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Abstract
In this paper, we study multivalued nonlocal elliptic problems driven by the fractional double
phase operator with variable exponents and w-logarithmic perturbation formulated by

(=), u € Fx,u) ing,
u=0 on RV \ Q.

We are going to establish maximum principles for the fractional perturbed double phase
operator and show the boundedness of weak solutions to the above problem. Finally, under
appropriate assumptions we discuss the existence of infinitely many small (non-negative)
weak solutions to a single-valued nonlocal double phase problem.

Keywords A priori bounds - De Giorgi’s iteration - Fractional logarithmic double phase
operator - Localization method - Maximum principle - Multivalued problem - Variational
methods
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1 Introduction

In the last years, problems involving fractional-order operators have been studied inten-
sively due to their mathematical challenges and various real applications in fluid mechanics,
relativistic quantum mechanics, conformal geometry, probability and molecular dynamics,
see Bertoin [11], Cabré-Tan [14], Caffarelli-Vasseur [15] and Chen-Li—-Ma [18] for more
details. Particularly, the studies for problems involving fractional double phase operators
have attracted much attention for their compelling theoretical framework and diverse practi-
cal applications. Recently, de Albuquerque—de Assis—Carvalho—Salort [23] established some
abstract results on a new class of fractional Musielak—Sobolev spaces including uniformly
convexity, Brézis—Lieb type Lemma and Radon-Riesz property to the modular function, (S )-
property and monotonicity. In this paper, based on the results obtained by de Albuquerque—de
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Assis—Carvalho—Salort [23] for the solution space and the operator we deal with multivalued
nonlinear problems with Dirichlet boundary condition of the form

[(—A)%uef(x,u) in Q, 0

u=0 onRM\ ,

foru € Wg ’H(Q) (see Sect. 2), where €2 is a bounded domain of RN (N > 2) with Lipschitz
boundary 992, F: QxR — 2R\ {4} is multivalued function, the associated variable exponent
fractional double phase operator with logarithmic perturbation is given as

, lu(x) —u(y)l dy
(=AY u(x) :=Cnys.pg lim H (x, v,
m 2P =0 Jri o) lx —yl* x — y|Nt (1.2)
Ju(x) —u(y)| dy '
=C PV " x, v,
Nosepd /RN " (x PR ) v

with Be(x) ;== {z e RV : |z — x| < ¢}, s € (0, 1), CN,s,p,q is some constant depending on
N, s, p, g while PV denotes the Cauchy principle value and  : RV xRY %[0, o) — [0, 00)
is defined as

H(x, y, 1) = [zPW) + u(x, y)zq“’y)] log(e + wt), (1.3)

for all (x,y) € RN x R¥ and for all 7 > 0, where w > 0, p.q € C(RN X ]RN) such that
pGx,y) = p(r.x), g(x,y) = g(y.x) as wellas 1 < p(x,y) < ¥, p(x,y) < gq(x,y)
for all (x,y) € RY x R¥, and 0 < u(-,-) € LY RN x RV) satisfies U; := {(x,y) €
RY x RM: p(x,y) < q(x, )} € Up = {(x,y) € RY x RM: p(x, y) = 0} and p(x, y) =
n(y, x).

As we can see, problem (1.1) is driven by a type of fractional double phase operator, which
is developed from the classical double phase operator given by

div (|W|P—2W + M(x)|w|q—2w),

associated with the following energy functional

u.—>/ <|Vv|p+/L(x)|Vv|q)dx. (1.4)
Q

This type of energy functional was introduced first by Zhikov in 1986 to describe the nature
of certain phenomena occurring in the theory of elasticity, for example, it can describe the
mathematical models of strongly anisotropic materials as well as the Lavrentiev phenomenon,
see Zhikov [71, 72]. In fact, energy functionals with of the form (1.4) characterizes the phe-
nomenon where the energy density varies its ellipticity and growth characteristics, contingent
upon the specific location within the domain. It can also describe the geometric properties
of a composite formed from distinct two materials characterized by the power hardening
exponents p and ¢. Since the energy functional (1.4) exhibits ellipticity in the gradient of
order ¢ when the modulating coefficient () # 0 and exhibits ellipticity in the gradient of
order p when the modulating coefficient w(-) = 0, we call it double phase.

In recent years, the classical double phase operator has been extended to various new class
of operators. Crespo-Blanco—Gasinski—Harjulehto—Winkert [20] considered the double phase
operator with variable exponents defined by

div (|VU|P<X)—2W + M(x)|Vv|q(x>—2vU),
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and established some basic properties of this type of operator and the associated Musielak—
Orlicz Sobolev spaces. Furthermore, Vetro-Zeng [60] studied a type of double phase energy
functional with log L-perturbed p, g-growth defined by

div <H’L(x, [Vvl)

Vol Vv) with Hp = [1? 4 pu(x)t?]log(e +1).
v

They obtained the properties of the associated Musielak Orlicz-Sobolev space and then proved
the existence and uniqueness results of weak solution for Dirichlet double phase problems, see
also Lu—Vetro—Zeng [47] for detailed results concerning double phase energy operator with
log L-perturbed p(-), g (-)-growth. For more results involving the double phase type operator
with logarithmic perturbation we refer to the recent work by Arora—Crespo-Blanco—Winkert
[4] who focused on the operator

- px)-2 [Vl ] 402 )

div (le| Vo + n(x) |:log(e+|Vv|)+ 2G0T+ 1voD V| Vv ),
and established the existence and multiplicity results to the related double phase problems.
We also mention some recent existence results for double phase problems, see the works by
Guarnotta—Livrea—Winkert [31] (variable exponent double phase systems), Liu—Dai [46]
(existence and multiplicity results of double phase problems), Vetro—Zeng [60] (double
phase Dirichlet problems), Zeng—Bai—Gasinski-Winkert [66] (multivalued double phase
implicit obstacle problems), Zeng—Rddulescu—Winkert [67] (double phase implicit obsta-
cle problems), and Zeng—Réddulescu—Winkert [68] (nonlocal double phase implicit obstacle
problems). Finally, we refer to important works concerning the regularity of local minimiz-
ers of related double phase functionals, see Baroni—-Colombo-Mingione [8], Beck—Mingione
[9], Colombo—Mingione [19], Fuchs—Mingione [28] and Marcellini [48, 49], see also the ref-
erences therein.

It is worth mentioning that more and more impressive studies on fractional double-phase
problems have been carried out recently. To be more precise, by using variational and topologi-
cal arguments, the existence of weak solutions to various fractional elliptic or parabolic double
phase problems have been established by Ambrosio [2] (existence of a nontrivial non-negative
solution), Ambrosio—Isernia [3] (existence of infinitely many solutions), Bhakta—Mukherjee
[12] (existence of infinitely many nontrivial solutions), Xiang—Ma [65] (existence of normal-
ized ground state solutions), Zhang—Zhang [69] (existence and concentration phenomena of
positive solutions) and Zhang—Zhang—Rédulescu [70] (existence of positive ground state
solutions). In the direction of Holder continuity and boundedness of weak solutions for non-
local double phase problems we refer to the papers by Byun—Ok—Song [13], Fang—Zhang
[27] and Prasad-Tewary [54]. In terms of practical application, both integer and fractional
double phase problems can be used in a variety of real-world problems, such as, obsta-
cle problems, nonlinear Derrick’s problem, transonic flow problems, optimization, finance
and image processing. More details can be found in the works by Bahrouni—Réddulescu—
Repovs [6] Benci—-D’ Avenia—Fortunato—Pisani [10] and Charkaoui—Ben-loghfyry [16]. For
very recent advances regarding local and nonlocal double phase problems, we refer to Guo—
Liang-Lin—Pucci [32], who established global bifurcation results for double phase problems;
Liang—Pucci—Van-Nguyen [44], who obtained multiplicity and concentration results for cer-
tain fractional variable-exponent double phase Choquard equations; Pucci-Wang—Zhang
[56], who demonstrated the multiplicity and stability of normalized solutions in nonlocal
double phase problems; and Pucci—Xiang [57], who found multi-bump solutions for loga-
rithmic double phase critical Schrodinger equations.
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On the one hand, we are going to show the maximum principle for the perturbed fractional
double phase operator. It is well known that the maximum principle is useful for investigating
the uniqueness and continuous dependence of classical solutions for elliptic and parabolic
boundary value problems, see Pucci—Serrin [55], Ladyzhenskaya—Solonnikov—Uralfseva [42]
and Vladimirov [64]. The general form of the maximum principle implies that the appropriate
solution of the homogeneous equation attains its extreme values on the boundary of the
domain and allows to derive an approximation for the maximum magnitude of the solution.
Particularly, maximum principles can be applied to investigate the stability and convergence
of the difference solution in a uniform norm, see for example Crouzeix—Thomée [22] and
Thomée [58, 59]. Moreover, in Chen-Li [17] and Hu—Peng [40], the authors combined
the maximum principle for anti-symmetric functions and the method of moving planes to
establish the symmetry and monotonicity of positive solutions to nonlocal double phase
problems. Motivated by these results, we will show the maximum principle for the nonlocal
double phase operator with logarithmic perturbation in Sect. 3.

On the other hand, we are interested to get a priori bounds for weak solutions of problem
(1.1) with subcritical and critical growth by utilizing De Giorgi’s iteration (or De Giorgi—
Nash—-Moser theory) and a localization method. The beginning of research into the De
Giorgi—Nash—Moser theory goes back to the works by De Giorgi [24], Nash [53] as well
as Moser [51]. This theory is a powerful tool for proving local and global L°-bounds
of weak solutions and establishing the Harnack inequality and the Holder continuity for
weak solutions. For more details we refer to the monographs of Gilbarg—Trudinger [30],
LadyZenskaja—Solonnikov—Ural’ceva [42], LadyZenskaja—Ural’ceva [43] and Lieberman
[45]. Our proofs for the boundedness of weak solutions of problem (1.1) are mainly inspired
by the papers of Ho—Kim [35] (nonlinear elliptic problems involving the fractional p(-)-
Laplacian), Ho—Kim—Winkert—Zhang [38] (quasilinear elliptic equations involving variable
exponents critical growth), Ho—Winkert [39] (generalized double phase problems with crit-
ical and subcritical growth) and Winkert—Zacher [62, 63] (nonlinear elliptic equations with
nonstandard growth). In addition, motivated by the works of Ho—Kim [35] and Wang [61], we
will show the existence of infinitely many small solutions to the nonlinear problems driven
by the operator given in (1.2) (see Sect. 5) by employing the boundedness of weak solutions
obtained in Sect. 4. More works related to L°>°-bounds can be found in Barletta—Cianchi—
Marino [7], Crespo-Blanco—Winkert [21], Frisch—Winkert [29], and Marino—Winkert [50].

To the best of our knowledge, the maximum principle for the perturbed nonlocal double
phase operator (1.2) and the boundedness of weak solutions to problems driven by the frac-
tional double phase operator with variable exponents and logarithmic perturbation have not
been studied yet. Moreover, problem (1.1) contains many interesting special cases as follows:

(P1) Letw = 0, . = 0in H (i.e. H(x, y, 1) = tP&¥) =: H,(x, y, 1)). Moreover let F be
a single-valued Carathéodory function f, then problem (1.1) becomes the nonlinear
elliptic problem involving the fractional p(-)-Laplacian

(—A);(X) u= f(x,u) in€,

u=0 on RV \ ©;

(P2) Letw = 0 (ie. H(x,y, 1) = tP&Y) 4 p(x, )19 =: Hy(x, v, 1)), then problem
(1.1) becomes the nonlocal elliptic variable exponents double phase problem;

(P3) Letl < p() = pand 1 < ¢(-) = q (i.e. H(x, y, 1) = [t + p(x, y)r]logle+wt) =:
‘H3z(x, y, 1)), then problem (1.1) becomes the perturbed nonlocal double phase problem
with constant exponents.
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P4) Letw =0and 1 < p(-) = p,1 < q(-) = q (.e. H(x,y,t) = tP + u(x, y)t9 =:
Ha(x, y, 1)), then problem (1.1) becomes nonlocal double phase problem.

This paper is organized as follows. In Sect. 2, we recall several basic definitions and
notations of variable exponent Lebesgue spaces and Musielak—Orlicz spaces concerning
the perturbed double phase function H. Furthermore, we will give the definition and basic
properties of the fractional Musielak—Sobolev space W**(£2), which is the solution space
of the considered problem. In Sect. 3, we establish the maximum principle for the fractional
perturbed double phase operator (1.2) while in Sect. 4 we show the main results of this
paper, that is, proving the boundedness of weak solutions to problem (1.1) by applying an
appropriate version of De Giorgi’s iteration along with the localization method. Finally, in
Sect. 5, based on the L®>°-bounds of the solutions and the maximum principle we prove the
existence of infinitely many small non-negative weak solutions to the single-valued nonlocal
double phase problem (5.1).

2 Preliminaries

In this section, we recall some basic results concerning variable exponent Lebesgue
spaces, the Musielak—Orlicz spaces and fractional Musielak—Sobolev spaces, see Diening—
Harjulehto-Histo—Ruazicka [25], Fan—Zhao [26], Harjulehto—Hésto [33], Kovacik—Rakosnik
[41], Lu—Vetro—Zeng [47] and de Albuquerque—de Assis—Carvalho—Salort [23] for more
details. In the sequel let C be a constant that will change from line to line, and C, means a
constant depending on the parameter r.

First, we introduce the subset C () of C (L) given by

Ci(Q) = {g eCQ): 1< inf g(x) forall x € 5}
xeQ

Foreveryr € C+ () we define r— and rt as

r~ = inf r(x) and rt = sup r(x),
xeQ xeQ

and denote by ' € C(Q) the conjugate variable exponent of 7, that is

1 1 _
—_— =1 forall Q.
") + ) orall x €

Let M(£2) be the set of all measurable functions u: @ — R, where two functions are
considered identical if they differ only on a Lebesgue-null set. Given a fixed r € C1.(£2), the
variable exponent Lebesgue space is given by

L"(Q) = {u e M(Q): 0r()(u) < 0},
where the corresponding modular function o, .) is defined as
0o = [ fur®a
Q
It is well known that L™ () equipped with the Luxemburg norm

r(x)
||u||r<~):inf{k>0: / ('Z') dxfl}
Q
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forms a separable and reflexive Banach space. Moreover, L"O(Q) is the dual space of
L") (R2) and the following Holder type inequality holds:

1 1
/ luv]dx < [f + *,] lullryllvllrey < 2lull-ollvllee
Q r r

forall u € L"(Q) and all v € L"0(Q). Additionally, if ri,r, € C4(Q) satisfying
r1(x) < ra(x) for all x € €2, then the following embedding is valid

L?O(Q) — L"O(Q).

Next, in order to introduce Musielak—Orlicz spaces, we give the definition of N-functions
and generalized N-functions.

Definition 2.1 (i) A function ¢: [0, 00) — [0, c0) is called a N-function if it possesses
the following properties: it is continuous, convex with ¢(¢) = 0 if and only if r = 0,
Additionally, it fulfills

p(t)

t
fim @ —0 and  1m 2@ —
t—0t f t—>+oo t

“+00

(i1) A function ¢: Q2 x Q x [0, o0) — [0, 00) is called a generalized N-function, denoted
by ¢ € N( x Q), if forall # > 0 (-, -, t) is measurable. Additionally, ¢ (x, x, -) is a
N-function for a.a. (x, x) € Q x Q. Similarly, we can give the definition of functions
¢ € N(Q).

Next, we recall some definitions related to N-functions and generalized N-functions.

Definition 2.2 (i) A function ¢: Q x [0, 00) — [0, 00) is locally integrable if for all
t > 0, ¢(-, t) belongs to LY(Q).

(i1) Let ¢, ¢ € N(£2), we say that ¢ is weaker than v, denoted by ¢ < ¥, if there exist
constants ¢y, ¢p > 0 such that

ox,t) <1y (x,crt) + g(x) fora.a.x € Qand forall r > 0,

where 0 < g(-) € L! (€2). Furthermore, ¢, Y are equivalent, denoted by ¢ ~ ¥, if
¢ < ¢ and in the same time ¥ < ¢.

(iii) Let ¢, ¥ € N(L2), we say that ¢ increases essentially slower than v near infinity,
denoted by ¢ < 1, if for every k > 0 the limit

@(x, kt)
1m =
=00 Yr(x,t)

holds uniformly for a.a.x € .

Given ¢ € N(2), we can define the associated modular function as

Pp () 2/ @(x, [u])dx,
Q

and the corresponding Musielak—Orlicz space, denoted by L% (2), is given as
L?(Q) :={u € M(Q): there exists A > 0 such that Py(Au) < +oo}.

This space is equipped with the Luxemburg norm given by

lullg.q = ian/\ >~ 01 p, (%) < 1].
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To simplify the notation, we may write the norm for the domain 2 as ||u||, instead of [Ju ||y, .
The following useful embedding result can be found in Musielak [52, Theorem 8.5].

Proposition 2.3 If ¢ € N(RQ) and ¥ € N(RQ) satisfying ¢ < ¥, then LY (Q) — L?(Q).

Next, we introduce some basic definitions and notations for fractional Musielak—Sobolev
spaces which are mainly taken from the work by de Albuquerque—de Assis—Carvalho—Salort
[23].

In the remaining parts of this paper, we define

!
H(x,y,t):/ h(x,y, t)dr,
0

where h: Q x Q x [0, 00) — [0, 00). Moreover, we introduce the following assumptions:

(¢1) lim;—0@(x,y,t) = 0and lim;—, o ¢(x, y, 1) = +00 with t — ¢(x, y, t) being con-
tinuous on the interval (0, co) for all (x, y) € Q2 x ;

(¢2) t +— (-, -, 1) is increasing on (0, 00);

(¢3) there exist constants 1 < £ < m < +o0 satisfying

¢ < hix,y. 1) _
T Hx,y,t)

for all (x, y) € Q x Q and for all t € (0, 00).

’

From de Albuquerque—de Assis—Carvalho—Salort [23], we know that if the function &
satisfies conditions (¢1)—(¢3) and i (-, -, t) is measurable for all # > 0, then H is a generalized
N -function. Moreover, we consider the function H:  x [0, co) — [0, co) given by

t
H(x,t) := / h(x, t)dr,
0
where fl(x, t) ;= h(x,x,t) forall (x,t) € Q x [0, 00).
Recall that
Hx, y, 1) = [P + uix, )9 log(e + wt) forall (x, y, 1) € 2 x Q x [0, 00).
Throughout this paper we will assume the following hypotheses:

(H1) p,q € C(RY x RV) such that 1 < inf (, y)erN &N P(X, ¥) < SUP(y y)eRN xRN <
and p(x,y) < g(x,y) for all (x,y) € RY x RN with U; := {(x,y) € RV
RN: p(x,y) < qx, )} L Up == {(x,y) e RV xRV : pu(x,y) =0} and p(x, y) =
Py, x),q(x,y) =q(y,x) forall (x,y) e RN x RN.0 < u(-,-) € L°@RN x RV)
such that pu(x,y) = p(y,x) and pu(x) = 0 = pu(x,y) = 0 for all (x,y) €

X =z

RN x RN,
Note that
Np(x,y)
prx,y) = ————.
N — Sp(-x’ )’)
In the sequel, we use the notations
p = inf _p(x,y) and ¢~ = sup p(x,y).
(x.y)eQxQ (x,y)eQxQ

Moreover, ¢, g7 can be defined in the same way.
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Under the hypotheses of (H1), we deduce from the argument in Section 5 of [23] that &
satisfies assumptions (¢1)—(p3) with £ = p~ andm =g+ + 1.

Let (H1) hold true, it is easy to check that H given in (1.3) is a locally integrable N-
function. Then the modular function related to 7 is given as

pru) = / H(x, Jul) dx
Q
while the corresponding Musielak—Orlicz space is
L) = {u € M(Q): psy(ut) < +00, for some A > 0},
endowed with the Luxemburg norm
. u
lullg = 1nf[A >0 pgy <X) < 1}.

Furthermore, the fractional Musielak—Orlicz space WS M(Q) is defined as

WS (Q) = [u € L7(Q): ps. () < 00 for some A > 0} ,

where
s, H (1) = /Q/QH()C, v, |Dsu(x, y)|)dv fors € (0, 1),
with
dv: ﬂ and Dsu(x,y) := M,
lx — y|V [x —yl®

where dv is a regular Borel measure on Q x §2. The Musielak—Sobolev space W*7(Q) is
equipped with the norm

luls e 2= el + [l
where [ - 5 % is called (s, H)-Gagliardo seminorm defined by
[uls 7 = inf [)\. > 0: pgH (%) < 1] .
Furthermore, we introduce the following closed subspace of W**(Q) defined by
Wy (@ = {u e WHEY): u=0acinRY\ 2}

It is worth to note that since the function H fulfills assumptions (¢1)—(¢3), we infer
from [23] that the corresponding Musielak—Orlicz Lebesgue space L' (€2) and the fractional
Musielak—Sobolev space Wg ’H(Q) are separable and reflexive Banach spaces.

The following boundedness condition is used to established a generalized Poincaré type
inequality.

Definition 2.4 Let H € N(Q2 x Q), then H is said to satisfy the fractional boundedness
condition if there exist some constants C, C2 > 0 such that

0<Cy <H(x,y,1) <Cr forall (x,y) € 2 x Q. (By)
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Itis easy to check that, if hypotheses (H1) hold, then hypotheses (B ) is satisfied with C; = 1
and C2 = (1 + [[1tlloo) log(e + w).

The next proposition can be found in the work by Azroul-Benkirane—Shimi—Srati [5,
Theorem 2.3].

Proposition 2.5 Lers € (0, 1), and let 2 be a bounded domain in RN with Lipschitz bound-
ary. If (H1) hold, then one can find a positive constant C satisfying

lullg < Cluls,x,
forall u € Wy ().

By Proposition 2.5, for all u € W™ (%), we can find A1 > 0 such that
/ Hx, [u(o)l) dx < M/ / H(x,y, [Dsu(x, y)l)dv.
Q ala

Moreover, [ - ]5,7 is an equivalent norm of || - ||5,7¢ on WS’H(Q), that is
[uls 3¢ < llulls e < C'Tuly e forallu € Wy "8 (<), @1

with C’ being a positive constant. R
The following proposition gives the relation between the norm of the space L (£2) and
its modular, the proof can be found in Theorem 2.21 of Lu—Vetro—Zeng [47].

Proposition 2.6 Let hypotheses (H1) be satisfied, u Lﬁ(Q) and the modular is defined by
pr(u) = / [|u|1’(x) + ,u(x)lulq(x)] log(e + wlu|)dx forallu € Lﬁ(Q).
Q

Then for o > 0, the following hold:
() llullg =r & pr(5) = 1withu #0;
() lullg < 1(resp=1,>1) & pgW) < 1(resp.=1,>1);
(i) if lullgy < 1, then 5 ull% ™ < pru) < lull% ;

W) i p- g +o
V) if lullg > 1, then |lully < pry(u) < Collully
V) llullg — 0% pru) — 0;
(Vi) llullg — 0o & pg(u) — ooy
(vil) flullg = 1 & Bﬁ(“) - 1;
(viil) ifu, - uin L™(Q) then pr(un) — pr ).
Remark 2.7 For y > 0, we consider the function f,: [0, c0) — [0, c0) defined as
o'
witho’,y > 0and w > 0.

for = log? (e + wt)
Obviously, one can find 6* > 0 such that f,» > 0 is increasing for all o’ > o*. Also,
for 0 < ¢’ < o*, there exist points 11, t; such that the following hold: if 0 < ¢t < f; and
t > 1, then f,/ is increasing, conversely, f, is decreasing for r; <t < t,. So that for any

0 < a < b, we have f,/(a) < Cyr - fyr(b) with Cyr = ;”:EZ; > 1. Hence, as done in the
proof of Proposition 2.21 of [47], we can get the same conclusions given in Proposition 2.6

with

o= [ [l + ol | tog! (e + ol .
Q

where y > 0.
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Similar to Proposition 2.6, we deduce the following relations between the semi-modular
ps.+(-) and the (s, H)-Gagliardo seminorm [-]s 7.

Proposition 2.8 Ler (H1) be satisfied andu € WS’H(Q).Then,fora > 0, the following hold:
. B N 3
() if st < 1, then CM ] 577 < poreta) < [l yy5

Qi) if [ulse > 1, then [u]? 5, < py () < Colul? 5.

Under conditions (¢1)—(¢3) we see that H: [0, 4+00) — [0, +00) is an 1ncreas1ng home-
omorphism. Next, we introduce the inverse function of H denoted by H- ! satisfying the
following conditions:

1 451 0o 47—1
H , H )
#dt<oo and %dt:oo for all x € Q.
0 T N 1 TN

We denote by H* the Musielak—Sobolev conjugate function of H and the inverse function of
H* is defined by

N+\

1
(H*)_l(x 1) = / Hle ) dr forall x € Q and for all + > 0.

In the sequel, we denote by X < Y the continuous embedding from the space X into the
space Y. Also, denote by X << Y the compact embedding from X into Y. The next result
is due to Azroul-Benkirane—Shimi—Srati [5, Lemma 2.3].

Lemma29 Let 0 < s’ < s < 1, Q be a bounded domain in RN and suppose (H1). Then
there exists holds the continuous embedding W (Q) — W5 " (Q) withr € [1, p7).

Next, we give the definition of a Young function.

Definition 2.10 A function ¢: [0, c0) — [0, o0] is called a Young function if it is convex,
continuous, non-constant, ¢(0) = 0 and ¢(t) = f(; a(t)dr, where a: [0, 00) — [0, o0]
is a non-decreasing function. Moreover, we denote the left-continuous inverse of ¢ by
go’l: [0, o0) — [0, co) given by

o 1) = inf{r > 0: @(v) > 1}
fort > 0.

Let H be a Young function such that

0 t N t N
/ (—) dt =00 and / (—) dr < o0. 2.2)
H(t) o \H()

Then the corresponding Orlicz target is defined as
Hy(t) = H(T (1)) (2.3)

for all + > 0, where

t T = '
o= <fo <H(r)> d’)
forall r > 0.

The following continuous embedding with respect to the fractional Orlicz-Sobolev space
W$H () is taken from Alberico—Cianchi—Pick—Slavikova [1, Theorem 8.1].
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Theorem 2.11 LetQ C RY be a bounded domain with Lipschitz boundary and let s € (0, 1).
If H is a Young function satisfying conditions (2.2) and H y is given by (2.3), then there holds
s,H Hy
W5 (Q) — L 5 (),
and the embedding is optimal.

By the definition of Wg 'H(Q), under the hypotheses of Theorem2.11, we deduce that
. H
Wl (@) < WoH(Q) < L5 (Q). Referring to Example 8.3 by Alberico-Cianchi—
Pick—Slavikova [1], we see that if we set

H :=1tP log(e + wt) + u(x)t? log(e + wt),

then
—\% [ —yk ()
Hy ~ H* := 1?5 log R (e + wt) + w(x)’ 195 log R (e + wt),

forl < p~,q" < %, for all # > 0 and y > 0. Furthermore, we introduce that following
function:

Bx, 1) = 159 1og ¥ (¢ + wt) + u(x)” 17 log ¥ (¢ + wr)

forall y > 0, forall x € Q, and for all ¢ € [0, 00) with ¢, 7 € C(Q) suchthat 1 < ¢(x) <
(p)iand 1 < t(x) < (¢7)} forall x € Q. It is not hard to see that H < H as well as
B<H N, S0 We conclude that

W@ = Wy > 1" (@) < LE@). 24)

According to Theorem 9.1 by Alberico—Cianchi—Pick—Slavikova [1], we get that following
compact embedding theorem.

Proposition 2.12 Let @ C RN be a bounded domain with Lipschitz boundary, and let s €
(0, 1). Assume that H is a Young function satisfying conditions (2.2) and Hy is given by

(2.3). If G is a Young function such that G < Hx, then there holds

WS (Q) > LE(Q).

Hence, it follows that W(‘;’H(Q) — WSH(Q) > LO(Q).
Finally, we recall some background from the theory of operators of monotone type.

Definition 2.13 Let X be a reflexive Banach space with X™* being the corresponding dual
space, the duality pairing is denoted by (-, -) and A: X — X*.

(i) A satisfies the (Sy)-property if u,—u in X and lim sup,,_, ., (Aup, uy, —u) < 0 imply
U, — uin X;
(i) A is monotone (strictly monotone) if (Au — Av,u —v) > 0 (> 0) forall u,v € X
such that u # v;
(iii) A is coercive if there exists a function g: [0, co) — R with t1_1)r{)10 g(t) = oo such that

(Au

, U
) > g(lullx) forallu € X.
flullx
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According to Lemma 3.10 of [23], we have the following properties of the functional

Ior = ps.1¢(u) ::foQH(x,y,|Dsu(x,y>|>dv

and its Gateaux derivative.

Proposition 2.14 Let (H1) be satisfied. Then I; 1 € Cl(WS’H(Q), R) and the Gdteaux

derivative of I 14 is given by
(A(u),v) = / / H'(x, y, |Dsu(x, y))Dsv(x, y) dv,
QJIQ

Jorallu,v € WS’H(Q). Moreover, A satisfies the (Sy)-property.

We end this section with the following iteration lemma, which is the important tool for

the proof of the boundedness results of solutions, see Ho—Kim [36, 37, Lemma 4.3].

Lemma2.15 Let {Z,},n = 0,1,2, ..., be a sequence of positive numbers satisfying the

recursive inequality
Zovr < MK (277 4+ 2077) ) n=0,120
forsomek > 1, M > 0and y, >y, > 0. If
14
Zo <min (1, QM) nk i

or

. . L _noy
Zo <min | QM) "k 7, QM) nk " |,
then Z, < 1 for some n € NU {0}. Furthermore,

1

1l —— _n
Z, < min (l,(ZM)_Vlk "k n), forall n > no,

with ng being the smallest n € N U {0} fulfilling Z,, < 1. In particular, Z, — 0 as n — oo.

3 Maximum principle

In this section, we establish the maximum principle for functions u € W**(Q). The proof

is inspired by Chen-Li [17].

Theorem 3.1 Let (H1) be satisfied and 2 be a bounded domain in RN. Letu € WsH(Q) be

lower semi-continuous on 2 such that

(=AY ux) >0, xeQ,
u(x) =0, x e RV\ @,

then
ulx) >0 inQ.
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Moreover; if there exists some point xo € 2 such that u(xg) = 0, then u(x) = 0 for
a.a.x € RN, In addition, if we assume that

him\x|—>oou(x) = 07
then we have the same conclusions for Q being unbounded.

Proof Suppose that (3.2) fails, then the lower semi-continuity of # on Q implies that there
exists x* € Q such that

*) = mi 0.
u(x™) ménu <
Taking u(x) > 0 for x € RN \ € into account, we calculate that

(_A):v}—( M(X*) = CN,s,p,q PV/

RN
() = w2 ) —u ) | ) — ()
= YN S P

wlu(x*) — u() P w(x*) — u(y))

+
— y|N+s(pGe*.3)+1) M)
[x* — y|N+s(p(*.y <e+a) FREg
lu(x*) — u(y)|9079)~ 2(u<x*>—u<y>) |u(x*) — u(y)l
*
+M(-x s ) | _y|N+sq(x* ) e-l-wW
+ p(x*,y)

7y|S

¥y (x*,y)—2 *) _ .
§CN’S’p’quN\Q(|u(X) u(y) [P N2 (4 (x%) u(y)) <e+a)M>

|x* — y|sPC-y) |x* — yl®

olu(x*) —u(I I @ (x*) — u(y)) )

¥ — y|N+s@G )+ (e +w\u(|)6*) u(y)|

wlu(x*) — u() P w(x*) — u(y))

oy INFs(pGe*, )+ Ju(x*)— u())\)
[x* — y| y (e+w FRE0

lu(x*) — u(y)|96"9= 2(u<x*>—u(y)> log (e+ |u<x*>—u(y)|>

et — yae Y =yl

+ u(x*, y)

+ u(x*, y)

wlu(x*) — w7 @ (x*) — u(y)) )d
Ie* — y|N+s@ar )+ (e + w\u(x*)—u(yﬂ)

[x*=y[*

< 0.

The above inequality contradicts to the first inequality in (3.1), thus, (3.2) holds true.
On the other hand, if there exists some point xg € 2 such that u(xg) = 0, then we have

<|u(y)|"<"°~”—2<—u<y)> » (e o ) )

o — y[N TG0 o — I°

(=D u(xo) = Cnys,pg PV/R

wlu(y)[PEoN=1(—u(y))

— y|N+s(pxo.)+1) [u(y)

|u(y>|‘1<*‘°~y>—2<—u(y>)1 <€ o O )

[0 — y[raCo.)) o — I

+

+ wu(xo0, ¥)
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wlu(y)[1E0N =1 (—u(y))
Ixo — y|N+s@Go.+D (e + o M0l lu(y)] >

[xo—yI*

+ u(xo, y)

<0,

Combining this with the first inequality in (3.1) implies that the above integral must be zero.
Note that we have proved that u > 0 in RY, thus u(x) = 0 fora.a.x € RV,

Suppose now €2 is unbounded. Then, since lim,_, u(x) > 0 and u is lower semi-
continuous, if #(x) > 0 in £, we can find x* € Q such that u(x*) = ming u < 0. As done
in the above proof we can show the remaining conclusions. m}

The following corollary can be directly derived since H3 given in (P3) is a special case of
H.

Corollary 3.2 Let (H1) be satisfied with 1 < p(-,-) = p, 1 < q(-,*) = q and let Q be a
bounded domain in RN . Let u € W13 (Q) be lower semi-continuous on S such that

(—A)‘;{3 u(x) >0, xeQ,
u(x) >0, x eRV\ Q,

then
ux) >0 in Q.

Moreover, if there exists some point xo € 2 such that u(xg) = 0, then u(x) = 0 for
a.a.x € RN, In addition, if we assume that

liim‘)q—)oou(x) > 01
then we have the same conclusions for Q being unbounded.

In particular, if o = 0,i.e. H(x, y, 1) = tP©Y 4 (x, y)rd%Y) = Hy(x, y, 1) for (x, y) €
RN xRN andfort € [0, 00). Due to the homogeneity of P and 19¢+) we can establish the
maximum principle for anti-symmetric functions, which is essential for applying the method
of moving planes to investigating symmetry and monotonicity of solutions, see for example
Chen-Li [17] and Hu—Peng [40]. To this end, we introduce the following notations. First, we
define the moving planes as

T, = [x e RY: x| = A for some A eRN},
and define the left region of the plane 7} as
E:{xeRN:xl <k}.
Moreover, we denote the reflection of x of the plane 7, by x*, that is
=2A—Xx1,X2,...,XN),
and let
w=u;(x)—ulx)= u(x”\) —u(x).

Theorem 3.3 Letr (H1) be satisfied and suppose that o = 0. Let Q be a bounded domain in
> and u € W52 () be lower semi-continuous on Q such that

(=D, un(x) = (=A)j, u(x) =0, x €Q,

3.3)
w(x) >0, xe X\,
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then
w(x) >0in Q. (3.4)

Moreover, if there exists some point xo € 2 such that w(xg) = 0, then w(x) = 0 for
a.a.x € RN, In addition, if we assume that

him\x|—>oow(x) = 0’
then we have the same conclusions for Q being unbounded.
Proof Suppose that (3.4) is not true, then we can find a point x* € 2 such that
wx*) = ménw <0.
We set G (x, v, 1) = |t|P(x’y)_2t and G2(x, y, 1) = |t|q(x’y)_2t. It is not hard to see that
t— Gl(x, y,t)and t > G (x, v, t) are strictly increasing functions with

(GY (x,y,0) = (p(x, y) — D]t]P*P72 > 0,
(GH (x,y,0) = (q(x,y) = D472 > 0.

The following inequalities hold

(=), ur (%) = (= A)yy, u(x)

. py [ Gy w ) — )] = G [x v ue®) —um)]
— NPT e o — y|NVEPO) ’
G? [x*, y (%) —u, (0] — G? [x*, y, ux™) —u(y)]
FONspg PV/RN ¥ — y|N+sq(x*.y) .y dy
G [x*, y () — up, (1] = G [x*, y ux®) — u(y)]
< CN,s,p,q PV-L [x* — y|N+sp(x*,y) dy
G [x*, y.up () —u()] = G [x*, v, u () — w0, ()]
+CN.s.p.q PV/E |x* — y* | N+sp(x®,y) dy
G? [x*,y,uk(x*)—uk(y)]—Gz [x*,y,u(x*)—u(y)] *
+CN.s,p.q PV/E P EETe px™, y)dy
G2 [x*,y,u)»(x*)—u(y)] - G? [x*,y,M(X*)—uA(Y)] *
+CNos.p.g PV/E ¥ — yA[NFsq (™) we, y)dy

1 1
= CN*S’p’q PV/‘Z |:|x* _ y|N+sp(x*,y) - [x* — y}‘|N+Sp(X*’y)i|
%[ [ v ) = )] = G [ v, ue ) = u )] | dy

+CN.s.p.g PV /E 61 [,y @) = (0] = G ¢,y u @) = u(y)]

dy
lx* — y)L|N+sp(x*,y)

+G! [,y () = um)] = G [y, u @) = ,0)]]

1 1
+CN’X’1’*‘1 PV/;; |:|x* _ y|N+sq(x*,y) - [x* — yA|N+sq(x*,y)]

x [G2 [+, v () = 1,(00] = G2 [, youe®) = u)] | e, v dy
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+CN,s,p,q PV/E [Gz [X*v youp (x) = ”A(y)] - G? [X*7 y, u(x™) — ’4()’)]

+G? [x* v (0%) — u(y)] — G* ¥,y u(x®) — ux(y)]] w(x*, y)

dy
[x* — y)‘|N+S¢I(X*v,V)
=CnNs,pg PVUL + 12+ I3 + Iy). (3.5)

Moreover, since

1 1
* = *_A>
lx* =yl |x* =y

0

forany x*, y € X, and by the monotonicity of G', G? along with [u (x*) —u; (y)]—[u(x*) —
u(y)] = wx*) — w(y) < 0 but not equal to zero, we have I; < 0, and similarly, taking
> 0 into account, we deduce that I3 < 0.

On the other hand, by applying the mean value theorem we get

L= /E [G' [x*,y. (%) = ua)] = G [x*, vy, u™) = ur ()]

dy

+Gl [X*’ Y, M)\(X*) - M()’)] - Gl [X*’ Y, M(X*) - M(Y)]] |X* _ yA|N+sp(x*,y)

— * 1y 1\ dy
— w(r®) /Z (6" €+ (6" €] (i <0

where £(y) € (ux(x™) —up(y), u(x*) —u;(y)) and £(y) € (. (x*) —u(y), u(x*) — u(y)).
Thus I < 0, and analogously we get 14 < 0 (note that u > 0). Recall that /; < Oand I3 < 0,
applying (3.5) we conclude that

(=AY, 1 (%) = (A, u(x™) <0,

which contradicts (3.3). Hence, it must hold w(x*) > 0.

Moreover, if we assume that w(xg) = 0 at some point xo € €2, then x¢ is a minimum
of w in €, which indicates I, = I4 = 0. So, (3.3) implies /1, I3 > 0. However, since
[, (x0) — ur (M1 = [u(xo) — u(y)] = wlxo) — w(y) = —w(y) < 0, it holds Iy, I5 < 0.
Hence, we conclude that /1 = I3 = 0, thus

w(y) =0 foraa.y e X,
and by the antisymmetry of w we get
w(y) =0 foraa.y e R.

Similarly, we get the conclusion for the case that €2 is unbounded. O

Moreover, since H4 given in (P4) is a special case of H; given in (P2), we have the
following corollary.

Corollary 3.4 Let (H1) be satisfied withw = 0and 1 < p(-,)=p, 1 < q(,) =q. Let Q
be a bounded domain in £ and u € WH4(Q) be lower semi-continuous on Q2 such that

(=A)3, wn(x) = (=A)3, u(x) =0, x€Q,
w(x) >0, xeX\Q,
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then
wkx) >0 inQ.

Moreover, if there exists some point xo € Q2 such that w(xg) = 0, then w(x) = 0 for
a.a.x € RN, In addition, if we assume that

lim,_, (w(x) =0,

then we have the same conclusions for Q being unbounded.

4 Boundedness of weak solutions

The aim of this section is to obtain a priori bounds for solutions to problem (1.1) with
subcritical and critical growth. The proofs are mainly inspired by Ho—Kim [35], Ho—Kim—
Winkert—Zhang [38], Ho—Winkert [39], and Winkert—Zacher [62, 63] using De Giorgi’s
iteration along with the localization method. In this section, we denote by C; (i € N) positive
constants.

Given a fixed u € M (2) we define

Fu)={& € M(Q): £(x) € f(x,u(x)) fora.a.x in Q},

which is the measurable selection of f (-, u).
First, we introduce the following definition of weak solutions to problem (1.1), which are
well defined under the hypotheses given in this section.

Definition 4.1 A function u € WOS’H(Q) is said to be a weak solution of problem (1.1), if
there exist £(x) € f(x, u(x)) for a.a.x € Q satisfying

//H’(x,y,|Dsu(x,y)|)DSv(x,y)-dv:/évdx 4.1)
QJIQ Q
forallv € WS’H(Q).

4.1 Subcritical growth

First, we consider the subcritical case and suppose appropriate growth conditions on f that
guarantee that the set 7 (u) given above is not empty.

(H2) (i) Assume f: Q x R — 2R \ {#} is graph measurable and f(x,-): R x RYN —
2R\ {#} is upper semicontinuous for a.a.x € Q.
(i) Lety > 0,5,7 € C(Q) such that p* < ¢(x) < p¥(x) and ¢ < T(x) < ¢} (x)
for all x € Q. Suppose that there exists a constant 8 > 0 satisfying

sup{[§]: & € f(x,0)}

(x) T(x
< ﬂ[|t|§“”*‘ log V" (e + wlt]) + () [1*P " log ¥ (e + wlt]) + 1}

fora.a.x € Q and for all r € R.

The next theorem is one of our main results in this section.
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Theorem 4.2 Let hypotheses (H1) and (H2) be satisfied. Then, for any weak solution u €
Wy () of problem (1.1), it holds that u € L*(R2) and

¢ ¢
e, = € max {lulld . Nl ). 4.2)
where the positive constants C, €1, £y are independent of u.
Proof Assume that u € WS ’H(Q) is a weak solution of problem (1.1). Our proof is divided
into several steps.

Step 1. Constructing the iteration sequence and developing basic estimates.
For any n € Ny we define

R R i S )
Ay

4.3)
7(x)
R = )™ log W (e + o — i) | d,
with
Ay ={x e Q:ulx) >y}, ¥ eR. 4.4)
Moreover, for n € Ny, v, is defined by
1
Yn =Vs|2— ) 4.5)
where ¥, > 0 will be specified later. Obviously, for all n € Ny, we have
Y /2% and Y < Y < 29,
A‘/fn+1 c A‘//n and Z,i1 < Z,.
By the definition of v,,, we obtain
14 u(x)
u(x) = ¥p = u(x) <1 - 1//11:'»1 T foraa.x € Ay,,,
and
u— () )
Ay | < / (7% ) log™¥ (¢ +w(u — ) dx
A¢n+| '([fn-‘rl - l[fn
25 () (n+1) )
<[ - W 10g W e ol - ) d.
Ay, Y™
This implies
u(x) < (2" = 1) (u(x) — ¥,) foraa.x € Ay,,, and forall n € Ny, (4.6)
Ayl = (0 +9a) 200 2, <2 (1492 ) 20407 2, forall n € N,
4.7
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Letu, := (u — Yp41)+ for n € Np. We claim that

/ / <|un<x) — up (y) [P log (e L) = un<y)|)
oo lx — y[speey) lx — yl*
lit (x) — 1ty ()| 7659 log (e NG un(y)|> ) g @8

b = ypaeey =P

+ pu(x, y)
=0 (14y )20tz

where ag := max{¢™, t+}. Now, we are going to verify (4.8). To this end, we take u, =
(u —Ynt1)y € WS’H(Q) as test function in (4.1) and obtain

/ / <|u(x) —uWIPEI 72 U(x) — u () (n (x) — un(y)) log (e NG u(y)\)
ala lx — y|sp@e.y) lx — yI$
wlux) — uMIPEIN " w(x) — u () (un (x) — un ()
_|_
lx — yls(p(x,y)-i-l) (e + w|“(x)*u()’)|>

[x—y[*

— q(x,y)—2 _ _ B

4 y) lu(x) — u(y) (u(x? MFY))(Mn(X) un(y)) log <e n wM)
|x—y|3(1()€,}) lx — y|*
olux) — u(IN " wx) — u() (n (x) — un ()
+ u(x, y) e d
v — y|s@Ge+D) (e + w%)
=/ Eup(x)dx.
Q

Since (u(x) —u(y) (U (X) =1y () = (U (x) =1 ()% and [u(x) —u(¥)| = |t (x) =1y ()],
also, u > u — Y41 > 0on Ay, ., by the above equality, we calculate that

ltn (x) — 1n (y)|P5Y) ( lutn (x) — un<y)|>
1 -
/Q/Q( —ypren BT

it (x) — w (y)|9 5 litn (x) — 1 ()]
+ u(x,y) et log|e+w T dv

(x) T(x)
< / ﬂ[lulg(")’l 1og ¥ (e + wlul) + () 1" @ og ¥ (e + wlul) + l]unm dx
Q

x) T(x)
<28 [ug(x) log N (e + wut) + n(0)’ u™™ log N (e + wu) + 1] dx
A‘//n+l
s s )
502/ ( 22 1) (= ) log' ™ |e+w (22 = 1) u — yn)
([ =) =] [e+o (22 =1) w =]

Yn+1

@) [(272 1) @ - vm]m

log% [e + o (2"+2 - 1) (u — ‘/hz)]) dx + C }A'/fwl |
<q (1 + w*—s‘+> 2n(a0+aWO)Zn’ 4.9)

which associated (4.7) indicates (4.8).
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Step 2. Localization and estimating Z,, | by Z,,.
Let B; C RN be open balls of radius R withi € Z := {1,--- ,m} and let {B;};c7 be a
finite open covering of €2 such that 2; := B; N Q for i € 7 are Lipschitz domains. For any

i € Z, we choose R small enough such that

*

<1 pf= s prv<g = inf c@=g = s o0 < (p) (4.10)
(x,y)€B; X B; xeB;NQ X€B;NQ S
*

and ql.'" = sup qx,y) <7 = inf T(x) < ri+ = sup t(x) < (‘11_) . (4.11)
(x,y)€B; X B; xeB;NQ XEB;NQ $

Let {n;}"_, be a partition of unity of & with respect to {B;}""_|, namely, for each i € Z, we
have

m
ni € CCRY), supp(n) CB;, 0<nm <1 and » mi=1 onQ  (412)

i=1
By applying Jensen’s inequality and the following interpolation inequality
192 <t 4% forallt > 0and for all o, a2, 3 with 0 < o] < arp < 3, (4.13)

we get

Zugl = //; <u§(x) log% (e + wuy,) + ;L(x)yu;(x) log% (e + a)un)> dx

Vn+1

< mmax{s™.T ¥} / (|unni|§'(x) log™v (e + wluyn;|)
A‘I’nJrlﬂQi

i=l1

7; (x)
O i 7 log ¥ (e + luami])) d
(4.14)

m

+ ot - gt

<Y [ (i 10g™ e+ i)
i=1 Y A NS

A ~
+o L - S
+ 1) lupni % log™ (e + wlun;|) + lupni|* log ™™ (e + wluyn;|)

OO i Tog ¥ (e + olug i) dx.

Foranyi € Z,r; > 0, and r, > 0, we define

A% 3
Ly,i(ri.r) = fA [lunm "1 log ™ (e + wlunn; ) + u () |upn; "2 log ¥ (e + wlunn; |>} da-

'/fnJrlﬂQi
(4.15)
Then, from (4.14) and (4.15) it follows that
m
4 + .+ — —
Znr <m™ N TIN L, (67 1) Lai(s. 1)) (4.16)

i=1

Let x € {+,—} for i € Z. Using (4.10) and Holder’s inequality for ¢ > 0 satisfying
¢*+e < (p;)iand T +¢& < (g; ); we arrive at
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.« S . T
Lnitsi 7 :/ n {lunmlgi 1og N (e + wlunn; [) + p(x)Y Junn; |7 log ¥ <e+w|unn,-|>] "
i

st
si+e ;
1

crteq si+e g-"£+€
< Qlunm‘ll log" N (e + wlupn;|) dx [Ay, N Q%

*
i

I.*-H) Ti*+f7 rl. +e %Jrs
+ /QM(X)”Iunmll log" N (e + wlupn;|) dx [Ay, . N&1

*
L
*

% crte L"” sit
<Ay, QT /Qlunrnll log "V (e + wlunn; ) dx

*
L

e

N rl-*-%—e
+ (/ 1) Junn;| i T log "N (€+w|un'7i|)dx> '
Q

“4.17)
Next, we denote
~ . si+e . T e
B(x,t) :=t5 T log™ ¥ (e 4+ wt) + w(x)"t% T log ¥ (e + wt). (4.18)
By Proposition 2.12, we see that
wet (@) — LB (@) (4.19)
Note that for s, > 0andr > 1,
(s + 1) log(e +s +1) < (25)" log(e + 2s) + (21)" log(e + 21) 4.20)
<2t log(e 4+ 5) + 271" log(e + 1), '
and forallr >0,C > 1
log(e + Ct) < Clog(e + t). 4.21)

Invoking the above inequalities, Remark 2.7, (4.10) and the continuous embedding (4.19)
we see that there exist o > 0 such that

o <min{s; —p. 17 — ¢} forieZ

satisfying

*
Si

cibe 1o site
lunnil ™" log™ V" (e + wlupn;|) dx
Q

—x =x = T
Si Si i P +o
= ”unr]i”gluzo’g <GC; [u”m]x,Hlﬂgo,Q <Cy Sn,i + Sn,i ,
where
* if fupnillz o <1,
5:,'* _ §l* o llunni ”B,Q = (4.23)
S +Wl if ”unni”f{,Q > 1,
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and
/ / <|un(x>m @) = un i PN ( Jun ()0 (6) — e ()i <y>|)
Sni = ogletw
x—y|~3pz(x y) |X—yls
; — . qi(x,y) ) _ )
+ (e, y) [wn (x)n; (x) u,f(y)nl ) log (e L ol G () = un ()i (y)|> ) W,
[x — y|%4i (x,y) lx —yp

(4.24)
Analogously, by Remark 2.7, (4.11) and the continuous embedding (4.19) we obtain

i34

. 7e e
(/ () Junn;i |5 log™ ¥ (6’+wlunm|)dx)
Q
o o (4.25)

i l

=%

11+(7

T’
=< ||Mn?7;||B Q= <Cs [unni]xl’H,Q <GCs S Tt S s

with
* if lupnillzo <1,
fi* _ i L Il n’h”B,Q = (4.26)
f,‘* + ¥ if ”“n’?i”&g > 1.
From the inequalities (4.16), (4.17), (4.22) and (4.25), we get
5 57 7 ff
Zpy1 < C7 |A,//nJrl N Q; ’ cFrtte Snp’ii + Sp e + Snp’l + Sq o
Combining this and (4.13) we infer
Zuir = Oy, |75 (5174 517%). 2
with
+ +
- - S b
0 <61 := min min %f’i —1 <6 := max max ua tN — 1.
1<i<m pi +o qi +o 1<i<m pi pi
Next, let
Spi =J1+2J2, (4.28)
where

; //(Iun(X)m(x)—un(y)m(y)l”’(”)1 ( Iun(X)m(x)—un(y)m(y)|>
1= ogle+t+w

x — y|spitx.y) Ix — yJs
e (X)7; () — 1 (y)1; (y) |4 )

+p(x,y) )
xlogle+w un (X)0i (%) — un (Y)1i (y)] d
lx =yl ’

b / / (Iun(X)m(X)—un(y)m(y)l”"(”)1 < Iun(X)m(X)—un(y)m(y)l)
h = ogle+w
Q\B; JB;

o = y PP =yl
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[t (XY (X) — 1 (¥)1; ()[4 5

+ u(x, y) Ix — y[sai )
< log (e Ll @m0 u4<y)ni(y>|> ) dv.
lx —y|*

Next, we introduce the indicator function yx, satisfying x, (x) = l'if u(x) > Oand x, (x) =0
if u(x) = 0. Applying inequalities (4.20), (4.21) and the interpolation inequality (4.13) we
see that

I / / Jtn ()1 (6) = tn 0 NIPFED (e +w|un(x)m(x)fun(y)n,»(yn)
Y s U, e — y|NFspi () ¢ by — IS

e,y MM () = en () ()[4 ) log (e 10 O () = (I )]

|x — y|N+s6i(x.y) [x —y|*

< opf / f litn (x) — up (y) [P ) log (e +w|un(x)fun(y)|> dxdy
B; /B

)dxdy

|x — y|N+spi(x.y) lx — y|*

+ - 1
T+ p, i +
+2°  max {19n 01V

/ / dx / dx
X — + T
B; \/B N+(s—Dp; B, N+(s—=D(p;"+D

ix—yl i|x —yl

- +
x (Iun(y)l”i + lun ()|Pi )log(e+w|un(y)|)dy

+ _ q; (x,y) _
+ 29 +1f / [/L(x,y)‘u”(x) up ()4 log <e+w‘un(x) un(y)|> dx dy
B; JB;

|x — y|N+54i (x.y) [x —y|$ (4.29)

s q; gt +1
+24 IIMIIoomaX{HVnillo’o AVnilles )

/ / dx /‘ dx
X — + T
B; \/B N+(s—1)g; B N+(s—D(g;"+1)

ix—yl i|x—yl

X X (¥) (Iun(y)lq"_ +Iun(y)\q;r)log(€+w|un(y)\)dy

<C9[ / ln () = un P (e+w|un<x>—un<y>|>
~ e s e ypriey v =yl

Jtt () — tn (3)|91 59 [tn (x) — ttn ()]
1 +o———F——— ) dv
‘x—yP‘qi(xv}’) ‘x_y|5

+ wulx, y)
+ +
+C]0/B lun (017 1og(e + @lun (M) + n()|un ()|% log(e + wluy (y)]) dy

+Cio /B_ lun (170 Tog(e + olun () + wlun (I log(e + wlun (3)]) dy,

where we have used

dx dz wy (RHI=9)r
T < = 4.30
/1;’,- |x — y|NFG=br = /BR/(O) |z|N+G=Dr (I—=s)r (430

for r > 0 and R > 1 satisfying B; C Bg/(0) foralli € Z. Since u > u — Y41 > 0
on Ay, ., associating (4.9) and (4.13) we calculate that for p; € {p;, p;", p~, p*} and
gi € {qf,q,-*, q~,q*}, there hold
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’ litn (V)17 Tog(e + wlin (V)]) + () |un ()17 log(e + wluy (y)]) dy

< /A - |u(y)|l3i log(e + wlu(y)|) + u(y)|u(y)|éf log(e + wlu(y)]) dy
wn+l i

<Cn / [u(xf“ log ¥ (e + wu(x)) + 1) u(x)*™ log ¥ (e + wu(x»] dx
A‘/’nJrlﬂBi

+ C }A‘/fnJrl |

<Cn (1 + W;§+) 2n(a0+uWO)Z)1-
(4.31)
Combining (4.29)—(4.31) we get

Ji < Cis (1 + 1//;§+) otz

Similarly, by inequalities (4.13), (4.20), (4.21) and (4.31) we have

it ()i ()| P ) |1 ()i (x) ]
b= TR e logle+o—"———
Q\B; B; |x_)’| e |x_y|

. i (x,y) .
e,y OB (e +w|un(x)n,(x)|> dx] 0y

e = y [Vt =

dy dy
= N o Tx — yNsGD
supp(n)NAy, | Q\B; |x — y|VTP Q\B; |x — y[V W@

x (117 + lua )17 ) 1oge + lutn ()]} dx

+ el / ( / dv + / dy )
1" e P Gt
% Jsuppemnay,,, \Jars; [x — y|N+sa o\ |x — y|NFs@+D

X 2u0) (I 01 + a1 ) 10g(e + ol (3)]) dx

<Cu /A ; u(x)|”” log(e + wlu(x)]) + n()|u )’ log(e + wlu(x)]) dx
'ﬂrHrlm i
+Cuy / ()| Tog(e + olu()]) + p(0)|ux)|? logle + wlu(x)|) dx
Al//n+1ﬁB[

=Cis (149 )2z,
(4.32)
where we have used that
dy dy N
Sup — y|N+sr = N+sr = 45’
xesupp(n) J2\B; 1 — VI lz1=d; 12l srd;
with d; := dist(2 \ B;, supp(n;)) > 0and r > 0.
Inequality (4.8) and (4.28)-(4.32) lead to

Sy < Cig (1 4 w;f) 2@+ 7 foralln € No.
Therefore, we get

—ct o
Sfe‘ n Sr1+g2 <cp (1 Fyrs (1+62>) on(eo+ 3 (1+62) (Zrll-'r@] + Z’£+02). (4.33)
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Moreover, (4.7) yields

& —+Eg7+ —% 5§+ %
Firtae STHTT+e sTHTT+e Firtie 7S5 tT+4e
|A¢n+]|§ e < Crg | s + Y 2T e 7,8 .

Taking this and (4.27) as well as (4.33) into account, we get

Zni1 < Cro (w; Py "2) k" (z}l+ "y Z,‘,*”) forall n € N, (4.34)
where
- +
&g n &g
0 = < = 14+6)+ —F——""—"7—
<SPS T a e SPES ( 2) crrot e
o ect
| < k= 20t
0 o+ — < ot —
< = = .
" ! ¢ct4+tt4+e ™ 2 2 ct+tt+e

Recall that g = max{¢c™, tT}.
Step 3. A priori bounds
Referring to Lemma 2.15, we see that (4.34) yield

Z,— 0 asn — oo, (4.35)

provided that

Zy < min {(2019 (v +¢r;"2))ﬁ O 2000 (B ) RS } :
Note that
Zy = fQ [ =05 10g ™ (e + 0t = 1))
) = YT 10g W (e + 0 — )1 | dx
=< / B(x, |u])dx.
Q

We also see that
1 1

/st(x, ubdx < (2C10 (v + i) Tk

1 1 -y

/QB(x, lul) dx < (2C19 (!0;'01 + w;pz))_ﬁ K 7 A

is equivalent to
L -
U Y < (2C) T (/ B(x,|u|>dx> ,
Q

_ _ 1 _1_rnrn )
U P < 2C) Tk T (/ B(x,|u|)dx> .
Q
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Moreover,

_1l_rn=rn
2y, " < 2C1) 'k M 72 min

- -2
</ B(x, |u|)dx) R (/ B(x, |u|)dx> ] R
Q
- -2
</ B(x, |u|)dx> R (/ B(x, |u|)dx> ] R
Q
is equivalent to

pan 2
-v 0 0
Ve > (4C10) 71 k1 TR l)max{</ B(x,|u|)dx>” (/ B(x,lul)dx>/ }
Q Q
1 1 1 2=V au B
JEERE Ee 2771 P P
Yy > 4C1o) 7 k' n T A )max{(/ B(x,|u|)dx> 2(/ B(x,|u|)dx) 2}.
Q Q

Hence, if we take

_1l_r»n=n
20,7 < (2C19) "'k T 2 min

(L
I/I*Zmax{(4C19)ﬂ1 (4C19)ﬂ2} kP (Vl+ 2 )

pal n
.max{(/ B(x,|u|)dx>pz,(/ B(x,|u|)dx>pl},
Q Q

(4.35) holds true, by applying Lebesgue’s dominated convergence theorem we have
2= [ o= w5 10 e+ 0t = v
1) @ =) 1og W (e + 0w = Y1) | dx
- / [0 = 2005 10g ™ (e + 0 — 291))
Fr() = 2001 1og W (e + 0 = 20) )| dx > 0,

as n — oo. This implies that

esssupu(x) < 2.
xe

Analogously, by replacing u with —u, we get

esssup (—u)(x) < 2.

xeQ

Therefore,
lulloos < Cmax{/ B(x, |u|)dx“,/ B(x,|u|>dxﬁ2], (4.36)
Q Q

with C, £1, £, being positive constants independent of u. Finally, from (4.36) and Remark
2.7, we obtain (4.2). ]

In addition, motivated by Ho—Kim [35] we can expend the range of ¢ and 7 given in (H2)(ii)
by strengthening the restrictive conditions on p and ¢ (see (H2’)(iii)). For this purpose, we
consider the following assumptions:
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(H2’) (i) Assume f: Q x R — 2R\ () is graph measurable and f(x,): R x RN —
2R\ {#} is upper semicontinuous for a.a.x € Q.
(ii) Let ¢, T € C(RQ) such that p(x) < ¢(x) < pi(x)and g(x) < 7(x) < ¢; (x) for
all x € Q. Suppose that there exists a constant 8 > 0 satisfying

sup{|€: & € f(x,1)}
< ﬂ[ltl“’”—‘ log ™™ (e + lt]) + w@) |17 og ¥ (e + wlt]) + 1]

fora.a.x € Q and for all t € R.
(iii) For r € {p, q}, the following hypotheses hold

inf sup r(x,y) — rER(qu) log 00, 4.37)

—_— <
R>0 (x,y)eRN xRV |X - y|
O<|x—y|<1/2
with rI;R(x,y) = inf (5 5)eBrx,y) F (X, ¥).

Remark 4.3 A example for r € C(RY x R¥) satisfying the hypotheses (H2")(iii) was given
by Ho—Kim [35, Example 4.3].

Theorem 4.4 Let hypotheses (H1) and (H2’) be satisfied. Then, for any weak solution u €
Wg’H(Q) of problem (1.1), it holds that u € L*°(2) and

1 i
luloe.g2 = € max {lulld . lull3 o}
where the positive constants C, 01,05 are independent of u.

Proof First, we repeat Step 1 of the proof for Theorem 4.2, namely, assume that (4.3)-(4.8)
hold.

(a): Localization

Let B; C RY be open balls of radius R withi € Z := {1, --- ,m} and let {B;};c7 be a
finite open covering of Q such that ; := B; N Q for i € T are Lipschitz domains. For any
i € Z, we choose R small enough such that (4.10) and (4.11) are fulfilled. According to the
continuity of p, g given by (4.37), there exists R € (0, 1/4) small enough such that there
exist Cag, Ca1 > 0 satisfying

[ PG ) = P Tog X = 31 = o0, (4.38)
[0 3) = 45| log ¥ = vl = 439)

for all (x, y) € RV x R¥ satisfying |x — y| < % As done before, let {n;}"_; be a partition
of unity of Q satisfying (4.12). Let p;” = p(x’, y') for some (x', y') € B; x B;. Thus

I(x",y) = (e, | =Ix"— x|+ |y —y| <4R forall (x,y) € B; X B;,

so (x',y) € Byg(x, y) forall (x,y) € B; x B;. Also, we see that |x — y| < 2R < 1/2 for
all (x, y) € B; x B;j. Combining these conclusions and (4.38) we get

— (G y) = p)oglx = y1 = = (P06 ) = Py ) ozl =y
< Cyp9 forall (x,y) € B x Bj,

@ Springer



11 Page 28 0of46 Partial Differential Equations and Applications (2026) 7:11

which implies

lx — yfPEN=P) = sPe=plog =yl > ) forall (x,y) € Bi x Bi.  (4.40)
Similarly, (4.39) implies

|x — y[f@@N=0) = s =g eyl > €y forall (x,y) € B; x Bj.  (4.41)

We claim that
/' / <|un(X)—un(y)|pl ) ( Iun(X)—un(y)|>
ogle+tw——mm———
; EE i b=

+M(x7y)|un(x) —uy (y)|% log <e+w|un(x) _un‘(y)|>>dxdy

|x—y|N+Sqi7 |X—y|3

[t (X) — () |PE) lttn () — 1 ()]
= [//( -yt OB\

i () — tn ()90 Jin (x) = tn ()]
+ux,y) V) log e—}-ww dxdy + |A¢n+1|
(4.42)

which associates (4.7) and (4.8) implies

/ / <|un(x)—un(y)|pf log (e+w|un(x)—un(y)|>
x—y|N+sz |X—y|s
_ q; _
+ulx,y) [un (x) un(y)J log (e + w|un(x) un()’)l) ) dxdy
Ix — yN+sa lx — |’

= O (1495 )2+ ¥ 2,

foralli € Z and all n € N, where we recall that oy € max{¢c™, z+}. Now, we are going to
prove the claim. We have

/ / litn (x) — un (y)|PY) g (¢ 4 @) = tn )|
5 Jo, \ ey VR % =P
_ q(x,y) _
lun (X) — un(y)] log <e+w|un(x) un(y)|)>dx dy

[ — y[NFsaGy) v =3I

lit (x) — () [P ltn (x) — un ()|
= Ntsp(ry) log | e+ O
BiﬁA‘/’zH—] BimA‘/’n-H |.X' - yl Py |)C - yl

litn (x) — p ()4 ltn (X) — tn ()]
1 -~
+u(x,y) N Fsat) ogle+w o dx dy

+2/ / <|un<x>—7vn(y>|P<x’y> log (men(x)—u,:(yn)
BiNAy, | JB\Ay, ., |x — y|N+sp(x,y) [x =y

it (x) — wp (y)]4Y) litn (x) — tn ()
+ulx, y) i — [ NFsa(y) logle+w T dxdy

=:T1 + 27>. (4.43)

+u(x, y)
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Invoking (4.40) and (4.41) we get

. / / ( @) —un |1
BinAV’n+l B[QA‘/’VHA |x o y|2S |x - y|N_Spi7
1 _
X — log (e + a)—lu" x) Mn'(y)l)
|x — y|7sPE=P) [x —yI*
it () — un ()] 15 1
+pl,y) | — —
|-x_y|2S |x—y|N_S[1i
1 _
X — log e+w7|un(x) u,,'(y)|> dxdy
|x — y| 7@ =4;) lx —yI®
px.y)

[t (x) — un (y)]
x — [

> / / (sz
B,’ﬂA]/,nJrl BiﬂA\/,n+1

[tn (X) — up ()| 1
xlog|le+w - —
lx —yl® |x — y|N=sp;
_ q(x.y)
+ Cosp(x, y) [t (x) — up ()]
x — [
— 1
x log e+w|“n(x) un(y)| ) dxdy.
lx —yI° Ix — y|N =54

Jt4 (00) =10 ()|
[x—yl*

T > / / <C22<
BimA%H—l BinA‘an+1

P
. 1)
|Mn(x)_un()’)|> 1

lx —yI® |x — y|N=spi

q;
—1

x log <e+w|un(x) _un()’)|> 1 )dxdy

lx —yI® Ix — y|N=sa
_ P _
Zf f (szlun(X) un(y)J log <e+w|un(x) un(y)l)
B, Jmoag,, T ey =P

lun (x) — ()] s‘)
—2s|x =l Nesp—

lx —yl |x — y|N=5Pi
[t (X) — up (¥)]9i log <e+w|un(x)_un(}’)|>

|x — y|N*tsa: lx —yI¥

Furthermore, if < 1, it follows that

[t (x) — up (y)]
lx — y|?

xlog(e—i—w

lin (x) — un(y)

C ,
+Co3pu(x, y) ( x =y

—Co log (e +w

+Cozpu(x, y)

— ) 1
—Coslllloo log <e ol = y|5> 7) dx dy
|x—)’| |x_y|N_Sq[
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— pi —
. / / (ng |un (x) Mn(y)J log (e +w|”n(x) un(y)|>
BiNAy, B[ﬁAv,n+l |x — y|N+Spi |X - )’|T

n+1
[t (x) — un(y>_|‘ff log (6 ) = un<y>|> dx dy
|x—y|N+Sqi |X—y|s

+Co3pu(x, y)

1 1
—Clog (e+w(2R)S)/ (/ —— T __)dx) dy.
Agar \/Bi |x = y|77%P0 x — y| T

(4.44)

ltt 00) =10 () [95)
[x—yl*

— pi —
T 2/ / <C22|”n(x) un(y)_l log <e+wlun(x) Mn(y)|>
B[mAerrl B,'ﬂA1/,”+l |)C — y|N+Spi |.X - y|Y

— ‘1,'_ —
4 C23/L(x,y)|u”(x) un(y)_l log e+w|un(x) un (y)] dx dy,
lx — y|Ntsa; lx — yI®

and if > 1, it follows that

(4.45)

Furthermore, we choose R > 1 such that @ x Q C B_,(0). Hence, for any i € 7 and
r > 0, it holds that

1 1 Wy R
/ v < / g dz = forall y € €. (4.46)
B X —yIN =" B 121V s

From the above inequality we get

~onT ~ ot ~ a+
1 a)NR'Ypi a)NR‘W’ 1 a)NRSq
< < and < .
B,‘ |_x —_ B,

yIVRe e sp e -y sqT

Utilizing the last two inequalities along with (4.44) and (4.45) we arrive at

— pi _
T = C27/ / (M log (e + wM)
BiNAy,  , JBiNAy, |x — y|N+S17,- lx — y|*

_ q; —
[ty (x) — un ()| log <e+w|un(x) 1, (y)]

+ulx, y) =
y|N+sqi [x —y|*

) ) dxdy — Cag Ay, ]|
(4.47)

lx —
Similarly, applying (4.40), (4.41) and (4.46) again, we have
s
BiﬂA;/,nJrl Bi\A,/,nJrl
1

X logle+w
lx — y|7S(p(x,y)fp,-’) g <

[t (x) — 1y (¥)]
lx — y|?

p(x,y) 1

lx — y|N=sPi
[tn (x) — un(y)|

lx =y )
q(x,y) 1

[t (x) — 1wy (y)]

+ ulx,y) .
|x — y|?

e — y[V

X : )log(e—l—wM))dxdy

Ix — y|—s(q(x,y)—qf [x —y|*

— pi —
Zf /' <C22|Mn(x) as)l log (e—{—a)lun(x) un(y)|>
BinAy,,, JB\Ay,,, Ix — y|Ntspi lx —yl*
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_ q; _
+ Copr e, yy Mn D Zun O (4 @ ZunWIN Y g
|x — y|N+Sqi lx — yI*

1 1
— Cy6log (e—l—a)(ZR)s)/ (/ —— = dx> dy
Avpey \IBi |x = y[T7P =y [T

— pi —
> C27/ / <|un(x) un(y)J log <e+w|un(x) Mn()’)')
BimA‘/’)H—l Bi\A‘/’;H—l |x - y|N+SP’- |x - y|s

lutn (x) — 1y (y)|% log (e + w|un(x) —up(y)|

|x—y|N+5qF |X—y|s

+ wn(x,y) ))dxdy—czﬂAl/an!-

(4.48)

This along with (4.43), (4.47) and (4.48) yield (4.42), and the claim is proved.

(b): Estimating Z,,; | Py Zy.

Recall that L, ; and B are defined by (4.17) and (4.18), respectively, for x € {4+, —}
and i € 7. According to inequalities (4.20), (4.21), Remark 2.7, (4.10) and the continuous
embedding (2.4) we see that there exist ¢ > 0 such that

6 <min{g; —p; .1, —q; } forieZ
satisfying

57

i
*

g_*+€ gl."+g s+
lunni> 7 log™ ¥~ (e + wlupn;l) dx
Q

o o ~
= ”unni”é‘uzo Q =< Cy [unni]sfﬁ‘ugo_g < C3o Snf,' + Sn,’i s

with ¢ given by (4.23) and

3 _/ / (Iun(x)m(X)—un(y)m(y)lpi_l ( Iun(x)m(X)—un(y)m(y)|>
n,i = ogle+w
QJIQ

|x—y|N+Spi7 |x_yls

|t ()1 (X) — wn (V)i (0)|%°

+ pulx, y) —
lx — y|*
% log (e N wIun(X)m(r;)_—;lz(y)m(y)l))dx dy.

Analogously, inequalities (4.20), (4.21), Remark 2.7, (4.11) and the continuous embedding
(2.4) yield

ri*
™ te *
1

* + H
(/ 1) Junni | log "N (e + wluni]) dx)
Q

A
P ~q: +6
I' + S 1

i n,i ’

& = ~
< llunnill g o < Cat lunnilyy o = C32 | S,

with 7 given by (4.26). Similar to (4.27) one has

Zuet = Oy |75 (5137 4 5)1). (449
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with
+ +
- - S T
0 <@y := min min _gi , _ri —1 <6 := max max S _N,T’ +_N -1
I<i=m p; +o g +o 1<i<m p; P;
Let _ _ ~
Spi =J1+2J, (4.50)
where
7 [0 )M (x) — wn (V)0 (V) [Pi0 ) 1, ()i (x) — w0, (V)N ()]
1= = ogletw P
i i |X—y|spi |x_)’|
e,y B O ) = un Q)i I
e =y
«log (e +w|un(X)m(X) —upy (V)i (y)] v
Ix — yIs ’
and
~ ltn (XY (X) — wun ()1 (9)|Pi7 [ty ()1; (x) — upn (Y)0; (V)]
J
h = — log e+w B
Q\B, |x—y|5pi lx — vl
e y) Jua )i (xX) — un ()i ()|
’ v =yl
« log (e +w|un(X)m(x) — un(Y)Ni (y)| o
Ix — y|* '

By (4.9), (4.13) and (4.30) we get

7, :/ / (\un(X)m(X)—w(y)m(y)l”f log (e+w|un(X)ni(X)—un(y)m(y)l)

Ix_y|N+sp; [x —y|*

. _ . q; . _ .
+M(x’y)|un(x)7h(x) un (V)i ()| log <e+wlun(x)7h(x) un()’)ﬂl(}’)‘))(ixdy

lx — y|Ntsa lx =yl
< 2Pi +l/ / [un (x) _un(y)lp’ log (e—l—a)lun(x) un(y)l) dxdy
B B |x — y|NTP I —yl*

2P max (V1% 1%

dx -
i ] d
<, (/B |x_y|N+<s'><m+1>> (I Tog(e + wluy () dy

— q; —
+2qi++1/ / u(x,y)‘u"(x) un(y)J log (e+w\un(x) Mn'(y)l) dx dy
5 /B, b~ y|VEsa =P

+ q; +1
29 oo max (Vi 15, Vi l135 ™)

dx .
9i 1 d
X /Bi (/B . leHsl)(qu)) XuWun (Y[ log(e + wlup (y)]) dy
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< C34/ / (lun(x) - un(y)lp (6’ +w|un(x) - un(y)l)
s =P

+u<x,y>Mlog (ﬂ)M))d

|x — y|*9 lx —yI*

+C3s /B _ |t ()77 log(e + wlun (M) + (M) un (W% logle + wluy (y)]) dy

<Cz¢ /
A'an+l

+C ‘A‘///H»l!
< Cy (1 4 W*_§+> 2"(0‘0+aW0)Zn,

[u(x>§(“ log N (e + wu(x)) + 1 ()" u(x)" log ¥ (¢ + wu(x)>] dx
NB;

(4.51)

and

~ S0P .
% :/ (/ |un (x)m; (x)] " og (e+w|un(x)77:(;€)|>
Q\Bi \JVB; |x — y|N+SPi lx — ¥l

. q; .
+p,(x,y)|“"(x)"’(x)|_ log <e+w|un(xm(:)l> dx)dy
|x—y|N+sqi lx — ¥

< e M
~ Jsupp)NAy, , \J\B; |x — y N Jans; |y — NS +D

X |un ()P og(e + wlun (y)]) dx

g | o & )
Moo - . - - =
supp(ni)NAy, | QB |x — y|N+S51,- Q\B; |x — y|N+s(q; +1)

X X (O lun (1% log(e + wlun (v)]) dx

< 638[ lu(x)|Pi log(e + wlu(x)]) + p)|ux)|% log(e + wlu(x)]) dx
Wn+lmBi

< Cyo (14955 )21t P, 4.52)
Inequality (4.8) and (4.50), (4.51), as well as (4.52) imply
S S < o (14 u2 ) ot (1) (27 +2y7%). @53
which along with (4.7), (4.49), (4.53) gives

Zns1 < Cai (w;ﬁ‘ + w*‘ﬁz) i (z,‘ﬁ‘;l + Z,i+52) for all n € No,

where
0<3 £c™ . +<1+§)+ scT
<pli=——" < = _
. ct+1t+e pr=s T et
o SN et
1 < ]2 = 2(a0+ﬁo)(1+92) §++§r++s ,
~ ~ e
O<yp=0+ ——F———— <P =+ ———.
" ! §++T++8_y2 2 ct+tt+e
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Finally, repeating the arguments of Step 3 in the proof of Theorem 4.2, gives the assertion.
o

4.2 Critical growth

In this subsection we discuss the critical case. Recall that in Sect. 4.1, to apply the Holder
inequality in (4.17) we require that there exists & > O such that ¢* + ¢ < (p;); and
T*+¢& < (g; ); with» € {—, +}. However, in this subsection, we assume that ¢ (x) = (p7)}
and t(x) = (¢g7)} forallx € Q, so we cannot find ¢ > 0 satisfying the above conditions
anymore. Hence, we consider a different argument to show the boundedness of weak solutions
to problem (1.1), and under this argument, the inequality (4.2) is invalid. Now, we state our
hypotheses on the data.
(H3) (1) Assume f: Q2 x R — 2R \ {#} is graph measurable and f(x,-): R x RN —
2R\ {@} is upper semicontinuous for a.a.x € .
(ii) Let ¢, 7 € C(RQ) such that p* < ¢(x) = (p7)fand ¢ < t(x) = (¢g7)* for all
x € Q. Suppose that there exists a constant 8 > 0 satisfying

sup{|§]: § € f(x, 1)}

<ﬁDNP)*mg w+mm+uuvmm>H%fv@+wm%%}

fora.a.x € Q and for all r € R.

Theorem 4.5 Let hypotheses (H1) and (H3) be satisfied. Then, for any weak solution u €
WS’H(Q) of problem (1.1) is bounded, that is u € L*°(S2).

Proof Asdone in Sect. 4.1, let B; ¢ RN begpen balls of radius R withi € Z := {1, --- , m}
and let { B; };":1 be a finite open covering of 2 such that ; := B; N Q for i € T are Lipschitz
domains. For any i € Z, we choose R small enough such that

q;r < (p_): foralli € Z.

Let Ay still be defined by (4.4), suppose u € Wg’H(Q) is a weak solution of problem (1.1)
in the sense of definition 4.1, and choose 1, > 1 large enough such that

/’/ (wu)—uoow“>>m <e+aﬁwxy—u@n)
x—ypren EETy
|mm—mwwW”l (+ lu(x) — u(y)]

+ n(x,
P EAERY X — S

))dv+ B*(x, u])dx < 1,
Ay

(4.54)
with

— (P)¥ —yk ()
B(x, 1) = 1P K log M (e + wr) + u(x) 19 log 7 (e + wr),

for all x € Q and for all # > 0. Note that for any n € No, ¥, is still given by (4.5).
In the sequel, for any n € Ny we define Z, by

Zp = /
Ayy

—yk wO)¥ —yk [C
{(u—xm(f’ Slog N (e+w—ym) +pn@x) @—yn) 5 log” N (e+w(u—wn>)} dx
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Note that u > u — ¥,41 > 0and u > V¥, 41 > 1 0n Ay, ,,, similar to the proof of Theorem
4.2, we have

/ / <|un<x)—un(y>|"(x’y> log (6 +w|un<x)—un(y)|>
ola lx — ysPGy) Ix — yIs

lttn (x) — tn (y)|9EY) ltn (x) — un ()|
+ w(x, y) = a0 log e—i—a)w dv

- ) ok (¢}
sf ﬂ[lul(” 5 Nog W (e + wlul) + ux)Y [u]@ s ogTH (e+w|u|>+1]un<x)dx
Q

. R —\% (K
<28 |:u(p )5 log "y (e + wu) + pnx) u' s log ¥ (e + a)u)] dx

Ayt
< C42/A ([(2”*2 - 1) (u — w,,)](’f)? —— [e to (2”*2 - 1) (u — «/f,,)]
Vnt1

)Y [(2’“r2 - 1) (u — 1//")](47)? log 2 [e o (2”+2 - 1) - ¢n)]) dx

—\k (q’)*
n| (¢ )+—S)f
< Cy32 ( Nz

n-

m
i=1

Let {n;}7_, be a partition of unity of Q with respect to {B;
ni € CO(RN), supp(n;) C B, 0 <n; < 1,and

m
Zm =1 onQ.
i=1

By applying Jensen’s inequality we get

7n+1 = /
A
m

Tk ok ok (N
< m™P5 (@5 Z |://; lui| P75 log ™ (e + wlunn;])

i=1 Vnt1

namely, for each i € Z,

- (p7)¥ i @ F
[uf,p " log W (e 4 wup) + (o) uy! log T (e + “’”")] dx

Vn+1

—yx @)y
+u () [unni |5 log™w (e+w|unm|)dx].

By Proposition 2.12, we see that
Wyt @) — LB (@),

then
F o e
Zy1 <m0 }Zf B (x, lupmi]) dx.
5 Q
i=1
From assumption (4.54) we have

(V)]

(P§ P73 Tio
/ B* (x, luun;|) dx < ||Mn’h‘||3p*@ = C44[un77i]s{7H,Q < Cy5(Sp,i) % e,
Q
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where S, ; is given by (4.24). So, we get

Zni1 < Cas (51”' 4 s‘*”Z) forall n € No (4.55)
with
% —\%
0 < ¥ := min (f )s —1 <1 ;= max (P7)s -1,
1<i<m q; + o 1<z<mq + o

where o > 0 satisfies
o< (p)i —ql.+ fori € Z.

Recalling (4.28) we make the similar estimation of J; and J, that is

— pi(x,y) _
J1 = C47/ / <|u"(x) tn )l — log <e+ww>
B; JB;

|x — y|spi¢x.y) [x — yI*
lun (x) fun(y)l‘“(x’y) [un (x) — un(y)|
1 — Q] |d
+taxy) [x — y|$¢i (5, oglete |x — y|* v

+ +
+C48/ lin ()17 log(e + @lun (M) + w()lun ()|% log(e + wlun (y)]) dy
+C4s/ litn ()IPi- og(e + wlun ) + 1 lun (W% Tog(e + wlun (1)) dy
//(\un(m—un(y)w(*”l ( |un<x)—un(y>|>
ogletw——m—
|x — y[spCe) lx — I

litn () — w (3)|95Y) log (o 4 o 1n ) = un IV
lx — y|sa@x.») £ Ix — yIs

+ pn(x, y)

+ Cy9 /
AwnJrl

((q )i+ L )’ )f
< Cs02 Z

ns

() (P¥ G)* [
u(@x)'? Jslog” N (e + ou(x)) + u@)’u@x)'9 ’slog” N (e + wu(x)) | dx
NB;

((q Y >\>
and J, < Cs512 Z,. Hence

((l] )* (g~ )s )7
Sni < Cs22 Z, foralln e Ny.

Therefore, we get

n( @i+ )*)uw) _ _
Sijl?l 4 S’i+z92 < C532 ( 2 (Z1+191 + Z1+192) . (456)

n n

Taking (4.55) and (4.56) into account, we arrive at

1+1?1 1412

Zni1 < Csyl” ( +Z ) for all n € N, 4.57)

where

_ ((q’)s +U >S>(1+192)
k:=2
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Using Lemma 2.15, we see that (4.57) yields
Z,— 0 asn — oo, (4.58)

if we choose ¥, > 1 large enough such that

= (P)F o R
Zy = /Q [(u —VY)y Clog N (e + o —Yi)y)

) @ = 90T 0g T (e + o - w*m} dx

. s
<min{(2Css) 1k "1, (2Cs4) 2k "' 72 4.
Thus by (4.58) and Lebesgue’s dominated convergence theorem we arrive at
— ()} ()3
Zy= (u — 1pn)_}_ log™ ¥ (e+w(u —¥n)+)
Q

y (g5 @E
Fu(x)” (u =)y P logm N (e +w(u — Wn)+)] dx

(P P¥
- fQ [(u—zw*>+ log ¥ (e + @ (u — 2y1)+)

(U

) =290 log T (e + w(u - zw*m} dx — 0,

as n — oo. This implies that

esssupu(x) < 2.
xeQ

Similarly, replacing u with —u, it can be shown that

esssup (—u)(x) < 2.

xeQ

Therefore,

lulloo, 2 < 29,

with ¥, € R. o

Since problem (P2) and (P3) are special cases of problem (1.1), we obtain the following
corollaries.

Corollary 4.6 Let hypotheses (H1) and (H2) (or (H2")) be satisfied with @ = 0. Then every
weak solution u € WS’HZ () of problem (P2) belongs to L°°(2) and it holds

4 J4
e,z = € max {lulld g. Nl )

with C, £1, {> being positive constants independent of u. Moreover, if hypotheses (H1) and
(H3) hold, then any weak solution of problem (P2) belongs to L°°(2).

Corollary 4.7 Let hypotheses (H1) and (H2) (or (H2")) be satisfied with @ = 0. Then every
weak solution u € WS’H3 (2) of problem (P3) belongs to L*°(2) and it holds

14 13
lelloc.s2 = € max {lulld oo Nl )
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with C, £y, £y being positive constants independent of u. Moreover, if hypotheses (H1) and
(H3) hold, then any weak solution of problem (P3) belongs to L°°(R2).

5 Application

In this section, we consider the existence of weak solutions to the following single valued
elliptic problem driven by the fractional double phase operator with variable exponents and
logarithmic perturbation:

(=M u= f(x,u), inQ,

5.1
u=0 on RN\ Q, 1)

where €2, s, and p satisty (H1). Furthermore, based on the priori bounds we obtained in
Sect. 4, we will show the existence of infinitely many small weak solutions of (5.1) with
the modified functional method applied by Ho—Kim [35] and Wang [61]. Moreover, under
appropriate conditions, we show that the solutions are non-negative by applying the maximum
principle established in Sect. 3. We will use a variational argument to establish the existence
results, and the proof is mainly based on the following lemma, see Heinz [34] for more
details.

Lemma 5.1 Let X be a Banach space. Assume that I € C! (X, R) and I is even, bounded
from below and satisfies the (PS)-condition with 1(0) = 0. If for any n € N, there exist an
n-dimensional subspace X,, and r, > 0 satisfying

sup I <0,
Xnmsrn

where S, :={u € X: |ul|lx = r}, then I has a sequence of critical values ¢, < O such that
¢y, — 0asn — oo.

We suppose the following assumptions on the nonlinearity f:
(F1) The function f: Q2 x R — R is a Carathéodory function such that
|f@.Dl < CA+Jr"™7h

fora.a.x € Q, for all t € R, for some constant C and r € C(Q) with | < r(x) < p~.
(F2) There exists a constant a > 0 such that

fisoddint and p~ F(x,t) — f(x,t)t >0,

fora.a.x € Q2 and forall 0 < |7| < a, where F(x,t) := f(; f(x, r)dr.
(F3) lim; 0 {555, = -+oo uniformly for a.a.x € Q.
(F4) f(x,t) >0foraa.x € Qandt € R.
Next, we prove the existence of infinitely many small solutions to problem (5.1). The

proof is divided into several steps, see also Ho—Kim [35] and Wang [61], in the following
way:

(i) Modify the function f to f and then construct a modified functional E.
(ii) Prove that the modified functional E satisfies the conditions of Lemma 5.1 to get a
sequence of critical points {u, },cn such that E(u,,) — 0 asn — oo.
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(iii) Show thatu,, — Oin WS’H(Q) and apply Theorem 4.2 to get || u, | 00,0 — Oasn — oo.
Finally, we verify that u,, are solutions of the original problem (5.1).

Our existence result read as follows.

Theorem 5.2 Let hypotheses (H1) and (F1)—~(F3) be satisfied. Then problem (5.1) has a
sequence of weak solutions {u,}en satisfying ||un|lco,q — 0 as n — oo. In addition, if
(F4) hold, then the weak solutions u, are non-negative.

Proof First, we introduce the functional Z: WS ’H(Q) — R given as

- Cx) — ()] ux) — u(y)|
T = /Q/Q (p(x, Wi,y N 8 (" TS )

lu(x) — u(y)|de lu(x) — u(y)l
) iy P (et e dxdy,

for all u € WS’H(Q). Recalling Proposition 2.14, it is not hard to check that 7 €
C' (W (2), R) and its Géteaux derivative A: Wy "' (Q) — (W™ (@))* is given by

() — u(MIPED2(x) — u(y) (&) — v(y)) < lue(x) — u(y>|>
= 1 —
(A(u), v) /;2/;2 ( NG ogle+w T

L ol = uNIPEIN " w(x) — u(y)) (v(x) — v(y))

_ IN+s(p(x,y)+1) Iu(x)—u(y)l)
[x =yl P <e+w =y

lu(x) — u(MNTEY u(x) — u()) W) — v(y)) tou (o 4 1) =1
lx — y|N+sq(.y) N T

+ u(x, y)

olu(x) —uMIEN @) —u(y) () — v(y))> xdy
[x — y|N+s@e.n)+D (e + a)i‘u(x)iflg}y)‘) ’

[x—yI

+ u(x, y)

forall u,v € WS’H(Q).
In order to apply Lemma 5.1, we first modify the nonlinear function f to f . Precisely,
one can deduce from (F2) and (F3) that there exits a; € (0, a) such that

F(x,t) > |tI'™ foraa.x € Qand forall |7] < aj. (5.2)
Next, we choose a, € (0, a;/2) and take ¢ € C I(R, R) to be an even function satisfying

I, |t] < a2,

"] <2 and ¢'(1)t <O.
0. It > 2, l¢" ()] < 2/az (Nt <

(1) = !

Next, we define
F(x,t) = ¢ F(x, 1) + (1 — p(e)Blt1P,

where

1 1
B € |0, min , — (5.3)
P~ Ce1Ce2 q+C’P7C£3

with C’ given by (2.1), C, is the embedding constant from WOX’f (Q) to LP (), Cyy is the
constant such that ||u|| wor = Ce[uls, ,- and Ce3 is the embedding constant from Wy Q)
0
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to L?™ (). Then, the modified function f is given by
Fen) = 2 Fen
x,t) = —F(x,1).
ot
Moreover, we consider the modified energy functional E : Wy H (£2) — R defined by
E) =T(u) —/ Flx,uydx, ue W)™ ().
Q

By the definition of F and f, we see that F is even in ¢ and

fa.)=¢' OFx,0)+ M) f(x,0) =’ OBt + A —p@)Bp ItIF . (5.4)
Thus,

P FG, ) — fx, 0t =M [p Flx,0) — fx.0f] —¢'Ot[F(x, 1) — Blt|P 1. (5.5)
Recalling the definition of ¢, by (5.2), (5.4) and (5.5) we get

p F(x,t)— f(x,0)t >0 foraa.x € Qandforalls € R, (5.6)
p F(x,1)— f(x,)t =0 ifandonlyifr =0 or |t| > 2a;. (5.7

Recalling (F1) and the definition of ¢, F and f we can find C > 0 such that

Fe,n) <C+BltlP and |f(x.0)| <C (1 + |t|P_—1) fora.a.x € Qand forall 7 € R.
(5.8)

Hence, invoking that T € C' (W™ (2), R) and W3 "' (Q) = L?” () one can prove that
Eec' W@, R).

Now, we are ready to show that E fulfills the conditions given by Lemma 5.1. It is not
hard to see that E is even and E (0) = 0. Utilizing (5.8) and Proposition 2.8, we get
- Cl€|

- 1 _ ,
Bz o (1l = 1) = 1l o
1

a*

1 - - - 1
= j[u]fﬁ - ﬁcep3 c'’r [M]YPH - C|Q| — qj

- - 1
(el 50 = BCL Iy, = 121 =

=

Note that the range of 8 given in (5.3) implies that E is coercive and bounded from below on
WS’H(Q). Due to (5.8) and the compact embedding WS’H(Q) s LP (Q) we infer that
the operator u +— fQ f(x, t) dx is compact. Let {u, },eny C W(‘;’H(Q) be a (PS)-sequence,
thatis E(un) is bounded and E’(u,,) — 0. Then, by the coercivity of E, we know that {untnen
is bounded. Since WS’H(Q) is reflexive, {1, },en possesses a subsequence still denoted by
{un}nen suchthatu, —u, € WS’H (£2). Hence, due to the compactness of u +—> fQ f(x, t)dx
and applying the (S )-property of A, we deduce that u,, — u, € W(‘; H (£2). This shows that
E satisfies the (PS)-condition.

Next, we choose a fixed n € N and let ¢, ..., ¢, be linearly independent functions. We
set X, := span{¢1, ..., ¢n}. Since X, is a finite dimensional space, the norms || - |00, 0,
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[-Is,xqand]| - ||L1,7(Q) are equivalent on X,,. Thus one can find ¢y, ¢; > 0 such that

cillulloo,@ = [ulsno < c2llull - o) forallu € X,. (5.9)
According to hypotheses (F2) and (F3) we can find a3 € (0, a») satisfying

200
F(x.1) > —2 || (5.10)
P

for a.a.x € Q and for all |¢| < a3. Next, we take r,, := min{1, azc;}, then by (5.9) we see
that for any u € X,, with [”]f,H =r, we have |ul; 74y < 1 as well as ||u] 00, < a3. Note that
I:“(x, u) = F(x, u) for |u|leo.@ < a3. Then, Proposition 2.8 and inequality (5.10) yield

Ew) < —[ul”,
= - s, H

208 1

_ 128
) ()
S I ~r

_ 2 _
[u]iH - pi[u]f’H = pe forallu € X, NS,,,

which implies

sup E(u) < 0.
ueX,NSy,

Using Lemma 5.1 we infer that there exists a sequence {u, },en C WS’H(Q) with
E'(uy) =0 foralln e N and E(u,) — 0 asn — oo.

Moreover, recall that u,, — u, in Wé’H(Q),due toE € CI(WS’H(Q), R), we have E (i) =
(E"(uy), uy) = 0, which gives —=(E'(uy), uy) — E(uy) = 0. Taking this and (5.6) into
account we arrive at

1 1 4 (x) — us(y)P)] ( | (x) — u*(y)|>
0< - ] 4 T )
= /Q/Q ( (p— p(x, y)) =y Ve R\ OO T

1 )Iu*(x)—u*(y)q(x’y)|l ( +w|u*(x)—u*(y)|)

e — Y[V e = yI°

€L
s

1
+ ulx,y) <7

p q(x,y)
ol (x) — uy () [P T

plx — y|NFs PG+ (e n ww)

[x—=yl*

+

it (x) — uy (y)|40H

) dxdy
P lx — y|NHs@E)+D (e T w\u*(X)—u*(y)\)

lx—=yl*

+ ulx, y)

~ 1 -
= —/ (F(x, ux(x)) — — fx, u*(X))u*(X)> dx <0.
Q p
From the above inequalities and (5.7) we see that

1 1 4 (x) — us(y)P)] ( | (x) — u*(y)|>
0 — - log (e + @)~ )]
= /g/g ( (p— p(x, y)) =y Veeen RO T

1 4 (x) — 1 ()73 | 4 (x) — k()]
— (0] e + w—
qx,y))  |x — y|N+satey) Ix — yls

1
+ ,LL(X, )’) <7_
p
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. ot (x) — uy (y) [P
—lx — y|N+s(p.y)+D) M)
plx — |ty (e+w =y
o4 (x) — 1y ()[40
+ u(x, y) N:( ( >+1*> ORI A
— _ s X, 18k ) kAL
p |)C yl g5y (e to [x—yl|* )
=0

and for a.a.x € €,

U, =0,
or
lus(x)] > 2a; and u, =c,
where ¢ is constant. Hence, I:"(x,u*(x)) = 0 or ﬁ(x,u*(x)) = Bluy|? . Moreover,

p(x,y) = p~ fora.a.x € Q satisfying |u(x)| > 2a>. This implies

_ (x,y)
0=EZ// T s (x) — uy () [P dxdy—/ F () da
aJa p( Q

x,y)  |x— y|NFspEy

B 1 14 () — (0|7 2
— [ [ O vy - [ P ax
1

. i
—twall, = [ pludr as

v

1 - -
— p _ p
=l = Bl

> L Zeac F
= o [u*]s,p’ BCe1 eZ[u*]S’pf
Dueto 8 < ﬁ,itholds thatu,, = 0. Thatmeansu,, — Oin WS'H(Q),SO lunllz.o — 0

asn — o0o. Note that under the hypotheses (F1), f satisfies hypotheses (H2) (or (H2")). Then
we deduce from Theorem 4.2 (or Theorem 4.4) that ||u,|lec,o — 0. Hence, |[u,llco,@ < a2
for n large enough, which means that {u,},cn is a sequence of weak solutions to problem
(5.1) for n large enough.

Furthermore, if f(x,?) > 0 fora.a.x € Q and for all r € R, we see that

(=AY u >0, inQ,
u=0 on RV \ Q.

Hence, employing Theorem 3.1 we see that u(x) > 0 for x € € and if there exists some
point xg € €2 such that u(xg) = 0, then u(x) =0 fora.a.x € RN . This ends the proof. O
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