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EYLEM ÖZTÜRK AND PATRICK WINKERT

Abstract. In this paper, we study logarithmic double phase problems with

critical growth on the boundary of the form

−divL(u) = −|u|p−2u in Ω, L(u) · ν = f(x, u) + |u|p∗−2u on ∂Ω,

where divL stands for the logarithmic double phase operator given by

div

(
|∇u|p−2∇u+ µ(x)

[
log(e+ |∇u|) +

|∇u|
q(e+ |∇u|)

]
|∇u|q−2∇u

)
,

e is Euler’s number, ν(x) is the outer unit normal of Ω at x ∈ ∂Ω, Ω ⊂ RN ,
N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, 1 < p < N , p < q <

p∗ =
(N−1)p
N−p

, µ ∈ L∞(Ω) with µ ≥ 0, and f : ∂Ω×[−K,K] → R for someK > 0

is a Carathéodory function, just locally defined with a specific behavior near

the origin. Using suitable truncation methods and an appropriate auxiliary

problem along with an equivalent norm in our function space, we establish the
existence of an entire sequence of sign-changing solutions to the above problem,

which converges to zero in both the logarithmic Musielak-Orlicz Sobolev space
W 1,Hlog (Ω) and in L∞(Ω).

1. Introduction

Recently, Arora–Crespo-Blanco–Winkert [4] introduced the logarithmic double
phase operator defined by

div

(
|∇u|p−2∇u+ µ(x)

(
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

)
|∇u|q−2∇u

)
, (1.1)

where u ∈W
1,Hlog

0 (Ω) with the corresponding logarithmic Musielak-Orlicz Sobolev
space generated by the nonlinear function

Hlog(x, t) = tp + µ(x)tq log(e+ t) for all (x, t) ∈ Ω× [0,∞),

for 1 < p < N , p < q, e is Euler’s number and 0 ≤ µ(·) ∈ L∞(Ω). The logarith-
mic double phase structure is introduced in order to model a borderline situation
between standard polynomial growth and nearly linear behavior. Compared to the
classical double phase density tp + µ(x)tq, the additional logarithmic factor pro-
duces a growth which is only slightly stronger than the pure q-growth, while still
preserving the variational framework. This logarithmic perturbation leads to new
analytical features in the associated operator, in particular in the scaling proper-
ties and in the control of higher order terms, which cannot be treated by a direct
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adaptation of the classical double phase theory. The related energy functional of
(1.1) is given by

u 7→
∫
Ω

(
|∇u|p

p
+ µ(x)

|∇u|q

q
log(e+ |∇u|)

)
dx, (1.2)

which has been studied for special cases in recent years. Here we mention the
works by Baroni–Colombo–Mingione [7] and De Filippis–Mingione [11] related to
local Hölder continuity of the gradient of local minimizers of functionals like (1.2).
The functional studied in [11] has its origin from functionals with nearly linear
growth given by

u 7→
∫
Ω

|∇u| log(1 + |∇u|) dx, (1.3)

see the studies in the papers by Fuchs–Mingione [14] and Marcellini–Papi [23]. We
note that (1.3) arises in the context of plasticity models with logarithmic hardening;
see, for instance, Seregin–Frehse [32] and Fuchs–Seregin [15]. Furthermore, the
celebrated work of Marcellini [22] covers, as a particular case, functionals containing
a logarithmic term of the form

u 7→
∫
Ω

(1 + |∇u|2)
p
2 log(1 + |∇u|) dx.

Given a bounded domain Ω ⊂ RN , N ≥ 2, with Lipschitz boundary ∂Ω, in this
paper we consider logarithmic double phase problems with critical growth on the
boundary given by

− divL(u) = −|u|p−2u in Ω, L(u) · ν = f(x, u) + |u|p∗−2u on ∂Ω, (1.4)

where ν(x) is the outer unit normal of Ω at x ∈ ∂Ω and divL stands for the loga-
rithmic double phase operator given in (1.1). We assume the following hypotheses
on the data of problem (1.4):

(C1) 1 < p < N , p < q < p∗ = (N−1)p
N−p and 0 ≤ µ(·) ∈ L∞(Ω);

(C2) f : ∂Ω×[−K,K] → R is a Carathéodory function for K > 0 with f(x, 0) = 0
and f(x, ·) is odd for a.a.x ∈ ∂Ω;

(C3) there exists T ∈ L∞(∂Ω) such that

|f(x, s)| ≤ T (x) for a.a.x ∈ ∂Ω and for all |s| ≤ K;

(C4) there exists ξ ∈
(
1,min{p, p2

N−p · N−1
N + 1}

)
such that

lim
s→0

f(x, s)

|s|ξ−2s
= 0 uniformly for a.a.x ∈ ∂Ω;

(C5)

lim
s→0

f(x, s)

|s|p−2s
= +∞ uniformly for a.a.x ∈ ∂Ω.

We say that u ∈ W 1,Hlog(Ω) is a weak solution of problem (1.4) if for every test
function v ∈W 1,Hlog(Ω), the following holds:∫

Ω

[
|∇u|p−2∇u+ µ(x)

(
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

)
|∇u|q−2∇u

]
· ∇v dx

+

∫
Ω

|u|p−2uv dx =

∫
∂Ω

(
f(x, u) + |u|p∗−2u

)
v dσ.
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Our main result is the following theorem.

Theorem 1.1. Let the conditions (C1)–(C5) be satisfied. Then, problem (1.4)
possesses a sequence {zn}n∈N ⊆ W 1,Hlog(Ω) ∩ L∞(Ω) of sign-changing solutions
such that ∥zn∥ → 0 in W 1,Hlog(Ω) and ∥zn∥∞ → 0 in L∞(Ω) as n→ ∞.

We emphasize that the nonlinear Neumann boundary condition of (1.4) reflects
the combined influence of a locally defined Carathéodory function f(x, ·) and a
critical growth term of the form

u 7→ |u|p∗−2u, p∗ :=
(N − 1)p

N − p
, 1 < p < N.

The principal analytical challenge lies in handling this critical boundary term, whose
presence causes a loss of compactness along with the appearance of the logarithmic
double phase operator with logarithm perturbation. In order to overcome these
difficulties, we first study an appropriate auxiliary problem, constructed via suit-
able truncation functions to ensure coercivity by using properties of the Steklov
eigenvalue problem of the p-Laplacian. We then establish the existence of extremal
constant-sign solutions to the auxiliary problem, which in turn allows us to ap-
ply Kajikiya’s symmetric mountain pass theorem [18]. Our contribution extends
the work of Liu–Papageorgiou [21] from the double phase setting to the logarith-
mic double phase framework with critical nonlinear boundary growth, while also
relaxing the structural hypotheses in [21]. For related developments, we refer to
Carranza–Pimenta–Vetro–Winkert [9] and Papageorgiou–Vetro–Winkert [28].

As noted at the beginning of the Introduction, the logarithmic double phase
operator (1.1) is a recent development, and the literature on problems involving
this operator remains scarce. The first contribution appears in the work by Arora–
Crespo-Blanco–Winkert [4], who studied the problem

− divL(u) = f(x, u) in Ω, u = 0 on ∂Ω, (1.5)

where divL is given by (1.1) but with variable exponents and f : Ω × R → R is
a Carathéodory function with subcritical growth and prescribed behavior both at
infinity and near the origin. Under the additional assumption q+1 < p∗, the authors
established the existence of a least energy sign-changing solution by minimizing the
associated energy functional over the corresponding Nehari manifold of (1.5), see
also a related work by the same authors [3] concerning optimal growth conditions
to (1.1). The operator (1.1) also features in the work by Vetro–Winkert [37], where
the authors established boundedness, closedness, and compactness of the solution
set to the problem

− divL(u) = f(x, u,∇u) in Ω, u = 0 on ∂Ω,

with divL as in (1.1) but involving variable exponents, and f : Ω × R × RN → R
being a convection term subject to very mild structural conditions. Moreover, in
[36], Vetro investigated a Kirchhoff-type problem driven by the same operator.

Very recently, Borer–Gasiński–Stapenhorst–Winkert [8] studied least energy sign
changing solutions of the problem

− divL(u) + |u|p(x)−2u = f(x, u) in Ω, K(u) · ν = g(x, u)− |u|p(x)−2u on ∂Ω,

where divL denotes the logarithmic double phase operator given in (1.1) but with
variable exponents while f : Ω×R → R as well as g : ∂Ω×R → R are Carathéodory
functions having subcritical growths and a certain behavior both at infinity and
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near the origin. As a result of independent interest, the authors in [8] also proved
boundedness results for such type of equations which we used in our paper and
they showed the existence of an equivalent norm in the space W 1,Hlog(Ω) even for
variable exponents given as

∥u∥◦1,Hlog
= inf

{
λ > 0:

∫
Ω

(∣∣∣∣∇uλ
∣∣∣∣p(x) + µ(x)

∣∣∣∣∇uλ
∣∣∣∣q(x) log(e+ |∇u|

λ

))
dx

+

∫
Ω

ω1(x)
∣∣∣u
λ

∣∣∣ζ1(x) dx+

∫
∂Ω

ω2(x)
∣∣∣u
λ

∣∣∣ζ2(x) dσ ≤ 1

}
,

where the exponents 1 ≤ ζ1(·), ζ2(·) ∈ C(Ω) are allowed to be critical with respect
to the exponent 1 < p(·) ∈ C(Ω). We are going to use this equivalent norm in our
paper as well. A different form of a logarithmic double phase operator, distinct
from (1.1), was introduced by Vetro–Zeng [38], who investigated the existence and
uniqueness of solutions to equations driven by

u 7→ ∆HL
u = div

(
H′

L(x, |∇u|)
|∇u|

∇u
)
, u ∈W 1,HL

0 (Ω),

where HL : Ω× [0,∞) → [0,∞) is defined by

HL(x, t) = (tp + µ(x)tq) log(e+ t),

with 1 < p < q. Moreover, we refer to the paper by Tran–Nguyen [35] who showed
existence results for equations involving (1.1) when p = q.

In addition, we refer to various studies that investigate logarithmic perturba-
tions appearing on the right-hand side in the setting of Schrödinger equations
and p-Laplace type problems as well as double phase operators without loga-
rithm. We refer to the works by Alves–de Morais Filho [1], Alves–Ji [2], Bahrouni–
Fiscella–Winkert [5, 6], Figueiredo–Montenegro–Stapenhorst [12, 13], Montenegro–
de Queiroz [25], Shuai [33], and Squassina–Szulkin [34], see also the references
therein.

The paper is organized as follows. Section 2 presents a review of the properties
of logarithmic Musielak-Orlicz Sobolev spaces and the logarithmic double phase
operator (1.1). Additionally, we summarize the main results concerning the eigen-
value problem for the p-Laplacian with Steklov boundary conditions. In Section 3,
we focus on an auxiliary problem, proving the existence of extremal constant-sign
solutions, and subsequently apply the results of Kajikiya [18] to establish the proof
of Theorem 1.1.

2. Mathematical background

This section provides an overview of the key properties of logarithmic Musielak-
Orlicz Sobolev spaces, the associated logarithmic double phase operator, and several
tools required for the upcoming sections. We refer to the recent work by Arora–
Crespo-Blanco–Winkert [4] as well as the monographs by Harjulehto–Hästö [16]
and Papageorgiou–Winkert [29], see also the paper by Crespo-Blanco–Gasiński–
Harjulehto–Winkert [10] for the main properties of double phase operators without
logarithm.

To this end, by Lr(Ω) we denote the Lebesgue space with norm ∥ · ∥r for 1 ≤
r ≤ ∞ and W 1,r(Ω) stands for the corresponding Sobolev space equipped with the

equivalent norm ∥ · ∥1,r = (∥∇ · ∥rr + ∥ · ∥rr)
1
r for 1 < r < ∞. For A ⊆ Ω, we



LOGARITHMIC DOUBLE PHASE PROBLEMS 5

denote by |A| the Lebesgue measure of the set A. Moreover, let σ be the (N − 1)-
dimensional Hausdorff measure on the boundary ∂Ω and indicate by Lr(∂Ω) the
boundary Lebesgue space equipped with the norm ∥ · ∥r,∂Ω given by

∥u∥r,∂Ω =

(∫
∂Ω

|u|r dσ
) 1

r

for u ∈ Lr(∂Ω).

Throughout this paper, we avoid explicitly using the trace operator γ and interpret
all restrictions of Sobolev functions to the boundary ∂Ω in the sense of traces.

In the following we suppose that (C1) holds, e stands for Euler’s number and we
denote by M(Ω) the set of all measurable functions u : Ω → R. Given the function
Hlog : Ω× [0,∞) → [0,∞) defined by

Hlog(x, t) = tp + µ(x)tq log(e+ t),

we are able to introduce the space LHlog(Ω) by

LHlog(Ω) =

{
u ∈M(Ω): ρHlog

(u) :=

∫
Ω

Hlog(x, |u|) dx <∞
}
,

where ρHlog
is the related modular function to Hlog, equipped with the norm

∥u∥Hlog
:= inf

{
λ > 0: ρHlog

(u
λ

)
≤ 1
}
.

Further, the corresponding logarithmic Musielak-Orlicz Sobolev space W 1,Hlog(Ω)
is defined by

W 1,Hlog(Ω) =
{
u ∈ LHlog(Ω): |∇u| ∈ LHlog(Ω)

}
,

endowed with the norm

∥u∥1,Hlog
:= ∥u∥Hlog

+ ∥∇u∥Hlog
.

We know that both spaces LHlog(Ω) and W 1,Hlog(Ω) are separable and reflexive
Banach spaces. In what follows, we denote by κ the constant given by

κ =
e

e+ t0
, (2.1)

where t0 is the positive number satisfying t0 = e log(e+ t0).
From Proposition 3.1 by Borer–Gasiński–Stapenhorst–Winkert [8], we can equip

the space W 1,Hlog(Ω) with the equivalent norm

∥u∥ = inf

{
λ > 0:

∫
Ω

(∣∣∣∣∇uλ
∣∣∣∣p + µ(x)

∣∣∣∣∇uλ
∣∣∣∣q log(e+ ∣∣∣∣∇uλ

∣∣∣∣)) dx

+

∫
Ω

∣∣∣u
λ

∣∣∣p dx ≤ 1

}
,

(2.2)

where the related modular is given by

ϱ(u) =

∫
Ω

(|∇u|p + µ(x)|∇u|q log(e+ |∇u|)) dx+

∫
Ω

|u|p dx, (2.3)

for all u ∈W 1,Hlog(Ω).
The modular ϱ(·) in (2.3) and the norm ∥ · ∥ in (2.2) are related in the following

form, see Borer–Gasiński–Stapenhorst–Winkert [8, Proposition 3.2].

Proposition 2.1. Let hypotheses (C1) be satisfied, λ > 0, u ∈ W 1,Hlog(Ω), and κ
as in (2.1). Then the following hold:
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(i) ∥u∥ = λ if and only if ϱ
(
u
λ

)
= 1 for u ̸= 0 and λ > 0;

(ii) ∥u∥ < 1 (resp.= 1, > 1) if and only if ϱ(u) < 1 (resp.= 1, > 1);
(iii) min {∥u∥p, ∥u∥q+κ} ≤ ϱ(u) ≤ max {∥u∥p, ∥u∥q+κ};
(iv) ∥u∥ → 0 if and only if ϱ(u) → 0;
(v) ∥u∥ → ∞ if and only if ϱ(u) → ∞.

Further, we have the following embedding results, see Arora–Crespo-Blanco–
Winkert [4, Proposition 3.7].

Proposition 2.2. Let hypotheses (C1) be satisfied. Then the following hold:

(i) W 1,Hlog(Ω) ↪→ Lp∗
(Ω) is continuous and W 1,Hlog(Ω) ↪→ Lr(Ω) is compact

for all 1 ≤ r < p∗;
(ii) W 1,Hlog(Ω) ↪→ Lp∗(∂Ω) is continuous and W 1,Hlog(Ω) ↪→ Lr(∂Ω) is com-

pact for all 1 ≤ r < p∗.

The following lemma will be required in subsequent proofs, see Arora–Crespo-
Blanco–Winkert [4, Lemma 5.4] for its proof.

Lemma 2.3. Let Q > 1 and h : [0,∞) → [0,∞) given by h(t) = t
Q(e+t) log(e+t) .

Then h attains its maximum value at t0 and the value is κ
Q , where t0 and κ are the

same as in (2.1).

Now, let A : W 1,Hlog(Ω) →W 1,Hlog(Ω)∗ be the nonlinear operator defined by

⟨A(u), v⟩ =
∫
Ω

|∇u|p−2∇u · ∇v dx

+

∫
Ω

µ(x)

[
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

]
|∇u|q−2∇u · ∇v dx

+

∫
Ω

|u|p−2uv dx

(2.4)

for all u, v ∈W 1,Hlog(Ω). The following proposition is taken from Borer–Gasiński–
Stapenhorst–Winkert [8, Proposition 3.4].

Proposition 2.4. Let hypothesis (C1) be satisfied. Then, the operator A given
in (2.4) is bounded (that is, it maps bounded sets into bounded sets), continuous,
strictly monotone and satisfies the (S+)-property, that is,

un ⇀ u in W 1,Hlog(Ω) and lim sup
n→+∞

⟨A(un), un − u⟩ ≤ 0,

imply un → u in W 1,Hlog(Ω).

In order to deal with the logarithm in the operator, we also need the following
standard inequality

log(e+ xy) ≤ log(e+ x) + log(e+ y) for all x, y > 0. (2.5)

Let C1(Ω) be equipped with norm ∥ · ∥C1(Ω) and let C1(Ω)+ be its positive cone

defined by

C1(Ω)+ =
{
u ∈ C1(Ω): u(x) ≥ 0 for all x ∈ Ω

}
,

which has a nonempty interior given by

int
(
C1(Ω)+

)
=
{
u ∈ C1(Ω)+ : u(x) > 0 for all x ∈ Ω

}
.
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Furthermore, for any s ∈ R we put s± = max{±s, 0}, that is, s = s+ − s− and
|s| = s+ + s−. Also, for any function u : Ω → R we write u±(·) = [u(·)]±.

Next, we want to recall some basic facts about the Steklov eigenvalue problem
for the p-Laplacian with p ∈ (1,∞) fixed in (C1). This problem is defined by

−∆pu = −|u|p−2u in Ω, |∇u|p−2∇u · ν = λ|u|p−2u on ∂Ω. (2.6)

From Lê [19] we know that problem (2.6) has a smallest eigenvalue λ1 which is
positive, isolated, simple and can be characterized by

λ1 = inf
u∈W 1,p(Ω)

{
∥∇u∥pp + ∥u∥pp : ∥u∥

p
p,∂Ω = 1

}
. (2.7)

In what follows we denote by u1 the normalized (i.e., ∥u1∥p,∂Ω = 1) positive eigen-
function corresponding to λ1. From the regularity theory of Lieberman [20] and
the maximum principle by Pucci–Serrin [31] we know that u1 ∈ int

(
C1(Ω)+

)
.

Finally, we recall some facts about critical point theory. To this end, let X be
a Banach space and X∗ be its dual space. A functional φ ∈ C1(X) satisfies the
Palais-Smale condition (PS-condition for short), if every sequence {un}n∈N ⊆ X
such that {φ(un)}n∈N ⊆ R is bounded and

φ′(un) → 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence. Further, we define

Kφ := {u ∈ X : φ′(u) = 0} ,
being the set of all critical points of φ. Recall that a set S ⊆ X is called downward
directed if for given u1, u2 ∈ S there exists u ∈ S such that u ≤ u1 and u ≤ u2.
Similarly, S ⊆ X is called upward directed if for given v1, v2 ∈ S one can find v ∈ S
such that v1 ≤ v and v2 ≤ v.

3. Existence of sign-changing solutions

Our analysis starts with a truncated auxiliary problem, which serves to address
the critical term in (1.4). For this purpose, let Φ ∈ C1(R) be an even cut-off
function with the following properties:

suppΦ ⊆ [−K,K], Φ∣∣[−K
2 ,K2 ]

≡ 1 and 0 < Φ ≤ 1 on (−K,K). (3.1)

As a next step, we define ψ : ∂Ω× R → R by

ψ(x, s) = Φ(s)
(
f(x, s) + |s|p∗−2s

)
+ (1− Φ(s))|s|ξ−2s, (3.2)

with ξ as given in assumption (C4). Obviously, the function ψ : ∂Ω × R → R is
of Carathéodory type. With view to (3.1) along with (3.2) and (C4) we have the
growth

|ψ(x, s)| ≤ C
(
1 + |s|ξ−1

)
(3.3)

for a.a.x ∈ ∂Ω and for all s ∈ R with some constant C > 0.
Our next objective is to investigate the solvability of the auxiliary problem.

− divL(u) = −|u|p−2u in Ω, L(u) · ν = ψ(x, u) on ∂Ω, (3.4)

with divL(u) being the logarithmic double phase operator given in (1.1). We aim
to prove the existence of extremal constant sign solutions to (3.4), which will serve
as a foundation for constructing sign-changing solutions to the original problem
(1.4). To this end, let S+ and S− be the sets of positive and negative solutions of
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problem (3.4), respectively. In what follows, we denote by Υ± : W 1,Hlog(Ω) → R
the truncated energy functionals corresponding to (3.4) defined by

Υ±(u) =

∫
Ω

(
1

p
|∇u|p + µ(x)

q
|∇u|q log(e+ |∇u|)

)
dx

+

∫
Ω

1

p
|u|p dx−

∫
∂Ω

Ψ(x,±u±) dσ for u ∈W 1,Hlog(Ω),

(3.5)

where Ψ(x, s) =
∫ s

0
ψ(x, t) dt. It is easy to see that Υ± are C1 functionals.

We begin by proving that the sets S± are nonempty.

Proposition 3.1. Let hypotheses (C1)–(C5) be satisfied. Then S+ and S− are
nonempty subsets in W 1,Hlog(Ω) ∩ L∞(Ω).

Proof. First, we prove that S+ is nonempty. Note that

Υ+(u) ≥
1

q
ϱ(u)−

∫
∂Ω

Ψ(x, u+) dσ.

Using this fact together with the growth in (3.3), ξ < p due to (C4) and Proposition
2.1 (iii), we conclude that Υ+ is coercive. Taking Proposition 2.2 (ii) into account,
it follows that W 1,Hlog(Ω) ↪→ Lr(∂Ω) is compact for any 1 ≤ r < p∗. This implies
that the functional Υ+ is sequentially weakly lower semicontinuous as well. As a
consequence, there exists u0 ∈W 1,Hlog(Ω) such that

Υ+(u0) = inf
[
Υ+(u) : u ∈W 1,Hlog(Ω)

]
.

We are going to prove that u0 is nontrivial. Using condition (C5), for each δ > 0,
we can find a number η ∈

(
0,min{K

2 , 1}
)
such that

F (x, s) :=

∫ s

0

f(x, t) dt ≥ δ

p
|s|p for all |s| ≤ η. (3.6)

Now we can choose t ∈ (0, 1) small enough such that tu1(x) ∈ (0, η] for all x ∈ Ω,
where u1 ∈ int

(
C1(Ω)+

)
is the Lp-normalized (i.e. ∥u1∥p,∂Ω = 1) positive eigen-

function corresponding to λ1 of the Steklov eigenvalue problem of the p-Laplacian
given in (2.6). From tu1(x) ∈ (0, η] for all x ∈ Ω and η ∈

(
0,min{K

2 , 1}
)
, it follows

from (3.1) that

ψ(x, tu1) = f(x, tu1) + (tu1)
p∗−2tu1 ≥ f(x, tu1). (3.7)

Now, from (2.7), ∥u1∥p,∂Ω = 1, (2.5), (3.6) and (3.7), we conclude that

Υ+(tu1) =

∫
Ω

[
1

p
|∇(tu1)|p +

µ(x)

q
|∇(tu1)|q log(e+ t|∇u1|)

]
dx

+
1

p

∫
Ω

|(tu1)|p dx−
∫
∂Ω

Ψ(x, tu1) dσ

≤ tp

p
λ1 +

tq log(e+ t)

q

∫
Ω

µ(x)|∇u1|q dx

+
tq

q

∫
Ω

µ(x)|∇u1|q log(e+ |∇u1|) dx− tp

p
δ

=
tp

p
(λ1 − δ) +

tq log(e+ t)

q

∫
Ω

µ(x)|∇u1|q dx

+
tq

q

∫
Ω

µ(x)|∇u1|q log(e+ |∇u1|) dx.

(3.8)
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Recall that p < q. Thus, if δ > λ1, then (3.8) implies

Υ+(tu1) < 0 for t > 0 sufficiently small.

This proves that u0 ̸= 0.
Note that u0 is the global minimizer of Υ+, that is, Υ

′
+(u0) = 0. Hence, we have∫

Ω

(
|∇u0|p−2∇u0 + µ(x)

(
log(e+ |∇u0|) +

|∇u0|
q(e+ |∇u0|)

)
|∇u0|q−2∇u0

)
· ∇v dx

+

∫
Ω

|u0|p−2u0v dx =

∫
∂Ω

ψ(x, (u0)+)v dσ

for all v ∈ W 1,Hlog(Ω). Now, choosing v = −(u0)− ∈ W 1,Hlog(Ω) as test func-
tion gives (u0)− = 0. Hence, we have u0 ≥ 0 with u0 ̸= 0, that is, u0 ∈
W 1,Hlog(Ω is a nontrivial positive weak solution of problem (3.4). Furthermore,
from Borer–Gasiński–Stapenhorst–Winkert [8, Theorem 4.1], we conclude that u0 ∈
W 1,Hlog(Ω) ∩ L∞(Ω). This shows that S+ is nonempty. In a similar way, we are
able to show the existence of a nontrivial negative weak solution v0 ∈W 1,Hlog(Ω)∩
L∞(Ω) of problem (3.4) which is the global minimizer of Υ− : W 1,Hlog(Ω) → R
defined in (3.5). □

Next, we are going to prove that the auxiliary problem (3.4) admits extremal
constant sign solutions, that is, there exist a smallest positive solution u∗ ∈ S+ and
a largest negative solution v∗ ∈ S−.

Proposition 3.2. Let hypotheses (C1)–(C5) be satisfied. Then we can find ele-
ments u∗ ∈ S+ and v∗ ∈ S− such that u∗ ≤ u for all u ∈ S+ and v∗ ≥ v for all
v ∈ S−.

Proof. We only prove the existence of u∗ ∈ S+ , in a similar way one can show the
existence of v∗ ∈ S−. Analogously to the proof of Proposition 7 by Papageorgiou–
Rădulescu–Repovš [27, Proposition 7], we can show that the set S+ is downward
directed, which implies, by using Lemma 3.10 of Hu–Papageorgiou [17] that we can
find a decreasing sequence {un}n∈N ⊆ S+ such that infn∈N un = inf S+. Therefore,
due to un ∈ S+ for all n ∈ N, it holds∫

Ω

(
|∇un|p−2∇un

+ µ(x)

(
log(e+ |∇un|) +

|∇un|
q(e+ |∇un|)

)
|∇un|q−2∇un

)
· ∇v dx

+

∫
Ω

|un|p−2unv dx

=

∫
∂Ω

ψ(x, un)v dσ

(3.9)

for all v ∈ W 1,Hlog(Ω) and for all n ∈ N. Next, we set v = un ∈ W 1,Hlog(Ω) in
(3.9). Then, taking (3.3) and 0 ≤ un ≤ u1 into account, we obtain

ϱ(un) =

∫
Ω

|∇un|p dx+

∫
Ω

µ(x)|∇un|q log(e+ |∇un|) dx+

∫
Ω

|un|p dx < c1

for some c1 > 0 and for all n ∈ N. From this and Proposition 2.1 (iii), we see that
the sequence {un}n∈N ⊆W 1,Hlog(Ω) is bounded.
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Now, using assumption (C4) we have ξ < p2

N−p · N−1
N + 1 which is equivalent to

N
p (ξ − 1) < p∗. So we are able to take a number t > N

p such that t(ξ − 1) < p∗.

Then, by the boundedness of the sequence {un}n∈N ⊆W 1,Hlog(Ω) and Proposition
2.2 (ii) we have, for a subsequence if necessary not relabeled, that

un ⇀ u∗ in W 1,Hlog(Ω) and un → u∗ in Lt(ξ−1)(∂Ω) (3.10)

for some u∗ ∈ W 1,Hlog(Ω). Furthermore, from (3.1) and (3.2) as well as (C4) we
arrive at

|ψ(x, s)| ≤ c2|s|ξ−1 (3.11)

for a.a.x ∈ ∂Ω, for all s ∈ R and for some c2 > 0. Now, since t > N
p , we can use

standard Moser iteration type bootstrap arguments to get from (3.9) and (3.11)
the estimate

∥un∥∞ ≤ B1∥un∥B2

t(ξ−1) (3.12)

for all n ∈ N with t > N
p such that t(ξ− 1) < p∗ and for some constants B1, B2 > 0

depending on N, p, q, ξ,Ω, ∥µ∥∞ and t. The idea in showing (3.12) is to use the test

function v = uβM with uM = min{un,M},M > 1, β ≥ 1 in (3.9) by applying (3.11).
Then one sees that the second term with the logarithm is nonnegative and since
the embedding W 1,Hlog(Ω) ↪→ W 1,p(Ω) is continuous, see Arora–Crespo-Blanco–
Winkert [4, Proposition 3.7], we arrive at a standard p-Laplace estimate of the
form

β

∫
Ω

uβ−1
M |∇uM |p dx+

∫
Ω

up−1
n uβM dx ≤

∫
∂Ω

uξ−1
n uβM dσ.

Now one can proceed in a standard way via bootstrap arguments to show (3.12), as
it was done in the works by Lê [19, Theorem 4.3], Perera–Squassina [30, Proposition
2.4] and Marino–Winkert [24, Theorem 3.1].

In the next step, we will show that u∗ ̸= 0. We argue indirectly and assume
by contradiction that u∗ = 0. From (3.10) and (3.12) one has ∥un∥∞ → 0 as
n → +∞. This implies the existence of a number n0 ∈ N such that 0 < un(x) ≤ η
for a.a.x ∈ Ω and for all n ≥ n0, where η ∈

(
0,min{K

2 , 1}
)
. Thus, with view to

(3.1) and (3.2), it follows that

ψ(x, un(x)) = f(x, un(x)) + un(x)
p∗−1 (3.13)

for a.a.x ∈ ∂Ω and for all n ≥ n0. We set yn = un

∥un∥ for all n ∈ N. This implies

that ∥yn∥ = 1 and yn ≥ 0 for all n ∈ N. Now, we can suppose that

yn ⇀ y in W 1,Hlog(Ω) and yn → y in Lp(Ω) and Lp(∂Ω)

for a subsequence if necessary (not relabeled) and for some y ∈ W 1,Hlog(Ω) with
y ≥ 0. From yn = un

∥un∥ we have un = ∥un∥yn. Using this in (3.9) and applying

(3.13) leads to∫
Ω

(
∥un∥p−1|∇yn|p−2∇yn

+ µ(x)∥un∥q−1

(
log(e+ |∇un|) +

|∇un|
q(e+ |∇un|)

)
|∇yn|q−2∇yn

)
· ∇v dx

+

∫
Ω

∥un∥p−1yp−1
n v dx
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=

∫
∂Ω

∥un∥p−1

[
f(x, un)

up−1
n

+ up∗−p
n

]
yp−1
n v dσ

for all v ∈W 1,Hlog(Ω) and for all n ≥ n0. This gives∫
Ω

(
|∇yn|p−2∇yn

+ µ(x)∥un∥q−p

(
log(e+ |∇un|) +

|∇un|
q(e+ |∇un|)

)
|∇yn|q−2∇yn

)
· ∇v dx

+

∫
Ω

yp−1
n v dx

=

∫
∂Ω

[
f(x, un)

up−1
n

+ up∗−p
n

]
yp−1
n v dσ

(3.14)

for all v ∈ W 1,Hlog(Ω) and for all n ≥ n0. Now, recall the elementary inequalities
given by

log(e+ |∇un|) = log(e+ ∥un∥|∇yn|)

≤

{
log(e+ |∇yn|) if ∥un∥ < 1,

∥un∥ log(e+ |∇yn|) if ∥un∥ ≥ 1,

(3.15)

Hence, from (3.15) and Lemma 2.3, we get that the left-hand side of (3.14) is
bounded for all v ∈ W 1,Hlog(Ω) (similar to the proof of Theorem 4.4 by Arora–
Crespo-Blanco–Winkert [4]) and so the same holds for the right-hand side of (3.14).
However, taking (C5) into account, it follows that

y = 0 and
f(x, un(x))

un(x)p−1
yn(x)

p−1 → 0 for a.a.x ∈ ∂Ω.

Now, we take v = yn in (3.14) and pass to the limit as n→ +∞. This yields

lim
n→+∞

∥∇yn∥pp = 0 and lim
n→+∞

∥yn∥pp = 0, (3.16)

which implies that

∇yn(x) → 0 for a.a.x ∈ Ω (3.17)

for a subsequence if necessary, not relabeled.
For 1 < s < q we set

gn(x) := µ(x)|∇yn(x)|q log
(
e+ |∇yn(x)|

)
≥ 0,

gn,s(x) := µ(x)
1
s |∇yn(x)|

q
s log

(
e+ |∇yn(x)|

) 1
s ≥ 0.

Then, from (3.17) and Proposition 2.1 (iii), we have

gn(x) → 0 for a.a.x ∈ Ω (3.18)

and

sup
n∈N

∫
Ω

gn dx ≤ sup
n∈N

ϱ(yn) ≤ 1. (3.19)

Since |Ω| <∞, by Chacon’s biting lemma (see Papageorgiou–Winkert [29, The-
orem 4.1.24]) there exist a subsequence {gn}n∈N (not relabeled) and measurable
sets Em ⊂ Ω with |Em| → 0 as m→ ∞ such that for every fixed m ∈ N, the family
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{gn}n∈N is uniformly integrable in Ω \ Em Hence, using this with (3.18) as well as
(3.19), by Vitali’s convergence theorem,∫

Ω\Em

gn dx→ 0 as n→ ∞ (3.20)

for every fixed m.
We have that {gn,s(·)}n∈N ⊂ Ls(Ω) is bounded by (3.19). Hence, since s > 1,

{gn,s(·)}n∈N is uniformly integrable. (3.21)

Claim: For s→ 1+, it holds

sup
n∈N

∫
Em

gn,s(x) dx→ sup
n∈N

∫
Em

gn(x) dx.

First note that for all ℓ ∈ N there exists a number nℓ ∈ N such that

sup
n∈N

∫
Em

gn(x) dx− 1

ℓ
≤
∫
Em

gnℓ
(x) dx

Observe that ∫
Em

gn,s(x) dx→
∫
Em

gn(x) dx

as s→ 1+. Hence, we can find sℓ > 1 with sℓ → 1+ such that

sup
n∈N

∫
Em

gn(x) dx− 1

2ℓ
≤
∫
Em

gn,sℓ(x) dx ≤ sup
n∈N

∫
Em

gn,sℓ(x) dx.

This implies

sup
n∈N

∫
Em

gn(x) dx ≤ lim inf
s→1+

sup
n∈N

∫
Em

gn,s(x) dx. (3.22)

On the other hand, for δ > 0, let nℓ ∈ N be such that

sup
n∈N

∫
Em

gn,s(x) dx ≤ δ +

∫
Em

gnℓ,s(x) dx.

Therefore, we conclude that

lim sup
s→1+

sup
n∈N

∫
Em

gn,s(x) dx ≤
∫
Em

gnℓ
(x) dx ≤ sup

n∈N

∫
Em

gn(x) dx. (3.23)

Combining (3.22) and (3.23) proves the Claim.
From the Claim, for given ε > 0, let s ∈ (1, q) be small such that

sup
n∈N

∫
Em

gn(x) dx ≤ ε

2
+ sup

n∈N

∫
Em

gn,s(x) dx. (3.24)

On the other hand, due to (3.21), for m ∈ N large enough, we have

sup
n∈N

∫
Em

gn,s(x) dx ≤ ε

2
. (3.25)

Combining (3.24) and (3.25) yields∫
Em

gn(x) dx ≤ ε,

which means that ∫
Em

gn(x) dx→ 0 as n→ ∞. (3.26)
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Hence, from (3.20) and (3.26) we conclude that∫
Ω

gn(x) dx→ 0 as n→ ∞. (3.27)

Consequently, from (3.16) and (3.27), it follows that

ϱ(yn) → 0 as n→ ∞. (3.28)

From Proposition 2.1 (iv) we know that (3.28) is equivalent to ∥yn∥ → 0. But by
construction we have ∥yn∥ = 1 for all n ∈ N which leads to a contradiction. Hence,
u∗ is nontrivial and u∗ ∈ S+ is the smallest positive solution of (3.4). □

From condition (C5) we can assume, without any loss of generality, that

f(x, s)

|s|p−2s
> 0 for a.a.x ∈ ∂Ω and for all |s| ≤ K,

due to the fact that f(x, ·) is only locally defined. Then we have, for a.a.x ∈ ∂Ω,
that

f(x, s) > 0 for all 0 < s ≤ K and f(x, s) < 0 for all −K ≤ s < 0. (3.29)

Let u∗ and v∗ be the extremal constant sign solutions from Proposition 3.2 and
consider the order interval

[v∗, u∗] :=
{
u ∈W 1,Hlog(Ω): v∗(x) ≤ u(x) ≤ u∗(x) for a.a.x ∈ Ω

}
We define the truncation function ψ∗ : ∂Ω× R → R by

ψ∗(x, s) :=


ψ(x, v∗(x)) if s < v∗(x),

ψ(x, s) if v∗(x) ≤ s ≤ u∗(x),

ψ(x, u∗(x)) if u∗(x) < s.

Furthermore, let Υ∗ : W 1,Hlog(Ω) → R be the truncated C1-functional defined by

Υ∗(u) =

∫
Ω

[
1

p
|∇u|p + µ(x)

q
|∇u|q log(e+ |∇u|)

]
dx

+

∫
Ω

1

p
|u|p dx−

∫
∂Ω

Ψ∗(x, u) dσ,

for all u ∈W 1,Hlog(Ω), where Ψ∗(x, s) =
∫ s

0
ψ∗(x, t) dt.

Now, we will show that the critical points of Υ∗ belong to the order interval
[v∗, u∗], that is,

KΥ∗ =
{
u ∈W 1,Hlog(Ω): (Υ∗)′(u) = 0

}
⊆ [v∗, u∗]. (3.30)

To this end, let u ∈ KΥ∗ \ {v∗, u∗}, that is, for all v ∈W 1,Hlog(Ω), we have∫
Ω

(
|∇u|p−2∇u

+ µ(x)

(
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

)
|∇u|q−2∇u

)
· ∇v dx

+

∫
Ω

|u|p−2uv dx

=

∫
∂Ω

ψ∗(x, u)v dσ.

(3.31)
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We first take v = (u − u∗)+ ∈ W 1,Hlog(Ω) in (3.31). Then, using the fact that u∗

solves (3.4), we obtain

⟨A(u), (u− u∗)+⟩

=

∫
Ω

|∇u|p−2∇u · ∇(u− u∗)+ dx

+

∫
Ω

µ(x)

(
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

)
|∇u|q−2∇u · ∇(u− u∗)+ dx

+

∫
Ω

|u|p−2u(u− u∗)+ dx

=

∫
∂Ω

ψ∗(x, u)(u− u∗)+ dσ

=

∫
∂Ω

ψ(x, u∗)(u− u∗)+ dσ

=

∫
Ω

|∇u∗|p−2∇u∗ · ∇(u− u∗)+ dx

+

∫
Ω

µ(x)

(
log(e+ |∇u∗|) + |∇u∗|

q(e+ |∇u∗|)

)
|∇u∗|q−2∇u∗ · ∇(u− u∗)+ dx

+

∫
Ω

|u∗|p−2u∗(u− u∗)+ dx

= ⟨A(u∗), (u− u∗)+⟩.
From this, we conclude that

⟨A(u)−A(u∗), (u− u∗)+⟩ = 0.

Since the operator A : W 1,Hlog(Ω) → W 1,Hlog(Ω)∗ as defined in (2.4) is strictly
monotone by Proposition 2.4, we get that u ≤ u∗. Similarly, if we take v =
(v∗ − u)+ ∈W 1,Hlog(Ω) in (3.31), we can show that v∗ ≤ u. This proves (3.30).

Before we can prove Theorem 1.1, we need first the following proposition. In the
following, we denote by V a finite dimensional subspace of W 1,Hlog(Ω) ∩ L∞(Ω).

Proposition 3.3. Let hypotheses (C1)–(C5) be satisfied. Then, there exists a
number ζV > 0 such that

sup [Υ∗(v) : v ∈ V, ∥v∥ = ζV ] < 0.

Proof. Recall that since V has finite dimension, all norms on V are equivalent.
Thus, there exists a number ζV > 0 such that

v ∈ V and ∥v∥ ≤ ζV imply |v(x)| ≤ η for a.a.x ∈ Ω,

where η ∈
(
0,min{K

2 , 1}
)
is the same from the proof of Proposition 3.1. Now, using

(3.1) and η < K
2 , it follows that Φ(v(x)) = 1 for a.a.x ∈ Ω. From this, v ∈ V with

∥v∥ ≤ ζV , we see that

ψ∗(x, v(x)) =


f(x, v∗(x)) + |v∗(x)|p∗−2v∗(x) if v(x) < v∗(x),

f(x, v(x)) + |v(x)|p∗−2v(x) if v∗(x) ≤ v(x) ≤ u∗(x),

f(x, u∗(x)) + |u∗(x)|p∗−2u∗(x) if u∗(x) < v(x).
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Next, we define f∗ : ∂Ω× R → R by

f∗(x, v(x)) =


f(x, v∗(x)) if v(x) < v∗(x),

f(x, v(x)) if v∗(x) ≤ v(x) ≤ u∗(x),

f(x, u∗(x)) if u∗(x) < v(x).

Then, for F ∗(x, s) :=
∫ s

0
f∗(x, t) dt, F (x, s) =

∫ s

0
f(x, t) dt and v < v∗, we deduce

that

F ∗(x, v) =

∫ v∗

0

f∗(x, s) ds+

∫ v

v∗
f∗(x, s) ds =

∫ v∗

0

f(x, s) ds+

∫ v

v∗
f(x, v∗) ds

= F (x, v∗) + f(x, v∗)(v − v∗).

Taking (3.29) into account, we see that f(x, v∗) < 0 for a.a.x ∈ ∂Ω. This implies
f(x, v∗)(v − v∗) > 0 for a.a.x ∈ ∂Ω which gives

F (x, v)− F ∗(x, v) = F (x, v)− F (x, v∗) + f(x, v∗)(v∗ − v)

≤ F (x, v)− F (x, v∗).

Similarly, if u∗ < v, we have

F ∗(x, v) = F (x, u∗) + f(x, u∗)(v − u∗).

Then, because of f(x, u∗)(u∗−v) < 0 for a.a.x ∈ ∂Ω again due to (3.29), this leads
to

F (x, v)− F ∗(x, v) = F (x, v)− F (x, u∗) + F (x, u∗)(u∗ − v)

≤ F (x, v)− F (x, u∗).

For this reason, we can write

Υ∗(v) =

∫
Ω

[
1

p
|∇v|p + µ(x)

q
|∇v|q log(e+ |∇v|)

]
dx

+

∫
Ω

1

p
|v|p dx−

∫
∂Ω

Ψ∗(x, v) dσ

=
1

p

∫
Ω

|∇v|p dx+
1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx+

∫
Ω

1

p
|v|p dx

−
∫
{x∈∂Ω: v(x)<v∗(x)}

(
F ∗(x, v) +

1

p∗
|v∗|p∗

)
dσ

−
∫
{x∈∂Ω: v∗(x)≤v(x)≤u∗(x)}

(
F (x, v) +

1

p∗
|v|p∗

)
dσ

−
∫
{x∈∂Ω: u∗(x)<v(x)}

(
F ∗(x, v) +

1

p∗
|u∗|p∗

)
dσ

≤ 1

p

∫
Ω

|∇v|p dx+
1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx+

∫
Ω

1

p
|v|p dx

−
∫
{x∈∂Ω: v(x)<v∗(x)}

F ∗(x, v) dσ

−
∫
{x∈∂Ω: v∗(x)≤v(x)≤u∗(x)}

F (x, v) dσ

−
∫
{x∈∂Ω: u∗(x)<v(x)}

F ∗(x, v) dσ
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=
1

p

∫
Ω

|∇v|p dx+
1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx

+

∫
Ω

1

p
|v|p dx−

∫
∂Ω

F (x, v) dσ

+

∫
{x∈∂Ω: v(x)<v∗(x)}

(F (x, v)− F ∗(x, v)) dσ

+

∫
{x∈∂Ω: u∗(x)<v(x)}

(F (x, v)− F ∗(x, v)) dσ

≤ 1

p

∫
Ω

|∇v|p dx+
1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx

+

∫
Ω

1

p
|v|p dx−

∫
∂Ω

F (x, v) dσ

+

∫
{x∈∂Ω: v(x)<v∗(x)}

(F (x, v)− F (x, v∗)) dσ

+

∫
{x∈∂Ω: u∗(x)<v(x)}

(F (x, v)− F (x, u∗)) dσ.

From hypothesis (C5), for each δ > 0, there exists η ∈
(
0,min{K

2 , 1}
)
such that

F (x, s) ≥ δ

p
|s|p for all |s| ≤ η, (3.32)

see (3.6). Then we can take ζV > 0 sufficiently small such that∫
{x∈∂Ω: v(x)<v∗(x)}

(F (x, v)− F (x, v∗)) dσ

+

∫
{x∈∂Ω: u∗(x)<v(x)}

(F (x, v)− F (x, u∗)) dσ < ηp.

(3.33)

Combining (3.32) and (3.33) with the calculations above, we get

Υ∗(v) ≤ 1

p

∫
Ω

|∇v|p dx+
1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx

+

∫
Ω

1

p
|v|p dx− δ

p

∫
∂Ω

|v|p dσ + ηp

=
1

p
∥v∥p1,p +

1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx− δ

p
∥v∥pp,∂Ω + ηp.

(3.34)

Note that Proposition 2.1 (iii) gives the following inequalities∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx ≤ ϱ(v) ≤ max{∥v∥p, ∥v∥q+κ}. (3.35)

Now, using the fact that all norms on V are equivalent and applying (3.35) in
(3.34), we see from (3.34) that there exist positive constants c1, c2, c3, independent
of η, such that

Υ∗(v) ≤ c1∥v∥p∞ + c2 max{∥v∥p∞, ∥v∥q+κ
∞ } − δc3∥v∥p∞ + ηp.

Then, for v ∈ V with ∥v∥ = ζV along with the equivalence of the norms on V , it
follows, due to η < 1, that

Υ∗(v) ≤ c1η
p + c2 max{ηp, ηq+κ} − δc3η

p + ηp
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= (c1 + c2 − δc3 + 1) ηp.

Now, if we take δ > c1+c2+1
c3

, we obtain Υ∗(v) < 0 for all v ∈ V with ∥v∥ = ζV . □

Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Clearly, Υ∗ : W 1,Hlog(Ω) → R is even and coercive, and in
addition, it is bounded from below. Furthermore, due to Proposition 5.1.15 by
Papageorgiou–Rădulescu–Repovš [26], the functional Υ∗ satisfies the PS-condition
as well. From these facts and Proposition 3.3 we are now in the position to apply
Theorem 1 of Kajikiya [18]. This yields a sequence {zn}n∈N ⊂W 1,Hlog(Ω)∩L∞(Ω)
such that

zn ∈ KΥ∗ ⊆ [v∗, u∗], zn ̸= 0, Υ∗(zn) ≤ 0 for all n ∈ N
and

∥zn∥ → 0 as n→ +∞. (3.36)

We point out that v∗ and u∗ are the extremal constant sign solutions of (3.4)
obtained in Proposition 3.2. Moreover, as zn ∈ KΥ∗ ⊆ [v∗, u∗] and zn ̸= 0 for all
n ∈ N, we have that zn is a sign-changing solution of problem (3.4) for all n ∈ N.
Recall that from (3.12), we have

∥zn∥∞ ≤ B1∥zn∥B2

t(ξ−1)

for all n ∈ N with t > N
p such that t(ξ− 1) < p∗ and for some constants B1, B2 > 0

depending on N, p, q, ξ,Ω, ∥µ∥∞ and t. Hence, using (3.36), it follows that ∥zn∥∞ →
0 as n → +∞. In particular, we can find a number n0 ∈ N such that |zn(x)| ≤ K

2
for a.a.x ∈ Ω and for all n ≥ n0. From this we conclude that Φ(zn(x)) = 1 for
a.a.x ∈ Ω and for all n ≥ n0, see (3.1). Using this fact and (3.2) we know that zn
is a sign-changing solution of our original problem (1.4) for all n ≥ n0. □

References

[1] C.O. Alves, D.C. de Morais Filho, Existence and concentration of positive solutions for a

Schrödinger logarithmic equation, Z. Angew. Math. Phys. 69 (2018), no. 6, Paper No. 144,

22 pp.
[2] C.O. Alves, C. Ji, Existence and concentration of positive solutions for a logarithmic

Schrödinger equation via penalization method, Calc. Var. Partial Differential Equations 59

(2020), no. 1, Paper No. 21, 27 pp.
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[19] A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057–1099.

[20] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear
Anal. 12 (1988), no. 11, 1203–1219.

[21] Z. Liu, N.S. Papageorgiou, Asymptotically vanishing nodal solutions for critical double phase

problems, Asymptot. Anal. 124 (2021), no. 3-4, 291–302.
[22] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth con-

ditions, J. Differential Equations 90 (1991), no. 1, 1–30.

[23] P. Marcellini, G. Papi, Nonlinear elliptic systems with general growth, J. Differential Equa-
tions 221 (2006), no. 2, 412–443.

[24] G. Marino, P. Winkert, Moser iteration applied to elliptic equations with critical growth on
the boundary, Nonlinear Anal. 180 (2019), 154–169.

[25] M. Montenegro, O.S. de Queiroz, Existence and regularity to an elliptic equation with loga-

rithmic nonlinearity, J. Differential Equations 246 (2009), no. 2, 482–511.
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