1n,i + S1+ϑ2n ≤ C532
n

(
(q−)∗s+ (q−)∗s

N

)
(1+ϑ2) (

Z
1+ϑ1
n + Z

1+ϑ2
n

)
. (4.56)

Taking (4.55) and (4.56) into account, we arrive at

Zn+1 ≤ C54k̄
n
(
Z
1+ϑ1
n + Z

1+ϑ2
n

)
for all n ∈ N0, (4.57)

where

1 < k̄ := 2

(
(q−)∗s+ (q−)∗s

N

)
(1+ϑ2)

.
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Using Lemma 2.15, we see that (4.57) yields

Zn → 0 as n → ∞, (4.58)

if we choose ψ∗ > 1 large enough such that

Z0 =
∫
�

[
(u − ψ∗)

(p−)∗s+ log
(p−)∗s

N (e + ω(u − ψ∗)+)

+μ(x)γ (u − ψ∗)
(q−)∗s+ log

(q−)∗s
N (e + ω(u − ψ∗)+)

]
dx

≤ min

{
(2C54)

− 1
ϑ1 k̄

− 1
ϑ21 , (2C54)

− 1
ϑ2 k̄

− 1
ϑ1ϑ2

− ϑ2−ϑ1
ϑ22

}
.

Thus by (4.58) and Lebesgue’s dominated convergence theorem we arrive at

Zn =
∫
�

[
(u − ψn)

(p−)∗s+ log
(p−)∗s

N (e + ω(u − ψn)+)

+μ(x)γ (u − ψn)
(q−)∗s+ log

(q−)∗s
N (e + ω(u − ψn)+)

]
dx

→
∫
�

[
(u − 2ψ∗)

(p−)∗s+ log
(p−)∗s

N (e + ω(u − 2ψ∗)+)

+μ(x)γ (u − 2ψ∗)
(q−)∗s+ log

(q−)∗s
N (e + ω(u − 2ψ∗)+)

]
dx → 0,

as n → ∞. This implies that

ess sup
x∈�

u(x) ≤ 2ψ∗.

Similarly, replacing u with −u, it can be shown that

ess sup
x∈�

(−u)(x) ≤ 2ψ∗.

Therefore,

‖u‖∞,� ≤ 2ψ∗,

with ψ∗ ∈ R. ��
Since problem (P2) and (P3) are special cases of problem (1.1), we obtain the following

corollaries.

Corollary 4.6 Let hypotheses (H1) and (H2) (or (H2’)) be satisfied with ω = 0. Then every
weak solution u ∈ Ws,H2

0 (�) of problem (P2) belongs to L∞(�) and it holds

‖u‖∞,� ≤ C max
{
‖u‖�1B,�, ‖u‖�2B,�

}
,

with C, �1, �2 being positive constants independent of u. Moreover, if hypotheses (H1) and
(H3) hold, then any weak solution of problem (P2) belongs to L∞(�).

Corollary 4.7 Let hypotheses (H1) and (H2) (or (H2’)) be satisfied with ω = 0. Then every
weak solution u ∈ Ws,H3

0 (�) of problem (P3) belongs to L∞(�) and it holds

‖u‖∞,� ≤ C max
{
‖u‖�1B,�, ‖u‖�2B,�

}
,
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with C, �1, �2 being positive constants independent of u. Moreover, if hypotheses (H1) and
(H3) hold, then any weak solution of problem (P3) belongs to L∞(�).

5 Application

In this section, we consider the existence of weak solutions to the following single valued
elliptic problem driven by the fractional double phase operator with variable exponents and
logarithmic perturbation: {

(−�)sH u = f (x, u), in �,

u = 0 on R
N \�, (5.1)

where �, s, and p satisfy (H1). Furthermore, based on the priori bounds we obtained in
Sect. 4, we will show the existence of infinitely many small weak solutions of (5.1) with
the modified functional method applied by Ho–Kim [35] and Wang [61]. Moreover, under
appropriate conditions,we show that the solutions are non-negative by applying themaximum
principle established in Sect. 3. We will use a variational argument to establish the existence
results, and the proof is mainly based on the following lemma, see Heinz [34] for more
details.

Lemma 5.1 Let X be a Banach space. Assume that I ∈ C1(X ,R) and I is even, bounded
from below and satisfies the (PS)-condition with I (0) = 0. If for any n ∈ N, there exist an
n-dimensional subspace Xn and rn > 0 satisfying

sup
Xn∩Srn

I < 0,

where Sr := {u ∈ X : ‖u‖X = r}, then I has a sequence of critical values cn < 0 such that
cn → 0 as n → ∞.

We suppose the following assumptions on the nonlinearity f :

(F1) The function f : �× R → R is a Carathéodory function such that

| f (x, t)| ≤ C(1 + |t |r(x)−1)

for a.a. x ∈ �, for all t ∈ R, for some constant C and r ∈ C(�) with 1 < r(x) ≤ p−.
(F2) There exists a constant a > 0 such that

f is odd in t and p−F(x, t)− f (x, t)t > 0,

for a.a. x ∈ � and for all 0 < |t | < a, where F(x, t) := ∫ t
0 f (x, τ ) dτ .

(F3) limt→0
f (x,t)

|t |r(x)−2t
= +∞ uniformly for a.a. x ∈ �.

(F4) f (x, t) ≥ 0 for a.a. x ∈ � and t ∈ R.

Next, we prove the existence of infinitely many small solutions to problem (5.1). The
proof is divided into several steps, see also Ho–Kim [35] and Wang [61], in the following
way:

(i) Modify the function f to f̃ and then construct a modified functional Ẽ .
(ii) Prove that the modified functional Ẽ satisfies the conditions of Lemma 5.1 to get a

sequence of critical points {un}n∈N such that Ẽ(un) → 0 as n → ∞.
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(iii) Show that un → 0 inWs,H
0 (�) and apply Theorem4.2 to get ‖un‖∞,� → 0 as n → ∞.

Finally, we verify that un are solutions of the original problem (5.1).

Our existence result read as follows.

Theorem 5.2 Let hypotheses (H1) and (F1)–(F3) be satisfied. Then problem (5.1) has a
sequence of weak solutions {un}n∈N satisfying ‖un‖∞,� → 0 as n → ∞. In addition, if
(F4) hold, then the weak solutions un are non-negative.

Proof First, we introduce the functional I : Ws,H
0 (�) → R given as

I(u) =
∫
�

∫
�

( |u(x)− u(y)|p(x,y)
p(x, y)|x, y|N+sp(x,y)

log

(
e + ω

|u(x)− u(y)|
|x − y|s

)

+ μ(x, y)
|u(x)− u(y)|q(x,y)

q(x, y)|x, y|N+sp(x,y)
log

(
e + ω

|u(x)− u(y)|
|x − y|s

))
dx dy,

for all u ∈ Ws,H
0 (�). Recalling Proposition 2.14, it is not hard to check that I ∈

C1(Ws,H
0 (�),R) and its Gâteaux derivative A : Ws,H

0 (�) → (Ws,H
0 (�))∗ is given by

〈A(u), v〉 =
∫
�

∫
�

( |u(x)− u(y)|p(x,y)−2(u(x)− u(y))(v(x)− v(y))

|x − y|N+sp(x,y)
log

(
e + ω

|u(x)− u(y)|
|x − y|s

)

+ ω|u(x)− u(y)|p(x,y)−1(u(x)− u(y))(v(x)− v(y))

|x − y|N+s(p(x,y)+1)
(
e + ω

|u(x)−u(y)|
|x−y|s

)

+ μ(x, y)
|u(x)− u(y)|q(x,y)(u(x)− u(y))(v(x)− v(y))

|x − y|N+sq(x,y)
log

(
e + ω

|u(x)− u(y)|
|x − y|s

)

+ μ(x, y)
ω|u(x)− u(y)|q(x,y)−1(u(x)− u(y))(v(x)− v(y))

|x − y|N+s(q(x,y)+1)
(
e + ω

|u(x)−u(y)|
|x−y|s

) )
dx dy,

for all u, v ∈ Ws,H
0 (�).

In order to apply Lemma 5.1, we first modify the nonlinear function f to f̃ . Precisely,
one can deduce from (F2) and (F3) that there exits a1 ∈ (0, a) such that

F(x, t) ≥ |t |r(x) for a.a. x ∈ � and for all |t | < a1. (5.2)

Next, we choose a2 ∈ (0, a1/2) and take φ ∈ C1(R,R) to be an even function satisfying

φ(t) =
{
1, |t | ≤ a2,

0, |t | ≥ 2a2,
|φ′(t)| ≤ 2/a2 and φ′(t)t ≤ 0.

Next, we define

F̃(x, t) := φ(t)F(x, t)+ (1 − φ(t))β|t |p−
,

where

β ∈
(
0,min

{
1

p−Ce1Ce2
,

1

q+C ′p−C p−
e3

})
(5.3)

with C ′ given by (2.1), Ce1 is the embedding constant fromWs,p−
0 (�) to L p−

(�), Ce2 is the

constant such that ‖u‖
Ws,p−

0
≤ Ce2[u]s,p− andCe3 is the embedding constant fromWs,H

0 (�)
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to L p−
(�). Then, the modified function f̃ is given by

f̃ (x, t) := ∂

∂t
F̃(x, t).

Moreover, we consider the modified energy functional Ẽ : Ws,H
0 (�) → R defined by

Ẽ(u) = I(u)−
∫
�

F̃(x, u) dx, u ∈ Ws,H
0 (�).

By the definition of F̃ and f̃ , we see that F̃ is even in t and

f̃ (x, t) = φ′(t)F(x, t)+ φ(t) f (x, t)− φ′(t)β|t |p− + (1 − φ(t))β p−|t |p−−2t . (5.4)

Thus,

p− F̃(x, t)− f̃ (x, t)t = φ(t)[p−F(x, t)− f (x, t)t] − φ′(t)t[F(x, t)− β|t |p−]. (5.5)

Recalling the definition of φ, by (5.2), (5.4) and (5.5) we get

p− F̃(x, t)− f̃ (x, t)t ≥ 0 for a.a. x ∈ � and for all t ∈ R, (5.6)

p− F̃(x, t)− f̃ (x, t)t = 0 if and only if t = 0 or |t | ≥ 2a2. (5.7)

Recalling (F1) and the definition of φ, F̃ and f̃ we can find C > 0 such that

F̃(x, t) ≤ C + β|t |p−
and | f̃ (x, t)| ≤ C

(
1 + |t |p−−1

)
for a.a. x ∈ � and for all t ∈ R.

(5.8)

Hence, invoking that I ∈ C1(Ws,H
0 (�),R) and Ws,H

0 (�) ↪→ L p−
(�) one can prove that

Ẽ ∈ C1(Ws,H
0 (�),R).

Now, we are ready to show that Ẽ fulfills the conditions given by Lemma 5.1. It is not
hard to see that Ẽ is even and E(0) = 0. Utilizing (5.8) and Proposition 2.8, we get

Ẽ(u) ≥ 1

q+
(
[u]p−

s,H − 1
)

− β‖u‖p−
L p− (�)

− C |�|

≥ 1

q+ [u]p−
s,H − βC p−

e3 ‖u‖p−
s,H − C |�| − 1

q+

≥ 1

q+ [u]p−
s,H − βC p−

e3 C ′p−[u]p−
s,H − C |�| − 1

q+ .

Note that the range of β given in (5.3) implies that Ẽ is coercive and bounded from below on
Ws,H

0 (�). Due to (5.8) and the compact embedding Ws,H
0 (�) ↪→↪→ L p−

(�) we infer that

the operator u 
→ ∫
�

f̃ (x, t) dx is compact. Let {un}n∈N ⊂ Ws,H
0 (�) be a (PS)-sequence,

that is Ẽ(un) is bounded and Ẽ ′(un) → 0. Then, by the coercivity of Ẽ , we know that {un}n∈N
is bounded. Since Ws,H

0 (�) is reflexive, {un}n∈N possesses a subsequence still denoted by

{un}n∈N such that un⇀u∗ ∈ Ws,H
0 (�). Hence, due to the compactness of u 
→ ∫

�
f̃ (x, t) dx

and applying the (S+)-property ofA, we deduce that un → u∗ ∈ Ws,H
0 (�). This shows that

Ẽ satisfies the (PS)-condition.
Next, we choose a fixed n ∈ N and let φ1, . . . , φn be linearly independent functions. We

set Xn := span{φ1, . . . , φn}. Since Xn is a finite dimensional space, the norms ‖ · ‖∞,�,
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[ · ]s,H,� and ‖ · ‖L p− (�) are equivalent on Xn . Thus one can find c1, c2 > 0 such that

c1‖u‖∞,� ≤ [u]s,H,� ≤ c2‖u‖L p− (�) for all u ∈ Xn . (5.9)

According to hypotheses (F2) and (F3) we can find a3 ∈ (0, a2) satisfying

F(x, t) ≥ 2cp
−

2

p− |t |p−
(5.10)

for a.a. x ∈ � and for all |t | ≤ a3. Next, we take rn := min{1, a3c1}, then by (5.9) we see

that for any u ∈ Xn with [u]p−
s,H = rn we have |u|s,H < 1 as well as ‖u‖∞,� ≤ a3. Note that

F̃(x, u) = F(x, u) for ‖u‖∞,� ≤ a3. Then, Proposition 2.8 and inequality (5.10) yield

Ẽ(u) ≤ 1

p− [u]p−
s,H

− 2cp
−

2

p− ‖u‖p−
L p− ≤ 1

p− [u]p−
s,H − 2

p− [u]p−
s,H = − (rn)p

−

p− for all u ∈ Xn ∩ Srn ,

which implies

sup
u∈Xn∩Srn

Ẽ(u) < 0.

Using Lemma 5.1 we infer that there exists a sequence {un}n∈N ⊂ Ws,H
0 (�) with

Ẽ ′(un) = 0 for all n ∈ N and Ẽ(un) → 0 as n → ∞.

Moreover, recall that un → u∗ inWs,H
0 (�), due to Ẽ ∈ C1(Ws,H

0 (�),R), we have Ẽ(u∗) =
〈Ẽ ′(u∗), u∗〉 = 0, which gives 1

p− 〈Ẽ ′(u∗), u∗〉 − Ẽ(u∗) = 0. Taking this and (5.6) into
account we arrive at

0 ≤
∫
�

∫
�

((
1

p− − 1

p(x, y)

) |u∗(x)− u∗(y)p(x,y)|
|x − y|N+sp(x,y)

log

(
e + ω

|u∗(x)− u∗(y)|
|x − y|s

)

+ μ(x, y)

(
1

p− − 1

q(x, y)

) |u∗(x)− u∗(y)q(x,y)|
|x − y|N+sq(x,y)

log

(
e + ω

|u∗(x)− u∗(y)|
|x − y|s

)

+ ω|u∗(x)− u∗(y)|p(x,y)+1

p−|x − y|N+s(p(x,y)+1)
(
e + ω

|u∗(x)−u∗(y)|
|x−y|s

)

+ μ(x, y)
ω|u∗(x)− u∗(y)|q(x,y)+1

p−|x − y|N+s(q(x,y)+1)
(
e + ω

|u∗(x)−u∗(y)|
|x−y|s

)) dx dy

= −
∫
�

(
F̃(x, u∗(x))− 1

p− f̃ (x, u∗(x))u∗(x)
)

dx ≤ 0.

From the above inequalities and (5.7) we see that

0 ≤
∫
�

∫
�

((
1

p− − 1

p(x, y)

) |u∗(x)− u∗(y)p(x,y)|
|x − y|N+sp(x,y)

log

(
e + ω

|u∗(x)− u∗(y)|
|x − y|s

)

+ μ(x, y)

(
1

p− − 1

q(x, y)

) |u∗(x)− u∗(y)q(x,y)|
|x − y|N+sq(x,y)

log

(
e + ω

|u∗(x)− u∗(y)|
|x − y|s

)
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+ ω|u∗(x)− u∗(y)|p(x,y)+1

p−|x − y|N+s(p(x,y)+1)
(
e + ω

|u∗(x)−u∗(y)|
|x−y|s

)

+ μ(x, y)
ω|u∗(x)− u∗(y)|q(x,y)+1

p−|x − y|N+s(q(x,y)+1)
(
e + ω

|u∗(x)−u∗(y)|
|x−y|s

)) dx dy

= 0

and for a.a. x ∈ �,

u∗ = 0,

or

|u∗(x)| ≥ 2a2 and u∗ = c,

where c is constant. Hence, F̃(x, u∗(x)) = 0 or F̃(x, u∗(x)) = β|u∗|p−
. Moreover,

p(x, y) = p− for a.a. x ∈ � satisfying |u∗(x)| ≥ 2a2. This implies

0 = Ẽ ≥
∫
�

∫
�

1

p(x, y)

|u∗(x)− u∗(y)|p(x,y)
|x − y|N+sp(x,y)

dx dy −
∫
�

F̃(x, u∗(x)) dx

=
∫
�

∫
�

1

p−
|u∗(x)− u∗(y)|p−

|x − y|N+sp− dx dy −
∫
�

F̃(x, u∗(x)) dx

≥ 1

p− [u∗]p
−

s,p− −
∫
�

β|u∗|p−
dx

= 1

p− [u∗]p
−

s,p− − β‖u∗‖p−
L p−

≥ 1

p− [u∗]p
−

s,p− − βCe1Ce2[u∗]p
−

s,p−

Due toβ < 1
p−Ce1Ce2

, it holds that u∗ = 0. Thatmeans un → 0 inWs,H
0 (�), so ‖un‖B,� → 0

as n → ∞. Note that under the hypotheses (F1), f satisfies hypotheses (H2) (or (H2’)). Then
we deduce from Theorem 4.2 (or Theorem 4.4) that ‖un‖∞,� → 0. Hence, ‖un‖∞,� ≤ a2
for n large enough, which means that {un}n∈N is a sequence of weak solutions to problem
(5.1) for n large enough.

Furthermore, if f (x, t) ≥ 0 for a.a. x ∈ � and for all t ∈ R, we see that{
(−�)sH u ≥ 0, in �,

u = 0 on R
N \�.

Hence, employing Theorem 3.1 we see that u(x) ≥ 0 for x ∈ � and if there exists some
point x0 ∈ � such that u(x0) = 0, then u(x) = 0 for a.a. x ∈ R

N . This ends the proof. ��
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